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Abstract

A theorem on error estimates for smooth nonlinear programming prob-
lems in Banach spaces is proved that can be used to derive optimal error
estimates for optimal control problems. This theorem is applied to a class
of optimal control problems for quasilinear elliptic equations. The state
equation is approximated by a finite element scheme, while different dis-
cretization methods are used for the control functions. The distance of
locally optimal controls to their discrete approximations is estimated.
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1 Introduction

This paper has two main aims. First, we develop a general theory of error
analysis for smooth nonlinear programming problems in Banach spaces, which
is applicable in particular to optimal control problems. Second, as main appli-
cation, we prove new error estimates for optimal control problems governed by
a class of quasilinear elliptic equations.
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Roughly speaking, the following question stands behind our general theory:
Let a control problem be discretized by a finite element scheme, where the
associated grid has mesh size h. How large is the difference between a locally
optimal control and its numerical approximation, if the state equation is handled
by a finite element method and the controls are discretized appropriately?

In the last decade, the associated error analysis of optimal control problems
for partial differential equations (PDEs) has made considerable progress. This
refers in particular to the case of elliptic PDEs. Here, various error estimates
are known that can be used to quantify the discretization error for the optimal
solution(s) of the control problem. For control-constrained elliptic problems,
we mention only the early papers for linear-quadratic elliptic control problems
by Falk [17] and Geveci [18], the discussion of semilinear elliptic control prob-
lems in [2], [8], error estimates for Dirichlet boundary control problems in [9],
[14], the concept of variational discretization in [20], and the investigation of
superconvergence in [22]. In the recent past, state-constrained control problems
received more attention. For instance, we refer to recent contributions by [6],
[15], or [16]. This list of papers could be extended; we refer to the references in
the survey paper [21].

Nevertheless, there are still important classes of optimal control problems,
where reliable a priori error estimates are desired but now yet proved. For
instance, because of intrinsic technical difficulties, the class of optimal control
problems for quasilinear elliptic equations was not yet considered. The optimal
control of coupled systems of quasilinear PDEs leads to additional difficulties.

We observed that very similar ideas are frequently repeated in any new
contribution to this field. A general theorem on error estimates might save
tremendous work in future investigations on other types of control problems.
Therefore, in the first part of the paper, we provide a general tool for deriving
error estimates for the optimal control under control constraints. In the second
part, our general analysis is applied to an optimal control problem governed
by a class of quasilinear elliptic PDEs. We show the error estimates stated in
[11] without proof. Our general result should also be applicable to other classes
of control problems, in particular if the state equation is of parabolic type.
It is needed that the partial differential equation under consideration and its
numerical approximation obey certain regularity properties of their solutions.

We consider the following quasilinear optimal control problem (P),

(P)

 min J(u) :=
∫

Ω

L(x, yu(x), u(x)) dx,

α ≤ u(x) ≤ β for a.e. x ∈ Ω,

where yu is the solution of the state equation{
−div [a(x, y(x))∇y(x)] + f(x, y(x)) = u(x) in Ω

y(x) = 0 on Γ. (1.1)

We began with the numerical analysis of (P) in [11], where we studied the finite
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element approximation of the equation (1.1), its linearization and its adjoint
equation. Moreover, we were able to prove that to any strict locally optimal
control ū there exists a sequence of locally optimal controls ūh of the associated
discretized optimal control problem that converges to ū as the mesh size h tends
to zero. Here, we will prove the error estimates announced in [11].

The objective functional J of (P) will lead to the well-known two-norm
discrepancy: It is twice continuously Fréchet-differentiable in L∞(Ω) but not
in general in L2(Ω). On the other hand, we need a second-order sufficient
optimality condition, which can only be satisfied in the norm of L2(Ω). This
difficulty complicates the estimation of the error and requires the use of two
norms.

With the following simpler functional, the two-norm discrepancy does not
occur:

J(u) :=
∫

Ω

{
`(x, yu(x)) +

Λ
2
u(x)2

}
dx. (1.2)

It is twice continuously differentiable in L2(Ω).

2 A Unified Theory of Error Estimates

2.1 An Abstract Optimization Problem and Optimality
Conditions

Let U∞ and U2 be Banach and Hilbert spaces, respectively, endowed with the
norms ‖ · ‖∞ and ‖ · ‖2. We assume that U∞ ⊂ U2 with continuous embedding.
In particular, the choice U∞ = U2 is possible. The latter case is of interest for
problems, where the two-norm discrepancy does not occur as for the functional
(1.2).

We denote by K a nonempty convex subset of U∞ that is closed in U2.
Moreover, an objective function J : U∞ −→ R is given. With these quantities,
we define the abstract optimization problem

(P) min
u∈K

J(u).

For the well-posedness of the problem, we require the next assumption.

(A1) The function J satisfies the following properties:

If {uk}∞k=1 ⊂ K and uk ⇀ u in U2, then J(u) ≤ lim inf
k→∞

J(uk). (2.1) If K is unbounded in U2 and {uk}∞k=1 ⊂ K is a sequence with

‖uk‖2 → +∞, then lim
k→∞

J(uk) = +∞. (2.2)

Theorem 2.1 Under the previous assumptions, (P) has at least one solution.
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The proof is standard. In the case of nonconvex optimization, local solutions
play an important role. Under a local solution of (P) we understand an element
ū ∈ K such that, with some ε > 0, J(ū) ≤ J(u) holds for all u ∈ K ∩ {u ∈ U∞ :
‖u − ū‖∞ < ε}. In this way, local optimality is understood in the sense of the
topology of U∞. If the strong inequality J(ū) < J(u) is satisfied in this set for
u 6= ū, then the solution is called a strict local solution.

The next well known result provides first order optimality conditions in form
of a variational inequality.

Theorem 2.2 If ū is a local solution of (P) and J is directionally differentiable
at ū, both in the sense of U∞, then

J ′(ū)(u− ū) ≥ 0 ∀u ∈ K. (2.3)

Notice that any local solution of (P) in the U2 sense is also a local solution in
the U∞ sense. Therefore (2.3) holds also for local solutions of (P) in the U2

sense.

In the sequel, we shall need stronger differentiability properties of J . Let us
mention here once and for all that first- and second-order differentiability of J
and notions as class C1 or C2 are always to be understood in the sense of the
space U∞. The same refers to the approximation Jh that will be defined later.

Next, we establish second order optimality conditions. To this end, we need
some further assumptions. Let us fix a point ū ∈ K as a reference element.
In what follows, B2(ū, r) and B∞(ū, r) denote the open ball of radius r > 0
centered at ū in U2 and U∞, respectively.

(A2) There exists an open subset A ⊂ U∞ covering K, such that J : A −→ R
is of class C2. Furthermore, there exist constants r > 0, Mi, i = 1, 2, such that
it holds for all v, v1, v2 ∈ U∞ and u ∈ B2(ū, r) ∩ K

|J ′(u)v| ≤M1‖v‖2 and |J ′′(u)(v1, v2)| ≤M2‖v1‖2‖v2‖2. (2.4)

For every ε > 0 there exists δ > 0 such that for all u1, u2 ∈ B∞(ū, r) and
v ∈ U∞

‖u1 − u2‖∞ < δ ⇒

{
|[J ′(u1)− J ′(u2)]v| ≤ ε‖v‖2,
|[J ′′(u1)− J ′′(u2)]v2| ≤ ε‖v‖22.

(2.5)

Finally, we assume that the quadratic form Q : v 7→ J ′′(ū)v2, Q : U2 −→ R is a
Legendre form according to the definition below.

Remark 2.3 (i) For the objective functional J of (P), (A2) is satisfied in
U∞ = L∞(Ω) and U2 = L2(Ω) under appropriate differentiability and Lipschitz
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conditions on L, cf. Section 4.2. This holds, because K = {u ∈ L∞(Ω) |α ≤
u(x) ≤ β a.e. in Ω} is bounded in L∞(Ω).

If K is unbounded, e.g. K = L∞(Ω), then the objective functional of (P) is
too general. In this case, (A2) can be verified if J has the particular form (1.2).

(ii) By the mean value theorem, the estimate (2.4) implies the upper in-
equality of (2.5), if u1, u2 belong to B2(ū, r) ∩ K. This follows from [J ′(u1) −
J ′(u2)]v = J ′′(û)(u1 − u2, v) with some û ∈ [u1, u2].

By (2.4) and (2.5), the linear or bilinear forms J ′(u) and J ′′(u) can be con-
tinuously extended to U2 or U2×U2 so that the expressions and estimates above
make also sense for v, v1, v2 ∈ U2. Condition (2.5) expresses the continuity of
the mappings u 7→ J ′(u) and u 7→ J ′′(u) from U∞ to the associated spaces of
linear and bilinear forms.

Following Bonnans and Shapiro [3] or Bonnans and Zidani [4] we say that
J ′′(u) is a Legendre form, if the following implications hold:

(i) If vk ⇀ v in U2 as k →∞, then J ′′(u) v2 ≤ lim infk→∞ J ′′(u) v2
k.

(ii) If additionally limk→∞ J ′′(u) v2
k = J ′′(u) v2 holds, then ‖v − vk‖2 → 0.

We define the cones Sū of feasible directions and Cū of critical directions by

Sū = {v ∈ U∞ : v = λ(u− ū) for some λ > 0 and u ∈ K} ,
Cū = cl2 (Sū) ∩ {v ∈ U2 : J ′(ū)v = 0},

where cl2 (Sū) denotes the closure of Sū in U2. Now we can prove necessary
second order optimality conditions under a regularity assumption given in the
next theorem.

Theorem 2.4 Let ū be a local solution of (P) in U∞. Assume that (A2) is
satisfied and that Cū = cl2 (Cū), where

Cū = {v ∈ Sū : J ′(ū)v = 0} .

Then it holds J ′′(ū)v2 ≥ 0 for all v ∈ Cū.

Proof. Given v ∈ Cū, we take a sequence {vk}∞k=1 ⊂ Cū converging to v in U2.
By definition of Cū, we have

vk = λk(uk − ū), uk ∈ K, λk > 0, J ′(ū)vk = 0.

Since ū is a local minimum of (P), there exists ε̄ > 0 such that J(ū) ≤ J(u)
for any u ∈ B∞(ū, ε̄) ⊂ U∞. We can assume that ε̄ ≤ r. Then, for 0 < ρ <
min{1/λk, ε̄/‖vk‖∞}, the elements ū+ ρvk belong to K∩B∞(ū, ε̄). The second
order Taylor expansion

0 ≤ J(ū+ ρvk)− J(ū) = ρJ ′(ū)vk +
ρ2

2
J ′′(ū+ θρρvk)v2

k =
ρ2

2
J ′′(ū+ θρρvk)v2

k
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leads to

J ′′(ū+ θρρvk)v2
k ≥ 0⇒ J ′′(ū)v2

k = lim
ρ↘0

J ′′(ū+ θρρvk)v2
k ≥ 0.

Finally, by (2.4), we arrive at J ′′(ū)v2 = limk→∞ J ′′(ū)v2
k ≥ 0. �

Remark 2.5 In control problems with constraints of type α ≤ u(x) ≤ β for
x ∈ X, we have

Cū = {v ∈ L2(X) : v(x) =

 ≥ 0 if ū(x) = α
≤ 0 if ū(x) = β
0 if d̄(x) 6= 0

},

where d̄ ∈ U2 is the Riesz representative of the derivative of J at ū, more
precisely

J ′(ū)v =
∫
X

d̄(x)v(x) dx.

In this case, the regularity assumption of Theorem 2.4 holds with U∞ = L∞(X)
and U2 = L2(X).

Indeed, for given v ∈ Cū set

vk(x) =
{

0 if α < ū(x) < α+ 1
k or β − 1

k < ū(x) < β,
P[−k,+k](v(x)) otherwise.

Let us check first that α ≤ uk(x) = ū(x) + ρkvk(x) ≤ β, if 0 < ρk ≤
min{1, β − α}/k2. If e.g. α < ū(x) < α + 1/k, then vk(x) = 0 so that the
inequality above is trivial. If ū(x) = α, then 0 ≤ ρkvk(x) ≤ ρkk ≤ β − α, hence
α ≤ uk(x) ≤ β.

If α+ 1/k ≤ ū(x) ≤ β − 1/k, then

ū(x) + ρkvk(x) ≥ ū(x)− ρk k ≥ α+
1
k
− 1
k2
k = α,

and

ū(x) + ρkvk(x) ≤ ū(x) + ρk k ≤ β −
1
k

+
1
k2
k = β.

The upper bound β is handled analogously. Consequently, vk = 1
ρk

(uk−ū) ∈
Sū.

On the other hand, it is obvious that |vk(x)| ≤ |v(x)|. Hence, if d̄(x) 6= 0,
then v(x) = 0 and also vk(x) = 0. Consequently, vk ∈ Cū and vk → v in L2(X),
which proves that v ∈ cl2 (Cū). Since v was taken arbitrarily in Cū, we deduce
that Cū ⊂ cl2 (Cū). The opposite inclusion is obvious.
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Theorem 2.6 Suppose that assumption (A2) holds. Let ū ∈ K satisfy (2.3)
and

J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}. (2.6)

Then, there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2
‖u− ū‖22 ≤ J(u) ∀u ∈ K ∩B∞(ū, ε). (2.7)

Proof. We argue by contradiction and assume that for any positive integer k
there exists uk ∈ K such that

‖uk − ū‖∞ <
1
k

and J(ū) +
1
2k
‖uk − ū‖22 > J(uk). (2.8)

Setting ρk = ‖uk − ū‖2 and vk = (uk − ū)/ρk, we can assume that vk ⇀ v
in U2; if necessary, we select a subsequence. Let us prove that v ∈ Cū. From
assumption (A2) and (2.3) we deduce

J ′(ū)v = lim
k→∞

J ′(ū)vk = lim
k→∞

ρkJ
′(ū)(uk − ū) ≥ 0.

To prove the opposite inequality, we use (2.8) and find

J ′(ū)v = lim
k→∞

J(ū+ ρkvk)− J(ū)
ρk

= lim
k→∞

J(uk)− J(ū)
ρk

≤

≤ lim
k→∞

1
2k
‖uk − ū‖2≤ c lim

k→∞

1
2k
‖uk − ū‖∞ ≤ lim

k→∞

c

2k2
= 0.

Thus we have that J ′(ū)v = 0. The first equality above follows from

J(ū+ ρkvk)− J(ū)
ρk

=
J(uk)− J(ū)

ρk
= J ′(ū+ θk(uk − ū))vk

= J ′(ū)vk + [J ′(ū+ θk(uk − ū))− J ′(ū)]vk.

For arbitrary ε > 0, we deduce from (2.5) and (2.8) the existence of kε such
that

|[J ′(ū+ θk(uk − ū))− J ′(ū)]vk| ≤ ε‖vk‖2 = ε ∀k ≥ kε.

Therefore, by (2.4),

lim
k→∞

J(ū+ ρkvk)− J(ū)
ρk

= lim
k→∞

J ′(ū)vk+ lim
k→∞

[J ′(ū+θk(uk−ū))−J ′(ū)]vk = J ′(ū)v.

Next, we prove that v ∈ cl2 (Sū). From vk = (uk − ū)/ρk and uk ∈ K, we
conclude vk ∈ Sū ⊂ cl2 (Sū). The set cl2 (Sū) is closed and convex in U2, hence
v ∈ cl2 (Sū). Thus, we obtain v ∈ Cū.
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Invoking again (2.8) and (2.3) we get by a Taylor expansion

ρ2
k

2k
=

1
2k
‖uk − ū‖22 > J(uk)− J(ū)

= J(ū+ ρkvk)− J(ū) = ρkJ
′(ū)vk +

ρ2
k

2
[J ′′(ū)v2

k + rk] ≥ ρ2
k

2
[J ′′(ū)v2

k + rk],

where

rk = [J ′′(ū+ θkρkvk)− J ′′(ū)]v2
k = [J ′′(ū+ θk(uk − ū))− J ′′(ū)]v2

k.

Therefore, it holds

J ′′(ū)v2
k + rk <

1
k
.

Once again, (2.5) and (2.8) imply |rk| → 0 when k → ∞. Then, the above
inequality, along with (2.4) and (2.6) leads to

0 ≤ J ′′(ū)v2 ≤ lim inf
k→∞

J ′′(ū)v2
k ≤ lim sup

k→∞
J ′′(ū)v2

k ≤ lim sup
k→∞

1
k

= 0,

so that J ′′(ū)v2
k → J ′′(ū)v2 = 0. From (2.6), it follows v = 0. Finally, using

that J ′′(ū) is a Legendre form, we get that vk → v = 0 in U2. This contradicts
the fact that ‖vk‖2 = 1 for every k. �

Remark 2.7 Under the assumption (A2), the optimality condition (2.6) is
equivalent to the following one:

∃α > 0 such that J ′′(ū)v2 ≥ α‖v‖2 ∀v ∈ Cū. (2.9)

Indeed, it is obvious that (2.9) implies (2.6). We verify the converse implication
by contradiction. Suppose that (2.6) holds, but not (2.9). Then for any positive
integer k there exists an element vk ∈ Cū such that

J ′′(ū)v2
k <

1
k
‖vk‖22 ∀k ≥ 1.

Re-defining vk := vk/‖vk‖2 yields J ′′(ū)v2
k < 1

k . By taking a subsequence,
denoted in the same way, we can assume that vk ⇀ v weakly in U2. Since Cū
is closed and convex in U2, v belongs to ∈ Cū. Moreover, J ′′(ū) is a Legendre
form. Therefore (2.6) implies

0 ≤ J ′′(ū)v2 ≤ lim inf
h→0

J ′′(ū)v2
k ≤ lim sup

h→0
J ′′(ū)v2

k ≤ lim sup
h→0

1
k

= 0.

Consequently, v = 0 and J ′′(ū)v2
k → 0 must hold and hence ‖vk‖2 → 0 contra-

dicting the fact that ‖vk‖2 = 1.
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Remark 2.8 If ū ∈ K satisfies (2.7) and the regularity assumption Cū =
cl2(Cū) holds true, then (2.9) is fulfilled by α = δ. Indeed, by (2.7), ū is a
local solution to

min
u∈K

J(u)− δ

2
‖u− ū‖22.

In view of Theorem 2.4, the necessary second-order condition

J ′′(ū)v2 − δ ‖v‖22 ≥ 0 ∀v ∈ Cū

must hold. Consequently, under the regularity condition above, inequality (2.6)
holds if and only if (2.7) is satisfied.

2.2 Approximation of (P)

Let h > 0 denote a small parameter. In applications to control problems, h
is the meshsize of a grid underlying a numerical approximation of (P). We
consider a family of problems (Ph) approximating (P) when h → 0, which is
characterized in some sense by the parameter h.

For any h > 0, we consider a family of sets Kh with the following properties:

(A3) Kh ⊂ K is convex and closed in U2. Moreover, for any u ∈ K there exist
elements uh ∈ Kh such that ‖u− uh‖2 → 0 as h→ 0.

We introduce a family of functionals Jh : U∞ −→ R satisfying the following
assumptions.

(A4) All functions Jh have the following properties:

If {uk}∞k=1 ⊂ Kh and uk ⇀ u in U2, then Jh(u) ≤ lim inf
k→∞

Jh(uk). (2.10)

If Kh is unbounded in U2, then the following properties hold:

If {uk}∞k=1 ⊂ Kh and ‖uk‖2 → +∞, k →∞, then lim
k→∞

Jh(uk) = +∞. (2.11)

If uh ∈ Kh ∀h > 0 and ‖uh‖2 →∞, then lim
h→0

Jh(uh) =∞. (2.12)

We investigate the family of approximating control problems

(Ph) min
uh∈Kh

Jh(uh).

To guarantee that the family {(Ph)}h really approximates problem (P), we need
a further assumption.

(A5) Let {uh}h>0 ⊂ K and u ∈ K be given.

If uh → u in U2, then lim
h→0

J(uh) = J(u); (2.13)

if uh ⇀ u in U2, then J(u) ≤ lim inf
h→0

Jh(uh) and lim
h→0
|Jh(uh)− J(uh)| = 0.(2.14)
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Remark 2.9 If assumption (A1) is satisfied, then the property of weak lower
semicontinuity in (2.14) follows just from limh→0 |Jh(uh)− J(uh)| = 0. Indeed,
we obtain

lim inf
h→0

Jh(uh) = lim inf
h→0

J(uh) + lim
h→0

(Jh(uh)− J(uh)).

As the last expression tends to zero, we obtain from (A1)

lim inf
h→0

Jh(uh) = lim inf
h→0

J(uh) ≥ J(u).

As a consequence of assumption (A5) the next result is deduced.

Lemma 2.10 Under assumptions (A1) and (A5) the following holds:

If {uh}h>0 ⊂ K and uh → u in U2, then lim
h→0

Jh(uh) = J(u). (2.15)

Proof. We apply first (2.13) and then (2.14),

J(u) = lim
h→0

J(uh) = lim
h→0

Jh(uh) + lim
h→0

[J(uh)− Jh(uh)] = lim
h→0

Jh(uh).

� Next, we show that the problems (Ph) approximate problem (P). To this
aim, we introduce another assumption.

(A6) If {uk}∞k=1 ⊂ K, uk ⇀ u in U2, and J(uk)→ J(u), then ‖uk − u‖2 → 0.

Theorem 2.11 Assume that (A1) and (A3)–(A5) hold. Then, for all h > 0,
the problem (Ph) has at least one (global) solution ūh. Any sequence of solutions
{ūh}h>0 contains a subsequence, denoted for convenience in the same way, that
converges weakly in U2 to a point ū. Each of these weak limit points is a solution
to (P). Moreover, limh→0 Jh(ūh) = limh→0 J(ūh) = J(ū). Under assumption
(A6), the convergence ūh → ū is even strong in U2.

Proof. First we prove that every problem (Ph) has at least one solution. Thanks
to (A3), Kh is not empty. Let {uk}∞k=1 ⊂ Kh be a minimizing sequence of (Ph).
Assumption (2.11) implies that {uk}∞k=1 is bounded in U2. Then, selecting a
subsequence if necessary, we can assume that uk ⇀ ūh weakly in U2. Since Kh
is convex and closed in U2 by assumption (A3), it holds ūh ∈ Kh. Finally, we
conclude from (2.10) that ūh is a solution of (Ph).

Next, we verify the boundedness {ūh}h>0 in U2. This is obvious if K is
bounded in U2. If K is unbounded, we fix an element u ∈ K. Thanks to
assumption (A3), there exists a sequence {uh}h>0 with uh ∈ Kh, such that
uh → u strongly in U2. From (2.15) and the fact that ūh is a solution of (Ph),
we get

Jh(ūh) ≤ Jh(uh)→ J(u) ⇒ ∃M > 0 such that Jh(ūh) ≤M ∀h > 0.
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In view of (2.12), this implies that {ūh}h>0 is bounded in U2. Therefore, there
exist subsequences weakly convergent in U2 to points ū. Let us prove that any of
these limit points is a solution of (P). First of all, ū ∈ K because {ūh}h>0 ⊂ K
and K is convex and closed in U2. Let ũ be a solution of (P) and consider a
sequence {ũh}h>0, with ũh ∈ Kh, such that ũh → ũ in U2. Such a sequence
exists thanks to (A3). Then, (2.14), (2.15) and the fact that ūh is a solution of
(Ph) lead to

J(ū) ≤ lim inf
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ūh) ≤ lim sup
h→0

Jh(ũh) = J(ũ) = inf (P) ≤ J(ū),

which proves that ū is a solution of (P) and Jh(ūh) → J(ū). From (2.14) we
get

lim
h→0

J(ūh) = lim
h→0

Jh(ūh) + lim
h→0

[J(ūh)− Jh(ūh)] = J(ū).

Finally, (A6) and the above equality yield the strong convergence ‖ū−ūh‖2 → 0.
�

The reader might wonder if there is a reciprocal theorem to the previous one.
More precisely, we have proved that the solutions of (Ph) converge to solutions
of (P). Now, the question is: given a solution ū of (P), can it be approximated
by solutions of (Ph)? The answer is yes assuming that ū is the unique solution
of (P) in a neighborhood. Even more, the next theorem states that strict local
solution of (P) can be approximated by local solutions of (Ph).

Theorem 2.12 Under the assumptions (A1) and (A3)–(A6), if ū is a strict
local solution of (P) in the sense of U2, then there exists a sequence {ūh}h>0

such that ūh is a local solution of (Ph) and ‖ū− ūh‖2 → 0.

Proof. Since ū is a strict local solution of (P), there exists ε > 0 such that

J(ū) < J(u) ∀u ∈ Kε \ {ū}, where Kε = {u ∈ K : ‖u− ū‖2 ≤ ε}. (2.16)

Consider the problems

(Pε) min
u∈Kε

J(u) and (Pεh) min
uh∈Kε

h

Jh(uh),

where Kεh = Kε ∩ Kh. From (2.16) we know that ū is the unique solution of
(Pε). From assumption (A3) we obtain the existence of a sequence {uh}h>0,
with uh ∈ Kh, such that ‖ū − uh‖2 → 0. Therefore, ‖ū − uh‖2 ≤ ε for all
h ≤ hε, hence uh ∈ Kεh for every h ≤ hε. Since Kεh is nonempty, bounded,
convex and closed in U2, we can deduce easily from (2.10) and (2.11) that (Pεh)
has at least one solution ūh for h ≤ hε. Then, applying Theorem 2.11 we deduce
that ‖ū − ūh‖2 → 0. Therefore, there exists h0 > 0 such that ‖ū − ūh‖2 < ε
for h ≤ h0. This implies that ūh is a local minimum of (Ph) for h ≤ h0, which
concludes the proof. �
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Remark 2.13 Often, Theorem 2.11 can be improved by deriving the conver-
gence ‖ū − ūh‖∞ → 0; see e.g. [2], [8], [11]. In such cases, Theorem 2.12
can be extended: Any strict local solutions of (P) in the sense of U∞ can be
approximated by local solutions of (Ph) in the sense of U∞.

In the remainder of this section, {ūh}h>0 will denote a sequence of local
minima of problems (Ph) converging strongly in U2 to a local minimum ū of
(P); see Theorems 2.11 and 2.12. Our next goal is to prove some error estimates
for ‖ū− ūh‖2. To this end, we need extra hypotheses.

(A7) The functions Jh : A −→ R are of class C1, where A is the open set of
U∞ introduced in assumption (A2). Furthermore, with a sequence εh → 0, it
holds

|[J ′h(u)− J ′(u)](uh − ū)| ≤ εh‖uh − ū‖2, ∀(u, uh) ∈ K ×Kh (2.17)
and
•either ‖ū− ūh‖∞ → 0,
•or for any sequence {(uk, vk)}∞k=1 ⊂ K × U2 with ‖uk − u‖2 → 0,

if vk ⇀ v weakly in U2 ⇒ J ′′(u)v2 ≤ lim infk→∞ J ′′(uk)v2
k,

if vk ⇀ 0 weakly in U2 ⇒ lim infk→∞ J ′′(uk)v2
k ≥ Λ lim infk→∞ ‖vk‖22

(2.18)

with some Λ > 0.

Theorem 2.14 Let the assumptions (A2), (A3) and (A7) be satisfied and let
{ūh}h>0 be a sequence of local solutions to (Ph) converging strongly to ū in U2.
If the second-order sufficiency condition (2.6) holds, then there exist C > 0 and
h0 > 0 such that

‖ū− ūh‖2 ≤ C
[
ε2
h + ‖ū− uh‖22 + J ′(ū)(uh − ū)

]1/2 ∀uh ∈ Kh, ∀h < h0.
(2.19)

Proof. Since ūh is a local minimum of (Ph) and Jh is C1 around ūh, we have

J ′h(ūh)(uh − ūh) ≥ 0 ∀uh ∈ Kh. (2.20)

From this inequality we get

J ′(ūh)(ū−ūh)+[J ′h(ūh)−J ′(ūh)](ū−ūh)+[J ′h(ūh)−J ′(ū)](uh−ū)+J ′(ū)(uh−ū) ≥ 0.

Taking u = ūh in (2.3) and adding the resulting inequality to the previous one
we get

[J ′(ūh)− J ′(ū)](ūh − ū) ≤ [J ′h(ūh)− J ′(ūh)](ū− ūh)

+[J ′h(ūh)− J ′(ū)](uh − ū) + J ′(ū)(uh − ū).

We introduce an additional term

[J ′(ūh)− J ′(ū)](ūh − ū) ≤ [J ′h(ūh)− J ′(ūh)](ū− ūh)
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+[J ′h(ūh)− J ′(ūh)](uh − ū) + [J ′(ūh)− J ′(ū)](uh − ū) + J ′(ū)(uh − ū).

We use (2.17) for the first and second term of the right-hand side of this inequal-
ity, apply the mean value theorem to the third one and estimate the resulting
term by (2.4). In this way, we deduce from the above inequality

[J ′(ūh)− J ′(ū)](ūh − ū)
≤ εh‖ū− ūh‖2 + εh‖ū− uh‖2 +M2‖ūh − ū‖2‖ū− uh‖2 + J ′(ū)(uh − ū).

Since J is of class C2 in A, we have

(J ′(ūh)− J ′(ū))(ūh − ū) = J ′′(ûh)(ūh − ū)2

with some ûh in the segment [ūh, ū]. Hence, from the above two relations we
get

J ′′(ûh)(ūh − ū)2 ≤ εh(‖ū− ūh‖2 + ‖ū− uh‖2)
+M2‖ūh − ū‖2‖ū− uh‖2 + J ′(ū)(uh − ū). (2.21)

From our assumptions ‖ūh − ū‖2 → 0 as h→ 0, hence also ‖ûh − ū‖2 → 0.

Now, let us argue by contradiction. We suppose that (2.19) is false, then
there exists a subsequence {hk}∞k=1 converging to 0, with uhk

∈ Khk
, such that

‖ū− ūhk
‖22 > k[ε2

hk
+ ‖ū− uhk

‖22 + J ′(ū)(uhk
− ū)],

or equivalently

1
k
>

ε2
hk

‖ū− ūhk
‖22

+
‖uhk

− ū‖22
‖ū− ūhk

‖22
+
J ′(ū)(uhk

− ū)
‖ū− ūhk

‖22
. (2.22)

Since the three summands of the right hand side are nonnegative, (2.22) implies
that all of them converge to zero. Define

vhk
:=

ūhk
− ū

‖ūhk
− ū‖2

.

All vhk
belong to the unit sphere, hence we can assume vhk

⇀ v in U2 with some
v ∈ U2. Let us prove that v ∈ Cū. It is clear that vhk

∈ Sū, hence v ∈ cl2 (Sū)
because of the convexity of this set. It remains to prove that J ′(ū)v = 0. The
optimality conditions (2.3) imply that J ′(ū)v = limk→∞ J ′(ū)vhk

≥ 0. To prove
the converse inequality we use (2.4), (2.17) and (2.14) as follows

J ′(ū)v = lim
k→∞

J ′(ū)vhk
= lim
k→∞

J ′hk
(ūhk

)vhk

+ lim
k→∞

[J ′(ūhk
)− J ′hk

(ūhk
)]vhk

+ lim
k→∞

[J ′(ū)− J ′(ūhk
)]vhk

. (2.23)

The first limit above exists due to the weak convergence of vhk
. We verify below

that the third and fourth limit exist, hence the second limit must exist as well.
Indeed, by assumption (2.17) we have for the third limit

lim
k→∞

|[J ′(ūhk
)− J ′hk

(ūhk
)]vhk

| ≤ lim
k→∞

εhk
‖vhk
‖2 = lim

k→∞
εhk

= 0.
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Thanks to the mean value theorem and (2.4), we obtain for the fourth limit

lim
k→∞

|[J ′(ū)− J ′(ūhk
)]vhk

| ≤ lim
k→∞

M2 ‖ū− ūhk
‖2 ‖vhk

‖2 = 0.

In view of (2.23), this yields the inequality J ′(ū)v ≤ limk→∞ J ′hk
(ūhk

)vhk
. Now,

from this inequality and using first (2.20), next (2.4) along with (2.17) and finally
(2.22), we obtain

J ′(ū)v ≤ lim
k→∞

J ′hk
(ūhk

)vhk

= lim
k→∞

1
‖ūhk

− ū‖2
[J ′hk

(ūhk
)(uhk

− ū) + J ′hk
(ūhk

)(ūhk
− uhk

)]

≤ lim
k→∞

1
‖ūhk

− ū‖2
J ′hk

(ūhk
)(uhk

− ū) ≤ lim
k→∞

(M1 + εhk
)
‖uhk

− ū‖2
‖ūhk

− ū‖2
= 0.

Let us show how (2.4) and (2.17) imply the last inequality. For any u ∈
B∞(ū, r) ∩ K, see assumption (A7), and every v ∈ U2,

|J ′hk
(u)v| ≤ |J ′(u)v|+ |[J ′hk

(u)−J ′(u)]v| ≤M1‖v‖2 +εhk
‖v‖2 = [M1 +εhk

]‖v‖2.

We observe that J ′′(ū)v2 ≤ lim infk→∞ J ′′(ûhk
)v2
hk

. Indeed, this is a conse-
quence of (2.18). The inequality is obvious if the second condition of (2.18) is
fulfilled. Under the first condition, we also have that ‖ū− ûhk

‖∞ → 0. Because
J ′′(ū) : U2 × U2 −→ R is a Legendre form, we get from (2.5)

lim inf
k→∞

J ′′(ûhk
)v2
hk

= lim inf
k→∞

[J ′′(ū)v2
hk

+ (J ′′(ûhk
)− J ′′(ū))v2

hk
]

= lim inf
k→∞

J ′′(ū)v2
hk
≥ J ′′(ū)v2.

Combining this with (2.21) and (2.22), we obtain

J ′′(ū)v2 ≤ lim inf
k→∞

J ′′(ûhk
)v2
hk
≤ lim sup

k→∞
J ′′(ûhk

)v2
hk

≤ lim
k→∞

{
εhk

‖ūhk
− ū‖2

(
1 +
‖ū− uhk

‖2
‖ūhk

− ū‖2

)
+M2

‖ū− uhk
‖2

‖ūhk
− ū‖2

+
J ′(ū)(uhk

− ū)
‖ūhk

− ū‖22

}
= 0.

This inequality, the fact that v ∈ Cū and (2.6) imply that v = 0. Finally, (2.18)
leads to the contradiction. Indeed, under the first assumption of (2.18) and
using again (2.5) along with the fact that ‖ū− ûhk

‖∞ → 0, we have

lim
k→∞

J ′′(ū)v2
hk

= lim
k→∞

J ′′(ûhk
)v2
hk

+ lim
k→∞

[J ′′(ū)−J ′′(ûhk
)]v2

hk
= lim
k→∞

J ′′(ûhk
)v2
hk

= 0.

Thus, we have proved that J ′′(ū)v2
hk
→ 0 and vhk

⇀ 0 weakly in U2. Since
J ′′(ū) is a Legendre quadratic form, we get ‖vhk

‖2 → 0, which contradicts the
fact that ‖vhk

‖2 = 1 for every k.

Under the second assumption of (2.18), we achieve the contradiction by

0 ≥ lim infk→∞ J ′′(ûhk
)v2
hk
≥ Λ lim infk→∞ ‖vhk

‖22 = Λ > 0. �
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3 Application to the optimal control problem
(P)

3.1 Main assumptions and known results on the control-
to-state mapping

We apply Theorem 2.14 on error estimates to the PDE constrained optimal
control problem (P). In this way, we derive the error estimates we have already
announced in [11] and illustrate the use of our abstract theory. We rely on the
assumptions (H1)-(H4) below.

(H1) Ω is an open, convex and bounded subset of Rn, n = 2 or 3, with boundary
Γ of class C1,1. For n = 2, Ω is allowed to be polygonal instead of class C1,1.

In the next assumptions, CM > 0 denotes a constant depending on a real
bound M > 0. We assume in (H2)-(H4) that such a constant CM exists. Al-
though we might use different constants for a, L, and f , we view CM as the
maximum of all of them.

(H2) The function a : Ω̄ × R −→ R is of class C2 with respect to the second
component. For any M > 0, it holds for all xi ∈ Ω̄ and |y|, |yi| ≤M , i = 1, 2,

2∑
j=1

∣∣∣∣∂ja∂yj
(x, 0)

∣∣∣∣ ≤ CM ∀x ∈ Ω, (3.1)

∣∣∣∣∂ja∂yj
(x2, y2)− ∂ja

∂yj
(x1, y1)

∣∣∣∣ ≤ CM (|x2 − x1|+ |y2 − y1|), j = 0, 1, 2.(3.2)

Moreover, there exists a0 > 0 such that

a(x, y) ≥ a0 ∀x ∈ Ω, ∀y ∈ R. (3.3)

(H3) The function f : Ω×R −→ R is measurable with respect to the first vari-
able and twice differentiable with respect to the second. It obeys the following
properties:

∃p̄ > n such that f(·, 0) ∈ Lp̄(Ω), (3.4)
∂f

∂y
(x, y) ≥ 0 for a.e. x ∈ Ω, ∀y ∈ R, (3.5)

2∑
j=1

∣∣∣∣∂jf∂yj (x, 0)
∣∣∣∣ ≤ C, for a.a. x ∈ Ω (3.6)

with some C > 0, and ∀M > 0 ∃CM > 0 such that∣∣∣∣∂2f

∂y2
(x, y1)− ∂2f

∂y2
(x, y2)

∣∣∣∣ ≤ CM |y1 − y2| (3.7)

for almost all x ∈ Ω and all |y|, |y1|, |y2| ≤M .
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(H4) The function L : Ω × R × R −→ R is measurable with respect to the
first variable and twice differentiable with respect to the others. It fulfills the
convexity condition

∂2L

∂u2
(x, y, u) ≥ Λ > 0 for a.a. x ∈ Ω, ∀y, u ∈ R. (3.8)

Moreover

L(·, 0, 0) ∈ L1(Ω),
∂L

∂y
(·, 0, 0) ∈ Lp̄(Ω), (3.9)

∀M > 0 ∃CM > 0 such that∣∣∣∣∂L∂u (x2, y, u)− ∂L

∂u
(x1, y, u)

∣∣∣∣ ≤ CM |x2 − x1|, (3.10)

‖D2
(y,u)L(x, y2, u2)−D2

(y,u)L(x, y1, u1)‖ ≤ CM (|y2 − y1|+ |u2 − u1|) (3.11)

for all x1, x2 ∈ Ω̄, for a.e. x ∈ Ω, and all |y|, |yi|, |u|, |ui| ≤ M , i = 1, 2, where
p̄ > n is as in assumption (H3) and D2

(y,u)L denotes the second derivative of L
with respect to (y, u), i.e. the associated Hessian matrix.

Remark 3.1 To simplify the presentation, the conditions (H3) and (H4) are
required slightly stronger than needed. Continuity of the second-order derivatives
of f and L with respect to y and u, uniform w.r. to x ∈ Ω, would suffice.

We used similar assumptions as (H1)-(H4) in our papers [10] and [11].
Preparing our error analysis for locally optimal controls, we discussed in [10]
second-order sufficient optimality conditions. Consequently, we had to require
associated second-order derivatives. In [11], we did not need second-order deriva-
tives of a and f , since our focus was only on convergence of discretizations of
the state equation and the adjoint equation.

In (H1), we have now added the possibility of a convex and polygonal domain
if n = 2. Our assumptions are imposed to assure that the states and adjoint
states belong to W 2,p(Ω) for p > n.

It follows from Theorem 3.2 below that for every u ∈ L2(Ω), the state
equation (1.1) has a unique solution yu ∈ H2(Ω) ∩ H1

0 (Ω). Moreover, for all
bounded sets B ⊂ L2(Ω), there exists a constant CB > 0 such that

‖yu‖H2(Ω) ≤ CB ∀u ∈ B. (3.12)

The control-to-state mapping G : L2(Ω) → H1
0 (Ω) ∩ H2(Ω), G : u 7→ yu that

assigns to u the unique solution y of (1.1), is now well defined. We fix the
control spaces U2 := L2(Ω), U∞ := L∞(Ω), and Y := H1

0 (Ω) ∩ H2(Ω) as the
state space. Notice that Y is continuously embedded in C(Ω̄).

Let us define the set K of admissible controls by

K = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β for a.a. x ∈ Ω}.
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We write the integral functional of (P) as

F (y, u) :=
∫

Ω

L(x, y(x), u(x))dx.

Then the reduced objective functional J admits the form

J(u) := F (G(u), u) =
∫

Ω

L(x, yu(x), u(x))dx. (3.13)

Thanks to our assumptions, F is defined and twice continuously Frèchet dif-
ferentiable on C(Ω̄)× L∞(Ω), but it is not in general differentiable on C(Ω̄)×
L2(Ω). In contrast to this, the objective functional (1.2) has better proper-
ties, if L(x, y, u) := `(x, y) + Λ/2u2 satisfies the assumption (H4). This func-
tional is of class C2 even in C(Ω̄) × L2(Ω). Therefore, for (1.2) we can take
U2 = U∞ := L2(Ω).

Now we are able to relate the control problem (P) to the abstract optimiza-
tion problem (P). (P) can be written in the form

(P) min
u∈K

J(u),

where K and J are defined as above.

Theorem 3.2 ([10]) For every q > n/2, the mapping G : Lq(Ω) −→W 2,q(Ω),
defined by G(u) = yu, is of class C2. For any v ∈ Lq(Ω), the function zv =
G′(u)v is the unique solution in W 2,q(Ω) ∩W 1,q

0 (Ω) of the equation −div
[
a(x, yu)∇z +

∂a

∂y
(x, yu)z∇yu

]
+
∂f

∂y
(x, yu)z = v in Ω

z = 0 on Γ.
(3.14)

Moreover, for any v1, v2 ∈ Lq(Ω) the function z = G′′(u)[v1, v2] is the unique
solution in W 2,q(Ω) ∩W 1,q

0 (Ω) of the following equation, where zvi
= G′(u)vi,

i = 1, 2:

−div
[
a(x, yu)∇z +

∂a

∂y
(x, yu)z∇yu

]
+
∂f

∂y
(x, yu) z = −∂

2f

∂y2
(x, yu)zv1zv2

+div
[
∂a

∂y
(x, yu)(zv1∇zv2 +∇zv1zv2) +

∂2a

∂y2
(x, yu)zv1zv2∇yu

]
in Ω

z = 0 on Γ.
(3.15)

We have n ≤ 3, hence our mapping G is of class C2 from U2 to Y . For the next
theorem we recall that p̄ was defined in (H3).
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Theorem 3.3 ([10]) The functional J : L∞(Ω)→ R is of class C2. For every
u, v ∈ L∞(Ω) we have

J ′(u)v =
∫

Ω

(
∂L

∂u
(x, yu, u) + ϕu

)
v dx, (3.16)

where ϕu ∈W 1,p̄
0 (Ω) ∩W 2,p̄(Ω) is the unique solution of the adjoint equation −div [a(x, yu)∇ϕ] +

∂a

∂y
(x, yu)∇yu · ∇ϕ+

∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu, u) in Ω

ϕ = 0 on Γ.
(3.17)

With zvi = G′(u)vi, i = 1, 2, the second derivative J ′′ is given by

J ′′(u)v1v2 =
∫

Ω

{
∂2L

∂y2
(x, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2L

∂u2
(x, yu, u)v1v2 − ϕu

∂2f

∂y2
(x, yu)zv1zv2

−∇ϕu
[
∂a

∂y
(x, yu)(zv1∇zv2 +∇zv1zv2) +

∂2a

∂y2
(x, yu)zv1zv2∇yu

]}
dx.

(3.18)

The property ϕu ∈W 2,p̄(Ω) is not explicitly mentioned in the associated proof.
However, it follows as in the proof of [10, Thm. 2.11]. In the case of a locally
optimal control ū, (3.16) and (2.3) amount to∫

Ω

(
∂L

∂u
(x, yū(x), ū(x)) + ϕū(x)

)
(u(x)− ū(x)) dx ≥ 0 ∀u ∈ K. (3.19)

A standard discussion of (3.19) yields the following projection result:

Theorem 3.4 ([10]) If ū is a local minimum of (P), then the equation

∂L

∂u
(x, ȳ(x), t) + ϕ̄(x) = 0 (3.20)

has a unique solution t̄ = s̄(x) for every x ∈ Ω̄. The function s̄ : Ω̄ → R is
Lipschitz and ū is related to s̄ by the projection formula

ū(x) = P[α,β](s̄(x)) = max{min{β, s̄(x)}, α}. (3.21)

Consequently, also ū is Lipschitz in Ω̄.

In the particular case of (1.2), the projection formula (3.21) simplifies to

ū(x) = P[α,β]{−
1
Λ
ϕ̄(x)}. (3.22)
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3.2 Finite element discretization of (P)

For a numerical approximation of (P), we have to discretize the state equation
and in general also the set of control functions. First, we introduce the finite
element approximation of the quasilinear state equation of (P). To this aim,
we consider a family of regular triangulations {Th}h>0 of Ω̄, defined in the
standard way, e.g. in [5]. In particular, this definition excludes the so-called
hanging nodes. Moreover, this triangulation is supposed to be regular and to
satisfy an inverse assumption; see (i) below. Also for Ω ⊂ R3, we shall speak of
a triangulation, although we will have a set of tetrahedra T .

With each element T ∈ Th, we associate two parameters ρ(T ) and σ(T ),
where ρ(T ) denotes the diameter of the set T and σ(T ) is the diameter of the
largest ball contained in T . Define the the mesh size by

h := max
T∈Th

ρ(T ).

We suppose that the following standard regularity assumptions are satisfied.

(i) There exist two positive constants ρ and σ such that

ρ(T )
σ(T )

≤ σ, h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.

(ii) Define Ωh = ∪T∈Th
T , and let Ωh and Γh denote its interior and its boundary,

respectively. We assume that Ωh is convex and that the vertices of Th placed
on the boundary Γh are points of Γ. From [23, estimate (5.2.19)] we know that

|Ω \ Ωh| ≤ Ch2. (3.23)

We will use piecewise linear approximations for the states, thus we set

Yh = {yh ∈ C(Ω̄) | yh|T ∈ P1, for all T ∈ Th, and yh = 0 on Ω̄ \ Ωh},

where P1 is the space of polynomials of degree less or equal than 1.

The discrete version of the state equation is
Find yh ∈ Yh such that, for all zh ∈ Yh,∫

Ωh

[a(x, yh(x))∇yh · ∇zh + f(x, yh(x))zh] dx =
∫

Ωh

uzh dx.
(3.24)

By an application of the Brouwer fixed point theorem, we showed the existence
of at least one solution to this equation. To our surprise, we were not able to
show uniqueness of the solution. To our best knowledge, this is an open question
until now. Under the additional requirement of boundedness of a, we were able
to show uniqueness for sufficiently small h. The situation is easier for semilinear
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elliptic state equations (a(x, y) = a(x)) where the solution of (3.24) is unique,
[2].

To set up the discretized problem, we define its objective functional by

Fh(yh, u) =
∫

Ωh

L(x, yh(x), u(x)) dx.

Remark 3.5 In what follows, we will derive various estimates of ‖uh−u‖L2(Ωh)

for functions uh, u ∈ K. We should notice that then ‖uh − u‖L2(Ωh) → 0 is
equivalent to ‖uh − u‖L2(Ω) → 0 independently on how the functions u, uh are
defined on Ω \ Ωh. This follows immediately from ‖u− uh‖L2(Ω\Ωh) ≤ C h2 for
all uh, u ∈ K.

We also introduce a set Kh ⊂ K of discrete control functions uh. These
functions are only needed on Ωh, because the integral of Fh is only evaluated
there. However, we need Kh ⊂ K to apply the abstract theory. For this reason,
discretized functions uh defined only on Ωh can be extended arbitrarily to Ω\Ωh
such that the resulting function belongs to K. Later, in the context of error
estimates, we will always set uh(x) = ū(x) a.e. in Ω \ Ωh, where ū is a fixed
locally optimal reference control.

With these definitions, we consider the following family of discretized prob-
lems depending on the mesh size h > 0:

(Qh) min
(yh,uh)∈Yh×Kh

Fh(yh, uh).

(Qh) is a discrete approximation of the optimal control problem (P). As yh is
possibly not uniquely determined by uh, this problem does not yet fit in the
abstract theory. However, the discretized states are locally unique:

Theorem 3.6 ([11, Thm. 3.2]) Suppose that n < p ≤ p̄. Then there exist
h0 > 0, ρū > 0 and ρȳ > 0 such that, for any h < h0 and any u in the closed
ball B̄(ū, ρū) of Lp(Ω), the equation (3.24) has a unique solution yh(u) in the
closed ball B̄(ȳ, ρȳ) of W 1,p

0 (Ω). Moreover, there holds the estimate

‖yu − yh(u)‖Lp(Ωh) + h‖yu − yh(u)‖W 1,p(Ωh) ≤ C(ū)h2. (3.25)

To simplify the presentation, we shall use the same notation B̄(ū, ρū) and
B̄(ȳ, ρȳ) for the balls in Lp(Ω) and W 1,p(Ωh). This should not lead to confusion.
Moreover, as in this theorem, we shall denote the particular solution yh of (3.24)
contained in B̄(ȳ, ρȳ) by yh(u). Introducing a mappingGh : B̄(ū, ρū)→ B̄(ȳ, ρȳ)
by Gh : u 7→ yh(u), we define the family of approximated functionals

Jh(u) := Fh(Gh(u), u)

and introduce the family of discretized problems

(Ph) min
uh∈Kh∩B̄(ū,ρū)

Jh(uh).
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Theorem 3.7 Let ū be a strict local solution of (P). Then there exists a se-
quence {(ȳh, ūh)}h>0 of local solutions to (Qh) such that

lim
h→0
{‖ūh − ū‖Lp(Ω) + ‖ȳh − yū‖W 1,p(Ω)} = 0 ∀ p ≤ p̄

and limh→0 Fh(ȳh, ūh) = F (yū, ū) = J(ū), where ȳ = yū.

Proof. Consider the admissible set K̂ := K ∩ B̄(ū, ρū). It is clear that ū is also
a strict local solution to

(P̂) min
u∈K̂

J(u).

This problem fits to our abstract theory by (P) := (P̂ ). We consider now the
approximated problem

(P̂h) min
uh∈K̂h

Jh(u),

where K̂h := Kh∩B̄(ū, ρū). Later, we shall verify that all the assumptions (A1)-
(A7) are satisfied for (P), in particular for (P̂), hence Theorem 2.11 is applicable:
There exists a sequence ūh of global solutions to (P̂h) that converges strongly
in U2 to ū. Consequently, ūh ∈ B(ū, ρū/2) holds for all sufficiently small h > 0.
Then ūh does not touch the boundary of B(ū, ρū). It is easy to see that therefore
(ȳh, ūh) is a local solution to (Qh), since the restriction u ∈ B̄(ū, ρū) is not active.

The convergence in ‖ūh− ū‖L2(Ω) → 0 implies the convergence ūh → ū in all
spaces Lp(Ω), 1 ≤ p <∞, because K̂h ⊂ K and K is bounded in L∞(Ω), hence
the other statements follow immediately from (3.25). �

3.3 Finite element discretization of the adjoint equation

The discrete adjoint equation for (P) is the finite element version of the adjoint
equation (3.17):

Find ϕh ∈ Yh such that, for all φh ∈ Yh,∫
Ωh

{
a(x, yh)∇ϕh · ∇φh + [

∂a

∂y
(x, yh)∇yh · ∇ϕh +

∂f

∂y
(x, yh)ϕh]φh

}
dx

=
∫

Ωh

∂L

∂y
(x, yh, uh)φh dx.

(3.26)
By [11, Thms. 4.1, 5.1], this equation has a unique solution for all sufficiently
small h > 0, see also Theorem 3.10. In view of the possible non-uniqueness
of the solution to the discrete state equation, we associated with u ∈ B(ū, ρū)
the locally unique state yh(u). We insert yh(u) for yh in the discrete adjoint
equation above; the associated unique solution ϕh is denoted by ϕh(u). Then
the following result holds:
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Lemma 3.8 ([11]) For every pair u, v ∈ K with v ∈ B(ū, ρū), there holds

‖yu − yh(v)‖L2(Ωh) + ‖ϕu − ϕh(v)‖L2(Ωh) ≤ C (h2 + ‖u− v‖L2(Ω)) (3.27)
‖yu − yh(v)‖H1(Ωh) + ‖ϕu − ϕh(v)‖H1(Ωh) ≤ C (h + ‖u− v‖L2(Ω)) (3.28)
‖yu − yh(v)‖L∞(Ωh) + ‖ϕu − ϕh(v)‖L∞(Ωh) ≤ C (h + ‖u− v‖L2(Ω)). (3.29)

3.4 Necessary optimality conditions for (Ph)

The theory of first-order necessary conditions for (Ph) is similar to that of (P).

Theorem 3.9 ([11]) For every h ≤ h0, the functional Jh : B(ū, ρū)∩L∞(Ω)→
R is of class C1, and its derivative is given by

J ′h(u)v =
∫

Ωh

(
∂L

∂u
(x, yh(u), u) + ϕh(u)

)
v dx, (3.30)

where ϕh(u) ∈ Yh is the unique solution of the adjoint state equation∫
Ωh

[a(x, yh(u))∇ϕh(u) · ∇φh +
∂a

∂y
(x, yh(u))∇yh(u) · ∇ϕh(u)φh] dx

+
∫

Ωh

∂f

∂y
(x, yh(u))ϕh(u)φh dx =

∫
Ωh

∂L

∂y
(x, yh(u), u)φh dx ∀φh ∈ Yh. (3.31)

From this expression for J ′(u), we obtain first-order necessary optimality con-
ditions for the discretized problem. Let (ȳh, ūh) ∈ B(ȳ, ρȳ) × B(ū, ρū) be a
local solution to (Qh) in the sense of U∞ such that ūh belongs to B(ū, ρū/2).
The existence of such solutions follows from Theorem 3.7 for sufficiently small
h > 0. Then ūh is also a local solution of (Ph) in the sense of U∞ that does not
touch the boundary of B(ū, ρū) where Jh(ūh) is well defined. Therefore, we are
justified to apply the following result on necessary optimality conditions that
was proved in [11] for the problem (Ph).

Theorem 3.10 ([11]) Let (ȳh, ūh) ∈ B̄(ȳ, ρȳ)× B̄(ū, ρū) be a local solution of
(Qh). Then there exists a unique solution ϕ̄h in Yh of∫

Ωh

[a(x, ȳh)∇ϕ̄h · ∇φh +
∂a

∂y
(x, ȳh)∇ȳh · ∇ϕ̄hφh] dx+

∫
Ωh

∂f

∂y
(x, ȳh)ϕ̄hφh dx

=
∫

Ωh

∂L

∂y
(x, ȳh, ūh)φh dx ∀φh ∈ Yh (3.32)

such that ∫
Ωh

(
∂L

∂u
(x, ȳh, ūh) + ϕ̄h

)
(uh − ūh) dx ≥ 0 ∀uh ∈ Kh. (3.33)
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From (3.33), we derive again projection formulas for ūh, if Kh is the set (4.41)
of functions being piecewise constant in Ωh or the variational discretization
Kh = K is applied. In the case of the variational discretization Kh = K,
proceeding as in Theorem 3.4, we deduce from (3.33) that

ūh(x) = P[α,β](s̄h(x)) ∀x ∈ Ωh. (3.34)

Here, s̄h(x) is the unique solution t of the equation

∂L

∂u
(x, ȳh(x), t) + ϕ̄h(x) = 0 ∀x ∈ Ωh. (3.35)

In the case of the integral functional (1.2), this formula admits the form

ūh(x) = P[α,β](−
1
Λ
ϕ̄h(x)), (3.36)

hence ūh is a piecewise linear function, although it was formally not discretized.

For piecewise constant control functions, formula (3.33) yields

ūh|T = P[α,β](s̄h|T ) ∀T ∈ Th, (3.37)

where sh|T is the unique real number satisfying the equation∫
T

(
∂L

∂u
(x, ȳh(x), s̄h|T ) + ϕ̄h(x)

)
dx = 0. (3.38)

For piecewise linear controls, we do not have an analogous projection formula.

4 Error estimates for the problem (P)

4.1 Control discretization and error estimate for (P)

We shall verify the general assumptions (A1)–(A7) for our quasilinear control
problem (P) so that Theorem 2.14 provides a general tool for deriving error
estimates. To apply it, the three different terms in the right-hand side of (2.19)
must be chosen appropriately.

Once and for all, we select a fixed locally optimal reference control ū ∈ K.
The treatment of the first term in (2.19) is fairly clear: To estimate ε2

h, an
error analysis of the state equation is needed. The two other terms, ‖uh − ū‖2
and J ′(ū)(uh − ū) need special strategies to arrive at optimal error estimates.
In particular, they depend on how the control functions u are discretized. We
explain associated methods and their consequences below. Let us notice already
here that, within the framework of the abstract theory, we have to work in K̂h
and K̂ instead of Kh and K, respectively.
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4.1.1 Variational discretization of controls

If a control u ∈ K is not discretized, we set Kh = K. Then u|Ωh
is to be inserted

in Jh. We extend uh to Ω \ Ωh by uh(x) := ū(x) on Ω \ Ωh. In this case, a
discretization of the control enters only implicitely by the necessary optimality
conditions. The discretized adjoint state ϕ̄h is a piecewise linear function. If
Kh = K and the simplified functional (1.2) is considered, the discretized optimal
control ūh of (Ph) satisfies the projection formula (3.36). Then, with ϕ̄h, also
the associated control ūh is piecewise linear on Ωh. This strategy is called
variational discretization, cf. Hinze [20].

For the more general objective functional of (P), the projection formula
(3.34) has to be used instead. In this case, the associated discretized control ūh
is not necessarily piecewise linear and has a more complicated structure. Then
the variational discretization is only of limited value. Nevertheless, the following
result holds:

Theorem 4.1 (Variational discretization, L2-estimate) Assume that (H1)-
(H4) are satisfied. Let ū be a strict locally optimal control of (P) that fulfills
the second-order sufficient optimality condition (2.6) and suppose that Kh = K.
Let further {(ȳh, ūh)} be a sequence of locally optimal solutions for (Qh) that
converges strongly in W 1,p(Ω)×Lp(Ω) to (ȳ, ū) and exists according to Theorem
2.12. Then there is some constant C > 0 not depending on h such that

‖ūh − ū‖L2(Ωh) ≤ C h2 ∀h > 0. (4.1)

Proof. We can apply Theorem 2.14, since all needed assumptions are satisfied.
In (2.19), we set uh := ū. Then only the term ε2

h does not vanish and we obtain
instantly the error estimate

‖ūh − ū‖L2(Ωh) ≤ Cεh. (4.2)

In (4.59) we will show εh = C h2, hence (2.19) yields the result. �

4.1.2 Piecewise constant control approximation

We assumed in (H1) that Ω is convex with smooth boundary to obtain the
needed regularity of ū. For formal reasons, we must specify the discretized
controls uh also in Ω \ Ωh. We define

Kh = {uh ∈ K : uh(x) ≡ uT ∈ R in each triangle T, uh(x) = ū(x) ∀x ∈ Ω\Ωh}.
(4.3)

Notice that we do not need the values of uh in Ω \ Ωh; Fh and the discretized
equations are only considered in Ωh. It does not matter that we do not know ū
in advance. For (P), the derivative J ′(ū) is obtained by (3.30). We write it in
the form

J ′(ū)u =
∫

Ω

d̄(x)u(x)dx,
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where the reduced gradient d̄ ∈ L2(Ω) is given by

d̄(x) :=
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x). (4.4)

For error estimates, we apply Theorem 2.14. Again, we have to define the
function uh in (2.19) in the right way. With piecewise constant controls, we
proceed as follows: On any triangle T ∈ Th, we define uh as the piecewise
constant interpolate

uh(x) :=
1
|T |

∫
T

ū(x)dx ∀x ∈ T, ∀T ∈ Th. (4.5)

Notice that we have set uh(x) = ū(x) for all x ∈ Ω \ Ωh.

In view of (3.27), we can select εh = C h2 in Theorem 2.14. For piecewise
constant control approximation, we cannot fully benefit from this. Even εh =
C h would guarantee the error estimate below.

In the next proofs, we denote by T0 ⊂ T the set of all triangles T , which
contain at least one zero xT of d̄. Notice that we need continuity of d̄ to make
this definition correct. In all other triangles, d̄ is by continuity either everywhere
positive or everywhere negative. The set T0 will be essential for deriving optimal
error estimates.

Theorem 4.2 (Piecewise constant controls, L2-estimate) Assume (H1)-
(H4), let a locally optimal control ū of (P) satisfy the second-order sufficient
conditions (2.6). Define the admissible set Kh by (4.41). Let further ūh be a
sequence of locally optimal (piecewise constant) solutions to (Qh) that converges
strongly in L2(Ω) to ū. Then there is some constant C > 0 not depending on h
such that

‖ūh − ū‖L2(Ωh) ≤ C h ∀h > 0. (4.6)

Proof. By Theorem 3.3, the adjoint state ϕ̄ belongs to W 2,p̄(Ω), since the right-
hand side of the adjoint equation (3.17) belongs to Lp̄(Ω). Therefore, ϕ̄ belongs
even to C1(Ω̄). Theorem 3.4 yields that ū is Lipschitz, hence d̄ is also Lipschitz.
Notice that assumption (3.10) implies that L is Lipschitz with respect to x. The
projection formula ensures in particular ū ∈ H1(Ω), hence it holds

‖uh − ū‖L2(Ω) ≤ C h, (4.7)

cf. Ciarlet [13]. Consider first the triangles T /∈ T0. Here, d̄ is either positive or
negative in T . If d̄(x) > 0 in T then a.e. we have ū(x) = α. This follows from
a standard pointwise discussion of (3.19), see e.g. [24, Lemma 2.2.6].

By the construction (4.43), it then also holds uh(x) = α ∀x ∈ T . If d(x) < 0
a.e. in T , we obtain accordingly uh(x) = β ∀x ∈ T . In either case, we have∫

T

d̄(x)(ūh(x)− ū(x))dx = 0 ∀T /∈ T0.
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In each T ∈ T0, there exists xT such that d̄(xT ) = 0. We estimate

J ′(ū)(uh − ū) =
∑
T∈T0

∫
T

d̄(x)(uh(x)− ū(x))dx

=
∑
T∈T0

∫
T

(d̄(x)− d̄(xT ))(uh(x)− ū(x))dx

≤ Ld̄ h
∑
T∈T0

∫
T

|uh(x)− ū(x)|dx ≤ C h ‖uh − ū‖L2(Ω) ≤ C h2

(4.8)

where Ld̄ is the Lipschitz constant of d̄; we used the inequality (4.45).

Now we apply Theorem 2.14 and use (3.27), (4.45) and (4.46). These esti-
mates show that all three terms appearing in the right-hand side of (2.19) have
at least the order h2, hence

ε2
h + ‖uh − ū‖2L2(Ω) + J ′(ū)(uh − ū) ≤ C h2.

Now (2.19) yields ‖ūh − ū‖L2(Ω) ≤ C h as it was claimed in the theorem. �

This estimate is optimal, since the order of the L2-approximation of a func-
tion by step functions is not in general better than h. However, as it is observed
numerically, the error ‖ȳh − ȳ‖L∞(Ωh) for the state function has often a higher
order. This phenomenon was first observed in [8] and explained analytically by
[22].

Our last result leads directly to an associated maximum-norm estimate.

Theorem 4.3 (Piecewise constant controls, L∞-estimate) Under the as-
sumptions of Theorem 4.2, there is a constant C > 0 not depending on h such
that

‖ūh − ū‖L∞(Ωh) ≤ C h ∀h > 0. (4.9)

Proof. From Lemma 3.8, estimate (3.29) and Theorem 4.2, we get

‖ϕū − ϕh(ūh)‖C(Ω̄h) ≤ C h.

Subtracting (3.21) and (3.37), we obtain a.e. on each triangle T

|ū(x)− ūh(x)| =
∣∣P[α,β](s̄(x))− P[α,β](s̄h|T )

∣∣
≤

∣∣s̄(x)− s̄h|T
∣∣ ≤ 1

Λ
{‖ϕū − ϕh(ūh)‖L∞(Ωh) + c ‖ȳ − yh(ūh)‖L∞(Ωh)}

≤ c {‖ϕū − ϕūh
‖L∞(Ωh) + ‖ϕūh

− ϕh(ūh)‖L∞(Ωh)

+‖yū − yūh
‖L∞(Ωh) + ‖yūh

− yh(ūh)‖L∞(Ωh)} (4.10)

≤ c [h+ ‖ū− ūh‖L2(Ωh)] ≤ C̃ h. (4.11)

The second inequality follows with some effort by an application of the mean
value theorem in (3.38) and a Taylor expansion of L(x, ȳh(x), sh|T ) with respect
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to the second and third variable. Moreover, Lemma 3.8, the Lipschitz continuity
of yū, ϕū, L(x, y, u), and of s̄ with respect to x, and the convexity condition of
(H4) are needed. In the last line, we applied Theorem 4.2. For details we refer
to [11, p.29]. �

4.1.3 Piecewise linear control approximation

This type of approximation is frequently used in numerical computations, since
its implementation is fairly easy. We adopt the notation d̄ and T0 from above.
We define

Kh = {u ∈ K : u|T ∈ P1 for all T ∈ Th and u|Ω\Ωh
= ū}. (4.12)

To apply Theorem 2.14, we use the function

uh := Πhū :=

{
(πhū)(x) ∀x ∈ Ωh
ū(x) ∀x ∈ Ω \ Ωh,

(4.13)

where πh : C(Ω̄)→ C(Ω̄h) associates to u ∈ C(Ω̄) its standard piecewise linear
interpolate on Ωh. It holds that ‖u−Πhu‖C(Ω̄h) → 0, if u is continuous on Ω̄.

In general, we expect a better approximation of ū by piecewise linear func-
tions than by piecewise constant controls. However, without further assump-
tions, the improvement is only marginal.

Theorem 4.4 (Piecewise linear controls, low order L2-estimate) Assume
that ū is a local solution to (P) that satisfies the second-order sufficient condi-
tion (2.6). Let the assumptions (H1)-(H4) be satisfied and Kh be the set defined
in (4.50). If {ūh} is a sequence of locally optimal piecewise linear controls to
(Qh ) with ‖ūh − ū‖L2(Ωh) → 0, then ‖ūh − ū‖L2(Ωh) = o(h), i.e.

lim
h→0

1
h
‖ūh − ū‖L2(Ωh) = 0. (4.14)

Proof. We proceed similarly as in the proof of the last theorem, but we define
now uh = Πhū as in (4.51). If T /∈ T0, then again either ū(x) ≡ α or ū(x) ≡ β
holds in T so that uh(x) = Πhūh(x) = ū(x) holds in T . Now we estimate

J ′(ū)(uh − ū) =
∑
T∈T0

∫
T

d̄(x)(uh(x)− ū(x))dx

=
∑
T∈T0

∫
T

(d̄(x)− d̄(ξT ))(uh(x)− ū(x))dx

≤ Lh
∑
T∈T0

∫
T

|Πhū(x)− ū(x)|dx ≤ C h ‖Πhū− ū‖L2(Ωh) = o(h2)
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in view of the Lipschitz continuity of d̄ and the estimate

‖Πhu− u‖L2(Ωh) = o(h) (4.15)

for u ∈ W 1,p(Ω), p > n, cf. Brenner and Scott [5]. In Theorem 2.14 we have
to deal with the terms ε2

h, ‖uh − ū‖2L2(Ωh), and J ′(ū)(uh − ū). For εh, the finite
element analysis yields again εh ≤ C h2. By (4.53), the second term is of the
order o(h2), while the last one was shown above to have the order o(h2).

All three terms appearing in the right-hand side of (2.19) were confirmed to
have the order o(h2), hence ε2

h + ‖uh − ū‖2L2(Ωh) + J ′(ū)(uh − ū) = o(h2) so
that (2.19) yields ‖ūh − ū‖L2(Ωh) = o(h) as it was claimed in the theorem. �

In numerical tests with piecewise linear control approximation, often the
higher order h3/2 of approximation is observed. The reason is that the boundary
of the active set of ū often has zero measure.

Theorem 4.5 (Piecewise linear controls, optimal L2-estimate) Suppose
in addition to the assumptions of Theorem 4.4 that L(x, y, u) = l(x, y)+(Λ/2)u2

and the measure of the set T∗ formed by the union of all triangles T ∈ T , where
d̄ is not identically zero but vanishes in a subset of T of positive measure, can
be estimated by

|T∗| ≤ C h.

Then there exists some constant C > 0 not depending on h such that

‖ūh − ū‖L2(Ωh) ≤ C h
3
2 ∀h > 0. (4.16)

Proof. We decompose Th in three families of triangles

T1 = {T ∈ Th : |d̄(x)| > 0 for a.a. x ∈ T},
T2 = {T ∈ Th : d̄(x) = 0 for all x ∈ T},
T3 = Th \ (T1 ∪ T2).

If T ∈ T1, then either ū(x) = α ∀x ∈ T or ū(x) = β ∀x ∈ T , therefore
ū(x) − uh(x) ≡ 0 in T . If T ∈ T2, then ū(x) = −(1/Λ)ϕ̄(x) for every x ∈ T ,
hence ū|T ∈ H2(T ) and we have the interpolation error

‖ū− uh‖L2(T ) ≤ Ch2‖ū‖H2(T ) =
C

Λ
h2‖ϕ̄‖H2(T ).

Finally, in T3 it holds∑
T∈T3

∫
T

|ū− uh|2dx ≤ Ch2‖ū‖2C0,1(Ω̄)

∑
T∈T3

|T | = Ch2‖ū‖2C0,1(Ω̄)|T∗| ≤ C h
3.

From these estimates we infer

‖ū− uh‖L2(Ωh) ≤ Ch3/2.
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It remains to estimate J ′(ū)(uh − ū). This follows from the above remarks and
the fact that ū and uh coincide in Ω \ Ωh. In each T ∈ T3 there exists xT such
that d̄(xT ) = 0, hence

J ′(ū)(uh − ū) =
∑
T∈T

∫
T

d̄ (ū− uh)dx =
∑
T∈T3

∫
T

(d̄(x)− d̄(xT ))(ū(x)− uh(x))dx

≤ Ld̄ h
∑
T∈T3

∫
T

|ū− uh| dx ≤ Ld̄ h
∑
T∈T3

√
|T |

(∫
T

|ū− uh|2 dx
)1/2

≤ Ld h

(∑
T∈T3

|T |

)1/2(∑
T∈T3

∫
T

|ū− uh|2 dx

)1/2

≤ c h3/2 ‖ū− uh‖L2(Ωh) ≤ C h3.

�

4.2 Verification of the assumptions (A1)–(A7)

Finally, we verify the assumptions (A1)–(A7) for the quasilinear optimal control
problem (P). This is a fairly technical task, characteristic for problems with
quasilinear equations. The verification would be much easier for the semilinear
elliptic problems. In either case, the discussion of error estimates would be much
longer without our general Theorem 2.14.

We recall our choice U∞ = L∞(Ω), U2 = L2(Ω). Notice that we must verify
the assumptions for the sets K̂ and K̂h instead of K and Kh, respectively.

(A1): By Theorem 3.2 and the uniform boundedness of K, all possible states yu
obey with some C > 0

|yu(x)| ≤ C ∀x ∈ Ω, ∀u ∈ K.

The mapping u 7→ yu is in particular continuous from L2(Ω) to H1
0 (Ω), see

Theorem 3.2. Let now uk ⇀ u in L2(Ω). The embedding of L2(Ω) in W−1,p(Ω)
is compact for all p > 1, if n = 2, and for all 1 < p < 6 for n = 3. Therefore,
we have uk → u in W−1,p(Ω) and Theorem 2.3 of [10] ensures yuk

→ yu in
W 1,p(Ω) ⊂ C(Ω̄). We split∫

Ω

L(x, yuk
, uk) dx =

∫
Ω

L(x, yu, uk) dx+
∫

Ω

(L(x, yuk
, uk)− L(x, yu, uk)) dx.

By the uniform boundedness of yuk
, yuk

→ yu in C(Ω̄) and the Lipschitz prop-
erty (3.11), the second integral tends to zero. Thanks to condition (3.8), the
mapping u 7→ L(x, y, u) is convex.

lim inf
k→∞

∫
Ω

L(x, yuk
, uk) dx = lim inf

k→∞

∫
Ω

L(x, yu, uk) dx ≥
∫

Ω

L(x, yu, u) dx.

The functional above is defined on K, but not in general on L2(Ω). In view of
this, general results on lower semicontinuity of convex and continuous function-
als defined on the whole space are not directly applicable. Therefore, to obtain
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the property of lower semicontinuity above, we apply the Mazur theorem and
select a sequence of convex combinations of the uk that converges strongly to
u. Notice that also the convex combinations belong to K. Then the property
follows by the convexity of u 7→ L(x, y, u).

(A2): Here, we take A = L∞(Ω) and select any fixed real number r > 0. It
follows from Theorem 3.2 and assumptions (H4) on L that J is of class C2 in
L∞(Ω). The first-order derivative J ′(u) is given by (3.16). We estimate

|J ′(u)v| ≤
∫

Ω

∣∣∣∣∂L∂u (x, yu, u) + ϕu

∣∣∣∣ |v| dx.
The inequality |J ′(u)v| ≤ c‖v‖L2(Ω) follows immediately, since yu, u, and ϕu are
all bounded and measurable. The boundedness of ϕu is obtained from Theorem
3.3.

To discuss J ′′(u), we employ its representation (3.18). The functions zvi
=

G′(u)vi were introduced in Theorem 3.2. Thanks to K ⊂ L∞(Ω), the functions
yu and ϕu belong to W 2,p̄(Ω) ⊂ C1(Ω̄). Therefore, they and their gradients are
bounded and measurable. The linear mappings vi 7→ zvi and vi 7→ ∇zvi are
continuous from L2(Ω) to L2(Ω)n, as the reader may verify with Theorem 3.2.
Therefore, the second part of (2.4) is easy to confirm. Let us consider the most
difficult term in (3.18),∫

Ω

∣∣∣∣∇ϕu ∂a∂y (x, yu)zv1∇zv2

∣∣∣∣ dx ≤ ‖ϕu‖W 2,p̄(Ω)‖
∂a

∂y
(x, yu)‖∞‖zv1‖L2(Ω)‖zv2‖H1

0 (Ω).

It is clear that it can be estimated against ‖v1‖L2(Ω)‖v2‖L2(Ω).

Next, we verify (2.5).

Lemma 4.6 Under the assumptions (H1)-(H4), the objective functional J of
problem (P) obeys the estimates

|(J ′(u1)− J ′(u2))v| ≤ C(r) ‖u1 − u2‖L∞(Ω)‖v‖L2(Ω) (4.17)
|(J ′′(u1)− J ′′(u2))[v1, v2]| ≤ C(r) ‖u1 − u2‖L∞(Ω)‖v1‖L2(Ω)‖v2‖L2(Ω)(4.18)

for all ui ∈ B∞(ū, r), v, vi ∈ L2(Ω), if r > 0 is sufficiently small. The constant
C(r) > 0 does not depend on ui, v, and vi.

Proof. Thanks to the representations of J ′ and J ′′, it is sufficient to verify

‖ϕu1 − ϕu2‖W 2,p(Ω) ≤ C(r) ‖u1 − u2‖L∞(Ω) ∀ui ∈ K ∩B∞(ū, r). (4.19)

Write for short ϕi := ϕui and yi := yui , i = 1, 2; then

−div [a(x, y1)(∇(ϕ1 − ϕ2)] +
∂a

∂y
(x, y1)∇y1 · ∇(ϕ1 − ϕ2) +

∂f

∂y
(x, y1)(ϕ1 − ϕ2)

= −div [(a(x, y2)− a(x, y1))∇ϕ2] +
[
∂a

∂y
(x, y2)∇y2 −

∂a

∂y
(x, y1)∇y1

]
· ∇ϕ2

+
[
∂f

∂y
(x, y2)− ∂f

∂y
(x, y1)

]
ϕ2.
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The right-hand side can be estimated in Lp(Ω) by ‖u2−u1‖Lp(Ω), cf. [11, (4.22)-
(4.24)]. Now the W 2,p(Ω)-estimate (4.57) follows from regularity results by [19]
for smooth domains. �

It remains to show that J ′′(u) is a Legendre form. To this aim, we select a
sequence vk ⇀ v in L2(Ω), k →∞, and consider (3.18) with v1 = v2 := vk

J ′′(u)v2
k =

∫
Ω

{
∂2L

∂y2
(x, yu, u)z2

vk
+ 2

∂2L

∂y∂u
(x, yu, u)zvk

vk

−∇ϕu ·
[
2
∂a

∂y
(x, yu)(zvk

∇zvk
) +

∂2a

∂y2
(x, yu)z2

vk
∇yu

]
−ϕu

∂2f

∂y2
(x, yu)z2

vk
+
∂2L

∂u2
(x, yu, u)v2

k

}
dx.

(4.20)

The mapping v 7→ zv is linear and continuous, hence also weakly continuous,
hence zvk

⇀ zv in H2(Ω). The embedding of H2(Ω) into C(Ω̄) ∩ H1
0 (Ω) is

compact, hence zvk
→ zv in C(Ω̄) and ∇zvk

→ ∇zv in L2(Ω). Therefore, all
expressions above except the last one tend to the terms associated with the
limit v. By the convexity condition of (H4), it holds ∂2L

∂u2 (x, yu, u) ≥ Λ a.e. in
Ω; hence the integral of the last term is lower semicontinuous. Altogether, we
obtain

lim inf
k→∞

J ′′(u)v2
k ≥ J ′′(u)v.

If, in addition, J ′′(u)v2
k → J ′′(u)v, then it follows

Λ‖vk − v‖2L2(Ω) ≤
∫

Ω

∂2L

∂u2
(x, yu, u)(vk − v)2 dx

=
∫

Ω

∂2L

∂u2
(x, yu, u)v2

k dx+
∫

Ω

∂2L

∂u2
(x, yu, u)v2 dx− 2

∫
Ω

∂2L

∂u2
(x, yu, u)vkv dx.

By our additional assumption, the first integral tends to the value of the second
one. The same holds true for the third one by weak convergence. Therefore,
the right-hand side converges to zero. This implies ‖vk − v‖L2(Ω) → 0, hence
J ′′(u) is a Legendre form and all requirements of (A2) are confirmed.

(A3): For our 3 cases of control discretization, this approximation condition is
satisfied. This is trivial for the variational discretization. Moreover, any function
u ∈ K can be approximated by step functions uh via the projection (4.43) (insert
ū := u there); it holds uh → u in L2(Ω) and uh ∈ Kh for sufficiently small h > 0.

For piecewise linear control discretization, we mention that W 1,p(Ω) is dense
in L2(Ω). To any fixed u ∈ K and ε > 0 there exists uε ∈ W 1,p(Ω) such that
‖u−uε‖L2(Ω) < ε/2. The function ûε(x) := P[α,β]uε(x) belongs to W 1,p(Ω)∩K
and satisfies

|u(x)− ûε(x)| = |P[α,β]u(x)− P[α,β]uε(x)| ≤ |u(x)− uε(x)| in Ω

so that also ‖u− ûε‖L2(Ω) < ε/2. The function uε,h := Πh ûε belongs to Kh and
it holds ‖ûε − uε,h‖L2(Ω) < ε/2 for all sufficiently small h > 0. By the triangle
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inequality, we have ‖u−uε,h‖L2(Ω) < ε for all h < h0(ε) and this finally confirms
(A3).

(A4): Take, as in (A4), uk ∈ Kh ∩B(ū, ρū) with uk ⇀ u in L2(Ω); we write for
short yk = yh(uk). We have to show the lower semicontinuity property

Jh(u) ≤ lim inf
k→∞

Jh(uk)

for each fixed h > 0. The sequence {uk} is bounded in L∞(Ω), hence also {yk}
in the finite-dimensional space Yh. Consequently, there exists a subsequence of
{yk} denoted in the same way that converges strongly in H1

0 (Ω) to some yh ∈ Yh.
This is a solution to the discretized quasilinear equation associated with u ∈
B̄(ū, ρū). By local uniqueness, we have yh = yh(u), hence all such subsequences
converge to the same limit yh(u) so that ‖yh(uk) − yh(u)‖L2(Ωh) → 0. The
sequence {yh(uk)} is bounded in L∞(Ω). Now the lower semicontinuity of Jh
can be verified as the one of J .

Since our set K is bounded, the second requirement of (A4) need not be
verified.

(A5): The condition (2.13) follows immediately from J(u) = F (G(u), u) and
the continuity of the mapping G : L2(Ω)→ H2(Ω).

Let us show that |Jh(uh)− J(uh)| → 0 as h→ 0. Indeed, we obtain

|Jh(uh)− J(uh)| ≤∫
Ωh

|L(x, yh(uh), uh)− L(x, yuh
, uh)| dx+

∫
Ω\Ωh

|L(x, yuh
, uh)| dx

≤ C ‖yh(uh)− yuh
‖L∞(Ω) +

∫
Ω\Ωh

|L(x, 0, 0)|dx+ c h2 → 0 as h→ 0.

This follows from the finite element estimate (3.24), since all uh are bounded, by
Lemma 3.8 also ‖yuh

‖L∞(Ω) and, in view of the estimate (3.26), also ‖yh(uh)‖L∞(Ω).
Notice that ‖L(·, 0, 0)‖L1(Ω\Ωh) → 0 as h → 0. Now the semicontinuity re-
quirement (2.14) is obtained by Remark 2.9, because (A1) has already been
confirmed.

(A6): Assume that uk ⇀ u, uk ∈ K. We write yk := yuk
and split

J(uk)− J(u) =
∫

Ω

(L(x, yk, uk)− L(x, y, u)) dx

=
∫

Ω

(L(x, yk, uk)− L(x, y, uk)) dx+
∫

Ω

(L(x, y, uk)− L(x, y, u)) dx

=
∫

Ω

(L(x, yk, uk)− L(x, y, uk)) dx︸ ︷︷ ︸
I

+
∫

Ω

∂L

∂u
(x, y, u)(uk − u) dx︸ ︷︷ ︸

II

+
1
2

∫
Ω

∂2L

∂u2
(x, y, uθ)(uk − u)2 dx︸ ︷︷ ︸

III
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with some uθ ∈ [uk, u] . Assume J(uk) → J(u) as in (A6). Then the left-
hand side and the integrals I, II converge to zero (cf. the verification of (A5)
above), hence also the integral III. By the convexity condition in (H4), we deduce
‖uk − u‖L2(Ω) → 0.

(A7): In view of the possible non-uniqueness of the discrete state yh, we re-
stricted the discussion of (A1)-(A7) to the set K̃ = K ∩ B̄(ū, ρū). This is com-
patible with our needs, since we perform a local analysis around ū. The set K̃
is also a convex and closed set of L∞(Ω). Therefore, our theory is applicable to
this set instead of K. Let us confirm first (2.17). We obtain

|(J ′h(u)− J ′(u))(uh − ū)| ≤
∫

Ωh

∣∣∣∣ϕh(u)− ϕu +
∂L

∂u
(x, yh(u), u)

−∂L
∂u

(x, yu, u)
∣∣∣∣ |uh − ū| dx+

∫
Ω\Ωh

∣∣∣∣ϕu +
∂L

∂u
(x, yu, u))

∣∣∣∣ |uh − ū| dx
and, by Lemma 3.8,

‖ϕh(u)− ϕu‖L2(Ωh) + ‖yh(u)− yu‖L2(Ωh) ≤ C h2.

Therefore, the integral on Ωh can be estimated by ch2‖uh−ū‖L2(Ω). The integral
on Ω\Ωh cannot be handled this way, but it vanishes. Notice that uh(x) = ū(x)
was assumed a.e. on Ω \ Ωh for the types of control discretization we consider.
Therefore, (2.17) is satisfied with

ε(h) = C h2. (4.21)

The confirmation of (2.18) is more delicate. It was shown in [11] that, under
our assumptions on (P), the convergence ūh → ū in L2(Ω) implies ūh → ū in
L∞(Ω), provided that the controls are not discretized (variational discretiza-
tion) or taken as piecewise constant functions. This follows from the available
projection formulas for ūh. The situation is more difficult for piecewise lin-
ear control approximation. Then (2.18) needs the discussion of J ′′(uk)v2

k for
weakly converging sequences {vk}. In (3.18) there is one delicate term, namely∫

Ω
∂2L
∂u2 (x, yuk

, uk)v2
k dx. Here, we cannot really control the convergence of v2

k.
It was shown in [7, pp. 149-150] by Egorov’s theorem that condition (2.18) is
satisfied for piecewise linear control approximation. In [7], the equation was
semilinear but this method does not depend on the particular type of the equa-
tion.
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