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31. Introduction.In this paper and a follow-up paper [BGK] we investigate reversible di�usion processesX�(t), given as solutions of an Itô stochastic di�erential equationdX�(t) = �rF (X�(t))dt+p2�dW (t) (1:1)on a regular domain 
 � Rd, where the drift rF is generated by a potential function thatis suÆciently regular. We are interested in the case when the function F (x) has several localminima. We always assume that X� is killed on 
c if it exists.This problem is a special case of the more general class of small random perturbations ofdynamical systems studied since the early 1970s by Freidlin and Wentzell (see their standardtext [FW]) using large deviation methods. However, investigations into this problem canbe traced back much further in the physical and chemical literature [Ey,Kra]. One of theearliest textbook sources is the book by Eyring et al. [GLE]. Typical questions related tothis problem are� What are the typical times to reach the neighborhoods of minimum a starting from aminimum b of the function F? (average, distribution).� What are typical paths for such a process?� What is the nature of the low-lying spectrum of the generator of this process? What arethe eigenfunctions associated to small eigenvalues?It should come as no surprise that these questions are on a qualitative level well under-stood. However, there is at present still a considerable gap between mathematically rigorousand heuristic results. Rigorous results are mostly based on the theory of Large Deviationsdeveloped in this context by Freidlin and Wentzell. They are very exible and apply in avariety of situations well beyond the setting of (1.1). However, they yield generally onlyrough asymptotic estimates in the parameter � (`logarithmic equivalence') for exponentiallysmall (or large) quantities such as escape times or small eigenvalues. A second, very natu-ral approach that was initiated very early in the physical and chemical literature is basedon what is called semi-classical analysis or WKB-theory (for a very recent review on thesemethods, see e.g. [Kolo]). This methods provide formal asymptotic series expansions in �and can be seen as an in�nite dimensional version of the saddle point method. In manycases, such expansions can today be justi�ed by what has become to be called microlocalanalysis, which was mainly developed in view of solving quantum mechanical tunneling prob-



4lems [HS1,HS2,HS3,HS4]. Unfortunately, the stochastic tunneling problem between potentialwells corresponds to a particularly intricate quantum mechanical problem, called \tunnelingthrough non-resonant wells". In this situation, classical WKB theory breaks downs, since itis not possible to �nd a global solution based on a single power-series ansatz. On a formallevel, these problems can be solved using matched series expansions where di�erent ans�atzein di�erent domains are matched in overlapping regions to determine coeÆcients (see in par-ticular [MatSch1,BuMa1,BuMa2,MS1]). Justifying these expansions is, however, far fromtrivial and constitutes, as Kolotsolkov [Kolo] points out \one of the main and still openquestions of the theory", except in the case d = 1 where considerable simpli�cations occur[KoMak,BuMa1,BuMa2,KN]. Indeed, while it appears clear that the methods introduced inthe third paper on quantum mechanical tunneling by Hel�er and Sj�ostrand [HS3] should inprinciple allow to solve this problem, this program has not been carried out in this contextyet.Here we take a new look at this old problem using neither large deviations, nor semi-classical expansions, but some rather classical ideas from potential theory. The deep connec-tion between Markov processes and potential theory has been well-known since at least thework of Kakutani [Kaku] and is the subject of numerous textbooks (see in particular the fun-damental monograph by Doob [Doo]). This connection has found numerous and widespreadapplications (see e.g. [DS,Szni] and references wherein).The particular approach we present here is distinguished by the fact that it largely avoidsthe attempt to solve the boundary value problems that arise in this connection by straightfor-ward PDE methods, but that it tries to reduce most problems to that of the computation ofNewtonian capacities which then are estimated using variational principles and monotonicityproperties. In this it is in spirit close to the \electric network" approach used extensively inthe study of recurrence and transience properties of Markov chains [NS,DS]. This approachto the metastability problem was initiated in fact in two preceding papers [BEGK1,BEGK2]in the context of discrete Markov chains, including, in particular, (in [BEGK1]) discrete ver-sions of (1.1). In fact, the discrete setting o�ers (as we shall point out in due place) severaladvantages for this approach and makes it appear probabilistically much more transparentthan in the di�usion setting. We suspect that this may have been the reason why the ideasto study the spectral problem of generators of Markov chains presented in the 1973 paper ofWentzell [Wen] and that are somewhat similar to our approach were apparently not developedin the direction we are going. While the di�usion case makes probabilistic interpretationsmore complicated, the present paper may clarify our approach as it forces us to develop in



5much more detail the fundamental potential theoretic background from a purely analyticpoint of view. Let us mention that in our view the approach presented here o�ers two mainadvantages over the micro-local approach. First, it is technically considerably simpler, aswe hope these papers will demonstrate, and second, it is more exible and can be appliedin a broad range of discrete and continuous Markov processes. Its drawback, on the otherhand, is that it may not readily be extended to yield systematic asymptotic expansions toall orders in �. Also, we make strongly use of the fact that we investigate a stochastic (orsub-stochastic) operator, and our method cannot be extended to arbitrary elliptic operators.We will now formulate our assumptions on F in a precise way.Assumptions (H.1)(i) F 2 C3(
), 
 � Rd open and connected.(ii) If 
 is unbounded,(ii.1) lim infx!1 jrF (x)j =1, and(ii.2) lim infx!1 (jrF (x)j � 2�F (x)) = +1De�ne for any two sets, A;B � 
, the height of the saddle between A and B bybF (A;B) � inf!:!(0)2A;!(1)2B supt2[0;1]F (!(t)) (1:2)where the in�mum is over all continuous paths ! in 
.Remark: Condition (H.1) ensures that the resolvent of the generator L� is compact iscompact for � suÆciently small. Moreover, it implies that F has exponentially tight level setsin the sense that for all a 2 R, Zy:F (y)�a e�F (y)=�dy � Ce�a=� (1:3)where C = C(a) <1 is uniform in � � 1.In the sequel the notion of saddle points of F will be crucial. The set of saddle points isintuitively the subset of the set G(A;B) = fz : F (z) = bF (A;B)g that cannot be avoided byany paths ! that try to stay as low as possible.In general we have to de�ne this set as follows:De�nition 1.1: Let P(A;B) denote the set of minimal paths from A to B,P(A;B) � f! 2 C([0; 1];
) : !(0) 2 A; !(1) 2 B; supt2[0;1]F (!(t)) = bF (A;B)g (1:4)



6Call a gate G(A;B) a minimal subset of G(A;B) with the property that all minimal pathsintersect G(A;B). Note that G(A;B) is in general not unique. Then the set of saddle pointsS(A;B) is the union over all gates G(A;B).To avoid complications that are not our main concern here, we will make the generalassumption that all saddle points we will deal with are non-degenerate in the sense thatAssumption (ND):(o) The set, M, of local minima of F is �nite, and for any two local minima x; y of F , the setG(x; y) is uniquely de�ned and consists of a �nite set of isolated points z�i (x; y).(i) The Hessian matrix of F at all local minima xi 2 M and all saddle points z�i is non-degenerate (i.e. has only non zero-eigenvalues).When dealing with domains 
 with non-empty boundary we will encounter situationswhere saddle points in @
 are relevant. While this does not lead to serious problems per se,there appears rather naturally a great variety of cases that makes the formulation of generalresults rather cumbersome. We prefer to avoid having to discuss these issues by dealingexclusively with situations in which the boundary is never reached by the process, i.e. wemake the furtherAssumption (IB): For any sequence of points xi 2 
 such that limi"1 xi 2 @
, limi"1 F (xi) =+1.Assumptions (H1), (ND), and (IB) will be assumed to hold throughout this paper.Remark: For many of the results of this paper, these conditions can be relaxed greatly. Inparticular, one may consider functions F = F� depending on �, and one may also consid-er cases with in�nitely many minima. This may, however, lead to di�erent questions anddi�erent results, and we prefer to explain our methods in a simple and well-con�ned setting.Our main interests are the distribution of stopping times�A � inf ft > 0jX(t) 2 Ag (1:5)for the process starting in one minimum, say x 2 M, of F , when A = B�(y) is a small ballof radius � around another minimum, y 2 M. It will actually become apparent that theprecise choice of the hitting set is often not important, and that the problem is virtuallyequivalent to considering the escape from a suitably chosen neighborhood of x, provided thisneighborhood contains the relevant saddle points connecting x and y.



7In this paper we will study the mean values of such stopping times. Our approach willconsist of two distinct steps:(i) Using variational principles, we will give very sharp estimates on some relevant capacities.(ii) We will then show that expected times of interest can be expressed in terms of thesecapacities and equilibrium potentials.In the follow-up paper [BGK] we will consider the associated spectral problems. A corollarywill then show that metastable exit have an asymptotically exponential distribution.To be able to state our results, we need to recall a number of key concepts from potentialtheory which will allow us to establish some notation.Acknowledgements: We thank anonymous referees for judicious comments that helpedto improve the presentation of the paper. A. Bovier thanks the EPFL and V. Gayrard theWIAS for hospitality and �nancial support that made this collaboration possible.2. Some basic background on potential theory.In this section we collect notations and formulas from potential theory that will be usedthroughout the paper. All of these results are standard and can be found in the classicaltextbooks on potential theory, e.g. [BluGet,Doo,Szni].The generator of our di�usion processes are linear elliptic operators L� of the formL� = ��eF (�)=�re�F (�)=�r = ��� + (rF (�);r) (2:1)de�ned (a priori) on C2(
), where 
 � Rd, and F 2 C2(
). 
, and in fact all subsets of Rdthat we will consider in this paper will be regular (A set A�Rd is called regular if and only ifits complement is a region with continuously di�erentiable boundary). By construction, L�is symmetric on L2(
; e�F (x)=�dx) with Dirichlet boundary conditions on 
c.Green's function. Consider for � 2 C the Dirichlet problem(L� � �)f(x) = g(x); x 2 
f(x) = 0; x 2 
c (2:2)The associated Dirichlet Green's function G�
(x; y) is the kernel of the inverse of the operator(L� � �), i.e. for any g 2 C0(
), f(x) = Z
G�
(x; y)g(y)dy (2:3)



8Note that the Green's function is symmetric with respect to the measure e�F (x)=�dx, i.e.G�
(x; y) = e�F (y)=�G�
(y; x)eF (x)=� (2:4)Recall that the spectrum of L� (more precisely the Dirichlet spectrum of the restriction ofL� to 
, which we will sometimes denote by L
� ), is the complement of the set of values �for which G�
 de�nes a bounded operator.Poisson kernel. Consider for � 2 C the boundary value problem(L� � �)f(x) = 0; x 2 
f(x) = �(x); x 2 
c (2:5)We denote by H�
 the associated solution operator which can be represented in the formf(x) = (H�
�)(x) = �� Z@
 e�[F (y)�F (x)]=��(y)@n(y)G�
(y; x)d�
(y) (2:6)where d�
 denotes the Euclidean surface measure on @
, and @n(y) denotes the derivative inthe direction of the exterior normal vector on @
 at y, acting on the �rst argument of thefunction G�
(y; x).The relation between the operator H�
 and the Green function (2.6) is a consequence ofthe two Green's identities that here take the formZ
 dx e�F (x)=���r�(x) � r (x)�  (x)(L��)(x)� = � Z@
 e�F (x)=� (x)@n(x)�(x) d�
(x)(2:7)(�rst Green's identity) andZ
 e�F (x)=�dx ��(x)(L� � �) (x)�  (x)(L� � �)�(x)�= � Z@
 e�F (x)=�( (x)@n(x)�(x)� �(x)@n(x) (x)) d�
(x) (2:8)(second Green's identity), where �;  2 C2(
).Equilibrium potential and equilibrium measure. Let A;D � Rd be regular and suchthat (A [D)c � dom(F ). Then the equilibrium potential (of the capacitor (A;D)), h�A;D , isde�ned as the solution of the Dirichlet problem(L� � �)h�A;D(x) = 0; x 2 (A [D)ch�A;D(x) = 1; x 2 Ah�A;D(x) = 0; x 2 D (2:9)



9Note that (2.9) has a unique solution provided � is not in the spectrum of L(A[B)c� .The equilibrium measure, e�A;D, is de�ned as the unique measure on @A, such thath�A;D(x) = Z@AG�Dc(x; y)e�A;D(dy) (2:10)If we consider L� as a map from Hn(
) to Hn�2(
), (2.10) may also be written ase�A;D(dy) = (L� � �)h�A;D(y) (2:11)where of course both sides are to be interpreted as measures equipped with the weak topology.A simple computation using the second Green's identity and the Poisson kernel representation(2.6) allows to compute the right hand side of (2.11) as(L� � �)h�A;D(x) = �@n(x)h�A;D(x)d�A[D(x)� �1IAdx (2:12)Capacity. Given a capacitor, (A;D), and � 2 R, the �-capacity of the capacitor is de�nedas cap�A(D) � Z@A e�F (y)=�e�A;D(dy) (2:13)Using (2.12) and the Green's second identity, one obtains from (2.13) thatcap�A(D) = � Z(A[D)c dx e�F (x)=� �rh�A;D(x)22 � �� �h�A;D(x)�2� � ��(A[D)c �h�A;D� (2:14)��
 is called the Dirichlet form (or energy) for the operator L� � � on 
.A fundamental consequence of (2.14) is the variational representation of the capacity ifR3 � � 0, namely cap�A(D) = infh2HA;D ��(A[D)c(h) (2:15)where HA;D denotes the set of functionHA;D � �h 2 W 1;2(
) : h(x) = 0; x 2 D; h(x) = 1; x 2 A	 (2:16)whereW k;n(
) denotes the space of k-times weakly di�erentiable functions whose derivativesof order � k are in Ln(
).Probabilistic interpretation: equilibrium potential. Note that L� generates a Markovdi�usion process X�(t) on 
 (killed on @
). If � = 0, the equilibrium potential has a naturalprobabilistic interpretation in terms of hitting probabilities of this process, namely,hA;D(x) � h0A;D(x) = Px[�A < �D] (2:17)



10The equilibrium measure also has an interpretation, namelyeA;D(dy) = limt#0 t�1EyPX�(t)[�D < �A]dy (2:18)(see e.g. [Szni], Section 2.3.). While this gives in principle a probabilistic interpretation ofthe capacity as well, this is much less useful than in the discrete space, discrete time setting(see [BEGK2]).If � < 0, the equilibrium potential still has a probabilistic interpretation in term of thesub-stochastic process X�� (t) obtained by killing the process X�(t) with rate �� (and on @
).If � denotes the time when X�� is killed, we have thath�A;D(x) = P�x[�A < �D ^ � ] (2:19)More importantly, we have for general �, thath�A;D(x) = Exe��A1I�A<�D (2:20)for x 2 (A[D)c, whenever the right-hand side exists. so that h� can be seen as the Laplacetransform of the hitting time �A of the process starting in x and killed in D.Note that (2.20) implies that dd�h�=0A;D(x) = Ex�A1I�A<�D (2:21)Di�erentiating the de�ning equation of h�A;D then implies that the functionwA;D(x) = � Ex�A1I�A<�D ; x 2 (A [D)c0; x 2 A [D (2:22)solves the inhomogeneous Dirichlet problem (to simplify notation, we set from now on hA;D �h0A;D , etc.) L�wA;D(x) = hA;D(x); x 2 (A [D)cwA;D(x) = 0; x 2 A [D (2:23)Therefore, the mean hitting time in A of the process killed in D can be represented in termsof the Green's function asEx�A1I�A<�D = Z(A[D)c dyG(A[D)c(x; y)hA;D(y) (2:24)



11Note that in the particular case when D = ;, we get the familiar Dirichlet problemL�wA(x) = 1; x 2 AcwA(x) = 0; x 2 A (2:25)and the representation Ex�A = ZAc dyGAc(x; y) (2:26)The full beauty of all this comes out when combining (2.10) with (2.24), resp. (2.26).Namely, let B�(x) be the ball of radius � centered at x. Then, using Fubini's theorem,Z@B�(x) e�F (z)=�Ez �AeB�(x);A(dz) = ZAc dye�F (y)=� Z@B�(x)GAc(y; z)eB�(x);A(dz)= ZAc dye�F (y)=�hB�(x);A(y) (2:27)andZ@B�(x) e�F (z)=�Ez �A1I�A<�DeB�(x);A[D(dz) = Z(A[D)c dye�F (y)=�hB�(x);A[D(y)hA;D(y)(2:28)Notice that in the case of discrete Markov processes, we can replace the ball B�(x) by thesingle point x. In that case (2.27) and (2.28) yield directly formulae for mean hitting timesin terms of capacities and equilibrium potentials. In this context they provided the basis forconnecting in a precise way capacities and mean exit times, and, ultimately, eigenvalues ofL� [BEGK2]. In the di�usion case, the usefulness of these equations will become apparentonly when we have some a priori regularity estimates for the mean times as functions of thestarting point.3. Results.We are now ready to state the main results of this paper. The basis for the success of ourapproach is the fact that capacities can be estimated very sharply.Theorem 3.1: Assume that A;B � Rd are closed and(i) dist (S(A;B); A[ B) � Æ > 0 for some Æ independent of �(ii) both A and B contain a closed ball of radius at least �.Then, if S(A;B) = fz�1 ; : : : ; z�ng,capA(B) = e�F (z�(x;y))=� (2��)d=22� kXi=1 j��1(z�i )jpj det(r2F (z�i ))j �1 + O(p�j ln �j)� (3:1)



12where ��1(z�i ) denotes the negative eigenvalue of the Hessian at z�i .Remark: In cases when some saddle points are degenerate, one can also obtain precise, butsomewhat less explicit expressions, as will be clear from the proof.Our next result concerns the mean metastable exit times from a minimum xi.Theorem 3.2: Let xi be a minimum of F and let D be any closed subset of Rd such that:(i) If Mi � fy1; : : : ; ykg � M enumerates all those minima of F such that F (yj) � F (xi),then [kj=1B�(yj) � D, and(ii) dist (S(xi;Mi); D) � Æ > 0 for some Æ independent of �. ThenExi �D = 2�e[F (z�)�F (xj)]=�pdet(r2F (xi))Pkj=1 j��1(z�j )jpjdet(r2F (z�j ))j �1 + O(p�j ln �j)� (3:2)Remark: In the case when there is a single saddle point z�, this reduces to the classicalEyring formula [GLE,MS1]Exi �D = 2�j�1(z�i )jpj det(r2F (z�))jpdet(r2F (xi)) e[F (z�)�F (xj )]=� �1 +O(�1=2j ln �j)� (3:3)Note that the coeÆcient 2� di�ers from the � that is found in [MS1] by a factor 2 since weconsider the transition through, and not just the arrival at the saddle point.4. Some useful tools and a-priori estimatesThis section collects a number of tools and a-priori estimates that extend the simpleprobabilistic instruments used in the discrete context of [BEGK2] to the di�usion setting.Regularity estimates. To be able to pass from the discrete setting of [BEGK1, BEGK2]to the setting of di�usion processes, we will need some a priory control on the regularityproperties of solutions of the Dirichlet problems introduced before. Fortunately, this theoryis well developed in the general setting of second order linear elliptic di�erential equations,and we can draw on standard results.The following two key lemmata are taken from [GT], more precisely Corollaries 9.24 and9.25. They concern second order elliptic operators L = aij(x)Dij + bi(x)Di + c(x). whereaij 2 C0(
); bi; c 2 L1(
). Assume that�(�; �)� (�; a(x)�) � �(�; �)> 0 8� 2 Rd (4:1)



13let moreover  = �� , and choose � such that � kbk� �2 � �, and jcj� � �. Let W 2;n(
) denotethe Banach space of two-times (weakly) di�erentiable functions whose derivatives of order� 2 are in Ln(
).Lemma 4.1: (Corollary 9.25 in [GT])If u 2 W 2;n(
) is positive and satis�es Lu = 0 in
, then for any ball B2R(y) � 
, supz2BR(y) u(z) � C infz2BR(y) u(z) (4:2)where the constant C = C(n; ; �R2) <1 depends only on  and �R2Lemma 4.2: (Corollary 9.24 in [GT])If u 2 W 2;n(
) is positive and satis�es Lu = f ina ball BR0 (x), then for any ball BR(x), R � R0,oscBR(x)u � C � RR0�� �oscBR0(x)u+ R0kf � cukn;BR0 (x)� (4:3)where oscAu � supA u� infA u and the constants � = �(n; ; �R20) > 0 andC = C(n; ; �R20) <1 depend only on  and �R20.The way we will use these lemmata is to consider domains depending on � chosen in sucha way that the numerical constants C and � are independent of �. Since for the operator L�� = � = �,  = 1, and we can choose � = ��2 supy2
 krF (y)k21.An analytic renewal estimate. In this section we consider only the case � � 0 and weomit the superscript 0. One of the most useful formulas used in our analysis of discreteMarkov chains was the renewal equationPx[�A < �D] = Px[�A < �D[x]Px[�A[D < �x] (4:4)obtained from decomposing the event f�A < �Dg according to whether the process visits xbefore going to A or not and using the Markov property. While this formula is still truein the di�usion case (if d > 1), it is useless, since the denominator equals one and thenumerator equals the left-hand side. A natural idea in this situation would be to decomposenot according to whether the starting point x is revisited, but whether a suitably chosensmall neighborhood of x is revisited after a suitably chosen short time, or not (in analogy tothe probabilistic representation of capacity). However, any such procedure runs quickly intoproblems, as it is impossible to obtain an exact renewal argument.



14 Fortunately, it is rather easy to obtain a useful analogue of (4.4) by purely analytic con-siderations. In fact we will prove the following proposition:Proposition 4.3: Let A;D be disjoint closed sets whose complement is regular, and letx 2 (A [D)c, such that dist(x;A [D) > c�. Let B�(x) denote the ball of radius � centeredat x. Then for any � � c�, c < 1, there exists a �nite positive constant (depending only onc and on the value of krF (x)k1), such thathA;D(x) � C capB�(x)(A)capB�(x)(D) (4:5)Proof: We begin by proving the following lemma.Lemma 4.4: With the notation of the proposition,hA;D(x) � supz2@Br (x)G(A[D)c(z; x)eF (x)=" Z@B�(x) e�F (y)="eD[B�(x);A(dy)hA;D(x) � infz2@Br (x)G(A[D)c(z; x)eF (x)=" Z@B�(x) e�F (y)="eD[B�(x);A(dy) (4:6)where eA[D;Br (x) is the equilibrium measure de�ned in (2.10).Proof: Let 
 be a regular domain, and let f be a function de�ned on @
. Recall that theoperator H
 � H�=0
 de�ned in (2.6) can be seen as mapping a function f de�ned on @
to a harmonic function (with respect to the operator L�) on 
. We call H
f the harmonicextension of f .Choosing 
 � (A[D)c, we see that the equilibrium potential hA;D satis�es the mean-valueproperty hA;D(x) = H(A[D)chA;D(x); (4:7)Now let C�(A [D)c be a regular neighborhood of x. Now since hA;D[C and hA;D coincideon @(A [D), it is obvious that hA;D = H(A[D)chA;D[C (4:8)holds on (A [ D [ C)c. Using the �rst Green's identity (2.7) for 
 = � � (A [ D [ C)c,



15� � G(A[D)c(x; �) and  � hA;D[C , we getH(A[D)chA;D[C(x) =� � Z@(A[D) e(F (x)�F (y))="hA;D[C(y)@n(y)G(A[D)c(y; x)d�A[D(y)=� � Z@C e(F (x)�F (y))="G(A[D)c(y; x)@n(y)hA;D[C(y)d�C(y)� Z@C e(F (x)�F (y))="G(A[D)c(y; x)eA;D[C(dy) (4:9)where n(y) is the inner unit normal at y 2 @(A [ D [ C). Here we have used that hA;D[Cvanishes on @C and that the Green's function vanishes when x 2 @(A[D). The last equalityfollows from (2.12) together with (2.11).We now choose C � B�(x). If we could replace G(A[D)c(y; x) by a constant value on@B�(x), we could extract this value from the integral; the remaining integral then would besome partial capacity. In fact, in the discrete case we could choose instead of the ball B�(x)just the point x, and then this problem was absent, and we would readily get (4.4). In thepresent situation we still get two bounds, namelyhA;D(x) � � supz2@B�(x)G(A[D)c(z; x)eF (x)=" Z@B�(x) e�F (y)="eA;D[B�(x)(dy)hA;D(x) � � infz2@B�(x)G(A[D)c(z; x)eF (x)=" Z@B�(x) e�F (y)="eA;D[B�(x)(dy) (4:10)But,trivially, hA[B;C = 1 � hC;A[B , and hence, by (2.11) with � = 0, �eA[B;C = eC;A[B ,which implies (4.6). }At this point it is clear that we will need to be able to control the Green's function nearthe diagonal. Before turning to these estimates, we bring (4.10) in a slightly more suitableform. Namely we will show thatLemma 4.5: Within the situation of the previous lemmahA;D(x) � supz2@B�(x)G(A[D)c(z; x)eF (x)=�capB�(x)(A) (4:11)Proof: By (2.18), it is obvious that eD[B�(x);A(dy) � eB�(x);A(dy). But thenZ@B�(x) e�F (y)="eD[B�(x);A(dy) � Z@B�(x) e�F (x)=�eB�;A(dy) = capB�(x)(A) (4:12)Thus the upper bound in (4.6) implies (4.11).}



16 At this point we want to express the Green's function in the bounds of Lemma 4.4 in termsof capacities, too. We proceed as in (2.27), to get this timeeF (x)=� Z@B�(x) e�F (z)=�G(A[D)c(x; z)eB�(x);A[D(dz) = Z@B�(x)G(A[D)c(z; x)eB�(x);A[D(dz)= hB�(x);A[D(x) = 1 (4:13)This implies that1 � eF (x)=� infz2B�(x)G(A[D)c(x; z) ZB�(x) dze�F (z)=�eB�(x);A[D(dz)= eF (x)=� infz2B�(x)G(A[D)c(x; z)capB�(x)(A [D) (4:14)i.e. eF (x)=� infz2B�(x)G(A[D)c(x; z) � 1capB�(x)(A [D) (4:15)It is clear at this point that we cannot continue unless we can compare the in�mum and thesupremum of G(A[D)c(z; x) with z 2 B�(x). But such a result is provided by the Harnackinequalities.Lemma 4.6: If � = c�, for some c < 1, then there exists a constant C depending onlyon c, such that supz2B�(x)G(A[D)c(z; x) � C infz2B�(x)G(A[D)c(z; x) (4:16)Proof: We will apply Lemma 4.1. If we choose R � �, we can use (4.2) with a constant thatdoes not depend on �8.Note that u(z) � G(A[D)c(z; x) is harmonic in (A [ D)cnx. Thus if � > 2R, u is har-monic in B2R(z), for any z 2 @B�(x). Now let a; b 2 @B�(x). Assume that a is such thatsupz2@B�(x) u(z) = u(a), and infz2@B�(x) u(z) = u(b). Then we can �nd k � ��=R pointsx1; : : : ; xk 2 @B�(x) such that x1 = a, b 2 BR(xk), and BR(xi) \BR(xi+1) 6= ;.8If x is a (quadratic) critical point of F , then we can even choose R = �1=2.
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2Clearly thenu(a) � C infz2BR(a) � C infz2BR(a)\BR(x2) u(z) � C supz2BR(x2) u(z) � C2 infz2BR(x2) u(z) � : : :� � � � Ck�1 supz2BR (xk) u(z) � Ck infz2BR(xk) u(z) = u(b) (4:17)Thus u(a) � C�=Ru(b) Therefore, if � = c�, for some �nite constant c, and R = �, sup andinf are related by at most a �nite �-independent constant. This proves the lemma.}Combining now Lemma 4.6 with Lemma 4.5 and equation (4.14), we arrive at the assertionof the proposition.}A-priori bounds on capacities. To make use of the renewal estimate (4.4) we need ofcourse some bounds on the capacities. The next proposition provides a �rst set of roughbounds, that provide the necessary estimates in the equilibrium potential that will later beused to get sharp bounds on capacities.Proposition 4.7: Let D be a closed set, and x 2 Dc. Denote by z� = z�(x;D) a pointsuch that F (z�) = inf:(0)=x;(1)2D supt2[0;1] [FN ((t))]! (4:18)where the in�mum is over all continuous paths leading from x to D. Let � � c�=krF (z�)k1.Then there is a constant C > 0 such that(i) capB�(x)(D) � C(krF (z�)k1 +p�)�d�1e�F (z�)=� (4:19)(ii) capB�(x)(D) � �C�d�2e�F (z�)=� (4:20)



18Proof: To prove the lower bound we use the variational representation of capacities (2.15)and some obvious monotonicity properties. We begin by choosing a smooth path ! goingfrom x to D in such a way that it remains in the level set F (z) � F (z�), with equalityholding only when passing z�. In fact, the canonical path can be constructed using pieces ofthe deterministic trajectory of the unperturbed equation dX�(t) = �rF (X�(t))dt in ratherobvious manner, but this is not important at the moment. Given this path, we parametrizeit by arc-length, so that k _!(t)k2 = 1 for all time.Given !(t), we construct the tube of width � around !(t),!� � fz 2 Rdj9t2[0;j!j]k!(t)� zk2 � �g (4:21)Let us denote the d � 1-dimensional disk of radius � centered at the origin by D�. Theimportant point to notice is thatkrh(!(t) + z?)k22 � � ddth(!(t) + z?)�2 (4:22)Therefore we may bound the Dirichlet form�
(h) � � ZD� dz? Z j!j0 dteF (!(t)+z?)=� � ddth(!(t) + z?)�2 (4:23)The minimization problem is now trivial, i.e. it decomposes for each �xed z? into a one-dimensional problem whose solution is well known. In fact, the minimizer hz?(t) is thesolution of the 1-dimensional Dirichlet problem��� ddt + ddtF (!(t) + z?)� ddthz?(t) = 0hz?(0) = 1hz?(j!j) = 0 (4:24)whose solution is readily found to behz?(t) = R j!jt dseF (!(s)+z?)=�R j!j0 dseF (!(s)+z?)=� (4:25)Inserting this solution into the lower bound (4.23) yieldscapB�(x)(D) � � ZD� dz? "Z j!j0 dteF (!(t)+z?)=�#�1 (4:26)



19From here the stated lower bounds results follow from simple saddle point evaluations of theintegral in the denominator.To prove the upper bound, just note that in the case when z� = x, we can always choosea function h that is equal to one on B�(x) and that decays to zero over a distance �. Thenkrhk2 � 1=� on a set of volume C�d, and zero elsewhere. The upper bound (4.20) follows im-mediately. If z� 6= x, we choose a trial function that changes from 0 to 1 in a �-neighborhoodof the saddle z�; away from z� the change takes place in a set where F (y) > F (z�), so thatthe resulting additional contribution to the Dirichlet form is exponentially suppressed. Thisalso yields (4.20). }Remark: This estimate is in general quite poor, in particular when z� 6= x. We will provesharp results in that case in Section 6. The crude bounds serve two purposes: 1) to yield ana priori bound on the equilibrium potential (in conjunction with Proposition 4.3) that willthen be used to prove a sharp estimate on capacities, and 2) to get an a priori estimate onthe spectrum of certain Dirichlet operators.Bounds on the equilibrium potential. Combining the renewal bound on the equilibriumobtained in Proposition 4.5 with the bound on capacities from proposition 4.7 yields verysharp estimates on the equilibrium potential in the level set of the saddle between the sets Aand D.Corollary 4.8: Let A and D be closed sets and assume that z�(A;D) 62 A[D. Then thereis a �nite positive constant C such that, for x 62 A [D, and z�(x;D) 6= x,hA;D(x) � C��1=2e�[F (z�(x;A))�F (z�(x;D))]=� (4:27)Remark: This bound is useful only when F (z�(x;D)) > F (x). If this is not the case onemay use that hA;D(y) = 1� hD;A(y) and apply (4.27) on hD;A(y). This yields good controlwhenever x is below the level set of the saddle z�(A;D).Proof: The proof is straightforward. We just insert the bounds on capacities of Proposition4.7 into the renewal bound on the equilibrium potential of Proposition 4.5, choosing � = C�.}5. Sharp estimates on capacities.In this section we show how to get coinciding upper and lower bound on the relative



20Newtonian capacity of two balls of radius � centered at the local minima x; y of the functionF . We assume that � is so small that z�(x; y) is not contained in these balls, and that theradii are at least �9. Let us denote these sets by Bx and By , respectively.We denote by Sx;y the set of points that realize the minimax in the de�nition bF (x; y) (c.f.(1.2)). We will assume that Sx;y is a (�nite) union of points.Theorem 5.1: Let s�1; : : : ; s�k denote the saddle points connecting x to y, and suppose thatAssumption (ND) holds for S(xy). Let ��1(s�i ) denote the unique negative eigenvalue of theHessian of F at s�i . Then, under the above hypothesis on the function F ,capBx(By) = e�bF (x;y)=� (2��)d=22� kXi=1 j��1(s�i )jpj det(r2F (s�i ))j �1 + O(p�j ln �j)� (5:1)Proof: The capacity capBx(By) veri�es the Dirichlet principle (2.15)capBx(By) = infh2Hxy �(h) (5:2)(where we abbreviate for simplicity � � �(Bx[By)c) where the space Hxy is the function spaceHxy � �h 2 W 1;2(Rd;Q(dx)) : h(z) 2 [0; 1]; hjBx � 1; hjBy = 0	 (5:3)For simplicity we consider the case of a single saddle point, s�, �rst. Without restrictionof generality we can choose co-ordinates such that s� = 0 and thatF (z) = F (0)� j��1j2 z21 + dXi=2 ��i2 z2i +O(kzk32) (5:4)for small kzk2. De�ne a neighborhood of zeroCÆ � ��Æ=qj��1j; Æ=qj��1j� dOi=2 h�2Æ=p��i ; 2Æ=p��i i (5:5)Since we have assumed that there is a single saddle point at the communication heightbetween x and y, it is possible to choose Æ > 0 so small that there exists a strip SÆ of width2Æ=pj��1j containing 0 and separating x and y in the sense that any path connecting these9It will become clear from the proof that the precise form of these sets is irrelevant for the result.



21points must cross SÆ, and that for all z 2 SÆnCÆ, F (z) � Æ2. Let Dx and Dy be the connectedcomponents of RdnSÆ containing x and y, respectively.The upper bound. To prove an upper bound on the capacity we just choose a function h+to our convenience. We will make the choiceh+(z) = 1; z 2 Dx; h+(z) = 0; z 2 Dyh+ on SÆnCÆ arbitrary, except krh+k2 � cqj��1j=Æfor z 2 CÆ; h+(z) = f(z1) (5:6)where f is the solution of the one-dimensional Dirichlet problem��� ddz1 + ddz1F (z1; 0; : : : ; 0)� ddz1 f(z1) = 0f(�Æ=qj��1j) = 1f(+Æ=qj��1j) = 0 (5:7)The solution of this problem is obviouslyf(z1) = R Æ=pj��1 jz1 eF (t;0)=�dtR Æ=pj��1j�Æ=pj��1j eF (t;0)=�dt (5:8)Inserting this function into (5.2), we see thatcapBx(By) � � Z 2Æ=p��2�2Æ=p��2 dz2� � �Z 2Æ=p��d�2Æ=p��d dzd Z Æ=pj��1j�Æ=pj��1 j dz1e�F (z)=� kf 0(z1)k2!+ �cÆ�2 ZSÆnCÆ dze�F (z)=� (5:9)The second term is bounded by �cÆ�2e�Æ2=�const: by assumption on F .The �rst term is given by�CÆ(h+) = �RCÆ dze�F (z)=�e2F (z1 ;0)=��R Æ=pj��1j�Æ=pj��1j eF (t;0)=�dt�2 (5:10)Now on CÆ we have thatF (z) = F (0) + �j��1jz21 + ��2z22 � � �+ ��dz2d2 + O(kzk32) (5:11)



22and thus F (z)� 2F (z1; 0) = �F (0) + j��1jz21 + ��2z22 � � �+ ��dz2d2 +O(kzk32) (5:12)But on CÆ, kzk2 � C 0Æ and if we choose Æ = Kp�j ln �j for some constant K, the numeratorin (5.10) satis�es the boundZC dze�F (z)=�e2F (z1 ;0)=� � e�F (0)=�eC�1=2j ln �j3=2 ZRd exp��j��1jz21 + � � �+ ��dz2d2� � dz= e�F (0)=� (2��)d=2Qdi=1pj��i j �1 + O��1=2j ln �j3=2�� (5:13)Similarly, the integral in the denominator is bounded from below byZ Æ=pj��1j�Æ=pj��1 j eF (t;0)=�dt � e�C�1=2 j ln �j3=2e+F (0)=� (2��)1=2pj��1j � 2 Z 1Æ=pj��1 j dt e�j��1 jt2=�!�e�C�1=2j ln �j3=2e+F (0)=� (2��)1=2pj��1j � e�Æ2=�Æ��1=2!= e+F (0)=� p2��pj��1j �1 + O��1=2j ln �j3=2�� (5:14)Combining the estimates (5.13), (5.14), and (5.9), we arrive at the upper bound�CÆ (h+) � e�F (0)=�(2��)d=2 j��1j2�pj det(r2F (0))j �1 + O��1=2j ln �j3=2�� (5:15)Since this results coincides with the heuristic results, we may expect to get a correspondinglower bound.The lower bound. For the lower bound we will consider a di�erent domainbCÆ � ��2Æ=qj��1j; 2Æ=qj��1j� dOi=2 ��Æ=q(d� 1)��i ; Æ=q(d� 1)��i�� ��2Æ=qj��1j; 2Æ=qj��1j�
 bC?Æ (5:16)Let h� denote the minimizer of the variational problem (5.2), i.e. the equilibrium potentialof the capacitor (Bx; By). Theninfh2Hxy �(h) = �(h�) � �bCÆ(h�) (5:17)



23Obviously,�bCÆ(h) � ��bCÆ(h) � � ZbCÆ dze�F (z)=� �@h(z)@z1 �2= � ZbC?Æ dz? Z 2Æ=pj��1 j�2Æ=pj��1j dz1e�F (z)=� @h(z1; z?)@z1 2!� � ZbC?Æ dz? inff :f(�Æ=pj��1j)=h�(�Æ=pj��1j) Z 2Æ=pj��1 j�2Æ=pj��1 j dz1e�F (z)=� kf 0(z1)k2! (5:18)The minimization problem for �xed values of z? is of course the solution of the Dirichletproblem ��� ddz1 + ddz1F (z1; z?)� ddz1 f(z1) = 0f ��2Æ=qj��1j� = h� ��2Æ=qj��1j; z?�f �+2Æ=qj��1j� = h� �2Æ=qj��1j; z?� (5:19)The solution of this Dirichlet problem is readily obtained: let us set a = h�(�2Æ=pj��1j; z?)and b = h�(2Æ=pj��1j; z?), and g(z1) = F (z1; z?). The general solution of the di�erentialequation in (5.19) is f(z1) = c Z sz1 eg(t)=�dt (5:20)where the constants c and s are determined by the boundary conditions, i.e.c Z s�2Æ=pj��1j eg(t)=�dt = ac Z s2Æ=pj��1j eg(t)=�dt = b (5:21)from which we get that c = aR s�2Æ=pj��1j eg(t)=�dt (5:22)while s is determined through the equationR s2Æ=pj��1j eg(t)=�dtR 2Æ=pj��1j�2Æ=pj��1 j eg(t)=�dt + R s2Æ=pj��1j eg(t)=�dt = ba (5:23)or Z s2Æ=pj��1 j eg(t)=�dt = ba� b Z 2Æ=pj��1j�2Æ=pj��1j eg(t)=�dt (5:24)



24and thus Z s�2Æ=pj��1j eg(t)=�dt = aa� b Z 2Æ=pj��1j�2Æ=pj��1j eg(t)=�dt (5:25)Inserting this solution into (5.18) yields�bCÆ (h�) � � ZbC?Æ dz? Z 2Æ=pj��1j�2Æ=pj��1j dz1 e�F (z1;z?)=� �h�(�2Æ=pj��1j; z?)�2 e2F (z1;z?)=��R s(z?)�2Æ=pj��1j eF (t;z?)=�dt�2= �RbC?Æ dz? �h� ��2Æ=pj��1j; z?�� h� �2Æ=pj��1j; z?��2R 2Æ=pj��1j�2Æ=pj��1 j eF (t;z?)=�dt (5:26)But using again (5.4), we see thatZ 2Æ=pj��1 j�2Æ=pj��1 j eF (t;z?)=�dt = �e+Pdi=2 ��i z2i2� + O(Æ3=�)�Z 2Æ=pj��1 j�2Æ=pj��1 j dte� j��1 jt22�� p2��pj��1je+Pdi=2 ��i z2i2� +O(Æ3=�) (5:27)and so �bCÆ(h�) � p�j��1jp2� exp � dXi=2 ��i z2i2� +O(Æ3=�)!� ZbC?Æ dz? �h� ��2Æ=qj��1j; z?� � h� �2Æ=qj��1j; z?��2 (5:28)Now we use the fact that h�(z) = Pz[�Bx < �By ] = hBx;By(z). Then Corollary 4.8 impliesLemma 5.2: Uniformly in z? 2 bC?Æ ,1� h� ��2Æ=qj��1j; z?� � C��1=2e�Æ2=(4�)h� �2Æ=qj��1j; z?� � C��1=2e�Æ2=(4�) (5:29)As an immediate consequence, we see that�bCÆ(h�) � �1� C��1=2e�Æ2=(4�)�2 e�O(Æ3=�) (2��)d=22� pj��1jQd�1i=2 p��i  1� p�(d� 1)Æ e� Æ22(d�1)�!d�1(5:30)



25Choosing as before Æ2 = C�j ln �j, we see that to leading order (5.30) coincides with the upperbound (5.15), which proves the theorem in the case k = 1.The generalization of this estimate to the case when several saddle points exist on thecommunication height is completely straightforward and will be left to the reader. The resultis the formula stated in the theorem. }6. Metastable exit times and capacities.In this section we compute the mean value of certain metastable exit times in terms ofcapacities. This will be largely analogous to the results on mean transition times obtainedin [BEGK1,BEGK2]. The only new ingredient needed is the following sharpening of (2.27),resp. (2.28) when a process starts in a local minimum of F .Proposition 6.1:Let x be a (non-degenerate quadratic) critical point of F and let A;D beclosed sets. Then there exists � > 0 such thatEx�D = RDc dye�F (y)=�hB�(x);D(y)capB�(x)(D) �1 +O(��=2)� (6:1)and Ex�D1I�D<�A = R(A[D)c dye�F (y)=�hB�(x);D[A(y)hD;A(y)capB�(x)(A [D) �1 + O(��=2)� (6:2)Proof: The proofs of (6.1) and (6.2) are completely analogous, and we will only consider theformer. Let us write wD(y) � Ey �D, y 2 Dc. Recall that wD(y) solves the inhomogeneousDirichlet problem (2.25) (with A = ;). We will consider this function on a ball BR0 (x), wherex is a critical point of F . This implies that for some constant K, supy2BR0 (x) krF (y)k1 �KR0 (if R0 is small). Thus the H�older and Harnack inequalities Lemmata (4.23) and (4.22)have uniform constants if R0 � p�.Now note �rst that due to (2.26), wD(y) inherits from Lemma 4.6 the uniform Harnackbound supy2Bp�(x)wD(y) � C infy2Bp�(x)wD(y) (6:3)Now use Lemma (4.22) with R = �, since wD solves L�wD = 1. This yields thatoscB�(x)wD � C��=2 supy2BR0 (x)wD(y) + R0! (6:4)



26This implies immediately thatsupy2B�(x)wD(y) � wD(x) + C2e�=2wD(x) + C�1=2+�=2infy2B�(x)wD(y) � wD(x)� C2e�=2wD(x)� C�1=2+�=2 (6:5)Using these estimates in (2.27) with � = � resp. (2.28) proves the proposition.}By the preceding proposition, all we need to know in order to compute the mean arrivaltimes are the capacities and the equilibrium potential. The latter is quite well controlled byProposition 4.3 and the rough estimates on capacities Proposition 4.7, and this will allow usto get already quite remarkable formulae.Theorem 6.2: Let xj, j = 1; : : : ; n be the local minima of F . Let Sk = [ki=1B�(xi) bea collection of balls B�(xi) where � � � and no ball contains any other minimum or saddlepoint of F . Assume moreover that for a given j, all i > k, i 6= j, eitherF (z�(xi; xj))� F (xj) > F (z�(xi;Sk))� F (xi) (6:6)or F (z�(xi; xj)) < F (z�(xi;Sk)) (6:7)Then, for j > k,Exj �Sk == 1capB�(xj)(Sk) Xi:F (z�(xi;Sk))>F (z�(xi;xj)) (2��)d=2pdet(r2F (xi))e�F (xi)=�(1 +O(�1=2j ln �j; ��=2))(6:8)Note that the sum always includes the term i = j. In particular, if for all i > k, F (xi) >F (xj), thenExj �Sk = 1capB�(xj)(Sk) (2��)d=2pdet(r2F (xi))e�F (xj)=�(1 +O(�1=2j ln �j; ��=2)) (6:9)Remark: A transition to a set D for which (6.9) holds will be called a metastable exit andthe formula (6.9) is the mean metastable exit time from the minimum j.Proof: Let us consider the set �j � fy : F (y) > F (z�(xj ;M)) + Æg for some suÆcientlysmall Æ > 0. Let �j(i) denote the connected component of �j that contains xi. Note that



27some of these sets may be empty, and some may coincide. Let f�j(~�)g~� be an enumerationof the distinct non-empty members of this collection. Let us writeZSck dye�F (y)=�hB�(xj);Sk (y) = Z�cj dye�F (y)=�hB�(xj);Sk (y)=X~� Z�j (~�)nSk dye�F (y)=�hB�(xj);Sk(y) (6:10)The �rst integral is bounded by C exp(�[F (z�(xj ;M)) + Æ]=�) and will be negligible. Theremaining contributions will be split into those for which F (z�(x~�;Sk)) > F (z�(x~�; xj)) andthose for which the contrary is true. The point is that for the former hB�(xj);Sk (y) is closeto one, while for the latter, it is typically very small. Here we make use of the fact thatif y 2 �j(~�), and F (z�(x~�;Sk)) > F (z�(x~�; xj)), then z�(y;Sk) = z�(x~�;Sk) and z�(y; xj) =z�(x~�; xj). Then Xi:F (z�(x~�;Sk))>F (z�(x~�;xj)) Z�j (~�)nSk dye�F (y)=�hB�(xj);Sk (y)= Xi:F (z�(x~�;Sk))>F (z�(x~�;xj)) Z�j (~�)nSk dye�F (y)=� �1� hSk ;B�(xj)(y)� (6:11)Now by Corollary 4.8,0 � hSk ;B�(xj)(y) � C��1=2e�[F (z�(x~�;Sk))�F (z�(x~�;xj))]=� (6:12)which by assumption is exponentially small. On the other hand, if x~� is the absolute minimumof F within �j(~�), and if the Hessian, r2F (x~�), at this minimum is non-degenerate,Z�j(~�)nSk dye�F (y)=� = (2��)d=2pdet(r2F (x~�))e�F (x~�)=�(1 +O(�1=2j ln �j)) (6:13)by standard Laplace asymptotics. ThusX~�:F (z�(x~�;Sk))>F (z�(x~�;xj)) Z�j(~�)nSk dye�F (y)=�hB�(xj);Sk (y)= X~�:F (z�(x~�;Sk))>F (z�(x~�;xj)) (2��)d=2pdet(r2F (x~�))e�F (x~�)=�(1 +O(�1=2j ln �j)) (6:14)The remaining terms cannot be computed as precisely; however, often the upper bound willshow that they are totally negligible (but this is not always the case). Using again Corollary



28 References4.8, when F (z�(x~�;Sk)) � F (z�(x~�; xj)),Z�j (~�)nSk dye�F (y)=�hB�(xj);Sk (y) � C��1=2 Z�j(~�)nSk dye�F (y)=�e�[F (z�(y;xj))�F (z�(y;Sk))]=�= C��1=2 Z�j(~�)nSk:z�(y;Sk)=y dye�F (z�(x~�;xj))=�+ C��1=2e�F (xj)=� Z�j (~�)nSk:z�(y;Sk)6=y dye�[F (y)�F (x~�)]=�e�[F (z�(x~�;xj))�F (xj )�F (z�(x~�;Sk))+F (x~�)]=�= C��1=2e�F (z�(x~�;xj))=� jf�j(~�)nSk : z�(y;Sk) = ygj+ C��1=2e�F (xj)=�e�[F (z�(x~�;xj))�F (xj )�F (z�(x~�;Sk))+F (x~�)]=� (2��)d=2pdet(r2F (x~�))(1 + O(�1=2j ln �j))(6:15)The �rst summand is always exponentially negligible compared to the principle terms, sinceof course F (z�(x~�; xj)) > F (xj). The second summand is negligible only when (6.6) holds,which will be the case in the main applications. This implies (6.8). (6.9) is an immediateconsequence. }Proof of Theorem 3.2: The proof of Theorem 3.2 is immediate by inserting the formulafor the Capacity of Theorem 3.1 into (6.8), except for the error terms of order ��=2 whichwe will now show can be removed easily. Namely, note that nothing changes in the proof ofTheorem 6.2 if we replace the starting point xj by some point x 2 Bp�(y). Also, inspectingthe proof of Theorem 5.1 one sees that the di�erence between capB�xj (Sk) and capB�x(Sk)for x 2 Bp�(y) is in fact much smaller than the error terms. Thus we get that in factoscx2Bp�(xj)Ex�Sk � C(��=2 + �1=2j ln �j)Exj �Sk (6:16)which improves the input in the H�older estimate by a factor ��=2, which in turn allows toimprove the error estimates in Theorem 6.2 from ��=2 to ��. Iterating this procedure, wecan reduce this errors until they are of the same order as the �1=2j ln �j terms. This provesTheorem 3.2. }References[BEGK1] A. Bovier, M. Eckho�, V. Gayrard, and M. Klein, Metastability in stochastic dynamics ofdisordered mean-�eld models, Probab. Theor. Rel. Fields 119, 99{161(2001).[BEGK2] A. Bovier, M. Eckho�, V. Gayrard, and M. Klein, Metastability and low-lying spectra inreversible Markov chains, Commun. Math. Phys. 228, 219-255 (2002).
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