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Abstract

Some optimal control problems for linear and nonlinear ordinary differential equations related to the optimal
switching between different magnetic fields are considered. The main aim is to move an electrical initial current
by a controllable voltage in shortest time to a desired terminal current and to hold it afterwards. Necessary
optimality conditions are derived by Pontryagin’s principle and a Lagrange technique. In the case of a linear
system, the principal structure of time-optimal controls is discussed. The associated optimality systems are
solved by a one-shot strategy using a multigrid software package. Various numerical examples are discussed.

1 Introduction

We consider a class of optimal control problems governed by linear and nonlinear systems of ordinary differential
equations (ODEs) with some relation to eddy current problems in continuum mechanics. The background of our
research in real applications is the magnetization of certain 3D objects. More precisely, it is the optimal switching
between different magnetization fields that stands behind our investigations.

Problems of this type occur in measurement sensors. If the measurement signal is much smaller than the noise,
one uses differential measurement techniques, where one has to switch from one state to an other. In this paper, the
signal source would be an electromagnetic field. In practice, the magnetization process is performed by the control
of certain induction coils, and the associated model is described by the Maxwell equations. The numerical solution
of these partial differential equations is demanding and the treatment of associated optimal control problems is quite
challenging. To get a first impression of the optimal control functions to be expected in such processes, we study
here simplified models for electrical circuits based on ordinary differential equations. They resemble the behavior
that is to be expected also from 3D models with Maxwell’s equations.

We shall study different types of electrical circuits and associated optimal control problems. In all problems,
we admit box constraints to bound the control functions. Moreover, we also consider an electrical circuit with a
nonlinear induction function.

Mathematically, our main goal is twofold. From an application point of view, we are interested in the form
of optimal controls for different types of electrical circuits. We discuss several linear and nonlinear models with
increasing level of difficulty. On the other hand, we present an optimization method that is, to our best knowledge,
not yet common in the whole optimal control community. By a commercial code, we directly solve nonsmooth
optimality systems consisting of the state equation, the adjoint equation and a projection formula for the control.
This method was already used by several authors. In particular, it was suggested by Neitzel et al. [10] for optimal
control problems governed by partial differential equations. This approach works very reliably also for our problems.

We derive the optimality systems in two different ways. First, we invoke Pontryagin’s principle to obtain the
necessary information. While this approach is certainly leading to the most detailed information on the optimal
solutions, is may be difficult to apply in some cases. Therefore, we later establish the optimality conditions also by
the well known Lagrange principle of nonlinear optimization in function spaces, see e.g. Ioffe and Tikhomirov [6].
This approach is easier to apply and turns out to be completely sufficient for numerical purposes.

The structure of the paper is as follows: Each model is discussed in a separate section. Here, we motivate the
used ordinary differential equation, then we define the related optimal control problem and show its well-posedness.
Next, we derive necessary optimality conditions. Finally, we suggest a numerical method and show its efficiency by
numerical tests.
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Figure 1: One-loop circuit, model 1

2 Numerical analysis of a one-loop electrical circuit

2.1 The optimal control problem

Let us start with a first simple electrical circuit to illustrate how the optimization theory is developed up to the
numerical solution. Magnetic fields are generated and coupled with electric fields. In our simplified setting, we
model this coupling by electrical circuits. We begin with a model described by the equation

L
di

dt
(t) +Rc i(t) = u(t)

i(0) = −i0
(1)

for an electric circuit, where the control u is a controllable voltage, i is the current associated with u, the state of the
control system, and −i0 ∈ R is its initial value. Moreover, L is the inductance and Rc the resistance. We assume
that i0, L, and Rc are positive real numbers. The situation is shown in Figure 1. Let us mention that, throughout
the paper, we use unit quantities to avoid the introduction of units.

Suppose that we want to switch the current i as fast as possible from −i0 to i0 and to hold the new state i0
afterwards. This aim is expressed by the cost functional

J(i, u) =
λT
2

(i(T )− i0)2 +
λQ
2

∫ T

0

(i(t)− i0)2 dt+
λU
2

∫ T

0

u(t)2 dt (2)

with positive constants λT , λQ, and λU and a fixed final time T > 0. Moreover, the control has to obey the
constraints

u ∈ Uad = {u ∈ L2(0, T ) |ua ≤ u(t) ≤ ub for a.a. t ∈ (0, T )}, (3)

where ua < ub are fixed real numbers.

This is a fixed-time optimal control problem, although we have time optimality in mind. The main reason for
considering this modification is the following: In standard time optimal control problems, a final target state has
to be reached exactly. This is a meaningful problem for the optimal control of ODEs. Here, the state space is
finite-dimensional so that the reachability of states is a standard assumption. We discuss this type of problems in
Section 3.3 .

The main goal of our paper is the study of effects that might also occur in the control of 3D magnetic fields,
where the physical background has some similarities with the behavior of electric circuits. Since magnetic fields
are modeled by the Maxwell equations, an infinite-dimensional state space occurs, where the exact reachability of
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states is a fairly strong assumption. Therefore, we prefer to approximate the target state closely in a short time
rather than to reach it. This is expressed in the setting above.

We search for a couple (i∗, u∗), which minimizes this functional subject to the initial-value problem (1), and the
constraints (3). The state function i is considered as a function of H1(0, T ). The functions i∗ and u∗ are called
optimal state and optimal control, respectively.

The cost functional will be minimal, if the current i∗(T ) is close to i0 (first term in J) and reaches this goal quite
fast (second term), while the cost of u is considered by the third term. The weights λT , λQ, and λU can be freely
chosen to balance the importance of these 3 terms. We should underline that we need a positive regularization
parameter λU for the theory and our numerical approach. First of all, this parameter is needed to set up our
optimality systems in the form we need for our numerical method. For instance, we solve the optimality systems
(15) or (16), where λU must not vanish. To have a convex functional, λU > 0 is needed. Moreover, it is known
that other numerical optimization methods (say gradient methods, e.g.) behave less stable without regularisation
parameter.

Since the state equation is linear, the objective functional is strictly convex, and the set of admissible controls
is nonempty and bounded in L2(0, T ), the existence of a unique optimal control is a standard conclusion. We shall
indicate optimality by a star, i.e., the optimal control is u∗, while the associated optimal state is denoted by i∗.

2.2 The Pontryagin maximum principle

Let us derive the associated first-order necessary optimality conditions. There are at least two approaches. The first
is based on the theory of nonlinear programming in function spaces and uses the well-known concept of Lagrange
multipliers associated with the different types of constraints. To apply this technique, a Lagrange function has to
be set up and then the necessary conditions are deduced.

On the other hand, the celebrated Pontryagin maximum principle is a standard approach to tackle this problem.
It contains the most complete information on the necessary optimality conditions. Therefore, we will apply this
principle and transform the associated results in a way that is compatible with the first approach. This is needed
to interprete the adjoint state as the Lagrange multiplier associated with the state equation (1). In later sections,
we prefer to apply the Lagrange principle.

Let us first recall the Pontryagin principle, formulated for the following class of optimal control problems with
objective functional of Bolza type:

min J(u) := g(x(T )) +
∫ T

0
f0(x, u) dt.

subject to

ẋk = fk(x, u) for k = 1, . . . , n,
x(0) = x0,

u(t) ∈ Ω for a.a. t ∈ (0, T ),

(4)

where fk : Rn×Rm → R, k = 0, . . . , n, and g : Rn → R are sufficiently smooth functions, 0 is the fixed initial time,
x0 is a fixed initial vector and Ω ⊂ Rm is a nonempty convex set of admissible control vectors; T > 0 is a fixed final
time.

Associated with this problem, we introduce the dynamical cost variable x0 by

ẋ0(t) = f0(x(t), u(t)), x0(0) = 0,

and the Hamilton function H : Rn+1 × Rn × Rm → R by

H(ψ, x, u) :=
n∑
k=0

ψk fk(x, u). (5)

For n = 2, this reads
H(ψ, x, u) := ψ0 f0(x, u) + ψ1 f1(x, u) + ψ2 f2(x, u). (6)

By the Hamilton function, the adjoint equation associated with a pair (x(·), u(·)) is defined by

ψ̇i = −∂H
∂xi

for i = 0, . . . , n, (7)
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or, written in more explicit terms,

ψ̇i(t) = −
n∑
k=0

∂fk
∂xi

(x(t), u(t))ψk(t) for i = 0, . . . , n. (8)

This is a linear system of differential equation for the vector function ψ. Notice that (8) implies ψ̇0 = 0 because f
does not depend on x0, hence ψ0 is identically constant. Each solution ψ : [0, T ]→ Rn+1, ψ(·) = (ψ0(·), . . . , ψn(·))>,
of this adjoint equation is called adjoint state associated with the pair (x(·), u(·)).

Now we have all pre-requisites to formulate the Pontryagin maximum principle. Basic references for this opti-
mality condition are Boltjanski et al. [12] or Ioffe / Tikhomirov [6], at least for a variable final time and a cost
functional containing only the integral part of J . Functionals of Bolza type with fixed final time T , as the problem is
posed here, require some standard transformations to obtain the associated Pontryagin principle in its most common
form. We refer to the detailed discussion in Athans and Falb [2] or to the formulation in Pinch [11] or Feichtinger
[3]. A review on different versions of the Pontryagin principle was given by Hartl et al. [5]. For problems with
functional of Bolza type, unrestricted final state and fixed final time, which are autonomous in time, the following
version holds true:

Theorem 1 (Pontryagin Maximum Principle). Let u∗(·) be an admissible control for the optimal control problem
(4) with corresponding state x∗ = (x∗1, . . . , x

∗
n). Then, in order that u∗ and x∗ minimize J subject to the given con-

straints, the following conditions must be satisfied: There exists a non-trivial adjoint state ψ(·) = (ψ0, ψ1, . . . , ψn)T :
[0, T ] → Rn+1 that satisfies a.e. on (0, T ) the adjoint equation (8) with x(t) := x∗(t) and u(t) := u∗(t) together
with the terminal condition

ψi(T ) = ψ0
∂g

∂xi
(x∗(T )), i = 1, . . . , n,

and the Hamilton function H attains almost everywhere in (0, T ) its maximum with respect to u at u = u∗(t), i.e.

max
v∈Ω

H(ψ(t), x(t), v) = H(ψ(t), x∗(t), u∗(t)) for a.a. t ∈ (0, T ). (9)

Moreover, ψ0 is a nonpositive constant.

The adjoint equation (8) is a linear system for ψ(·). Therefore, the adjoint state ψ(·) cannot vanish at any time
unless it is identically zero. The latter case is excluded by the maximum principle. Therefore, it must hold ψ0 6= 0,
since otherwise the terminal condition of the maximum would imply ψ(T ) = 0 and hence ψ(·) = 0. Re-defining ψ
by ψ := ψ/ψ0 and dividing (9) by |ψ0| we can therefore assume w.l.o.g that ψ0 = −1. This is a standard conclusion
for the type of problems above.

2.3 Necessary optimality conditions for the optimal control problem

In this part, we apply the Pontryagin maximum principle to derive the first order necessary optimality conditions
for the optimal control ū of the control problem (1) – (3).

Let us first explain how (1) – (3) fits in the problem (4), to which the Pontryagin principle refers. In (4), we
must define n, g, f0, . . . , fn, x, x0, and Ω. In (1) – (3), we have n = 1 and we define x1 := i, x0 := −i0. Moreover,
f0, f1, and g are defined below. The set Ω is the interval [ua, ub]. In this way, (1) – (3) is related to (4), and we
can apply the Pontryagin principle to it. As a result, we will obtain the system (10), (11). Although (11) contains
the necessary information on an optimal control, it does not have the form we need for our numerical method.
Therefore, in a second step, we transform (10), (11) to arrive at (15). This is the form we use for our numerical
method. We recall that the control is pointwise bounded by real constants ua ≤ ub, i.e. u ∈ Uad. To cover the
unbounded case, also ua = −∞ and/or ub = +∞ is formally allowed.

We re-write the differential equation (1) as

di

dt
(t) = −Rc

L
i(t) +

1
L
u(t)

and define
f1(i, u) := −Rc

L
i+

1
L
u.
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The Bolza type objective functional in (4) is defined by

f0(i, u) :=
λQ
2

(i− i0)2 +
λU
2
u2,

g(i) :=
λT
2

(i− i0)2.

As we explained at the end of the last section, we are justified to assume ψ0 = −1. Writing for convenience
ψ := ψ1, we obtain

H = −
(λQ

2
(
i− i0

)2 +
λU
2
u2
)

+ ψ (−Rc
L
i+

u

L
).

From this definition of H, we obtain the adjoint equation

dψ

d t
(t) = −∂ H

∂ i
(t) = λQ

(
i(t)− i0

)
+ ψ(t)

Rc
L
.

Furthermore, the Pontryagin principle yields the final condition

ψ(T ) = −∂ g
∂ i

(i(T )) = −λT
(
i(T )− i0

)
.

We have derived the following adjoint system:

dψ

dt
(t) = −ψ(t)

Rc
L

+ λQ
(
i(t)− i0

)
ψ(T ) = −λT (i(T )− i0).

(10)

As before, we denote the optimal quantities by i∗ and u∗ and omit the star at the associated adjoint state ψ.
The constraint (3) is considered by the following variational inequality that is easily derived from the maximum
condition (9),

∂ H

∂ u
(i∗(t), u∗(t), ψ(t))(u− u∗(t)) = (−λuu∗(t) + ψ(t)/L)(u− u∗(t)) ≤ 0 ∀u ∈ Uad, for a.a. t ∈ (0, T ).

We write this in the more common form of a variational inequality,

−∂ H
∂ u

(i∗(t), u∗(t), ψ(t))(u− u∗(t)) = (λuu∗(t)− ψ(t)/L)(u− u(t)∗) ≥ 0 ∀u ∈ Uad. (11)

In some sense, this form does not really fit to numerical computations. In order to arrive at the standard form of
nonlinear programming with associated Lagrange multipliers, we perform a substitution and transform the adjoint
state ψ to a Lagrange multiplier p. To this aim, we set

p(t) = −ψ(t)
L

, (12)

which implies
dp

dt
(t) = − 1

L

dψ

d t
(t).

We replace ψ by p in equations (10) and obtain the system

−Ldp
dt

(t) = −Rc p(t) + λQ
(
i(t)− i0

)
−Lp(T ) = −λT (i(T )− i0).

(13)

Using the same substitution in equation (11), we find

(λUu∗(t) + p(t))(u− u∗(t)) ≥ 0 ∀u ∈ [ua, ub] and a.a. t ∈ (0, T ). (14)
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Therefore, we can completely describe the optimal control u∗ by the following case study:

(i) λUu
∗(t) + p(t) > 0 ⇒ u∗(t) = ua

(ii) λUu
∗(t) + p(t) < 0 ⇒ u∗(t) = ub

(iii) λUu
∗(t) + p(t) = 0 ⇒ u∗(t) = − 1

λU
p(t).

A further discussion of these relations yields that the optimal control satisfies almost everywhere the well known
projection formula

u∗(t) = P[ua,ub]{−
1
λU

p(t)} = max(min(ub,−
1
λU

p(t)), ua),

where P[α,β] denotes the projection of a real number on the interval [α, β]. For the derivation of this formula,
we refer the reader e.g. to [14]. After inserting this expression for u∗ in (1) while considering also (13), the two
unknowns i∗ and p satisfy the forward-backward optimality system

L
d i

d t
(t) +Rc i(t) = P[ua,ub]{−

1
λU

p(t)}
i(0) = −i0

−L d p
d t

(t) +Rc p(t) = λQ(i(t)− i0)

Lp(T ) = λT (i(T )− i0).

(15)

Although this is a nonlinear and nondifferentiable system, it can be easily solved numerically by available commercial
codes. In our computations, we applied the code COMSOL Multiphysics R©[1]. In the next section, we demonstrate
the efficiency of this idea by numerical examples. There are various other numerical methods for solving systems
of ordinary differential equations. We only refer to the standard reference Hairer et al. [4]. Moreover, we mention
methods tailored to the numerical treatment of electric circuits, which are presented in Ros loniec [13]. We prefer
COMSOL Multiphysics R©, because we were able to implement the solution of our nonsmooth optimality systems
in an easy way.

For convenience, we also mention the unbounded case ua = −∞ and ub =∞. Here, we have

P[ua,ub]{−
1
λU

p(t)} = − 1
λU

p(t),

hence the associated optimality system is in the unbounded case

L
d i

d t
(t) +Rc i(t) = − 1

λU
p(t)

i(0) = −i0
−Ldp

dt
(t) +Rc p(t) = λQ(i(t)− i0)

Lp (T ) = λT (i(T )− i0).

(16)

The unique solution to this system is the pair (i∗, p), and the optimal control is given by u∗ = −λ−1
U p.

2.4 Numerical examples

In the examples, we select the bounds ua := −300 and ub := 300. Moreover, we consider the time interval [0, 1] and
fix the constants i0 := 1, L := 3.5 and Rc := 145.

First, we investigate the influence of the parameters λT , λQ and λU . As explained above, we solve the nonlinear
system (15) numerically to find the optimal solution. Let us start with the influence of λQ. This parameter controls
the current i along the time. We fix λT and λU by 1 and vary λQ. Figure 2 shows how the current i approaches i0
for increasing λQ. The larger λQ is, the faster the current approaches the target. The end of the curves is depending
on the ratio between λQ and λT . We discuss this below.

Next, we consider the influence of the control parameter λU . The other parameters are fixed by 1. This
parameter expresses the cost of the control u. If λU is large, the control is expensive and it is more important to
minimize |u|, cf. Figure 3. In its right hand side figure, we see that the upper bound ub is active at the beginning.
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Figure 2: Electric current i by different λQ
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Figure 3: Current i by different λU

Finally, we analyse all parameters more detailed and plot only the integral part

JQ :=
∫ T

0

(
i(t)− i0

)2
dt

of the cost functional depending on the parameters. We are most interested in this part, since it expresses the speed
of approaching i0. Our aim is to select parameters λQ and λU , where JQ is as small as possible. We fix λT = 1
again. We vary only one of the parameters λQ and λU and set the other one to 1. Figure 4 shows the value of
JQ depending on λQ, respectively λU . The x-axis are scaled logarithmically. Both curves contain critical points
beyond which JQ grows considerably. In view of this, we recommend the choice λQ > 105 and λU < 10−4.

With nearly this ratio between λQ and λU , we try to find out a suitable λT . Fixing λQ = 106 and λU = 10−6,
we vary λT . The left hand side of Figure 5 shows that the influence of λT on i is marginal almost everywhere.
However, a zoom of the graph close to the final time T reveals that this parameter influences the final behavior. If
λT is large enough, i∗ ends near by i0.

We started with a simple circuit. In the next sections, we discuss some more examples of higher complexity.

2.5 A two-loop circuit modeled by a single ODE

In the remainder of this paper, we will consider several cases of electrical circuits with two loops. We start with
a simple one and show that it can be still modeled by a single ODE. Therefore, this circuit still fits to the theory
of this section. This subsection is only to show how we transform this case to the single circuit case. Later, we
consider linear and nonlinear systems of two ODEs.

7



1000 105 107 109

0.2

0.4

0.6

0.8

1.0

JQ

λQ

(a) The value of Jq influenced by λQ

10 -4 0.01 1

0.2

0.4

0.6

0.8

1.0

10 -6

JQ

λU

(b) The value of Jq influenced by λU

Figure 4: Value JQ by different parameters

0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.5

1.0

i [A]

t [s]

λT = 10

λT = 50

λT = 500

λT = 105

−

−
(a) Electric current i depending on λT )

0.9975 0.9980 0.9985 0.9990 0.9995 1.0000
0.994

0.995

0.996

0.997

0.998

0.999

1.000
i [A]

t [s]

λT = 105

λT = 500

λT = 50

λT = 10

(b) Electric current i depending on λT near T

Figure 5: Electric current depending on λT

  

Rc

L
u

Rw

i1 i2

i3
A

B

I II

Figure 6: Electrical circuit with two loops

Consider the circuit of Figure 6 that contains an additional resistance Rw. Let us set up the differential equations
for this circuit. Applying the Kirchhoff current law to node A, we get the equation

i1(t) = i2(t) + i3(t) (17)

at any time t. The electrical circuit is composed of the loops I and II. By the Kirchhoff voltage law, we obtain the
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equations

L
di3
dt

(t) +Rc i1(t) = u(t) (18)

for loop I and

− Ldi3
dt

(t) +Rw i2(t) = 0 (19)

for loop II. Our main interest is to control the current i3, which in the sequel is re-named by i := i3. From (17),
(18) and (19), we deduce the following equation for the current i = i3:

L(1 +
Rc
Rw

)
di

dt
(t) +Rc i(t) = u(t).

With the initial condition i(0) = −i0, we arrive at the initial value problem

a
di

dt
(t) +Rc i(t) = u(t)

i(0) = −i0,
(20)

where a is defined by

a := L (1 +
Rc
Rw

).

Our goal is to control the electrical currents such that the objective functional (2) is minimized. By our transfor-
mation above, this modified problem, which consists of the new state equation (20), original cost functional (2) and
control constraints (3), is a particular case of the problem (1) – (3). Therefore, we obtain an optimality system that
is equivalent to (15) in the case of a bounded control and (16) for unbounded control. Because of this similarity,
we abdicate of numerical examples.

3 Two loops coupled by inductances

3.1 The optimal control problem

In this section, we consider the optimal control of electrical circuits, which cannot be transformed easily to a single
ODE. In the preceding sections, we derived the optimality system from the Pontryagin maximum principle and
transformed this result into the Lagrangian form. Here, we directly apply the Karush-Kuhn-Tucker theory (KKT
theory) of nonlinear programming problems in Banach spaces to deduce the optimality system. We do this in a
formal way that does not explicitely mention the function spaces underlying the theory. The precise application
of the standard Karush-Kuhn-Tucker theory to problems with differential equations is fairly involved, we refer,
e.g., to Ioffe and Tikhomirov [6], Luenberger [8], or Jahn [7]. The assumptions of the KKT theory are met by
all of our problems so that the same results will be obtained as the ones we derive below by the formal Lagrange
technique, which is adopted from the textbook [14]. The optimality conditions obtained in this way are closer to
the applications of nonlinear programming techniques.

We consider the electrical circuit shown in Figure 7 with two loops coupled by inductances L1 and L2 via a
coupling variable γ. In some sense, this model simulates the coupling between a magnetic field and eddy currents.
For physical reasons, we require γ ∈ [0, 1].

This electrical circuit is modeled by the initial-value problem

L1
di1
dt

(t) + C
di2
dt

(t) +Rc i1(t) = u(t)

C
di1
dt

(t) + L2
di2
dt

(t) +Rwi2(t) = 0

i1(0) = −i0
i2(0) = 0,

(21)
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Figure 7: Model 2

which contains the ODEs for loop I and loop II, respectively. The constant C is defined by C := γ
√
L1L2. Now,

the cost functional to be minimized is defined by

J(i1, i2, u) :=
λT
2

(i1(T )− i0)2 +
1
2

∫ T

0

(
λQ (i1(t)− i0)2 + λI i2(t)2 + λU u(t)2

)
dt (22)

with nonnegative constants λT , λQ, λI and λU > 0.

The optimal control problem we consider in this subsection is to minimize (22) subject to the state equation
(21) and to the box constraint (3).

To derive the associated optimality system, we might multiply the system of ODEs in (21) by the matrix E
standing in front of the derivatives dij/dt, j = 1, 2,

E =
[
L1 C
C L2

]
(23)

to obtain a system of ODEs in standard form. This is, however, not needed here. We will use this approach for
the discussion of controllability in the next section. In contrast to the Pontryagin maximum principle, the formal
Lagrange principle is directly applicable to the system (21). Following the Lagrange principle, we ”eliminate” the
ODEs above by two Lagrange multiplier functions p1 and p2, respectively, while we keep the initial conditions and
the box constraint u ∈ Uad as explicit constraints. Therefore, the associated Lagrange function is defined by

L(i1, i2, u, p1, p2) := J(i1, i2, u)−
∫ T

0

(
L1
di1
dt

(t) + C
di2
dt

(t) +Rc i1(t)− u(t)
)
p1(t) dt

−
∫ T

0

(
L2
di2
dt

(t) + C
di1
dt

(t) +Rw i2(t)
)
p2(t) dt.

According to the Lagrange principle, the optimal solution (i∗1, i
∗
2, u
∗) has to satisfy the necessary optimality condi-

tions of the problem to minimize L with respect to i1, i2, u without the ODE constraints but subject to the initial
conditions and the box constraints. Notice that i1, i2, u are here decoupled. For i1, i2, this means

∂L
∂ij

(i∗1, i
∗
2, u
∗, p1, p2)h = 0 ∀h with h(0) = 0, j = 1, 2.

With respect to u, the variational inequality

∂L
∂u

(i∗1, i
∗
2, u
∗, p1, p2) (u− u∗) ≥ 0 ∀u ∈ Uad

must be satisfied. Let us write for short L = L(i∗1, i
∗
2, u
∗, p1, p2). For ∂L/∂u, we obtain

∂L
∂u

(i∗1, i
∗
2, u
∗, p1, p2)u =

∫ T

0

(λU u(t) + p1(t)) u(t) dt,

10



hence we have the variational inequality∫ T

0

(λU u∗(t) + p1(t)) (u(t)− u∗(t)) dt ≥ 0 ∀u ∈ Uad.

Again, the pointwise evaluation of the inequality leads finally to the projection formula

u∗(t) = P[ua,ub]{−
1
λU

p1(t)}. (24)

For ∂ L/∂ i1, we deduce after integrating by parts

∂L
∂i1

(i1, i2, u, p1, p2)h = λT (i1(T )− i0)h(T ) + λQ

∫ T

0

(i1(t)− i0)h(t) dt

−
∫ T

0

(L1
dh

dt
(t) +Rc h(t)) p1(t) dt−

∫ T

0

C
dh

dt
(t) p2(t) dt,

= {λT (i1(T )− i0)− L1 p1(T )− C p2(T )} h(T )

+
∫ T

0

{
λQ (i1(t)− i0)−Rc p1(t) + L1

dp1

dt
(t) + C

dp2

dt
(t)
}
h(t) dt

= 0 ∀h with h(0) = 0.

Since h(T ) and h(·) can vary arbitrarily, both terms in braces must vanish; hence the equations

−L1
dp1

dt
(t)− C dp2

dt
(t) +Rcp1(t) = λQ(i1(t)− i0(t))

L1 p1(T ) + C p2(T ) = λT (i1(T )− i0)
(25)

must hold. In the same way, we derive from ∂ L/∂ i2 = 0 the equations

−C dp1

dt
(t)− L2

dp2

dt
(t) +Rwp2(t) = 0

C p1(T ) + L2 p2(T ) = 0.
(26)

The equations (25) and (26) form the adjoint system. Collecting the equations (21), (24), (25), and (26), we obtain
the following optimality system to be satisfied by the optimal triple (i∗1, i

∗
2, u

∗) and the associated pair of Lagrange
multipliers p1, p2:

L1
di1
dt

(t) + C
di2
dt

(t) +Rc i1(t) = P[ua,ub]{−λ−1
U p1(t)}

C
di1
dt

(t) + L2
di2
dt

(t) +Rw i2(t) = 0

−L1
dp1

dt
(t)− C dp2

dt
(t) +Rc p1(t) = λQ (i1(t)− i0(t))

−C dp1

dt
(t)− C L2

dp2

dt
(t) +Rwp2(t) = λI i2(t)

i1(0) = −i0
i2(0) = 0

L1 p1(T ) + C p2(T ) = λT (i1(T )− i0)

C p1(T ) + L2 p2(T ) = 0.

(27)

If the box constraints missing on u, then we can replace the nonlinear and nonsmooth term P[ua,ub]{−λ−1
U p1(t)}

by the linear and smooth expression −λ−1
U p1(t). To handle the numerical examples below, we directly solved the

nonsmooth optimality system (27) by the package COMSOL Multiphysics R©.
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3.2 Numerical examples

In the problem above, we fix the final time T = 1 and the constants i0 := 1, L := 3.5, L2 := 2, Rc := 145, Rw :=
3500 and γ = 0.9. Moreover, we impose the bounds ua := −300 and ub := 300 on the control.

First, we discuss a reasonable choice of the parameters λQ, and λU . Therefore, we define again

JQ :=
∫ T

0

(
i1(t)− i0

)2
dt (28)

plot JQ for different parameters. As in Subsection 2.4, we select parameters, where JQ is as small as possible. The
parameters λT and λI have a very low influence on the size of JQ and we fix λT = 10000 and λI = 100. We vary
only one of the parameters λQ and λU and set the other one to 1. The left hand side of Figure 8 shows the value
of JQ depending on λQ and the right hand side depending on λU . We have nearly the same critical points as in
model 1 (cf. Figure 4).
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(a) Value of Jq depending on λQ (λU =1)
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(b) Value of Jq depending on λU (λQ=1)

Figure 8: Value of JQ by different parameters

Let us now plot the current i and the control u with the parameters λQ = 106, λU = 10−6, λT = 10000 and
λI = 100 which have been found above. On the left hand side of Figure 9, we see how the current i approaches
i0 = 1. Near the time t = 0 the control u stays at the upper bound ub, before it approaches the lower holding level
(right hand side of Figure 9).
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Figure 9: Solution of Model 2

Additionally, we concentrate on the current i2. Because i2 is coupled with i1, we can neglect the time where i1
is almost constant. Therefore, Figure 10 shows only a part of the time interval.

3.3 Time-optimal control

In the previous sections, we considered optimal control problems in a fixed interval of time. We formulated integral
terms in the cost functional to reach the target state in short time. As we have explained in Section 2.1, we need

12
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Figure 10: Current i2 in Model 2

this alternative, because this problem is only a first step for solving time-optimal control problems in the optimal
switching between magnetic fields. Then, the 3D Maxwell equations occur and it is really difficult to formulate a
time-optimal problem in the right way.

However, in the case of ODEs, it is also useful to reach certain desirable states in minimal time. Such aspects of
time optimality are the topic of this section. We consider again the state equation (21) as the model of the electrical
circuit. Now, the vector of currents (i1, i2) should reach the desired value (i0, 0) in shortest time. After (i0, 0) is
reached, the currents should hold this state. Again, the initial value is (−i0, 0).

To this aim, we consider the time-optimal control problem

min T (29)

subject to u ∈ Uad and the state equation

L1
di1
dt

(t) + C
di2
dt

(t) +Rc i1(t) = u(t)

C
di1
dt

(t) + L2
di2
dt

(t) +Rwi2(t) = 0

i1(0) = −i0
i2(0) = 0

(30)

and the end conditions
i1(T ) = i0

i2(T ) = 0.
(31)

It turns out that the solution to this problem is also the one that steers the initial state in shortest time to a
holdable state i1 = i0.

In what follows, we shall consider the row vector i := (i1, i2)>. First, we discuss the problem of reachability
of the terminal vector (i0, 0)> in finite time. To apply associated results of the controllability theory of linear
autonomous systems, we first transform the system (30) to the standard form

i′(t) = A i(t) +B u(t). (32)

This equation is obtained after multiplying (30) by

E−1 =
1
D

[
L2 −C
−C L1

]
, (33)

where E is defined in (23) and D = (1− γ2)L1L2 is its determinant. We obtain

A = −E−1

[
Rc 0
0 Rw

]
=

1
D

[
−L2Rc γ

√
L1L2Rw√

L1L2Rc −L1Rw

]
, B = E−1

[
1
0

]
=

1
D

[
L2

−C

]
. (34)
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Let us first formally determine the limit limt→∞ i(t) for a constant control function u(t) ≡ u. Inserting i(t) = 0 in
(30), we find that i1 = R−1

c u and i2 = 0 are the limits, provided they exist.

Theorem 2. For 0 < γ < 1, the eigenvalues of the matrix A are real, negative and distinct. For u(t) ≡ u, it holds

lim
t→∞

i(t) =
[
R−1
c u
0

]
.

Proof. The characteristic equation for the eigenvalues λ1/2 is

det(A− λ I) = λ2 + λ (L1Rw + L2Rc) + (1− γ2)L1L2RcRw = 0,

hence

λ1/2 =
1
2

(
−(L1Rw + L2Rc)±

√
L2

1R
2
w + (2− 4(1− γ2))L1L2RcRw + L2

2R
2
c

)
.

Since 0 < γ < 1, a simple estimate shows

0 ≤ (L1Rw − L2Rc)2 = L2
1R

2
w − 2L1L2RcRw + L2

2R
2
c

< L2
1R

2
w + (2− 4(1− γ2))L1L2RcRw + L2

2R
2
c .

Therefore, the square root is real and nonvanishing, both eigenvalues are negative and λ1 6= λ2.

To show the second claim, we recall the variation of constants formula

i(t) = eAt
[
−i0
0

]
+

t∫
0

eA(t−s)B

[
u
0

]
ds

= eAt
[
−i0
0

]
+A−1(I − eAt)B

[
u
0

]
;

notice that u is a constant. Since the eigenvalues of A are negative, the matrix exponential function tends to zero
as t→∞, hence

lim
t→∞

i(t) = A−1B

[
u
0

]
.

Moreover, we analogously have i′(t) → 0. Therefore the claimed limes follows directly by passing to the limit in
(30). 2

Next, we confirm that the well-known Kalman condition

rank[B,AB] = 2 (35)

is satisfied. In fact, the vectors B and AB are linearly independent iff EB and E AB have the same property,
because E is invertible. We have

EAB = −E E−1

[
Rc 0
0 Rw

]
E−1

[
1
0

]
=

1
D

[
RcL2

−C L2

]
and EB = EE−1

[
1
0

]
=
[

1
0

]
,

and both vectors are obviously linearly independent. The Kalman condition is the main assumption for proving
the next result.

Theorem 3. Suppose that ub > Rci0. Then there is a control function u ∈ Uad that steers the initial value (−i0, 0)>

in finite time to the terminal state (i0, 0)>.

Proof. In a first time interval [0, t1], we fix the control by the hold-on voltage, i.e.

u(t) = Rci0, t ∈ [0, t1].

We know by Theorem 2 that i(t)→ (i0, 0)> as t1 →∞. Therefore, given an ε > 0

|i(t1)− (i0, 0)>| < ε,

14



if t1 is sufficiently large. We then have i(t1) = (i0, 0)> + η with |η| < ε. Starting from i(t1) as new initial value, we
reach (i0, 0)> after time t2 > 0 as follows: We fix τ > 0 and set

u(t1 + τ) = Rci0 + v(τ), τ ∈ [0, t2].

By the variation of constants formula, we obtain

i(t1 + τ) = eAτ
(
i0
0

)
+
∫ τ

0

eA(τ−s)BRci0 ds+
∫ τ

0

eA(τ−s)B v(s) ds. (36)

=
(
i0
0

)
+
∫ τ

0

eA(τ−s)B v(s) ds+
(
η1

η2

)
, (37)

because the first two items in the right-hand side of (36) express the stationary current (i0, 0)> associated with the
hold-on voltage Rci0. At time τ = t2, we want to have i(t1 + τ) = (i0, 0)>, hence by (37) we have to find v such
that

−
(
η1

η2

)
=
∫ t2

0

eA(t2−s)B v(s) ds,

i.e. equivalently

−e−A t2
(
η1

η2

)
=
∫ t2

0

e−AsB v(s) ds. (38)

Thanks to the Kalman condition, the operator on the right-hand side maps any open ball of L∞(0, t2) of radius
δ > 0 around 0 in an open ball of R2 with radius ε > 0, cf. Macki and Strauss [9], proof of Theorem 3, chapter
II, (3). By our assumption ub > Rci0, we have that Rci0 + v(t) is an admissible control, if |v(t)| ≤ δ and δ > 0 is
sufficiently small. We fix now t2 > 0 and select δ > 0 so small that Rci0 + v(t) is admissible. Moreover, we take t1
so large that η = i(t1)− (i0, 0)> belongs to the ball of R2 around zero mentioned above.

Then the control

u(t) =
{
Rci0 on [0, t1]
Rci0 + v(t− t1) on (t1, t1 + t2]

has the desired properties. 2.

Now we have all prerequisites for a discussion of the time-optimal control.

Theorem 4. If γ ∈ (0, 1) and ub > Rci0 is assumed, then the time-optimal control problem (29) – (31) has a
unique optimal control. This control is bang-bang and has at most one switching point.

Proof. It follows from the last theorem that the final state (i0, 0)> is reachable in finite time by admissible
controls. Therefore, Theorem 1 of [9], chpt. II yields the existence of at least one optimal control. (This theorem
deals with the problem to reach the target (0, 0)>, but the proof works for our situation with a marginal change).

We know that the Kalman condition is satisfied by our problem, which is here equivalent to the normality of the
system, because B consists of a single column vector, cf. [9], chpt. III, Theorem 7. Therefore, thanks to Theorem
4 of [9], chpt. III, the optimal control is unique and bang-bang with at most finitely many switching points.

Now we apply the maximum principle for linear time-optimal control problems, [9], Theorem 3, chpt. III. It
says that there exists a nonzero constant vector h ∈ R2 such that the optimal control u satisfies

u(t) =
{
ub if h>exp(−At)B > 0
ua if h>exp(−At)B < 0 (39)

for almost all t ∈ [0, T ], where T is the optimal time.

Because the eigenvalues of A are real and distinct and h 6= 0, the function h>exp(−At)B is a sum of two
exponential functions, which can have at most one zero. From this, the claim on the number of switching points
follows immediately. 2

By the maximum principle (39), the optimal control has at most one switching point t1. Thanks to the underlying
background of physics, it can be found numerically as follows:

In a first interval [0, t1], we fix the control u at the upper bound ub and require that i1(t1) > i0. In (t1, T ], we
set the control to the lower bound ua until it reaches the value i0 at the time T , i.e.

i1(T ) = i0.
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Of course, T depends on t1, say T = τ(t1). We determine t1 by the condition i2(T ) = 0, i.e.

i2(τ(t1)) = 0. (40)

Time optimal control to a holding level. In the problem (29) – (31), the target is the terminal state (i0, 0).
After having reached this state at time T , we are able to fix the control to the holding voltage

u0 := Rci0.

Then, for t > T , the current i is identically constant, i(t) = (i0, 0) ∀t > T . In this way, the solution of our
time-optimal control problem solves also the problem to reach the holdable state i1 = i0 in shortest time.

To a certain extent, the aim of reaching the holdable state in shortest time can also be covered by the cost
functional J in (22). The first term forces i1 to reach i0 while the second will become small, if this is done quite
fast. However, the use of this functional will only lead to an approximation of time optimality.

Now we will compare the above method with the optimal control for the problem (22) of Subsection 3.1. It
turns out that the optimal time to reach the holdable state, can also be obtained from (22) by a suitable choice of
the parameters. We fixed them as follows:

The control bounds are again ua := −300 and ub := 300. We have seen, that a time close to t = 0 is important
and select T = 0.035. Furthermore we fix i0 := 1, L := 3.5, L2 := 2, Rc := 145, Rw := 3500, γ = 0.9, λT =
10000, λQ = 106, λU = 10−6, and λI = 10000. The solution with the associated cost functional J is plotted in all
pictures as a solid line. The solution obtained by optimizing the points t1, t2 is drawn by a dashed line. Let us
comment first on the current i1. Figure 11 shows that the currents obtained by the two different methods are very
similar. Differences appear in a short interval after the first time, where i0 is reached. To analyse this, we consider
the right-hand picture in Figure 11, where this part is zoomed. While the line current approaches directly i0, the
dashed line solution first exceeds the value i0 to later come back to the value of i0.
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(b) Electrical current i1 by t = 0.025

Figure 11: Solutions for the current i1 of Model 2

In contrast to the optimal currents, there are big differences between the two optimal controls. This is shown in
Figure 12. The control drawn as a dashed line stays on the upper bound until the first switching point is reached
and moves to the lower bound up to the second switching point. After t2, the control is fixed at the holding level.
In contrast to this, the control drawn as line stays at the upper bound and decreases directly to the holding level.

We observe that the two methods compute extremely different optimal controls, although the optimal values
and currents are fairly similar.

To complete the numerical comparison, we plot the current i2 in Figure 13.

4 Inductance depending on the electrical current

4.1 The nonlinear control problem

Finally, we investigate cases, where the induction L depends on the electric current; then a nonlinear state equation
arises. Having Model 1 in mind, see Figure 1, we define the induction L by

L(i) := a+ 3 b i2.
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Figure 12: Comparison of the controls u
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Figure 13: Comparison of the current i2

Therefore, we derive from (1) the nonlinear equation(
a+ 3 b i2(t)

) di
dt

(t) +Rc i(t) = u(t). (41)

Because a and b are positive, we can transform this equation to

di

dt
= − Rc

a+ 3 b i2
+

1
a+ 3 b i2

u. (42)

The optimal control problem under consideration is now to minimize the objective functional (2) subject to the
state equation (41) and the control constraints (3).

4.2 Necessary optimality conditions

Again, the optimality conditions can be derived in two ways. The first is to invoke the Pontryagin maximum
principle on the basis of the state equation in the form (42). The second, which we prefer and discuss, is the use of
the Lagrange principle. Here, we directly use the equation (41) to define the Lagrange function

L(i, u, p) =
λT
2

(i(T )− i0)2 +
λQ
2

∫ T

0

(i(t)− i0)2 dt+
λU
2

∫ T

0

u(t)2 dt

−
∫ T

0

(
Rc i(t) +

(
a+ 3 b i2(t)

) di
dt

(t)− u(t)
)
p(t) dt.

As in the former sections, the necessary conditions are derived by the derivatives ∂L/∂u and ∂L/∂i. We find

∂L(i, u, p)
∂u

h =
∫ T

0

(λU u(t) + p(t)) h(t) dt,
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and, assuming h(0) = 0,

∂L(i, u, p)
∂i

h =λT (i(T )− i0)−
∫ T

0

λQ(i(t)− i0)h(t) dt−
∫ T

0

Rc p(t)h(t) dt

−
∫ T

0

6 b i(t)
di

dt
(t)h(t) p(t) dt−

∫ T

0

(a+ 3 b i2(t))
dh

dt
p(t) dt

=λT (i(T )− i0)−
∫ T

0

λQ(i(t)− i0)h(t) dt−
∫ T

0

Rc p(t)h(t) dt

−
∫ T

0

6 b i(t)
di

dt
(t)h(t) p(t) dt− (a+ 3 b i2(T )) p(T )h(T )

+
∫ T

0

d
((

(a+ 3 bi2)
)
p
)

dt
(t)h(t) dt

=
(
λT (i(T )− i0)− (a+ 3 b i2) p(T )

)
h(T )

+
∫ T

0

−λQ(i(t)− i0)h(t)−Rc p h(t) +
(
a+ 3 b i2(t)

) dp
dt

(t)h(t) dt.

Since the last expression must vanish for all directions h with initial zero value, we obtain the adjoint equation

−
(
a+ 3 b i2(t)

) dp
dt

(t) +Rc p = λQ (i(t)− i0)(
a+ 3 b i2(T )

)
p(T ) = λT (i(T )− i0).

Finally, we obtain as in the former sections the optimality system

Rc i(t) +
(
a+ 3 b i2(t)

) di
dt

(t) = P[ua,ub]{−λ−1
U p}

−Rc p+
(
a+ 3 b i2(t)

) dp
dt

(t) = −λQ (i(t)− i0)

i(0) = −i0(
a+ 3 b i2(T )

)
p(T ) = λT (i(T )− i0).

(43)

We report on the direct numerical solution of this system in the next subsection.

4.3 Numerical examples

We take the same bounds and constants as in the other models, i. e. ua := −300 and ub := 300. As before, we vary
useful parameters λQ, λU and λT . For the known reasons, we define again

JQ :=
∫ 1

0

(i(t)− i0)2dt.

We have seen that λT is less important and set λT = 1000. Again, we fix λU = 1, vary λQ and interchange these
roles of the parameters afterwards. So we selected as before reasonable parameters by

λQ = 106 and λU = 10−6.

At first view, there are no significant differences to the other models. However, if we concentrate on the time
close to t = 0, we see a nonlinear increase of the electrical current i. This is shown in Figure 14 by different λU .
The behaviour of the control u is similar to the linear case. First, the control stays on the upper bound and next
it decays to the holding level, see Figure 17.

Now we consider the induction L. Because L depends on i, we need to analyse L only near the initial time. In
Figure 15 we see how the induction increases up to the value 1 and grows up to the holding level. This is caused by
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Figure 14: Electrical current i by different λU
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Figure 15: Induction L by different λU

the fact that i is starting at −i0 = −1. At the value i(t) = 0, the induction must be equal to L(0) = a+ b · 02 = 1
and admit a minimum there. After that point, the induction grows again up to a holding level.

Finally, we compare the case with constant induction of Model 1 ( cf. 2.4 ) and with the last model with time
dependent induction. We use the same parameters as before. In Figure 16 we can see the differences in the state
i. With constant induction, the electrical current i grows smoothly. In the case with time dependent induction L,
the current grows slower at the beginning. After some short time, the current increases faster than by constant
induction and reaches earlier the value of i0. In Figure 17, the curves of the controls u are plotted. Here we can see
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Figure 16: Comparison of the electrical current by different inductions

that in the case with constant induction the control stays longer at the upper bound. However, both curves have
the same characteristic behaviour.

The computational time for solving the nonlinear optimal control problem is about 850 seconds (Single Core 3
GHz,4 GB RAM) in contrast to the linear problem of Section 2.4 with about 180 seconds.
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Figure 17: Comparison of the voltage by different inductions

Remark 5. By our numerical method, we just solve the first-order optimality system. This system of necessary
conditions is not sufficient for local optimality, if a nonlinear state equation models the electric current. However
comparing the results for the nonlinear equation with those for the linear one, we can be sure to have computed the
minimum. Another hint on optimality is that the current reaches the desired state in short time.

Conclusions. We have considered a class of optimal control problems related to the control of electric circuits.
It is shown that, by an approiate choice of parameters, the time optimal transfer of an initial state to another one
can be reduced to a fixed time control problem with quadratic objective functional. Invoking the kown theory of
first-order necessary optimality conditions, a non-smooth optimality system is set up, which can be directly solved
by available software for differential equations. This direct and slightly non-standard numerical approach turned
out to be very efficient and robust for this class of optimal control problems.
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[14] F. Tröltzsch. Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Graduate
Studies in Mathematics, Volume 112. American Mathematical Society, Providence, 2010.

21


	Introduction
	Numerical analysis of a one-loop electrical circuit
	The optimal control problem
	The Pontryagin maximum principle
	Necessary optimality conditions for the optimal control problem
	Numerical examples
	A two-loop circuit modeled by a single ODE

	Two loops coupled by inductances
	The optimal control problem
	Numerical examples
	Time-optimal control

	Inductance depending on the electrical current
	The nonlinear control problem
	Necessary optimality conditions
	Numerical examples


