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Abstract

A global higher differentiability result in Besov spaces is proved for the displacement

fields of linear elastic models with self contact. Domains with cracks are studied, where non-

penetration conditions/Signorini conditions are imposed on the crack faces. It is shown that

in a neighborhood of crack tips (in 2D) or crack fronts (3D) the displacement fields are B
3/2
2,∞

regular. The proof relies on a difference quotient argument for the directions tangential to the

crack. In order to obtain the regularity estimates also in the normal direction, an argument

due to Ebmeyer/Frehse/Kassmann [EFK02] is modified. The methods are then applied to

further examples like contact problems with nonsmooth rigid foundations, to a model with

Tresca friction and to minimization problems with nonsmooth energies and constraints as

they occur for instance in the modeling of shape memory alloys. Based on Falk’s approxima-

tion Theorem for variational inequalities, convergence rates for FE-discretizations of contact

problems are derived relying on the proven regularity properties. Several numerical examples

illustrate the theoretical results.

1 Introduction

In this note, a global higher differentiability result in Besov spaces for the elastic fields of a

model with self contact is proved. In particular, domains with cracks are studied, where non-

penetration conditions/Signorini conditions are imposed on the crack faces.

Local regularity results for the Signorini or contact problem are well-known, and we refer

to [Kin81, BGK87, Sch89] for instance. There, Hölder continuity properties as well as higher

differentiability in the scale of Sobolev spaces is shown for displacement fields u. For example, it

is shown that u ∈ H2
loc(Ω∪ΓC), where Ω ⊂ Rd is the body and ΓC ⊂ ∂Ω the open set where the

body might be in contact with an obstacle. However, not so much is known about the regularity

of u in the neighborhood of the interface separating ΓC from the rest of ∂Ω.

Neglecting contact conditions, it is well known that in a neighborhood of crack tips (in 2D)

or of smooth crack fronts (in 3D) the displacement fields have a behavior of the type r
1
2 , where

r stands for the distance to the crack tip or front. Hence, the displacements belong to the Besov

space B
3
2
2,∞. Such results are derived using the method of singular expansions and we refer to

[CD93, CDY04], for example.

In this paper we extend these results to the case, where contact conditions are imposed on the

crack faces. Moreover, the crack front need not to be smooth. Instead, we assume that the crack

front is a Lipschitz curve (e.g. in 3D). We show that also in these cases the displacement fields are

B
3
2
2,∞ regular. The proof relies on a difference quotient argument for the directions tangential to

the crack. In order to obtain the regularity estimates also in the normal direction, an argument

from [EFK02, KM07] is applied and slightly modified. This argument allows us to solve the

equation for the missing derivatives in the normal direction. It is based on Lemma 2.4, by which

it is possible to transfer estimates for finite differences that are available for tangential directions

into estimates for the perpendicular direction. The idea originates from [EFK02, KM07], where
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the proof is given using Fourier techniques. We give here an alternative proof, which relies on

direct estimates of the relevant quantities, and in this way also generalizes the argument to the

case p 6= 2. The proof of the main regularity result is carried out in Section 2 for a class of

systems of quasilinear elliptic partial differential equations that includes the system of linear

elasticity as a special case.

The methods described here are then applied to contact problems with nonsmooth rigid foun-

dations, to frictional contact problems with Tresca friction and to minimization problems with

uniformly convex (nonsmooth) energies and nonsmooth constraints as they occur for instance

in the modeling of shape memory alloys. These extensions are discussed in Section 3.

The results presented here extend the regularity investigations from [EF99, Sav98, EFK02,

KM07, Kne06] for quasilinear elliptic systems on nonsmooth domains in the following aspects:

More general systems of quasilinear elliptic partial differential equations are studied, meaning

that we only assume that the nonlinearities are rank-one monotone, instead of the stronger

monotonicity assumption in [EF99, Sav98, EFK02, KM07, Kne06]. Crack and contact problems

are studied with nonsmooth crack fronts in three space dimensions and with nonsmooth rigid

obstacles. Moreover, the geometric assumption in [KM07] on the interface between Dirichlet-

and Neumann-boundary is weakened.

Based on Falk’s approximation Theorem for variational inequalities, convergence rates for

FE-discretizations of contact problems are derived relying on the proved regularity properties.

While in two space dimensions a rich variety of geometric situations can be treated, in three

dimensions the situation is more delicate. In this case it is an interesting task to construct

an interpolation operator into the FE-space that preserves the contact conditions and that has

optimal approximation properties. In particular, Lagrange interpolation is not applicable since

in 3D the space B
3
2
2,∞ is not embedded into the continuous functions. This issue will be discussed

in detail in Section 4 for a special case.

In Section 5, the regularity results are confirmed by several numerical experiments. We study

the convergence rate of the finite element approximation for representative numerical examples of

contact problems with self-contact and unilateral contact constraints in 2D and 3D. Nonsmooth

crack fronts and rigid foundations with nonsmooth boundaries are included. The convergence

rate is estimated by using some extrapolated reference solutions on very fine finite element

meshes. In all examples, convergence rates not less than 1/2 are determined which indicate the

predicted B
3/2
2,∞-regularity.

2 The main regularity result

In this section we investigate the regularity of the displacement fields in a neighborhood of the

crack front of interior cracks. On the crack, self-contact conditions/Signorini conditions are

imposed. In Section 3 we will then discuss further examples, where the crack intersects with the

outer boundary of the physical body. For shortness it is assumed in this paper that the crack
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is contained in a hyperplane. Results for cracks, which are parts of smooth manifolds, then can

be deduced with the usual transformation arguments. The abstract regularity results will be

derived not only for functionals with quadratic energies describing linear elasticity, but for a

more general class of non-quadratic, but uniformly convex functionals.

2.1 Notation

Let Ω ⊂ Rd be a domain. For k ∈ N0 the spaces Hk(Ω) are the usual Sobolev spaces. For

m ∈ N0 and σ ∈ (0, 1), the set Bm+σ
2,∞ (Ω) denotes the Besov space of differentiability order m+σ

and we refer to [Tri78] for a precise definition. Observe that the following identity holds true if

Ω is a Lipschitz domain, [Nik75, Tri78]:

Bm+σ
2,∞ (Ω) = {u ∈ L2(Ω) ; ‖u‖Nm+σ(Ω) <∞},

‖u‖2Nm+σ(Ω) = ‖u‖2L2(Ω) +
∑
|α|=m

sup
η>0
h∈Rd

0<|h|<η

∫
Ωη

|h|−2σ |Dαu(x+ h)−Dαu(x)|2 dx

and Ωη = {x ∈ Ω ; dist(x, ∂Ω) > η }. Furthermore, for every ε > 0 and s > 0 not an integer,

the following embeddings are continuous: Bs+ε
2,∞(Ω) ⊂ Hs(Ω) ⊂ Bs

2,∞(Ω). Here, Hs(Ω) stands

for the Sobolev-Slobodeckij space of order s.

In the sequel we assume that the crack is contained in the hyperplane Ed := {x ∈ Rd ; xd = 0 }.
For x0 ∈ Ed the set Bd−1

R (x0) = {x ∈ Ed ; |x− x0| < R } denotes the (with respect to Ed open)

disc centered at x0 of radius R. Moreover, QR(x0) = x0 + (−R,R)d is the cube of radius R

centered at x0, Q+
R(x0) = x0 + (−R,R)d−1 × (0, R) and Q−R(x0) are its upper and lower part,

and for x0 ∈ Ed we define Qd−1
R (x0) = QR(x0) ∩ Ed. Let S ⊂ ∂Bd−1

1 (0) be nonempty and open

with respect to Ed. For h0 > 0 the set C(h0;S) denotes the flat finite open cone in Ed of height

h0 defined via

C(h0;S) = {x ∈ Bd−1
h0

(0) ; x/ |x| ∈ S }.

We will usually write C(h0) instead of C(h0;S).

For elements A,B ∈ Rm×d the inner product is defined as A : B = trB>A.

2.2 Admissible geometries and energies

It is assumed that

(G1) Ω̃ ⊂ Rd, d ≥ 2, is a bounded domain.

(G2) ΓC ⊂ Ed := {x ∈ Rd ; xd = 0 } is a d− 1 dimensional domain satisfying the uniform cone

condition with respect to Ed. Moreover, ΓC ⊂ Ω̃ and Ω := Ω̃\ΓC .

The set ΓC represents the crack, which is assumed to be in the interior of Ω̃, the set Ω describes

the cracked domain. Observe that the uniform cone condition is equivalent to the property that
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the crack front ∂ΓC locally can be represented as the graph of a Lipschitz continuous function,

[Gri85]. The purpose is to study the regularity of displacement fields in a neighborhood of the

crack front ∂ΓC . Condition (G2) implies that the sets

Ω+ := {x ∈ Ω̃ ; xd > 0 }, Ω− := {x ∈ Ω̃ ; xd < 0 } (2.1)

are not empty.

The energy density W : Ω × Rd×d → R shall satisfy the following growth and convexity

conditions:

(W1) W : Ω × Rd×d → [0,∞) is a Carathéodory function and there exist constants c1 > 0 and

κ ∈ {0, 1} such that for all A ∈ Rd×d and x, y ∈ Ω+ or x, y ∈ Ω− it holds W (x,A) ≤
c1(κ+ |A|2) and

|W (x,A)−W (y,A)| ≤ c1 |x− y| (κ+ |A|2). (2.2)

Moreover, there exist constants c2, β > 0 such that for all A,B ∈ Rd×d with |B − I| ≤ β

and for e.a. x ∈ Ω it holds

|W (x,AB)−W (x,A)| ≤ c2 |B − I| (κ+ |A|2). (2.3)

(W2) The density W generates a uniformly convex functional on H1(Ω;Rd) in the following

sense: For v ∈ H1(Ω;Rd) let F(v) =
∫

ΩW (∇v) dx + 1
2 ‖v‖

2
L2(Ω). There exists a constant

α > 0 such that for all u, v ∈ H1(Ω;Rd) and all λ ∈ [0, 1] it holds

F(λu+ (1− λ)v) +
α

2
λ(1− λ) ‖u− v‖2H1(Ω) ≤ λF(u) + (1− λ)F(v). (2.4)

By assumption (W1) energy densities of the type W (x,A) := W±(A) for x ∈ Ω± are included.

In other words, the subsequent analysis allows for transmission problems, where the crack is

contained in the interface.

For x ∈ Ω and A ∈ Rd×d the derivative of W with respect to A is denoted by DW (x,A) ∈ Rd×d

with (DW (x,A))ij = ∂
∂Aij

W (x,A).

(W3) For every x ∈ Ω it holds W (x, ·) ∈ C1(Rd×d). Moreover, there exists a constant c > 0 such

that for all x, y ∈ Ω+ or x, y ∈ Ω− and all A,B ∈ Rd×d it holds

|DW (x,A)−DW (y,B)| ≤ c
(
|A−B|+ |x− y| (κ+ |A|+ |B|)

)
. (2.5)

(W4) The derivative DW is strongly rank-one monotone: There exists a constant β > 0 such

that for every x ∈ Ω, A ∈ Rd×d, ξ, η ∈ Rd it holds(
DW (x,A+ ξ ⊗ η)−DW (x,A)

)
: ξ ⊗ η ≥ β |ξ|2 |η|2 . (2.6)
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If W is twice differentiable in A and if all A-derivatives are continuous in x, then the uniform

convexity assumption (2.4) implies that a G̊arding inequality is satisfied, which in turn implies

that DW is rank-one monotone, see for example [Val88, Thm. 6.1].

For f ∈ L2(Ω,Rd) and v ∈ H1(Ω,Rd) we define the following functional:

E(v) :=

∫
Ω
W (x,∇v(x)) dx−

∫
Ω
f(x) · v(x) dx.

The convex cone of functions satisfying non-penetration conditions/Signorini conditions on the

crack ΓC is given by

K = { v ∈ H1(Ω,Rd) ; [v] · n ≥ 0 on ΓC }.

Here, the quantity [v](x) = v
∣∣
Ω+

(x) − v
∣∣
Ω−

(x) with x ∈ ΓC denotes the jump of v across the

crack ΓC and n = ed is the unit normal vector on ΓC . The following regularity theorem is the

main result of this paper:

Theorem 2.1. Let (G1)–(G2) and (W1)–(W4) be satisfied and f ∈ L2(Ω,Rd). Assume further

that u ∈ K satisfies E(u) ≤ E(v) for all v ∈ K such that supp(u − v) ⊂ Ω̃. Then for every

domain Ω0 b Ω̃ with ΓC b Ω0 it holds u
∣∣
Ω0∩Ω±

∈ B
3
2
2,∞(Ω0 ∩ Ω±) and there exists a constant

cΩ0 > 0 such that with κ from (W1)

‖u‖
B

3
2
2,∞(Ω0∩Ω+)

+ ‖u‖
B

3
2
2,∞(Ω0∩Ω−)

≤ cΩ0(κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω)).

If in addition (2.2) is valid for all x, y ∈ Ω, then u ∈ B3/2
2,∞(Ω ∩ Ω0).

Theorem 2.1 extends the results from [EFK02, KM07] in several respects: The class of energy

functionals considered in Theorem 2.1 is more general (Legendre-Hadamard condition instead

of the stronger convexity assumption in [EFK02]), non-penetration conditions are included and

the crack front is allowed to be a (nonsmooth) Lipschitz-continuous “curve“.

Remark 2.2. In [KM07] the authors investigate the regularity of solutions close to regions, where

the boundary conditions change from Dirichlet to Neumann. They assume that locally the

boundary is smooth and that the interface separating the Dirichlet and the Neumann boundary

is smooth. With the arguments that we apply in the proof of Theorem 2.1 one can also treat the

case, when the interface between the Dirichlet and the Neumann boundary is Lipschitz, only. In

order to carry over the result from [KM07] with a smooth separation line to Lipschitz-continuous

separation lines, it suffices to repeat the arguments from the proof of Theorem 2.1, where now

ΓN plays the role of ΓC and ΓD plays the role of (∂Ω+ ∩ Ed)\ΓC . One obtains again that

u ∈ B
3
2
2,∞ in a neighborhood of ΓD ∩ ΓN .

Remark 2.3. Under the conditions of Theorem 2.1 it holds u
∣∣
Ω±
∈ H2

loc(Ω± ∪ ΓC), [BGK87,

Neč83].

The proof of Theorem 2.1, which is carried out in Section 2.4, relies on the estimation of

finite differences of the solutions taken tangential to the contact surface and on the application
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of Lemma 2.4 introduced in the next section. Thanks to Remark 2.3 we already know that

u
∣∣
Ω±
∈ H2

loc(Ω± ∪ ΓC). Hence, we only have to investigate the behavior of the function u in a

neighborhood of the crack front ∂ΓC .

2.3 A technical lemma

For r > 0 let Q+
r := (−r, r)d−1 × (0, r) be the d-dimensional half cube with side length 2r. We

recall that ei, 1 ≤ i ≤ d, denote the canonical unit vectors in Rd. Furthermore, the following

notation for finite differences is used: 4i
hw(x) = w(x + hei) − w(x) for h > 0. Finally, the

Steklov regularization operators Mi
h are defined as

Mi
h(w)(x) =

1

h

∫ h

0
w(x+ tei) dt.

Lemma 2.4. Let s ∈ (0, 1], p ∈ (1,∞) and assume that for w ∈ Lp(Q+
2R) there exist constants

c1, c2 > 0 and 0 < h∗ ≤ R/2 such that

sup
1≤i≤d−1
0<h<h∗

|h|−ps
∫
Q+

3R/2

∣∣4i
hw(x)

∣∣p dx ≤ c1, (2.7)

sup
0<h<h∗

|h|−ps
∫
Q+
R/2

∣∣∣4d
h

(
Md−1

h · · ·M1
h(w)

)
(x)
∣∣∣p dx ≤ c2. (2.8)

Then there exists a constant c3 > 0 such that

sup
0<h<h∗

|h|−ps
∫
Q+
R/2

∣∣∣4d
hw(x)

∣∣∣p dx ≤ c3. (2.9)

It holds c3 = cp,d(c2 + c1(1 +ps)−1), where cd,p depends only on the space dimension d and on p.

Lemma 2.4 is a generalization of [EFK02, Lemma 1] and of [KM07, Section 1.4] from the case

p = 2 to the case p ∈ (1,∞). Our proof is done by estimating directly the integrals, whereas

the proofs in [EFK02] and [KM07] use Fourier techniques. Lemma 2.4 implies that w belongs

to the Nikolskii or Besov space Bs
p,∞(Q+

R/2) if s ∈ (0, 1) and to W 1,p(Q+
R/2) if s = 1.

Proof. Direct computations show that the operators Mi
h : Lp(Q+

R)→ Lp(Q+
R/2) are uniformly

bounded with respect to h ∈ (0, R/2).

Let h ∈ (0, R/2) and assume that w ∈ Lp(Q+
2R) satisfies (2.7) and (2.8). Let furthermore

τhed(x) := x+ hed. The triangle inequality implies that∥∥4d
hw
∥∥
Lp(Q+

R/2
)
≤
∥∥(w − (Md−1

h · · ·M1
h)w

)
◦ τhed

∥∥
Lp(Q+

R/2
)

+
∥∥w − (Md−1

h · · ·M1
h)w

∥∥
Lp(Q+

R/2
)

+
∥∥4d

h

(
Md−1

h · · ·M1
hw
)∥∥
Lp(Q+

R/2
)

≤ 2
∥∥w − (Md−1

h · · ·M1
h)w

∥∥
Lp(Q+

R)
+
∥∥4d

h

(
Md−1

h · · ·M1
hw
)∥∥
Lp(Q+

R/2
)
.
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By assumption (2.8) the second term on the right hand side is bounded:∥∥4d
h

(
Md−1

h · · ·M1
hw
)∥∥
Lp(Q+

R/2
)
≤ hsc

1
p

2 .

The first term can be estimated as follows using a transformation of coordinates (hρi = ti) and

applying Hölder’s inequality∥∥w − (Md−1
h · · ·M1

h)w
∥∥p
Lp(Q+

R)

= |h|−p(d−1)
∫
Q+
R

∣∣∣∣∣
∫

(0,h)d−1

w(x)− w(x+ t1e1 + . . .+ td−1ed−1) dtd−1 . . . dt1

∣∣∣∣∣
p

dx

≤
∫

(0,1)d−1

∫
Q+
R

∣∣w(x)− w(x+ h(ρ1e1 + . . . ρd−1ed−1))
∣∣p dx dρd−1 . . . dρ1

=: Sh.

Adding and subtracting the term
∑d−2

l=1 w(x+
∑l

j=1 hρjej) under the integral we arrive at

Sh ≤ cd,p
d−2∑
l=0

∫
(0,1)d−1

∫
Q+
R

∣∣∣w(x+
l∑

j=1

hρjej
)
− w

(
x+

l+1∑
j=1

hρjej
)∣∣∣p dx dρd−1 . . . dρ1,

with a constant cd,p depending only on d and p. Let now l ∈ {0, . . . , d − 2}. With condition

(2.7) and taking into account that Q+
R + h

∑l
j=1 ρjej ⊂ Q

+
3R/2 we conclude that

∫
(0,1)d−1

∫
Q+
R

∣∣∣w(x+

l∑
j=1

hρjej
)
− w

(
x+

l+1∑
j=1

hρjej
)∣∣∣p dx dρd−1 . . . dρ1

=

∫
(0,1)d−1

∫
Q+
R/2

+h
∑l
j=1 ρjej

|w(y)− w(y + hρl+1el+1)|p dy dρd−1 . . . dρ1

≤ c1

∫ 1

0
|hρl+1|ps dρl+1 = c1h

ps(1 + ps)−1.

Collecting all estimates finishes the proof of Lemma 2.4.

2.4 Proof of Theorem 2.1

2.4.1 Regularity in tangential direction

In the first step we prove higher differentiability in directions parallel to the crack plane Ed.

Chose Ω0 b Ω̃ with ΓC b Ω0. Let x0 ∈ ∂ΓC . Since ΓC satisfies the uniform cone condition,

there exist R̃ > 0, h0 > 0 and a (d− 1 dimensional) cone C(h0) ⊂ Ed with the property

x ∈ Q
R̃

(x0)\ΓC , h ∈ C(h0) =⇒ x+ h ∈ Ω. (2.10)

Since by assumption ΓC b Ω0, we may further choose R < R̃/2 such that the cube Q2R(x0)\ΓC
is contained in Ω0 and that, possibly after a rotation of the whole domain Ω̃ with respect to the
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x0
2R x1

xd

ΓC

ΓC N1
N2

x1

x3

x2

Figure 1: Left: Model problem in the proof of Theorem 2.1; Right: Crack geometry according

to Section 3.1.

xd-axis, it holds

∂ΓC ∩Q2R(x0) ⊂ x0 + (−R,R)× (−2R, 2R)d−2 × {0} =: UR(x0), (2.11)

see Figure 1.

We next define special inner variations (transformations on Rd) which then are used in the

difference quotient argument. For this purpose we choose a cut-off function θ ∈ C∞0 (Q2R(x0)),

0 ≤ θ ≤ 1, which satisfies θ(x) = 1 for all x ∈ Q15R/8(x0). For h ∈ C(h0) we define

Th : Rd → Rd, Th(x) = x+ θ(x)h.

There exists a constant 0 < h1 < R/8 such that for all h ∈ C(h1) := C(h0) ∩ Bd−1
h1

(0) the

mappings Th are diffeomorphisms on Rd with Th(Ed) = Ed and Th(x) = x for x ∈ Rd\Q2R(x0),

see e.g. [GH96]. Observe that on Q15R/8(x0) the diffeomorphisms act like local translations

defined by the vector h. Furthermore, thanks to (2.10), for x ∈ Ω we have Th(x) ∈ Ω. Hence,

for the cone of admissible displacements we obtain

v ∈ K, h ∈ C(h1) ⇒ v ◦ Th ∈ K

and there exists a constant c > 0 such that suph∈C(h1) ‖v ◦ Th‖H1(Ω) ≤ c ‖v‖H1(Ω), [GH96].

Lemma 2.5. Assume that (G1)–(G2) and (W1)–(W2) are satisfied, f ∈ L2(Ω) and let u ∈ K
satisfy E(u) ≤ E(v) for all v ∈ K with supp(u − v) ⊂ Ω̃. Then there exist constants c > 0 and

h∗ > 0 such that with κ from (W1)

sup
1≤i≤d−1

sup
0<h<h∗

h−
1
2 ‖u(·+ hei)− u(·)‖H1(Q3R/2(x0)\ΓC) ≤ c(κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω)), (2.12)

sup
0<h<h∗

|h|−
1
2

∥∥∥∇̃u(· ± hed)− ∇̃u(·)
∥∥∥
L2(Q±

R/2
)
≤ c(κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω)). (2.13)

The constant c depends on x0 ∈ ∂ΓC , the geometry (i.e. the Lipschitz constant) of ΓC and

the chosen cut-off function θ. Furthermore, ∇̃u is defined as (∂1u, . . . , ∂d−1u, 0). Observe that

for Lemma 2.5 also non-differentiable energies E are admissible.
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Proof. Let u ∈ K be given according to Lemma 2.5. From the uniform convexity assumption

(W2) it follows for all v ∈ K such that supp(u− v) ⊂ Ω̃ and all λ ∈ [0, 1]:

E(u) ≤ E(vλ) ≤ λE(u) + (1− λ)E(v)− α

2
λ(1− λ) ‖u− v‖2H1(Ω) ,

where vλ := λu+(1−λ)v ∈ K. Subtracting E(u) from both sides, dividing by 1−λ, one obtains

for λ→ 1 that

α

2
‖u− v‖2H1(Ω) ≤ E(v)− E(u). (2.14)

Let now (Th)h∈C(h1) be the above introduced family of diffeomorphisms. With v = u ◦ Th one

obtains

α

2
‖u ◦ Th − u‖2H1(Ω) ≤

∫
Ω
W (x,∇(u ◦ Th))−W (x,∇u) dx−

∫
Ω
f · (u ◦ Th − u) dx =: S1 + S2.

(2.15)

The next goal is to show that the right hand side is bounded by c |h| (κ+‖f‖L2(Ω) +‖u‖H1(Ω))
2.

Since u ∈ H1(Ω), the last term can be estimated with

|S2| ≤ cθ |h| ‖f‖L2(Ω) ‖u‖H1(Ω) (2.16)

with a constant cθ depending on ‖θ‖C1(Rd). Furthermore, let qh(y) :=
∣∣det∇T−1

h (y)
∣∣. Applying

the transformation y = Th(x) to the first term in S1 one finds

S1 =

∫
Th(Ω)

qhW (T−1
h (y),∇u∇T−1

h ) dy −
∫

Ω
W (x,∇u) dx

=

∫
Th(Ω)

qhW (T−1
h (y),∇u∇T−1

h )−W (y,∇u∇T−1
h ) dy

+

∫
Th(Ω)

W (y,∇u∇T−1
h )−W (y,∇u) dy −

∫
Ω\Th(Ω)

W (y,∇u) dy. (2.17)

Due to (W1), the last term is not positive. As it is shown for instance in [GH96], there exists a

constant cθ > 0 depending on ‖θ‖C1(Rd) such that ‖qh − 1‖L∞(Rd) ≤ cθ |h| and
∥∥∇T−1

h − I
∥∥
L∞(Rd)

≤
cθ |h|. Hence, taking into account assumption (W1) it follows that

S1 ≤ cθ |h| (κ+ ‖u‖2H1(Ω)).

Collecting all estimates we have shown that

sup
h∈C(h1)

|h|−
1
2 ‖u(·+ h)− u(·)‖H1(Q 15

8 R
(x0)\ΓC) ≤ c

(
κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω)

)
. (2.18)

From this we deduce that

sup
h∈C(h1)

|h|−
1
2 ‖u(· − h)− u(·)‖H1(Q 7

4R
(x0)\ΓC) ≤ sup

h∈C(h1)
|h|−

1
2 ‖u(·+ h)− u(·)‖H1(Q 15

8 R
(x0)\ΓC)

≤ c
(
κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω)

)
. (2.19)
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Next, we prove (2.12) for the standard basis {e1, . . . , ed−1}. Let {b1, . . . , bd−1} be a basis of

Ed with |bi| = 1 and bi/(2h1) ∈ C(h1). Clearly, there exist constants αij ∈ R such that the

canonical basis {e1, . . . , ed−1} of Ed can be represented as ei =
∑d−1

j=1 αijbj . Choose h∗ =

h1

(
sup1≤i≤d−1

∑d−1
j=1 |αij |

)−1
. Observe that for |h| < h∗ and 1 ≤ l ≤ d − 1 it holds that

Q 3R
2

(x0) +
∑l−1

j=1 hαijbj ⊂ Q7R/4(x0) and that hαilbl ∈ C(h∗) ∪ −C(h∗). Hence, by (2.18) and

(2.19) we find

∥∥4i
hu
∥∥
H1(Q 3R

2
(x0)\ΓC)

≤
d−1∑
l=1

∥∥∥u(·+ h
l∑

j=1

αijbj)− u(·+ h
l−1∑
j=1

αijbj)
∥∥∥
H1(Q 3R

2
(x0)\ΓC)

≤
d−1∑
l=1

c
(
κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω)

)
|h|−

1
2 |αil|

1
2 ,

where the finite difference 4i
h is taken with respect to the basis vector ei. This implies (2.12).

Estimate (2.13) is a straightforward application of Lemma 2.4 based on estimate (2.12) and

the identity 4d
hM

d−1
h · · ·M1

h∂1u = 41
hMd

h · · ·M2
h∂du (and similar for the other indices i ∈

{1, . . . , d− 1}).

2.4.2 Regularity in normal direction

We now prove the higher differentiability in normal direction. For x0 ∈ ∂ΓC let Q2R be the cube

introduced in Section 2.4.1.

Lemma 2.6. Assume that (G1)–(G2) and (W1)–(W4) are satisfied, f ∈ L2(Ω) and let u ∈ K
satisfy E(u) ≤ E(v) for all v ∈ K with supp(u − v) ⊂ Ω̃. Then there exist constants c > 0 and

h∗ > 0 such that

sup
0<h<h∗

h
1
2 ‖u(·+ hed)− u‖H1(QR/2(x0)∩Ω+) ≤ c(κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω))

and similar on QR/2(x0) ∩ Ω−.

Again, the constants c and h∗ depend on x0 ∈ ∂ΓC , the geometry of ∂ΓC and the chosen

cut-off function θ. The proof of Lemma 2.6 relies on the technical Lemma 2.3.

Proof. Thanks to (W3) the functional E is Gâteaux-differentiable and u satisfies the variational

inequality

0 ≤ DuE(u)[v − u] =

∫
Ω
DW (x,∇u) : ∇(v − u) dx−

∫
Ω
f · (v − u) dx

for all v ∈ K with supp(u− v) ⊂ Ω̃. By choosing v = u±w with w ∈ H1
0 (Ω0\ΓC) (in particular,

w
∣∣
ΓC

= 0), where Ω0 is a set according to Theorem 2.1, we find that∫
Ω0\ΓC

DW (x,∇u) : ∇w dx =

∫
Ω0\ΓC

f · w dx (2.20)
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for all w ∈ H1
0 (Ω0\ΓC). Hence, standard regularity theory for strongly monotone elliptic dif-

ferential operators, see e.g. [Neč83], shows that u ∈ H2
loc(Ω0). From equation (2.20) it follows

that

∂dDWd(x,∇u) = −f −
d−1∑
i=1

∂iDWi(x,∇u). (2.21)

Here, DWi(x,∇u) ∈ Rd denotes the i-th column of DW (x,∇u).

The next estimates are carried out on the domain Ω+ ∩ QR/2 =: Q+
R/2. We will show by

applying again Lemma 2.4 that for 0 < h < h∗ it holds∥∥∥4d
hDWd(·,∇u)

∥∥∥
L2(Q+

R/2
)
≤ ch

1
2 (κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω)). (2.22)

Indeed, due to the Lipschitz continuity of DW , cf. (W3), together with estimate (2.12) the

function w := DWd(·,∇u) satisfies condition (2.7) with c1 ≤ c(κ + ‖f‖L2(Ω) + ‖u‖H1(Ω))
2. In

order to verify condition (2.8) observe that using the identity 4i
hξ = hMi

h∂iξ and (2.21) it holds

4d
hMd−1 . . .M1

hDWd(·,∇u) = hMd
h . . .M1

h∂dDWd(·,∇u)

= −hMd
h . . .M1

h

(
f +

d−1∑
i=1

∂iDWi(·,∇u)
)
.

Since the operators Mi
h are uniformly bounded it follows for 0 < h < h∗ that∥∥∥hMd

h . . .M1
hf
∥∥∥
L2(Q+

R/2
)
≤ ch ‖f‖L2(Ω) .

Moreover, using again the identity hMi
h∂iξ = 4i

hξ, condition (W3) and estimate (2.12), it

follows that for 1 ≤ i ≤ d− 1 we have∥∥∥hMd
h . . .M1

h∂iDWi(·,∇u)
∥∥∥
L2(Q+

R/2
)
≤ ch

1
2 (κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω)).

Collecting the estimates shows that w = DWd(·,∇u) satisfies condition (2.8). Hence, Lemma

2.4 implies (2.22). The strong rank-one monotonicity of DW , see assumption (W4), now yields

β
∥∥∥4d

h∂du
∥∥∥2

L2(Q+
R/2

)

≤
∫
Q+
R/2

(
DW (x, ∇̃u+ ∂du(x+ hed)⊗ ed)−DW (x,∇u)

)
: 4d

h∂du⊗ ed dx

=

∫
Q+
R/2

4d
hDWd(·,∇u) · 4d

h∂dudx

+

∫
Q+
R/2

(
DWd(x, ∇̃u+ ∂du(x+ hed)⊗ ed)−DWd(x+ hed,∇u(x+ hed)

)
· 4d

h∂dudx.

(2.23)
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Taking into account (2.22), the Lipschitz continuity of DW and estimates (2.12)–(2.13) one

finally obtains that

β
∥∥∥4d

h∂du
∥∥∥2

L2(Q+
R/2

)
≤ ch

1
2 (κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω))

∥∥∥4d
h∂du

∥∥∥
L2(Q+

R/2
)
,

which finishes the proof of Lemma 2.6.

Proof of Theorem 2.1. Covering the crack front ∂ΓC by finitely many of the cubes discussed

in Lemma 2.5 and Lemma 2.6 the claim of Theorem 2.1 follows. If in addition (2.2) is valid

for all x, y ∈ Ω, then the considerations of Lemma 2.6 can also be carried out on the set

{x = (x′, xd) ∈ QR/2 ; |xd| < R
2 , (x′, 0) = y + h, where y ∈ ∂ΓC ∩QR/2, h ∈ C(h0) }, and C(h0)

is the flat cone from (2.10).

3 Examples and extensions

3.1 Linear elastic body with crack and self-contact

In this example we extend the result from the previous section to the situation, where a plane

crack intersects with the exterior boundary ∂Ω̃. Thereby we restrict ourself to a simple model

problem. For L > 0 let Ω̃ = (0, 2L)2 × (−L,L) ⊂ R3 be a cube. Let furthermore `1, `2 ∈ (0, 2L)

and let Γ̃C ⊂ E3 satisfy the uniform cone condition with respect to E3. Assume finally that

∂Γ̃C ∩ ∂Ω̃ coincides with the segments between (`1, 0, 0)> and 0 and between 0 and (0, `2, 0)>.

We define Ω := Ω̃\Γ̃C to be the cracked domain with crack ΓC = Ω̃\Ω, see Fig. 1. Assume

that Neumann conditions are prescribed on the faces N1 := (0, 2L)× {0} × (−L,L) and N2 :=

{0} × (0, 2L) × (−L,L) and that the Dirichlet boundary ΓD ⊂ ∂Ω has positive measure. We

define

K = { v ∈ H1(Ω,R3) ; [v]e3 ≥ 0 on ΓC , v
∣∣
ΓD

= 0 }. (3.1)

Let C ∈ CLip(Ω; Lin(R3×3,R3×3)) denote the elasticity tensor with the usual symmetry and

positivity properties, i.e. for all ξ, η ∈ R3×3
sym and x ∈ Ω it holds C(x)ξ : η = C(x)η : ξ and

C(x)ξ : ξ ≥ α |ξ|2 with some positive constant α. For given f ∈ L2(Ω,R3) we study the

regularity properties of the minimizer of the problem

u = argmin{ E(v) ; v ∈ K}, (3.2)

E(v) =

∫
Ω

1

2
Cε(v) : ε(v) dx−

∫
Ω
f · v dx. (3.3)

Here, ε(v) = 1
2(∇v + (∇v)>) denotes the symmetrized strain tensor. For ρ > 0 let Ωρ := {x ∈

Ω ; dist(x,ΓC) < ρ) }.

12



Proposition 3.1. For every ρ > 0 such that Ωρ ∩ (∂Ω̃\N1 ∪N2) = ∅ there exists a constant

cρ > 0 such that for all f ∈ L2(Ω,R3) the corresponding minimizer u of E satisfies

u ∈ B
3
2
2,∞(Ωρ), ‖u‖

B
3
2
2,∞(Ωρ)

≤ cρ ‖f‖L2(Ω) .

Proof. Observe first that u ∈ H2
loc(Ω). Moreover, let x0 ∈ int(ΓC) (relative to E3). Then there

exists R > 0 such that u
∣∣
Q±R(x0)

∈ H2(Q±R(x0)), cf. [BGK87]. Hence, it suffices to investigate the

regularity of u in a neighborhood of ∂ΓC . Here, we distinguish two cases.

If x0 ∈ ∂ΓC\N1 ∪N2, then there exists R > 0 such that QR(x0) b Ω̃. Hence, Theorem 2.1

can be applied showing that u
∣∣
Ω∩QR(x0)

∈ B
3
2
2,∞(Ω ∩QR(x0)).

If x0 ∈ N1 ∪N2∩∂ΓC , then due to the assumed uniform cone property of Γ̃C and the exterior

geometry of Ω̃, there exist R > 0, h0 > 0 and a flat cone C(h0) ⊂ E3 such that it holds

x ∈ Q2R(x0) ∩ Ω, h ∈ C(h0) ⇒ x+ h ∈ Ω.

As in the proof of Lemma 2.5 we now construct the mappings Th(x) = x+ θ(x)h for h ∈ C(h0)

and a suitable cut-off function θ ∈ C∞0 (Q2R(x0)), which are diffeomorphisms for h ∈ C(h1), if

h1 ≤ h0 is small enough. Observe that it holds v ∈ K ⇒ v ◦ Th ∈ K for h ∈ C(h1). Hence, as in

the proof of Lemma 2.5 we may use u ◦ Th as test function for the minimization problem (3.2)

and find, in analogy to (2.14)–(2.17), that

α

2
‖u ◦ Th − u‖2H1(Ω) ≤ cθ |h| (‖f‖L2(Ω) + ‖u‖2H1(Ω)).

Arguing now analogously to Lemma 2.6 we finally deduce that u
∣∣
Ω∩QR/2(x0)

∈ B3/2
2,∞(Ω∩QR/2(x0)).

Combining the above considerations for the different positions of x0 finishes the proof of Propo-

sition 3.1.

3.2 Contact with a rigid foundation

In this section we apply the regularity techniques from Section 2 to derive regularity results for

contact problems with a rigid foundation. Again, we restrict ourself to a model problem. As

before, for L > 0 let Ω = (−L,L)d−1 × (0, L) ⊂ Rd be a cuboid. It is assumed that at one part

ΓC of Γ = (−L,L)d−1 × {0}, the body can be in contact with a rigid foundation, whereas on

the remaining part of Γ Neumann boundary conditions shall be imposed: Γ = ΓC ∪ ΓN . (The

case Γ = ΓC can be treated in a similar way). It is assumed that ΓC b Γ and satisfies the

uniform cone condition with respect to Ed. The obstacle is described by the graph of a function

g : ΓC → R. Finally it is assumed that the Dirichlet boundary ΓD ⊂ ∂Ω has positive measure.

3.2.1 Frictionless contact

For modeling frictionless contact with a rigid foundation the convex cone of admissible displace-

ment fields is given by

K = { v ∈ H1(Ω;Rd) ; v(x) · ed ≥ g(x) a.e. on ΓC , v
∣∣
ΓD

= 0 }. (3.4)
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The inequality is to be understood in the sense of traces. Given f ∈ L2(Ω,Rd) we investigate

the regularity of minimizers of the problem

u = argmin{ E(v) ; v ∈ K}, (3.5)

E(v) =

∫
Ω
W (∇v) dx−

∫
Ω
f · v dx, (3.6)

with an energy density W : R3×3 → R satisfying (W1)–(W4). The following regularity property

is assumed on the function g: Let g∞ : Γ → R ∪ {−∞} be defined by g∞(x) = g(x) if x ∈ ΓC

and g∞(x) = −∞ if x ∈ Γ\ΓC . Then

(R1) For every x0 ∈ Γ exist constants R > 0, h0 > 0 and a flat cone C(h0) ⊂ Ed such that

Qd−1
2R (x0) b Γ and that the following implication is valid:

x ∈ Γ ∩Qd−1
2R (x0), h ∈ C(h0) ⇒ x+ h ∈ Γ and g∞(x+ h) ≥ g∞(x).

Observe that we do not require that g is continuous.

As in the previous section, for ρ > 0 we define the set Ωρ = {x ∈ Ω ; dist(x,ΓC) < ρ }.

Proposition 3.2. Assume that (W1)–(W4) and (R1) are valid and that K 6= ∅. Then, for

every ρ > 0 such that Ωρ ∩ ∂Ω\Γ = ∅ there exists a constant cρ > 0 such that for all f ∈ L2(Ω)

the corresponding minimizer u ∈ K satisfies u ∈ B3/2
2,∞(Ωρ) and ‖u‖

B
3/2
2,∞(Ωρ)

≤ cρ(κ+ ‖f‖L2(Ω) +

‖u‖H1(Ω)).

Proof. Let x0 ∈ Γ and R, h0 > 0 be given according to condition (R1). Let θ ∈ C∞0 (Q2R) be a

cut-off function with θ
∣∣
QR(x0)

= 1. As in the proof of Lemma 2.5 for small enough h1 ≤ h0 and

h ∈ C(h1) the mappings Th : Rd → Rd, Th(x) = x + θ(x)h are diffeomorphisms. Due to (R1)

it holds v ∈ K ⇒ v ◦ Th ∈ K. Hence, the same arguments as in the proof of Lemma 2.5 and

Lemma 2.6 yield Proposition 3.2.

Example 3.3. Let ΓC b Γ satisfy the uniform cone condition and choose g(x) = const for

x ∈ ΓC . Then condition (R1) is satisfied and Proposition 3.2 is applicable.

Alternatively, let ΓC = Bd
L/2(0) ∩ Γ and define g(x) := g̃(|x|), where g̃ : [0, L/2) → R is a

non-increasing function with g̃(r) = const for 0 ≤ r ≤ δ < R/2 with some δ > 0. In this case,

(R1) is satisfied as well, and Proposition 3.2 is applicable. Observe that we do not require that

g̃ is continuous.

If the obstacle is described by the graph of an H1/2+µ-smooth function, then the following

holds:

Proposition 3.4. Assume (W1)–(W4). Let furthermore g ∈ H1/2+µ(Γ) for some µ ∈ (0, 1]

and assume that ΓC b Γ satisfies the uniform cone condition. Then, for every ρ > 0 such that

Ωρ ∩ ∂Ω\Γ = ∅ there exists a constant cρ > 0 such that for all f ∈ L2(Ω) the corresponding

minimizer u ∈ K satisfies u ∈ B1+µ/2
2,∞ (Ωρ) and ‖u‖

B
1+µ/2
2,∞ (Ωρ)

≤ cρ(κ + ‖f‖L2(Ω) + ‖u‖H1(Ω) +

‖g‖H1/2+µ(Γ)).
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Remark 3.5. For ρ, δ > 0 let Ωρ,δ = {x ∈ Ωρ ; dist(x, ∂ΓC) > δ }. Combining regularity results

for solutions of elliptic systems with respect to smooth Neumann boundaries with regularity

results for contact problems with smooth obstacles, [Kin81], the following regularity is valid:

Let g ∈ C2,1(Γ). Then, for every ρ, δ > 0 it holds u
∣∣
Ωρ,δ
∈ H2(Ωρ,δ). Proposition 3.4 here above

in particular treats the regularity of u in a neighborhood of the boundary between the set ΓC

and the surrounding Neumann part and thus completes the results from [Kin81].

Proof of Proposition 3.4. We investigate the regularity of the minimizer in a neighborhood

of a point x0 ∈ ∂ΓC . The other cases are covered by the previous remark.

Let x0 ∈ ∂ΓC . The proof consists in constructing a suitable test function vh so that arguments

similar to the proof of Lemma 2.5 can be applied. Due to the uniform cone condition there exist

R > 0, h0 > 0 and a flat cone C(h0) such that for all x ∈ Q2R(x0)∩ΓC and all h ∈ C(h0) it holds

x+ h ∈ ΓC . Let θ ∈ C∞0 (Q2R(x0)) be a cut-off function with θ(x) = 1 on QR(x0). There exists

h1 ≤ h0 such that for all h ∈ C(h1) ⊂ C(h0) the mappings Th : Rd → Rd are diffeomorphisms

with x ∈ ΓC ⇒ Th(x) ∈ ΓC . Let g̃ ∈ H1+µ(Ω) such that g̃
∣∣
Γ

= g and g̃
∣∣
ΓD

= 0. For h ∈ C(h1)

we define vh = u ◦ Th + g̃ − g̃ ◦ Th. Obviously, vh
∣∣
ΓD

= 0. Moreover, for x ∈ ΓC it holds

vh(x) · ed ≥ g(x), and hence, vh ∈ K. Choosing v = vh in (2.14) yields after rearranging the

terms (as in (2.15)–(2.17) and using that Th(Ω) = Ω))

α

2
‖u− u ◦ Th‖2H1(Ω) ≤ c ‖g̃ − g̃ ◦ Th‖

2
H1(Ω) + E(vh)− E(u)

=

∫
Th(Ω)

qhW (T−1
h (y),∇u∇T−1

h + (∇g̃) ◦ T−1
h −∇g̃∇T−1

h )−W (y,∇u) dy

−
∫

Ω
f · (u ◦ Th − u+ g̃ − g̃ ◦ Th) dx

+ c ‖g̃ − g̃ ◦ Th‖2H1(Ω)

= S1 + S2 + S3.

As in (2.16) it holds |S2| ≤ c |h| ‖f‖L2(Ω) (‖u‖H1(Ω) +‖g̃‖H1(Ω)). From the regularity assumption

on g we conclude that |S3| ≤ c |h|2µ ‖g̃‖2H1+µ(Ω). The term S1 can be treated in the same way

as in (2.17) using the regularity of g̃ and taking into account that (W3) implies the estimate

|W (x,A)−W (x,B)| ≤ c(κ+ |A|+ |B|) |A−B|:

|S1| ≤ c(|h|+ |h|µ)(κ+ ‖u‖2H1(Ω) + ‖g̃‖2H1+µ(Ω)).

Hence, altogether for h ∈ C(h1) and h1 small enough we find

‖u ◦ Th − u‖H1(Ω) ≤ c |h|
µ/2 (κ+ ‖f‖L2(Ω) + ‖u‖H1(Ω) + ‖g̃‖H1+µ(Ω)).

We may now proceed using the arguments in the proof of Lemma 2.6 in order to finally obtain

Proposition 3.4.
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3.2.2 Tresca friction

The above described techniques are also applicable to derive higher regularity results for models

with Tresca friction. Again, we study a model problem for a cuboid Ω ⊂ Rd with ∂Ω =

ΓD ∪ ΓN ∪ ΓC as described at the beginning of Section 3.2. On the boundary part ΓC the

Tresca friction law will be imposed. As in [ACF02, HMW05], a nonseparation condition on ΓC

is assumed leading to the following space of admissible displacement fields

V := {u ∈ H1(Ω;Rd) ; u
∣∣
ΓD

= 0, u · ed
∣∣
ΓC

= 0 }. (3.7)

In [ACF02] an evolutionary Tresca friction model is set-up in the framework of rate independent

processes. It is based on the following energy functional E and dissipation potential R:

E(t, v) :=

∫
Ω
W (∇v)− f(t) · v dx, W (∇v) :=

1

2
Cε(v) : ε(v),

where f ∈ H1(0, T ;L2(Ω,Rd)) is a given time dependent volume force density, and

R(v) :=

∫
ΓC

κ(x) |vτ | dsx.

Here, κ ∈ L∞(Ω) with κ ≥ κ0 > 0 is the friction coefficient and vτ = v − (v · ed)ed denotes

the tangential part of v. For fixed w ∈ V and t ∈ [0, T ] let Fw(t, v) := E(t, v) + R(w −
v). The so-called set of stable states, cf. [Mie05], is defined as S(t) := {w ∈ V ; Fw(t, w) ≤
Fw(t, v) for all v ∈ V }. On the basis of [Mie05, Ch. 2], the Tresca-type evolution law from

[ACF02] can equivalently be reformulated as follows: Given f ∈ H1(0, T ;L2(Ω,Rd)) and u0 ∈
V ∩ S(0) find u ∈ H1(0, T ;V ) with u(0) = u0 such that u(t) ∈ S(t) for all t and

E(t1, u(t1)) +

∫ t1

t0

R(∂tu(τ))dτ = E(t0, u(t0)) +

∫ t1

t0

∫
Ω
−∂tf(τ) · u(τ) dxdτ

for all t0, t1 ∈ [0, T ]. According to [ACF02] for every f ∈ H1(0, T ;L2(Ω,Rd)) and u0 ∈ V ∩S(0)

there exists a unique function u ∈ H1(0, T ;V ) satisfying the above conditions.

Proposition 3.6. Let Ω be the model domain described above and assume that ΓC b Γ satisfies

the uniform cone condition with respect to Ed. Let furthermore f : [0, T ]→ L2(Ω;Rd) be a given

function. Then for every ρ > 0 such that Ωρ ∩ ∂Ω\Γ = ∅ and for all t ∈ [0, T ] it holds: if

u ∈ S(t), then u
∣∣
Ωρ
∈ H

3
2
−δ(Ωρ) for all δ > 0. Moreover, there exists a constant cρ,δ > 0 such

that for all t ∈ [0, T ] and u ∈ S(t) it holds ‖u‖
H

3
2−δ(Ωρ)

≤ cρ,δ(‖f(t)‖L2(Ω) + ‖u‖H1(Ω)).

This implies that solutions u of the Tresca friction model satisfy u ∈ L∞(0, T ;H
3
2
−δ(Ωρ)).

Proof. We follow again the ideas presented in the proofs of Lemma 2.5 and 2.6. Observe first

that the set ΓC satisfies condition (R1) if one chooses g∞(x) = 0 for x ∈ ΓC and g∞(x) = −∞
for x ∈ Γ\ΓC . Hence, the test-functions u ◦ Th constructed in the proof of Proposition 3.2 are
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admissible competitors for the minimization problems characterizing the set S(t). Similar to the

arguments in (2.14)–(2.15), for elements u ∈ S(t) we find the estimate (2.15) with an additional

term on the right hand side due to the functional R:

α

2
‖u ◦ Th − u‖2H1(Ω) ≤ S1 + S2 +

∫
Γ3

κ
(
|uτ − (u ◦ Th)τ | − |uτ − uτ |

)
dsx, (3.8)

S1, S2 having the same meaning as in (2.15). As in the proof of Lemma 2.5 it holds S1 + S2 ≤
c |h| (‖f(t)‖L2(Ω) + ‖u‖H1(Ω)). It remains to estimate the boundary term. Since H

1
2 (Γ) ⊂

B
1
2
2,∞(Γ), by the trace theorem we find∫

Γ
κ |uτ − (u ◦ Th)τ | dsx ≤ cκ |h|

1
2 ‖u‖

B
1
2
2,∞(Γ)

≤ cκcγ |h|
1
2 ‖u‖H1(Ω) ,

where cγ comprises the embedding and trace constants. Following the arguments in the proof

of Lemma 2.6 we therefore obtain u ∈ B1+ 1
4

2,∞ (Ωρ). Now, a recursive argument can be applied

starting with s0 = 1
4 : Assume that u ∈ B1+sk−1

2,∞ (Ωρ). Then

‖(u− u ◦ Th)τ‖L1(Γ) ≤ cρh
1
2

+sk−1 ‖u‖
B

1
2 +sk−1
2,∞ (Γ∩∂Ωρ)

≤ cρck−1h
1
2

+sk−1 ‖u‖
B

1+sk−1
2,∞ (Ωρ)

,

where ck−1 is the constant of the corresponding trace theorem. Taking into account (3.8) and

using arguments as in the proof of Lemma 2.6 it follows that u ∈ B1+sk(Ωρ) with sk = 1
2(1

2 +

sk−1). Since limk→∞ sk = 1
2 , it follows that for all δ > 0 the function u belongs to H

3
2
−δ(Ωρ)

and satisfies the estimate (after iteration) ‖u‖
H

3
2−δ(Ωρ)

≤ cρ,δ(‖f(t)‖L2(Ω) + ‖u‖H1(Ω)).

Remark 3.7. The result and proof of Proposition 3.6 remain unchanged if one formulates the

problem with respect to the set K defined in (3.4) instead of the space V from (3.7).

3.3 Further nonsmooth energies

With similar arguments, convex, but nonsmooth energies can be treated as well. To the energy

density W we add a possibly nonsmooth lower order term of the following type

(H1) w : Ω× Rm → [0,∞] is a Carathéodory function satisfying

(a) For a.e. x ∈ Ω the function z 7→ w(x, z) is convex.

(b) If x ∈ Ω and z ∈ Rm with w(x, z) <∞, then for a.e. y ∈ Ω it holds w(y, z) <∞.

(c) There exists a constant cw > 0 such that for all x, y ∈ Ω and z ∈ Rm it holds

w(x, z) < ∞ ⇒ |w(x, z)− w(y, z)| ≤ cw |x− y| (1 + |z|p). Here, p ∈ [1,∞) is such

that H1(Ω) is continuously embedded in Lp(Ω).

Given f ∈ L2(Ω,Rm) and ξ ∈ L1(Ω,Rm) we consider the energy defined for z ∈ H1(Ω,Rm)

E(z) =

∫
Ω
W (x,∇z(x)) + w(x, z(x))− f(x) · z(x) dx+

∫
Ω
ρ(x) |z(x)− ξ(x)| dx, (3.9)
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where W : Ω × Rm×d → [0,∞) is given according to (W1) and (W2) and ρ ∈ L∞(Ω) with

ρ(x) ≥ ρ0 > 0 a.e. Clearly, the energy E satisfies the convexity condition (W2). We study the

spatial regularity of minimizers of the following problem

z = argmin{ E(v) ; v ∈ H1(Ω,Rm) }. (3.10)

Theorem 3.8. Assume that Ω ⊂ Rd is a bounded domain which satisfies the uniform cone

condition, that W satisfies (W1) and (W2) and that w is given according to (H1). Let z ∈ H1(Ω)

be a minimizer from (3.10). If f ∈ L2(Ω,Rm) and ξ ∈ L1(Ω,Rm), then z ∈ B3/2
2,∞(Ω,Rm) and

the following estimate is valid

‖z‖
B

3
2
2,∞(Ω)

≤ c

(
1 + ‖f‖L2(Ω) + ‖z‖max{1, p

2
}

H1(Ω)
+

(∫
Ω
w(x, z(x)) dx

) 1
2

)
.

The constant c is independent of f , ξ and z.

Proof. It is sufficient to investigate the regularity of minimizers in a neighborhood of points

on ∂Ω. Let x0 ∈ ∂Ω. Due to the uniform cone condition there exists a (d-dimensional) cone

C(h0) ⊂ Rd and a radius R > 0 such that for all x ∈ QR(x0)∩Ω and h ∈ C(h0) we have x+h ∈ Ω.

As in the previous proofs we introduce the family of mappings Th : Ω→ Rd, Th(x) = x+ θ(x)h

for h ∈ C(h0). Let h1 ≤ h0 such that for h ∈ C(h1) the mappings Th are diffeomorphisms on

Rd. Observe that Th(Ω) ⊂ Ω. Let z ∈ H1(Ω) be a minimizer from (3.10). For the function

z ◦ Th ∈ H1(Ω) it holds E(z ◦ Th) < ∞. In the same way as in (2.14), the following estimate is

valid

α

2
‖z ◦ Th − z‖2H1(Ω) ≤

∫
Ω
W (x,∇(z ◦ Th))−W (x,∇z) dx+

∫
Ω
w(x, z ◦ Th)− w(x, z) dx

−
∫

Ω
f · (z ◦ Th − z) dx+

∫
Ω
ρ(x)

(
|z ◦ Th − ξ| − |z − ξ|

)
dx

= S1 + . . .+ S4.

Observe that S4 ≤ ‖ρ‖L∞(Ω)

∫
Ω |z ◦ Th − z| dx. Now, arguments similar to (2.16)–(2.17) show

that

α

2
‖z ◦ Th − z‖2H1(Ω) ≤ c |h|

(
1 + ‖f‖2L2(Ω) + ‖z‖max{2,p}

H1(Ω)
+

∫
Ω
w(x, z(x)) dx

)
.

and the proof of Theorem 3.8 is finished.

Example 3.9. Energies of the type (3.9) occur for instance in the Souza-Auricchio model

describing shape memory alloys, [AMS08, MPPS10]. Let u : Ω → Rd denote the displacement

field and z : Ω→ Rd×dsym, dev the transformation strain. The time-dependent energy is defined by

W(t, u, z) :=

∫
Ω

1

2
C(ε(u)− z) : (ε(u)− z) dx−

∫
Ω
`(t) · udx+

σ

2
‖∇z‖2L2(Ω) +

∫
Ω
w(x, z) dx,
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where t 7→ `(t) are given time-dependent loadings. A typical choice for w is given by w(x, z) =

c1(x) |z| + c2(x) |z|2 + χM (z). Here, M ⊂ Rd×dsym, dev is closed and convex and χM (z) = 0 if

z ∈ M and χM (z) = ∞ otherwise. As in the example with Tresca friction, a dissipation

pseudo-potential is needed to set up an evolution model for shape memory alloys. In the rate

independent framework, for shape-memory alloys the dissipation potential is typically given by

R(z) =
∫

Ω ρ(x) |z| dx for some L∞-coefficient ρ ≥ ρ0 > 0. The evolution law is formulated in

terms of a global stability criterion based on stable sets S(t) and an energy balance, [Mie05,

MPPS10]. Here, for fixed time t the stable set S(t) is defined as S(t) = { (u, z) ∈ H1
ΓD

(Ω) ×
H1(Ω) ; W(u, z) ≤ W(v, ζ) + R(z − ζ), (v, ζ) ∈ H1

ΓD
(Ω) × H1(Ω) }. Theorem 3.8 guarantees

that for every t and every pair (u, z) ∈ S(t) we have z ∈ B3/2
2,∞(Ω) and there exists a constant

c, which is independent of t, such that ‖z‖
B

3/2
2,∞(Ω)

≤ c
(
1 + ‖`(t)‖L2(Ω) + ‖u‖H1(Ω) + ‖z‖H1(Ω)

)
.

The regularity of the displacement field u now can be investigated applying for example the

techniques from [EF99, Kne06] or [Dau88, Gri87, Kon67].

4 FE-convergence rates based on Falk’s approximation theorem

We will now use the above proved regularity results to derive convergence rates for finite element

discretizations of contact problems. We restrict ourself to linear elasticity and polygonal or

polyhedral domains. The main goal is to characterize the function spaces occurring in the

Falk approximation theorem for variational inequalities and to discuss suitable interpolation

operators. We assume that a conforming discretization Kh of the convex set K is used, i.e. that

Kh ⊂ K.

First, for a quite general geometric setting we derive the spaces W and W ∗ occurring in the

Falk approximation theorem (Section 4.1). Subsequently, in Section 4.2, we discuss for two-

and three-dimensional model problems, how the relevant convergence rates can be obtained on

the basis of the regularity results proved in the previous section. The theoretical results will be

confirmed by numerical simulations in Section 5.

4.1 Falk approximation theorem, the spaces W and W ∗

Let Ω̃, ΓC and Ω be given according to (G1) and (G2) and assume that the Dirichlet boundary

ΓD ⊂ ∂Ω has positive measure. Observe that Ω̃ = int Ω. For K and E as in (3.1) and (3.2), we

consider the following linear elastic minimization problem: For given f ∈ L2(Ω,Rd) find

u = argmin{ E(v) ; v ∈ K}, (4.1)

E(v) =

∫
Ω

1

2
Cε(v) : ε(v) dx−

∫
Ω
f · v dx. (4.2)

Throughout the whole section we assume that the coefficient tensor C is constant and satisfies

the symmetry and positivity conditions from Section 3.1.
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Let V := H1
ΓD

(Ω;Rd) = { v ∈ H1(Ω;Rd) ; v
∣∣
ΓD

= 0 } with dual space V ∗. For h > 0 let

Vh ⊂ V be a closed subspace and Kh := K ∩ Vh. It is assumed that Kh 6= ∅. Let uh ∈ Kh be

defined as

uh = argmin{ E(vh) ; vh ∈ Kh }. (4.3)

We introduce the bilinear form a(u, v) =
∫

Ω Cε(u) : ε(v) dx and define the corresponding linear

operator in the usual way by

A : V → V ∗, 〈Au, v〉 = a(u, v) for all u, v ∈ V. (4.4)

The minimization problem (4.3) is equivalent to solving the following variational inequality:

Find uh ∈ Kh such that

a(uh, vh − uh) ≥
∫

Ω
f · (vh − uh) dx for all vh ∈ Kh. (4.5)

Since Kh ⊂ K, by Falk’s approximation theorem [Fal74, Theorerem 1] there exists a constant

c > 0, which is independent of the choice of Vh, such that for all vh ∈ Kh it holds

‖u− uh‖V ≤ c
(
‖u− vh‖V + ‖f −Au‖

1
2
W ‖u− vh‖

1
2
W ∗

)
. (4.6)

Thereby, W is a Hilbert space that is dense in V ∗ and has to be chosen suitably. The next goal

is to suggest an admissible choice of W on the basis of the above proven regularity results.

For σ ∈ (0, 1) and k ∈ N0 let the spaces Hk+σ(Ω) be defined as complex interpolation spaces,

[LM72]:

Hk+σ(Ω) := [Hk+1(Ω), Hk(Ω)](1−σ), Hσ
ΓD

(Ω) := [V,L2(Ω)](1−σ),

while for s ≥ 1 we set Hs
ΓD

(Ω) := Hs(Ω) ∩ V .

For the next argument we use a regularity assumption for solutions of Dirichlet-boundary

value problems defined on Ω+ and Ω− separately. Let the operator B± : H1
0 (Ω±)→ (H1

0 (Ω±))∗

be defined as follows: For all u, v ∈ H1
0 (Ω±)

〈B±(u), v〉 =

∫
Ω±

Cε(u) : ε(v) dx. (4.7)

The regularity assumption reads

(D1) The sets Ω+ and Ω− are bounded with Lipschitz-boundary (local bi-Lipschitz mappings).

Moreover, there exists a constant s0 ∈ (1, 2) such that the differential operators B± defined

in (4.7) are isomorphisms from Hs0(Ω±) ∩H1
0 (Ω±) onto

(
[H1

0 (Ω±), L2(Ω±)]s0−1

)∗
.

Remark 4.1. In the main result of this section, Corollary 4.4, we need s0 >
3
2 . This can be

obtained if for example Ω+ and Ω− are polyhedral Lipschitz-domains (in the sense of local

Lipschitz-graphs), see [Dau88, Nic92, KM88].
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For s ∈ (1, 2) we define the space

Ms
ΓD

(Ω) = { v ∈ Hs
ΓD

(Ω) ; divCε(v) ∈ L2(Ω) },

which is endowed with the graph norm |‖w‖|s,Ω = ‖w‖Hs(Ω) + ‖divCε(u)‖L2(Ω). The spaces

Ms
ΓD

(Ω±) are defined in a similar way.

Lemma 4.2. Let (G1), (G2) and (D1) be satisfied. For all s ∈ (1, s0) the following identity

holds true for Ω+ and Ω− with θ = s0−s
s0−1 :

Ms
ΓD

(Ω±) = [Ms0
ΓD

(Ω±),M1
ΓD

(Ω±)]θ.

The proof is given in the Appendix and relies on Theorem 14.3 in [LM72, Chapter 1].

We next investigate the mapping properties of the operators A± : H1
ΓD

(Ω±) →
(
H1

ΓD
(Ω±)

)∗
defined by

∀u, v ∈ H1
ΓD

(Ω±) : 〈A±u, v〉 =

∫
Ω±

Cε(u) : ε(v) dx. (4.8)

Here, H1
ΓD

(Ω±) = { v ∈ H1(Ω±) ; ∃ ṽ ∈ H1
ΓD

(Ω) with v = ṽ
∣∣
Ω±
}.

Lemma 4.3. Let (G1), (G2) and (D1) be satisfied with s0 >
3
2 . Then there exists δ0 > 0 such

that for every δ ∈ (0, δ0) there exists δ̃ > 0 for which the differential operators A± defined in

(4.8) are linear and continuous from M
3
2
−δ̃

ΓD
(Ω±)→

(
H

1
2

+δ

ΓD
(Ω±)

)∗
, and δ̃ → 0 if δ → 0.

Proof. Let s0 >
3
2 . Then for every ε ∈ (0, 1

2) and s ∈ (3
2 , s0] the operator A± is continuous

from Ms
ΓD

(Ω±) → (H
1
2

+ε

ΓD
(Ω±))∗. This is a direct consequence of the Gauss-Theorem and the

fact that H1
ΓD

(Ω±) is dense in H
1
2

+ε

ΓD
(Ω±). Indeed, for all v ∈ Ms

ΓD
(Ω±) and all w ∈ H1

ΓD
(Ω±)

it holds

〈A±(v), w〉 =

∫
Ω±

−divCε(v) · w dx+

∫
∂Ω±

Cε(v)n · w ds

≤ c |‖v‖|s,Ω±
(
‖w‖L2(Ω±) + ‖w‖L2(∂Ω±)

)
≤ cε |‖v‖|s,Ω± ‖w‖H 1

2 +ε(Ω±)
.

By complex interpolation for all θ ∈ (0, 1) it follows that

A± : [Ms
ΓD

(Ω±),M1
ΓD

(Ω±)]θ → [
(
H

1
2

+ε

ΓD
(Ω±)

)∗
,
(
H1

ΓD
(Ω±)

)∗
]θ = [H1

ΓD
(Ω±), H

1
2

+ε

ΓD
(Ω±)]∗1−θ

(4.9)

is continuous. For δ ∈ (0, 1
2) we set ε = δ/2, θ = δ(1 − δ)−1, s = 3

2 + δ(4 − 8δ)−1 and δ̃ =

δ(4− 4δ)−1. Observe that there exists δ0 ∈ (0, 1
2) such that for all δ ∈ (0, δ0) it holds s ∈ (3

2 , s0).

With this choice of s and θ it follows with (4.9) that A± :M
3
2
−δ̃

ΓD
(Ω±)→ (H

1
2

+δ(Ω±))∗ is linear

and continuous.
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According to Proposition 3.1 the minimizer u of problem (4.1) is B
3
2
2,∞-regular in a neigh-

borhood of the crack ΓC . We assume now that the exterior boundary of Ω and the interface

separating ΓD and ΓN are regular enough such that u ∈ B
3
2
2,∞(Ω), globally. Sufficient conditions

that guarantee this global regularity are described for example in [Ebm99, EF99, Kne06] and in

Remark 4.1.

Corollary 4.4. Let (G1), (G2) and (D1) be satisfied with s0 >
3
2 . Let furthermore u ∈ K with

u ∈ B
3
2
2,∞(Ω) and uh ∈ Kh be minimizers of (4.1) and (4.3) with f ∈ L2(Ω). Then there exists a

constant δ0 > 0 such that for every δ ∈ (0, δ0) the choice W ∗ = H
1
2

+δ

ΓD
(Ω) is admissible for the

estimate (4.6).

Proof. Let δ0 > 0 be the constant from Lemma 4.3 and let δ ∈ (0, δ0) be arbitrary. By Lemma

4.3 there exists δ̃ > 0 such that the operators A± :M
3
2
−δ̃

ΓD
(Ω±)→

(
H

1
2

+δ

ΓD
(Ω±)

)∗
are well defined

and continuous. Since u ∈ B
3
2
2,∞(Ω) with divCε(u) = −f ∈ L2(Ω) it follows that for every δ̃ > 0

we have u ∈ M
3
2
−δ̃

ΓD
(Ω) and in particular, u

∣∣
Ω±
∈ M

3
2
−δ̃

ΓD
(Ω±). Hence, using Lemma 4.3. the

following estimate is valid for all v ∈ H1
ΓD

(Ω):

|〈Au, v〉| ≤
∑

i∈{+,−}

∣∣〈Ai(u|Ωi), v|Ωi〉∣∣ ≤ cδ ∑
i∈{+,−}

∥∥u|Ωi∥∥M 3
2−δ̃
ΓD

(Ωi)

∥∥v|Ωi∥∥H 1
2 +δ(Ωi)

≤ c(δ) ‖u‖
M

3
2−δ̃
ΓD

(Ω)
‖v‖

H
1
2 +δ(Ω)

.

By density of H1
ΓD

(Ω) in H
1
2

+δ

ΓD
(Ω) this estimate can be extended to all v ∈ H

1
2

+δ

ΓD
(Ω). This

shows that W :=
(
H

1
2

+δ

ΓD
(Ω)
)∗

is an admissible choice in the estimate (4.6).

Remark 4.5. It is straightforward to extend these arguments to the problems described in Sec-

tions 3.1–3.2.

4.2 Convergence rates for discretizations with standard finite elements

We next discuss possible choices of interpolation operators that allow us to deduce the rate of

convergence of FE-discretizations on the basis of the Falk estimate (4.6) and Corollary 4.4. The

interpolation operator should preserve the contact conditions and it should lead to estimates of

the type

‖u− Ihu‖H1(Ω) ≤ ch
α ‖u‖

B
3
2
2,∞(Ω)

, ‖u− Ihu‖
H

1
2 +δ(Ω)

≤ chβδ ‖u‖
B

3
2
2,∞(Ω)

,

where h is associated with the mesh size. As can be seen from (4.6), the choice is optimal if

2α ≈ βδ. Due to the regularity results and the embedding theorems, in two dimensions one

may use Lagrange interpolation. However, in three dimensions the Lagrange interpolation is

not meaningful for elements from B
3
2
2,∞(Ω) since this space is not contained in the continuous

functions. Hence, interpolation operators based on local averaging should be used.
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4.2.1 The two-dimensional case

Assume that Ω̃ ⊂ R2 is a polygonal domain with Lipschitz boundary. Let Ω+,Ω− be defined as

in (2.1) and assume that the crack ΓC = { (x1, 0) ; −` ≤ x1 ≤ ` } is either completely contained

in Ω̃ or that it intersects with ∂Ω̃ in exactly one point. As before, Ω = Ω̃\ΓC . It is assumed that

ΓD ⊂ ∂Ω is closed and not empty, that ΓD ∩ ΓC = ∅ and that the geometry is chosen in such a

way that condition (D1) is satisfied. For shortness we assume that the Neumann data as well

as the Dirichlet data vanish and that the volume term f is from L2(Ω). Moreover, we assume

that the minimizer u in (4.1) belongs to the space B
3
2
2,∞(Ω). This is exactly the regularity that

is available in a neighborhood of the crack tip, see the discussion in Chapters 2 and 3.

Theorem 4.6. Assume that in the above described setting the minimization problem (4.1) is

discretized with continuous, piecewise linear ansatz functions on quasiuniform triangular finite

element meshes or with continuous, piecewise bilinear ansatz functions on quasiuniform quadri-

lateral meshes with mesh size h. It is further assumed that on the crack ΓC the nodes belonging

to the upper half (i.e. Ω+) and the nodes belonging to the lower half (i.e. Ω−) coincide.

For the finite element approximation uh satisfying (4.5) and the minimizer u of (4.1) the

following error estimate is valid: For every δ > 0 there exists cδ > 0 such that

‖u− uh‖H1(Ω) ≤ cδh
1
2
−δ
(
‖u‖

B
3
2
2,∞(Ω)

+ ‖f‖L2(Ω)

)
. (4.10)

Proof. Let Ih denote the Lagrange interpolation operator on linear (in case of triangles) or

bilinear elements (in case of quadrilaterals). According to [SA84] for δ > 0 (small) and k ∈ {0, 1}
the estimate ‖v − Ihv‖Hk(Ω) ≤ cδh

3
2
−k−δ ‖v‖

H
3
2−δ(Ω)

is valid for all v ∈ H
3
2
−δ(Ω). Hence, by

interpolation, we obtain ‖v − Ihv‖
H

1
2 +δ(Ω)

≤ cδh1−2δ ‖v‖
H

3
2−δ(Ω)

. Combining this estimate with

estimate (4.6) and Corollary 4.4 yields (4.10).

Remark 4.7. Without any serious changes, the above arguments can be extended to two-

dimensional contact problems as described in Section 3.2 and lead to the same convergence

rates as in Theorem 4.6.

4.2.2 The three-dimensional case

In three space dimensions we restrict the discussion to the case with an interior crack. Let

Ω̃ ⊂ R3 be a polyhedral domain and ΓC ⊂ E3 a polygonal set such that (G1), (G2) and (D1) are

satisfied. As in the two-dimensional case it is assumed that ΓD ⊂ ∂Ω is closed and not empty

and that ΓD ∩ΓC = ∅. We assume that the Neumann data as well as the Dirichlet data vanish,

that the volume term f is from L2(Ω) and that the minimizer u in (4.1) belongs to the space

B
3
2
2,∞(Ω). For h > 0 let Th denote a family of quasiuniform regular tetrahedral meshes on Ω. It

is assumed that on the crack ΓC the nodes belonging to the upper half (i.e. Ω+) and the nodes

belonging to the lower half (i.e. Ω−) coincide.
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Theorem 4.8. Assume that in the above described setting the minimization problem (4.1) is

discretized with continuous, piecewise linear ansatz functions on the above introduced tetrahedral

finite element meshes with mesh size h.

For the finite element approximation uh satisfying (4.5) and the minimizer u of (4.1) the

following error estimate is valid: For every δ > 0 (small) there exists cδ > 0 such that

‖u− uh‖H1(Ω) ≤ cδh
1
2
−δ
(
‖u‖

B
3
2
2,∞(Ω)

+ ‖f‖L2(Ω)

)
. (4.11)

Proof. Inspired by [HN07], where a two-dimensional situation is investigated, in order to prove

Theorem 4.8 we choose an interpolation operator that coincides with the Scott-Zhang operator,

cf. [SZ90], on nodes from Ω\ int ΓC . For the nodes on int ΓC a Chen-Nochetto type ansatz is

used, cf. [CN00]. To be more precise, let Nh = { ai ; 1 ≤ i ≤ Nh } denote the nodes of the finite

element mesh and NC
h := {ai ∈ int ΓC} the nodes inside ΓC . Let φa denote the nodal basis

function associated with the node a. If a belongs to int ΓC we distinguish between φ+
a , which

has its support in Ω+, and φ−a with support in Ω−.

The definition of the Scott-Zhang operator as well as the Chen-Nochetto operators are based

on the averaging of Sobolev functions on suitable sets σa containing the node a. The sets σa are

chosen in the following way, where (i)–(iii) correspond to an ansatz of Scott-Zhang type, while

(iv) is of Chen-Nochetto type:

(i) If a ∈ ΓD, we choose a tetrahedron that intersects with the Dirichlet boundary at least

with one whole face containing a. Then σa is chosen as one of these Dirichlet-faces.

(ii) If a ∈ ∂ΓC (i.e. a is situated on the crack front), we choose a tetrahedron that contains a

and define σa as one of the faces containing a but not lying on the crack.

(iii) For a ∈ Ω ∪ ΓN we choose σa as one of the faces containing a of one of the tetrahedra

around a.

(iv) For a ∈ int ΓC let Ma := ∪{ τ
∣∣
ΓC

; τ ∈ Th with a ∈ τ }. Let 4a be the maximum two-

dimensional disk centered in a and contained in Ma. Then σa = 4a.

Next we assign to u ∈ H1(Ω) its nodal value πa(u) for a ∈ Nh in the following way: For

a ∈ NC
h we define π±a (u) := |σa|−1 ∫

σa
u
∣∣
Ω±

dsx. For a ∈ Nh\NC
h we proceed as in [SZ90]: Let

a1 := a and let a2, a3 ∈ Nh be the two remaining vertices of σa. The dual nodal basis functions

ψja, 1 ≤ j ≤ 3, are defined through the relation
∫
σa
ψjaφak dsx = δjk for 1 ≤ k ≤ 3. Then,

πa(u) := |σa|−1 ∫
σa
uψ1

a dsx. Finally, we define the interpolation operator as follows:

Ih(u)(x) :=
∑

a∈Nh\NCh

πa(u)φa(x) +
∑
a∈NCh

(
π+
a (u)φ+(x) + π−a (u)φ−(x)

)
.
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Claim 4.9. The above defined interpolation operator Ih is well defined as a mapping from K to

Kh (i.e. it preserves the contact condition and the Dirichlet-condition). Moreover, there exists

a constant c > 0 such that for all m ∈ {1, 2} and k ∈ {0, 1} and all u ∈ Hm(Ω) it holds

‖u− Ih(u)‖Hk(Ω) ≤ ch
m−k ‖u‖Hm(Ω) . (4.12)

Proof of Claim 4.9. The fact that Ih preserves the Dirichlet-conditions as well as the contact

conditions on ΓC follows immediately from the definition of Ih.

For τ ∈ Th let τ̃ = ∪{ τ∗ ∈ Th ; τ∗ ∩ τ 6= ∅ }. Following the arguments in [SZ90, Theorem

3.1 and (4.1)–(4.3)], for all those τ ∈ Th, where none of the vertices of τ belongs to int ΓC , one

proves that

‖v − Ih(v)‖Hk(τ) ≤ ch
m−k ‖v‖Hm(τ̃) (4.13)

for k ∈ {0, 1}, m ∈ {1, 2} and all v ∈ Hm(τ̃).

Let now τ ∈ Th and assume that at least one of the vertices belongs to NC
h . Then following

the arguments in the proof of Theorem 3.1 in [SZ90] it is possible to show that |πa(v)| ≤
c
∑m

i=0 h
− 3

2
+i |v|W i,2(τ̃) for all vertices a of τ . This in turn implies, again as in the proof of

Theorem 3.1 in [SZ90], that ‖Ihv‖Hk(τ) ≤ c
∑`

i=0 h
i−k |v|Hi(τ̃) for ` ∈ N\{0}. Observe next that

for all η ∈ P1(τ̃) (i.e. η is affine on the set τ̃) and all vertices aj of τ , 1 ≤ j ≤ 4, we have

Ih(η)(aj) = η(aj), and hence Ih(η)(x) = η(x) for all x ∈ τ . But this is exactly property (3.3) in

[CN00]. Hence we may now use the arguments from the proof of [CN00, Lemma 3.2] in order

to finally arrive at estimate (4.13) also for this case.

Summing up the estimate (4.13) over all τ ∈ Th and taking into account that due to the

assumptions on the mesh the number of elements belonging to τ̃ is bounded independently of

h, we finally arrive at (4.12).

We return to the proof of Theorem 4.8. By complex interpolation it follows from (4.12) that for

δ > 0 (small) and k ∈ {0, 1} the estimate ‖v − Ihv‖Hk(Ω) ≤ cδh
3
2
−k−δ ‖v‖

H
3
2−δ(Ω)

is valid for all

v ∈ H
3
2
−δ(Ω). Hence, again by interpolation, we obtain ‖v − Ihv‖

H
1
2 +δ(Ω)

≤ cδh1−2δ ‖v‖
H

3
2−δ(Ω)

.

Combining this estimate with estimate (4.6) and Corollary 4.4 yields (4.10).

Remark 4.10. In the literature only very few references are available, where an extension of

the Scott-Zhang operator or the Chen-Nochetto operator to hexahedral finite elements is dis-

cussed. We only are aware of [HS07], where a Scott-Zhang-type operator is defined for hexa-

hedral elements. But there the operator is defined in such a way that an estimate of the type

‖u− Ihu‖H1(Ω) ≤ ch ‖u‖H2(Ω) is not valid. For this reason, we decided to formulate Theorem

4.8 for tetrahedral elements, only, although the three-dimensional simulations in Section 5 are

carried out on meshes with hexahedral elements. The three-dimensional simulations indicate

that Theorem 4.8 is also valid for discretizations based on hexahedral elements.

25



Remark 4.11. If the crack is allowed to intersect with the exterior boundary it is not clear how

to define an interpolation operator with the properties described in Claim 4.9. Due to a non-

existence result by Nochetto and Wahlbin [NW02] in this case it is not possible to construct

an interpolation operator that is based on averaging, that respects the contact condition also

on ΓC ∩ ∂Ω̃ and that has optimal approximation properties as described in Claim 4.9. The

difficulties arise in extremal points of ∂Ω. For the contact problems studied in Section 3.2 the

same difficulty occurs along the line ΓN ∩ ΓC .

5 Numerical verification

Theorem 2.1 predicts that the minimizer of an energy functional with self-contact constraints is

at least in B
3/2
2,∞(Ω). Using Falk’s theorem in conjunction with some interpolation operators we

show that this regularity leads to the convergence rate O(h1/2−δ) for finite element approxima-

tions, see Theorems 4.6 and 4.8. The derivation of similar results is also possible for unilateral

contact conditions, at least in 2D, see Remark 4.7. In this Section, we second these regularity

results with some numerical experiments. We study several representative numerical examples

of contact problems with self-contact and unilateral contact constraints in 2D and 3D.

We start our investigations with the observation that

C‖u− uh‖2H1(Ω) ≤
∫

Ω
Cε(u− uh) : ε(u− uh) dx

= 2(E(uh)− E(u))− 2

(∫
Ω
Cε(u) : ε(uh − u) dx− 2

∫
Ω
f · (uh − u) dx

)
≤ 2(E(uh)− E(u))

for some constant C > 0. Hence, we expect that (E(uh) − E(u))1/2 behaves like O(h%) with

% ≥ 1/2. Assuming (E(uh)− E(u))1/2 ≈ Ch%, we obtain

% ≈ %k :=
log(Qk/Qk+1)

log(2)

with hk := h̄2−k, h̄ > 0, Qk := (Ek − Eref)
1/2, Ek := E(uhk) and Eref ≈ E(u). Note that

the mesh size hk can be realized if, for instance, uniform refinements are applied. With the

maximum number of refinements kmax for which a finite element approximation is available, we

determine an appropriate reference value Eref by simply setting Eref := Ekmax or by computing

Eref as an extrapolation of the values Er, . . . , Ekmax with r ≥ 0. This extrapolation is given by

Ẽr := akmax−r,kmax−r, where ai,0 := Ei+r, i = 0, . . . , kmax − r, and

aij := ai,j−1 +
ai,j−1 − ai−1,j−1

2j − 1
, i = 1, . . . , kmax − r, j = 1, . . . , i.

For instance, we obtain the linear extrapolation Ẽkmax−1 = 2Ekmax − Ekmax−1 with r = kmax − 1.

To demonstrate that %k can be used to estimate the asymptotic convergence rate %, we consider a
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simple example without contact constraints: It is well-known that u(r, φ) = r2/3 sin((2φ−π)/3))

solves Poisson’s equation −∆u = 0 on the L-shaped domain Ω := (−0.5, 0.5)2\[0, 0.5)2 where

u = 0 on ΓD := [0, 0.5] × {0} ∪ {0} × [0, 0.5]. It is also well-known that u ∈ B
5/3
2,∞(Ω) and

that the convergence rate of the finite element approximation is O(h2/3). Thus, we expect

%k ≈ % = 2/3 which is, indeed, confirmed by the numerical experiments: In Table 1, the

estimated convergence rate %k is tabulated for several reference values Eref . As we can see, we

always obtain an approximation of the expected value 2/3. Apart from the second column where

the exact reference value E(u) is used, the extrapolation with r = 0 in the last column yields the

closest values to the exact asymptotic convergence rate. For coarser mesh sizes, the assumption

(E(uh) − E(u))1/2 ≈ Ch% may not be justified so that the convergence rate % is not accurately

predicted in the first rows. Moreover, if k is close to kmax, we may also get inappropriate values

for %, since the reference value Eref may possibly be too close to Ekmax . Hence, the second or

third to last entry may give the most reliable value to estimate the exact convergence rate and,

therewith, the regularity of the solution.

hk Eref := E(u) Eref := Ekmax Eref = Ẽ8 Eref = Ẽ0

0.5000 0.5387 0.5390 0.5386 0.5387

0.2500 0.6171 0.6178 0.6168 0.6170

0.1250 0.6393 0.6411 0.6384 0.6390

0.0625 0.6507 0.6551 0.6484 0.6500

0.0312 0.6570 0.6681 0.6515 0.6552

0.0156 0.6608 0.6894 0.6470 0.6563

0.0078 0.6630 0.7403 0.6296 0.6519

0.0039 0.6644 0.9057 0.5866 0.6372

0.0020 0.6653 - 0.5000 0.6011

Table 1: Regularity index %k for Poisson’s equation and several reference values Eref .

- α β f0 f1 f2 f3 scale

2(a) 0 0 0 0 -1 1 50

2(b) π/4 0 -1 2 0 0 50

2(c) π/4 0 -1 -1 0 0 20

2(d) π/4 0 1 -5 0 0 10

2(e) π/2 0 0.5 0.5 0 0 10

2(f) π/2 0 -1 -1 0 0 50

Table 2: Configuration for self-contact in 2D.
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5.1 Self-contact

As a first example, we consider contact problems in linear elasticity with self-contact constraints

in 2D. We use Hooke’s law and plane stress with Young’s modulus E = 210, 000 and Poisson

number ν = 0.28. The domain is set to Ω := (−2, 1)× (−1, 1)\ΓC with the Dirichlet boundary

ΓD := {1}× [−1, 1], where homogeneous boundary conditions are presumed. The crack is given

by ΓC := (−2, 1)×{0}. Furthermore, we define Neumann conditions on Γ1,± := (−2, 1)×{±1}
and Γ2 := {−2} × (0, 1) as well as Γ3 := {−2} × (−1, 0). The Neumann data for (x0, x1) ∈ Γ1,±

is given by ±f(x0, x1)(cos(α), sin(α)) with f(x0, x1) = 1
3(x0 + 2)f1 − 1

3(x0 − 1)f0, f0, f1 ∈ R
and on Γi by fi · (cos(β), sin(β)) with f2, f3 ∈ R. We study six different configurations with

the Neumann data as tabulated in Table 2 and use conforming finite elements with piecewise

bilinear ansatz functions on quadrilateral meshes. As assumed in Theorem 4.6 the mesh nodes

on both sides of ΓC coincide. In this way, the contact constraints are ensured by simply imposing

them in the mesh nodes of ΓC . For instance, this assumption on the mesh nodes is fulfilled, if

the crack is generated via doubling of edges, cf. [KS11]. The maximum number of refinements

is kmax := 8 which corresponds to 3, 150, 848 degrees of freedom.
no name

(a)

no name

(b)

no name

(c)
no name

(d)

no name

(e)

no name

(f)

Figure 2: Solutions of self contact in 2D.

In the Figures 2(a)-(f), the resulting deformations and Von Mises stresses are depicted. In

these figures, the deformations are scaled by the scaling factor as given in the last column of

Table 2. The regularity of the solutions in the Figures 2(e) and (f) are known since they do

not actually solve contact problems. The Neumann data in the configuration 2(e) prevents the

contact along the crack ΓC . The regularity of the solution is dominated by the singularity at

the crack tip. It is well-known that the singular exponent is 1/2 which means that the solution

is in B
3/2
2,∞(Ω). The convergence rate of the finite element approximation is, therefore, O(h1/2)
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which is sharp. Indeed, this fact is reproduced by Qk and, in particular, by %k in the numerical

experiments as shown in Figure 3 and Table 3. The Neumann data in the configuration 2(f) leads

to complete self-contact along ΓC . Due to the symmetry of the Neumann data, we obtain the

same solution as in the case without the crack ΓC in the interior of the domain. In this case, the

regularity is dominated by the singularities resulting from the change from Neumann to Dirichlet

boundary conditions with the interior angle π/4. The singular exponent can be estimated with

α := 0.767075 . . ., cf. [Nic92], leading to the convergence rate O(hα). We observe in Table 3

that %k approximatively predict this convergence rate.

In the Figures 2(c) and (d), the upper and lower parts of the domain Ω are in contact at

the crack tip. We see that in both cases the stresses at the crack tip are dominated by the

singularities at the corners. Nevertheless, a singularity resulting from a minimal shearing could

be present with singular exponent 1/2. Such a singularity does not seem to be resolved by

the finite element approximation so that %k indicates a higher regularity. In contrast, the

configuration 2(a) leads to a considerable shearing and to a singularity at the crack tip. In this

case, %k clearly indicates the convergence rate 1/2 and, therefore, B
3/2
2,∞-regularity as expected.

In Figure 2(b), the Neumann data results in tearing at the crack tip and in self-contact on

the opposite side. We expect a singularity with singular exponent 1/2 at the crack tip and,

therefore, merely B
3/2
2,∞-regularity of the solution. However, this expectation is not confirmed

by %k in Table 3. Again, this effect may be explained by the insufficient resolution of the finite

element approximation. Anyway, we obtain %k ≥ 0.5 for all configurations as desired.
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Figure 3: Qk for several contact problems with self-contact constraints in 2D (left) and in 3D

(right).

We also consider contact problems with self-contact constraints in 3D. Again, we assume lin-

ear elasticity by Hooke’s law and the same material parameters as in the 2D case. The domain is

given by Ω := [−2, 1]×[−1, 1]2 and the Dirichlet boundary by ΓD := {1}×(−1, 1)2, where homo-

geneous boundary conditions are prescribed. The crack is given by ΓC := (−2, 0)×(−1, 0)×{0}∪
(−2,−1)× (0, 1)× {0} which has a Lipschitz continuous, but not differentiable boundary. The
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h 2(a) 2(b) 2(c) 2(d) 2(e) 2(f)

0.5000 0.5746 0.6170 0.6810 0.6659 0.4018 0.6445

0.2500 0.5865 0.6952 0.7310 0.7251 0.4967 0.6578

0.1250 0.5574 0.7167 0.7062 0.7263 0.5161 0.6772

0.0625 0.5348 0.7030 0.6582 0.7062 0.5128 0.6984

0.0312 0.5219 0.6756 0.6113 0.6776 0.5077 0.7161

0.0156 0.5145 0.6427 0.5744 0.6465 0.5042 0.7280

0.0078 0.5097 0.6098 0.5482 0.6152 0.5023 0.7314

0.0039 0.5064 0.5788 0.5302 0.5849 0.5013 0.7194

0.0020 0.5038 0.5497 0.5174 0.5544 0.5007 0.6744

Table 3: Convergence rate %k for several contact problems with self-contact constraints in 2D.

Neumann data is defined on Γ1,± := (−2,−1)×(−1, 1)×{±1}, Γ2 := {−2}×(−1, 1)×(0, 1) and

Γ3 := {−2}×(−1, 1)×(−1, 0) and is given by±f(x0, x1, x2)(sin(α0) cos(α1), sin(α0) sin(α1), cos(α0))

for (x0, x1, x2) ∈ Γ1,± with f(x0, x1, x2) = 1
3(x0 + 2)f1 − 1

3(x0 − 1)f0, f0, f1 ∈ R, and fi ·
(sin(β0) cos(β1), sin(β0) sin(β1), cos(β0)) on Γi with fi ∈ R, i = 2, 3. Again, we consider six

different configurations which are given by the Neumann data as tabulated in Table 4. We use

conforming finite element approximations with piecewise trilinear ansatz functions on hexahe-

drons. The maximum number of refinements is kmax = 6 which yields 9, 622, 272 degrees of

freedom.

- α0 α1 β0 β1 f0 f1 f3 f4 scale

4(a) 0 0 π/2 π/4 0 0 -1 1 40

4(b) π/4 π/4 0 0 0.5 0.5 0 0 40

4(c) π/4 π/4 0 0 0.5 -2 0 0 40

4(d) π/4 π/4 0 0 -1 -1 0 0 40

4(e) π/4 π/4 0 0 -1 4 0 0 40

4(f) 0 0 π/2 π/4 -1 -1 0 0 40

Table 4: Configurations with self-contact in 3D.

In Figure 4, the deformations and Von Mises stresses of the solutions are depicted. In Figure 5,

the lower side of the crack layer [−2, 1] × [−1, 1] × {0} is shown. The estimated convergence

rate %k is tabulated in Table 5. Because of the tearing along ΓC , we expect that the solution in

Figure 4(b) is in B
3/2
2,∞(Ω) only and, hence, the convergence rate % is 1/2. In fact, this is indicated

by %k in Table 5. As a consequence of the symmetric Neumann data leading to complete self-

contact along ΓC , the regularity of the solution in Figure 4(f) should be strictly greater than 1/2.

This is clearly confirmed by the estimated convergence rate %k in Table 5. The configuration 4(a)

leads to considerable shearing so that the solution should be not more than B
3/2
2,∞-regular. Thus,
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Figure 4: Solutions of self contact in 3D

the convergence rate should be 1/2. We observe in Table 5 that the estimated convergence

rate %k nearly predict this expectation. For the other configurations 4(c), 4(d) and 4(e), we

expect that tearing or shearing also leads to B
3/2
2,∞-regularity of the solution and, hence, to the

convergence rate % = 1/2. Unfortunately, this expectation is not reflected in Table 5. For these

configurations, the estimated convergence rate %k may overestimate the asymptotic convergence

rate %. As in the 2D case 2(b), this effect may be explained by the insufficient resolution of the

finite element approximation. However, the expected behavior %k ≥ 1/2 can be observed in all

cases.

h 4(a) 4(b) 4(c) 4(d) 4(e) 4(f) 6(a) 6(c)

0.5000 0.4645 0.4299 0.6185 0.5653 0.5982 0.6307 0.5914 0.6427

0.2500 0.5243 0.5046 0.6974 0.6197 0.6634 0.6422 0.6142 0.6528

0.1250 0.5324 0.5223 0.7293 0.6158 0.6849 0.6573 0.6036 0.6576

0.0625 0.5261 0.5206 0.7287 0.5892 0.6754 0.6681 0.5795 0.6492

0.0312 0.5176 0.5145 0.7032 0.5605 0.6460 0.6630 0.5511 0.6117

0.0156 0.5104 0.5087 0.6519 0.5363 0.6017 0.6256 - -

Table 5: Convergence rate %k for several contact problems with self-contact constraints in 3D.

In the next experiment, we study a problem with self-contact constraints where the crack does

not intersect with the Neumann or Dirichlet boundary. The domain is given by Ω := [0, 5]2 ×
[0, 2]\ΓC and Dirichlet boundary by ΓD := [0, 5]2×{0}, where homogeneous Dirichlet conditions

are prescribed. We choose the same material parameters for linear elasticity based on Hooke’s

law as before. The crack is described by ΓC := (1, 3)2×{1}∪(2, 4)2×{1}. The Neumann data is
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Figure 5: Lower side of the crack layer.
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Figure 6: Solutions of a self-contact problem in 3D with interior crack.

given by f(x)(sin(α0) cos(α1), sin(α0) sin(α1), cos(α0)) with f(x0, x1, x2) = 1
5x0f1 − 1

5(x0 − 5)f0

for (x0, x1, x2) ∈ Γ1 := (0, 5) × (0, 5) × {2}. We consider two configurations: α0 = α1 = π/4,

f0 = 2, f1 = −1 as well as α0 = 0, α1 = π/2, f0 = f1 = −1. The first configuration leads to

self-contact as well as tearing, see Figures 6(a),(b) and 7(a), whereas the second configuration

implies a complete self-contact along ΓC , see Figures 6(c) and 7(b). The finite element solutions

of both configurations are scaled by a factor of 150 in these figures. The maximum number

of refinements is set to kmax := 5 with 4, 997, 763 degrees of freedom. Due to the symmetric

Neumann data of the second configuration, we expect that the solution is of higher regularity.

Indeed, this is confirmed by the estimated convergence rate %k in Table 5. The solution of the

first configuration is presumably not of higher regularity. Unfortunately, this is not reflected

by the estimated convergence rate %k in Table 5 which seems to be too large. Again, a higher

resolution of the finite element approximation may lead to clearer results.
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Figure 7: Lower sides of the crack layer of the self-contact problem with interior crack.
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Figure 8: Qk for the contact problem with interior crack.

5.2 Unilateral contact

We also consider contact problems with unilateral contact constraints. First, we study a 2D

problem in linear elasticity with plane stress and the same material parameters as before. The

domain is Ω := (0, 4) × (0, 1) and the Dirichlet boundary is ΓD := (0, 4) × {0} with prescribed

homogeneous conditions. Again, homogeneous Dirichlet boundary conditions are prescribed.

The rigid obstacle is given by the piecewise constant function ψ(x) = 1 − di for x ∈ (1 + i, 2),

i = 1, 2 so that the contact boundary is ΓC := (1, 3) × {1}. Note that the constraints are

exactly fulfilled by the finite element approximation and, hence, no additional approximation

errors resulting, e.g., from a curved obstacle or non-matching grids has to be taken into account.

The infeed of the obstacle di ∈ R is given in Table 6. The resulting deformations are shown in

Figure 9. The maximum number of refinements is kmax := 9 which corresponds to 8, 390, 656

degrees of freedom.

The second contact problem with unilateral contact constraints is a 3D problem. The domain

is set to Ω := (0, 5)2×(0, 2) and the Dirichlet boundary is ΓD := [0, 5]2×{0}, where homogeneous

boundary conditions are assumed. Here, the obstacle is described by the piecewise constant
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function ψ(x) = 1 − di for x ∈ ΓC,i with ΓC0 := (1, 3)2 × {2} and ΓC,1 := (2, 4)2 × {2}\ΓC,0.

Thus, the contact boundary is ΓC := ΓC,0 ∪ ΓC,1. The infeed di is given in Table 6 and the

resulting deformations are shown in Figure 10. The maximum number of refinements is kmax := 4

with 4, 976, 832 degrees of freedom.

The estimated convergence rate %k is given in Table 7. We observe that the convergence rate

% is estimated by 1/2. Observe that in Examples 10(a) and 10(b) the geometric condition (R1)

is satisfied, while in 10(c) this condition is violated in a neighborhood of those triple points,

where the Neumann boundary meets the discontinuity line of the obstacle. Hence, in Example

10(c) the solution might be less regular in a neighborhood of these points. This is also reflected

in the lower convergence rate, cf. Table 7.

In contrast to the contact problems with self-contact, these numerical results comply with the

expectation that the solutions are solely in B
3/2
2,∞(Ω) and not of higher regularity. The reason

for this accordance possibly lies in the fact that the configurations used in the experiments for

unilateral contact are considerably simpler than the configurations for self-contact. The defor-

mations in the unilateral contact only result from the infeed of the obstacle, whereas complicated

Neumann boundary data is prescribed in the configurations for self-contact. We may conclude

that the finite element approximations seems to better resolve the significant singularities arising

from unilateral contact.

- d0 d1 scale

9(a) -0.01 0.01 10

9(b) -0.02 0.01 10

10(a) -0.01 -0.01 10

10(b) -0.02 -0.01 10

10(c) -0.01 -0.02 10

Table 6: Infeed of the obstacle for unilateral contact in 2D.

no name

(a)

no name

(b)

Figure 9: Solutions of unilateral contact in 2D.

In summary, we observe that the convergence rates are estimated by %k ≥ 1/2 for all configu-

rations which indicates that their solutions are at least in B
3/2
2,∞(Ω). This regularity is predicted
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no name

(a)

no name

(b)

no name

(c)

Figure 10: Solutions of unilateral contact in 3D
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Figure 11: Qk for contact problems with unilateral contact constraints in 2D (left) and in 3D

(right).

by Theorem 2.1. In several configurations, a higher regularity is indicated by the estimated con-

vergence rate %k where singularities resulting from shearing or tearing should actually prevent

this. The overestimation of the asymptotic convergence rate % by %k may result from possibly

insufficient finite element approximations. The contribution of the solution with singular expo-

nent 1/2 may be too small to be adequately resolved by the finite elements. The overestimation

effects do not occur in the experiments where unilateral contact conditions are prescribed. Here,

the expected convergence rate is 1/2 and, hence, the B
3/2
2,∞-regularity is predicted as desired.

A An interpolation result

We prove Lemma 4.2 on the basis of Theorem 14.3 from [LM72, Chapter 1]. It is assumed that

(A1) Ω ⊂ Rd is a bounded Lipschitz domain (local bi-Lipschitz mappings) and that ΓD ⊂ ∂Ω

is a closed, possibly empty subset.

As in Section 4.1, for s ∈ (1, 2) we define the space Ms
ΓD

(Ω) = { v ∈ Hs
ΓD

(Ω) ; divCε(v) ∈
L2(Ω) }, which is endowed with the graph norm |‖w‖|s = ‖w‖Hs(Ω) + ‖divCε(u)‖L2(Ω). Let the

35



Table 7: Convergence rates, unilateral

h 9a 9b 10a 10b 10c

0.5000 0.5476 0.5924 0.5192 0.5728 0.3490

0.2500 0.5228 0.5623 0.5173 0.5266 0.4537

0.1250 0.5107 0.5144 0.5107 0.5139 0.4701

0.0625 0.5057 0.5073 0.5065 0.5083 0.4894

0.0312 0.5030 0.5053 0.5037 0.5047 0.4969

0.0156 0.5016 0.5026 - - -

0.0078 0.5008 0.5014 - - -

0.0039 0.5005 0.5007 - - -

0.0020 0.5002 0.5004 - - -

0.0010 0.5001 0.5002 - - -

operator B : H1
0 (Ω)→ (H1

0 (Ω))∗ be defined as follows: For all u, v ∈ H1
0 (Ω)

〈B(u), v〉 =

∫
Ω
Cε(u) : ε(v) dx =: b(u, v) (A.1)

with C as in Section 3.1. The regularity assumption reads

(AR1) There exists a constant s0 ∈ (1, 2) such that the differential operator B defined in (A.1) is

a topological isomorphism from Hs0
0 (Ω) onto

(
[H1

0 (Ω), L2(Ω)]s0−1

)∗
.

Lemma A.1. Let (A1) and (AR1) be satisfied. Then for all s ∈ (1, s0) the following identity

holds true with θ = s0−s
s0−1 :

Ms
ΓD

(Ω) = [Ms0
ΓD

(Ω),M1
ΓD

(Ω)]θ. (A.2)

Proof. In the notation of Theorem 14.3 of [LM72, Chapter 1] we set

Φ = Y = H1
ΓD

(Ω), Y = X = L2(Ω), Ψ = Ỹ = (H1
0 (Ω))∗,

X = Hs0
ΓD

(Ω), X̃ =
(
[H1

0 (Ω), L2(Ω)]s0−1

)∗
.

Further, we define ∂ : Y → Ỹ via the following relation: For all u ∈ Y, v ∈ H1
0 (Ω) we set

〈∂u, v〉 =
∫

Ω Cε(u) : ε(v) dx, i.e. ∂u = −divCε(u) in the distributional sense. Still in the

notation of [LM72] we have

Y∂,Y = { v ∈ Y ; ∂v ∈ Y } =M1
ΓD

(Ω), X∂,X = { v ∈ X ; ∂v ∈ X } =Ms0
ΓD

(Ω).

Finally, we define G : Ỹ → Y , f 7→ ωf ∈ H1
0 (Ω) as a solution operator via the relation b(ωf , v) =

〈f, v〉 for all v ∈ H1
0 (Ω). By assumption (AR1), G is also well defined, linear and continuous as a

mapping from
(
[H1

0 (Ω), L2(Ω)]s0−1

)∗
to H1

0 (Ω)∩Hs0(Ω) ⊂ Hs0
ΓD

(Ω). Moreover, for all f ∈ X̃ +Ỹ
it holds that ∂Gf = f . Indeed, for all v ∈ H1

0 (Ω) we have 〈∂Gf, v〉 =
∫

Ω Cε(ωf ) : ε(v) dx =
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〈f, v〉, and by density of H1
0 (Ω) in [H1

0 (Ω), L2(Ω)]s0−1 this is true for all ψ ∈ [H1
0 (Ω), L2(Ω)]s0−1

provided that f ∈ X̃ . Hence, Theorem 14.3 in [LM72, Chapter 1] is applicable and implies that

for all θ ∈ (0, 1) the identity [X∂,X , Y∂,Y ]θ =
(
[X,Y ]θ

)
∂,[X ,Y]θ

is valid, which is (A.2).
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