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Abstract: A typical phase field approach for describing phase separation and coarsening phe-
nomena in alloys is the Cahn-Hilliard model. This model has been generalized to the so-called
Cahn-Larché system by combining it with elasticity to capture non-neglecting deformation phe-
nomena, which occur during phase separation and coarsening processes in the material. In order
to account for damage effects, we extend the existing framework of Cahn-Hilliard and Cahn-
Larché systems by incorporating an internal damage variable of local character. This damage
variable allows to model the effect that damage of a material point is influenced by its local sur-
rounding. The damage process is described by a unidirectional rate-dependent evolution inclusion
for the internal variable. For the introduced Cahn-Larché systems coupled with rate-dependent
damage processes, we establish a suitable notion of weak solutions and prove existence of weak
solutions.

1 Introduction

Due to the ongoing miniaturization in the area of micro-electronics the demands on strength
and lifetime of the materials used is considerably rising, while the structural size is continuously
being reduced. Materials, which enable the functionality of technical products, change the mi-
crostructure over time. Phase separation and coarsening phenomena take place and the complete
failure of electronic devices like motherboards or mobile phones often results from micro–cracks
in solder joints.

Solder joints, for instance, are essential components in electronic devices since they form
the electrical and the mechanical bond between electronic components like micro–chips and the
circuit–board. The Figures 1 and 2 illustrate the typical morphology in the interior of solder
materials. At high temperatures, one homogeneous phase consisting of different components of
the alloy is energetically favourable. If the temperature is decreased below a critical value a fine
microstructure of two or more phases (different compositions of the components of the material)
arises on a very short time scale. The formation of microstructures, also called phase separation
or spinodal decomposition, take place to reduce the bulk chemical free energy. Then coarsening
phenomena occur, which are mainly driven by decreasing interfacial energy. Due to the misfit of
the crystal lattices, the different heat expansion coefficients and the different elastic moduli of
the components, very high mechanical stresses occur preferably at the interfaces of the phases.
These stress concentrations initiate the nucleation of micro–cracks, whose propagation can finally
lead to the failure of the whole electronic device.

The knowledge of the mechanisms inducing phase separation, coarsening and damage phe-
nomena is of great importance for technological applications. A uniform distribution of the
original materials is aimed to guarantee evenly distributed material properties of the sample.
For instance, mechanical properties, such as the strength and the stability of the material, de-
pend on how finely regions of the original materials are mixed. The control of the evolution of
the microstructure and therefore of the lifetime of materials relies on the ability to understand
phase separation, coarsening and damage processes. This shows the importance of developing
reliable mathematical models to describe such effects.

In the mathematical literature, coarsening and damage processes are treated in general sepa-
rately. Phase separation and coarsening phenomena are usually described by phase–field models
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Figure 1: Left: Solder ball and micro–structural coarsening in eutectic Sn–Pb; Right: a) directly
after solidification, b) after 3 hours, and c) after 300 hours [HCW91];

Figure 2: Initiation and propagation of cracks along the phase boundary [FBFD06].

of Cahn-Hilliard type. The evolution is modeled by a parabolic diffusion equation for the phase
fractions. To include elastic effects, resulting from stresses caused by different elastic proper-
ties of the phases, Cahn-Hilliard systems are coupled with an elliptic equation, describing the
quasi-static balance of forces. Such coupled Cahn-Hilliard systems with elasticity are also called
Cahn-Larché systems. Since in general the mobility, stiffness and surface tension coefficients
depend on the phases (see for instance [BDM07] and [BDDM07] for the explicite structure de-
duced by the embedded atom method), the mathematical analysis of the coupled problem is very
complex. Existence results were derived for special cases in [Gar00, CMP00, BP05] (constant
mobility, stiffness and surface tension coefficients), in [BCD+02] (concentration dependent mo-
bility, two space dimensions) and in [PZ08] in an abstract measure-valued setting (concentration
dependent mobility and surface tension tensors). For numerical results and simulations we refer
[Wei01, Mer05, BM10].

Damage models for elastic materials have been analytically investigated for the last ten years.
In the simplest case, the damage variable is a scalar function and describes the local accumulation
of damage in the body. The damage process is typically modeled as a unidirectional evolution,
which means that damage can increase, but not decrease. Based on the model developed in
[FN96], the damage evolution is described by an equation of balance for forces which is cou-
pled with a unidirectional parabolic [BSS05, FK09, Gia05] or rate–independent [MR06, MRZ10]
evolution inclusion for the damage variable. The models studied in [FK09, MR06, Gia05] also
include the effect that the applied forces have to pass over a threshold before the damage starts
to increase.

In this work, we introduce a mathematical model describing both phenomena, phase separa-
tion/coarsening and damage processes, in a unifying model. We focus on the analytical modeling
on the meso– and macroscale. To this end, we couple phase–field models of Cahn-Larché type
with damage models. The evolution system consists of an equation of balance for forces which is
coupled with a parabolic evolution equation for the phase fractions and a unidirectional evolution
inclusion for the damage variable. The evolution inclusion also comprises the phenomenon that
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a threshold for the loads has to be passed before the damage process increases.
The main aim of the present work is to show existence of weak solutions of the introduced

model for rate-dependent damage processes. A crucial step has been to establish a suitable
notion of weak solutions. We first study the model with regularization terms and prove existence
of weak solutions for the regularized model based on a time–incremental minimization problem
with constraints due to the unidirectionality of the damage. The regularization allows us to
prove an energy inequality which occurs in the weak notion of our coupled system. The major
task has been to prove convergence of the time incremental solutions for the regularized model
when the discretization fineness tends to zero. In this context, several approximation results have
been established to handle the damage evolution inclusion and the unidirectionality of damage
processes. More precisely, the internal variable z, describing damage effects, is bounded with
values in [0, 1] and monotonically decreasing with respect to the time variable. The main results
are stated in Sections 4.1 and 4.2, see Theorems 4.4 and 4.6.

To the best of our knowledge, phase separation processes coupled with damage are not studied
yet in the mathematical literature. However, promising simulations were carried out in the
context of phase field models of Cahn-Hilliard and Cahn-Larché type with damage, see [USG07,
GUaMM+07].

The paper is organized as follows: We start with introducing a phase field model of Cahn-
Larché type coupled with damage, cf. Section 2. Then we state some assumptions for this model,
see Section 3. In Section 4, we establish a suitable notation for weak formulations of solutions
for the introduced model and a regularized version of the model and state the main results.
Section 5.2 is devoted to the existence proof for the regularized Cahn-Larché system coupled
with damage. Finally, we pass to the limit in the regularized version, which shows the existence
of weak solutions of the original model, see Section 5.3.

2 Model

We consider a material of two components occupying a bounded Lipschitz domain Ω ⊆ R
3. The

state of the system at a fixed time point is specified by a triple q = (u, c, z). The displacement
field u : Ω → R

3 determines the current position x + u(x) of an undeformed material point x.
Throughout this paper, we will work with the linearized strain tensor e(u) = 1

2 (∇u + (∇u)T ),
which is an adequate assumption only when small strains occur in the material. However, this
assumption is justified for phase-separation processes in alloys since the deformation usually has a
small gradient. The function c : Ω → R is a phase field variable describing a scaled concentration
difference of the two components. To account for damage effects, we choose an isotropic damage
variable z : Ω → R, which models the reduction of the effective volume of the material due
to void nucleation, growth, and coalescence. The damage process is modeled unidirectional,
i.e. damage may only increase. Self-healing processes in the material are forbidden. No damage
at a material point x ∈ Ω is described by z(x) = 1, whereas z(x) = 0 stands for a completely
damaged material point x ∈ Ω. We require that even a damaged material can store a small
amount of elastic energy. Plastic effects are not considered in our model.

2.1 Energies and evolutionary equations

Here, we qualify our model formally and postpone a rigorous treatment to Section 4. The
presented model is based on two functionals, i.e. a generalized Ginzburg-Landau free energy
functional E and a damage dissipation potential R. The free energy density ϕ of the system is
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given by

ϕ(e, c,∇c, z,∇z) :=
γ

2
|∇c|2 +

δ

p
|∇z|p + Wch(c) + Wel(e, c, z), γ, δ > 0, (1)

where the gradient terms penalize spatial changes of the variables c and z, Wch denotes the
chemical energy density and Wel is the elastically stored energy density accounting for elastic
deformations and damage effects. For simplicity of notation, we set γ = δ = 1.

The chemical free energy density Wch has usually the form of a double well potential for a
two phase system. For a rigorous treatment, we need the assumptions (A1)-(A6), see Section 3.
Hence, in particular, classical ansatzes such as

Wch = (1 − c2)2

fit in our framework.
The elastically stored energy density Ŵel due to stresses and strains, which occur in the

material, is typically of quadratic form, i.e.

Ŵel(c, e) =
1

2

(
e − e∗(c)

)
: C(c)

(
e − e∗(c)

)
. (2)

Here, e∗(c) denotes the eigenstrain, which is usually linear in c, and C(c) ∈ L(Rn×n
sym ) is a fourth

order stiffness tensor, which is symmetric and positive definite. If the stiffness tensor does not
depend on the concentration, i. e. C(c) = C, we refer to homogeneous elasticity.

To incorporate the effect of damage on the elastic response of the material, Ŵel is replaced
by

Wel = (Φ(z) + η̃) Ŵel, (3)

where Φ : [0, 1] → R+ is a continuous and monotonically increasing function with Φ(0) = 0 and
η̃ > 0 is a small value. The small value η̃ > 0 in (3) is introduced for analytical reasons, see for
instance (A1).

Rigorous results in the present work are obtained under certain growth conditions for the
elastic energy density Wel, see Section 3. These conditions are, for instance, satisfied for Wel as
in (3) in the case of homogeneous elasticity.

The overall free energy E of Ginzburg-Landau type has the following structure:

E(u, c, z) := Ẽ(u, c, z) +

∫

Ω

I[0,∞)(z) dx,

Ẽ(u, c, z) :=

∫

Ω

ϕ(e(u), c,∇c, z,∇z) dx.

(4)

Here, I[0,∞) signifies the indicator function of the subset [0,∞) ⊆ R, i.e. I[0,∞)(x) = 0 for
x ∈ [0,∞) and I[0,∞)(x) = ∞ for x < 0. We assume that the energy dissipation for the damage
process is triggered by a dissipation potential R of the form

R(ż) := R̃(ż) +

∫

Ω

I(−∞,0](ż) dx,

R̃(ż) :=

∫

Ω

−αż +
1

2
βż2 dx for α > 0 and β > 0.

(5)

Due to β > 0, the dissipation potential is referred to as rate-dependent. In the case β = 0,
which is not considered in this work, R is called rate-independent. We refer for rate-independent
processes to [EM06, MT99, MR06, MRZ10, Rou10] and in particular to [Mie05] for a survey.
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The governing evolutionary equations for a system state q = (u, c, z) can be expressed by
virtue of the functionals (4) and (5). The evolution is driven by the following elliptic-parabolic
system of differential equations and differential inclusion:

Diffusion : ∂tc = ∆µ(u, c, z), (6a)

Mechanical equilibrium : div(σ(e(u), c, z)) = 0, (6b)

Damage evolution : 0 ∈ ∂zE(u, c, z) + ∂żR(∂tz), (6c)

where σ = σ(e, c, z) := ∂eϕ(e, c,∇c, z,∇z) denotes the Cauchy stress tensor and µ is the chemical
potential given by µ = µ(u, c, z) := ∂cϕ(e, c,∇c, z,∇z) − div(∂∇cϕ(e, c,∇c, z,∇z)). Equation
(6a) is a fourth order quasi-linear parabolic equation of Cahn-Hilliard type and describes phase
separation processes for the concentration c while the elliptic equation (6b) constitutes a quasi-
static equilibrium for u. This means physically that we neglect kinetic energies and instead
assume that mechanical equilibrium is attained at any time. The doubly nonlinear differential
inclusion (6c) specifies the flow rule of the damage profile according to the constraints 0 ≤ z ≤ 1
and ∂tz ≤ 0 (in space and time). The inclusion (6c) has to be read in terms of generalized
sub-differentials.

We choose Dirichlet conditions for the displacements u on a subset Γ of the boundary ∂Ω
with Hn−1(Γ) > 0. Let b : [0, T ] × Γ → R

n be a function which prescribes the displacements
on Γ for a fixed chosen time interval [0, T ]. The imposed boundary and initial conditions and
constraints are as follows:

Boundary displacements : u(t) = b(t) on Γ for all t ∈ [0, T ], (IBC1)

Initial concentration : c(0) = c0 in Ω, (IBC2)

Initial damage : 0 ≤ z(0) = z0 ≤ 1 in Ω, (IBC3)

Damage constraints : 0 ≤ z ≤ 1 and ∂tz ≤ 0 in ΩT . (IBC4)

Moreover, we use homogeneous Neumann boundary conditions for the remaining variables on
(parts of) the boundary:

σ · ν = 0 on ∂Ω \ Γ, (IBC5)

∇µ(t) · ν = 0 on ∂Ω, (IBC6)

∇c(t) · ν = 0 on ∂Ω, (IBC7)

∇z(t) · ν = 0 on ∂Ω, (IBC8)

where ν stands for the outer unit normal to ∂Ω.
We like to mention that mass conservation of the system follows from the diffusion equation

(6a) and (IBC6), i.e.
∫

Ω

c(t) − c0 dx = 0 for all t ∈ [0, T ].

3 Assumptions and Notation

In the following, we collect all assumptions and constants which are used for a rigorous analysis
in the subsequent sections.

(i) Setting. Ω ⊆ R
n is a bounded domain with Lipschitz boundary, n ∈ {1, 2, 3}, p > n,

β > 0, Wel ∈ C1(Rn×n × R × R; R+), Wch ∈ C1(R; R+), Wel(e, c, z) = Wel(e
t, c, z) for all

e ∈ R
n×n and c, z ∈ R. Furthermore, C > 0 always denotes a constant, which may vary

from estimate to estimate, and [0, T ] is the time interval of interest.
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(ii) Convexity and growth assumptions. The function Wel is assumed to satisfy for some
constants η > 0 and C > 0 the following estimates:

η|e1 − e2|
2 ≤ (∂eWel(e1, c, z) − ∂eWel(e2, c, z)) : (e1 − e2), (A1)

Wel(e, c, z) ≤ C(|e|2 + |c|2 + 1), (A2)

|∂eWel(e1 + e2, c, z)| ≤ C(Wel(e1, c, z) + |e2| + 1), (A3)

|∂cWel(e, c, z)| ≤ C(|e| + |c|2 + 1), (A4)

|∂zWel(e, c, z)| ≤ C(|e|2 + |c|2 + 1) (A5)

for arbitrary c ∈ R, z ∈ [0, 1] and symmetric e, e1, e2 ∈ R
n×n.

The chemical energy density function Wch satisfies

|∂cWch(c)| ≤ Ĉ(|c|2
⋆/2 + 1) (A6)

for some constant Ĉ > 0. For dimension n = 3, the constant 2⋆ denotes the Sobolev critical
exponent given by 2n

n−2 . In the two dimensional case n = 2, the constant 2⋆ can be an
arbitrary positive real number and in one space dimension (A6) can be dropped.

(iii) Boundary displacements. We assume that Γ is a Hn−1-measurable subset of ∂Ω with
Hn−1(Γ) > 0 and that the boundary displacement b : [0, T ] × Γ → R

n may be extended

by b̂ ∈ W 1,1([0, T ];W 1,∞ (Ω; Rn)) such that b(t)|Γ = b̂(t)|Γ in the sense of traces for a.e.

t ∈ [0, T ]. In the following, we write b instead of b̂.

Remark 3.1 Conditions (A1), (A2) and (A3) imply the following estimates

|∂eWel(e, c, z)| ≤ C(|e| + |c|2 + 1), (11a)

η|e|2 − C(|c|4 + 1) ≤ Wel(e, c, z) (11b)

for some appropriate constants η > 0 and C > 0, cf. [Gar00, Section 3.2] for (11b).

We introduce some auxiliary spaces to shorten the notation for the construction of solution
curves of the evolutionary problem. First of all, we define the trajectory space Q for the limit
problem (6a)-(6c) as

Q :=







q = (u, c, z) with

u ∈ L∞([0, T ];H1(Ω; Rn)),

c ∈ L∞([0, T ];H1(Ω)) ∩ H1([0, T ], (H1(Ω))⋆),

z ∈ L∞([0, T ];W 1,p(Ω)) ∩ H1([0, T ];L2(Ω))







.

Based on Q, the set of admissible functions of the viscous problem (see Section 4) is

Qv :=
{
q = (u, c, z) ∈ Q | c ∈ H1([0, T ];L2(Ω)) and u ∈ L∞([0, T ];W 1,4(Ω; Rn))

}
.

It will be convenient for the variational formulation to define Sobolev spaces with functions
taking only non-negative and non-positive values, respectively, and Sobolev spaces consisting of
functions with vanishing traces on the boundary Γ:

W 1,r
+ (Ω) :=

{
ζ ∈ W 1,r(Ω)

∣
∣ ζ ≥ 0 a.e. in Ω

}
,

W 1,r
− (Ω) :=

{
ζ ∈ W 1,r(Ω)

∣
∣ ζ ≤ 0 a.e. in Ω

}
,
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W 1,r
Γ (Ω; Rn) :=

{
ζ ∈ W 1,r(Ω; Rn)

∣
∣ ζ|Γ = 0 in the sense of traces

}

for r ∈ [1,∞]. In this context, IW 1,r

± (Ω) : W 1,r(Ω) → {0,∞} denote the indicator functions given

by

IW 1,r

± (Ω)(ζ) :=

{

0, if ζ ∈ W 1,r
± (Ω),

∞, else.

Since Cahn-Hilliard systems can be expressed as H−1-gradient flows, we introduce the fol-
lowing spaces in order to apply the direct method in the time-discrete version (see Section 5):

V0 :=

{

ζ ∈ H1(Ω)
∣
∣

∫

Ω

ζ dx = 0

}

,

Ṽ0 :=
{

ζ ∈ (H1(Ω))∗
∣
∣ 〈ζ,1〉(H1)∗×H1 = 0

}

.

This permits us to define the operator (−∆)−1 : Ṽ0 → V0 as the inverse of the operator −∆ :
V0 → Ṽ0, u 7→ 〈∇u,∇·〉L2(Ω). The space Ṽ0 will be endowed with the scalar product 〈u, v〉Ṽ0

:=

〈∇(−∆)−1u,∇(−∆)−1v〉L2(Ω).
We end this section by introducing some notation which is frequently used for some approx-

imation features in this paper. The expression BR(K) denotes the open neighborhood with
width R > 0 of a subset K ⊆ R

n. Whenever we consider the zero set of a function ζ ∈ W 1,p(Ω)
for p > n abbreviated in the following by {ζ = 0} we mean {x ∈ Ω | ζ(x) = 0} by taking
the embedding W 1,p(Ω) →֒ C0(Ω) into account. We adapt the convention that for two given
functions ζ, ξ ∈ L1([0, T ];W 1,p(Ω)) the inclusion {ζ = 0} ⊇ {ξ = 0} is an abbreviation for
{ζ(t) = 0} ⊇ {ξ(t) = 0} for a.e. t ∈ [0, T ].

4 Weak formulation and existence theorems

Existence results for multi-phase Cahn-Larché systems without considering damage phase fields
are shown in [Gar00] provided that the chemical energy density Wch can be decomposed into
W 1

ch + W 2
ch with convex W 1

ch and linear growth behavior of ∂cW
2
ch (see [Gar00, Section 3.2] for

a detailed explanation). Logarithmic free energies Wch are also studied in [Gar00] as well as
in [Gar05b]. Further variants of Cahn-Larché systems are investigated in [CMP00], [BP05],
[BCD+02] and [Gar05a].

Purely mechanical systems with rate-independent damage processes are analytically consid-
ered and reviewed for instance in [MR06] and [MRZ10]. The rate-independence enables the
concept of the so-called global energetic solutions (see Remark 4.2 (i)) to such systems.

Coupling rate-independent systems with other (rate-dependent) processes (such as with in-
ertial or thermal effects) may lead, however, to serious mathematical difficulties as pointed out
in [Rou10].

In our situation where the Cahn-Larché system is coupled with rate-dependent damage, we
will treat our model problem analytically by a regularization method that gives better regularity
property for c and integrability for u in the first instance. A passage to the limit will finally
give us solutions to the original problem. In doing so, the notion of a weak solution consists of
variational equalities and inequalities as well as an energy estimate, inspired by the concept of
energetic solutions in the framework of rate-independent systems.
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4.1 Regularization

The regularization, we want to consider here, is achieved by adding the term ε∆∂tc to the Cahn-
Hilliard equation (referred to as viscous Cahn-Hilliard equation [BP05]) and the 4-Laplacian
εdiv(|∇u|2∇u) to the quasi-static equilibrium equation of the model problem. The classical
formulation of the regularized problem for ε > 0 now reads as

∂tc = ∆(−∆c + ∂cWch(c) + ∂cWel(e(u), c, z) + ε∂tc), (12a)

div(σ(e(u), c, z)) + εdiv(|∇u|2∇u) = 0, (12b)

0 ∈ ∂zEε(u, c, z) + ∂żR(∂tz) (12c)

with the regularized energies

Eε(u, c, z) := E(u, c, z) + ε

∫

Ω

1

4
|∇u|4 dx,

Ẽε(u, c, z) := Ẽ(u, c, z) + ε

∫

Ω

1

4
|∇u|4 dx.

In the following, we motivate a formulation of weak solutions of the system (12a)-(12b) admissible
for curves q = (u, c, z) ∈ Qv. For every t ∈ [0, T ], equation (12a) can be translated with the
boundary conditions in a weak formulation as follows:

∫

Ω

(∂tc(t))ζ dx = −

∫

Ω

∇µ(t) · ∇ζ dx (13)

for all ζ ∈ H1(Ω) and
∫

Ω

µ(t)ζ dx =

∫

Ω

∇c(t) · ∇ζ + ∂cWch(c(t))ζ + ∂cWel(e(u(t)), c(t), z(t))ζ + ε(∂tc(t))ζ dx (14)

for all ζ ∈ H1(Ω). In the same spirit, we rewrite (12b) as
∫

Ω

∂eWel(e(u(t)), c(t), z(t)) : e(ζ) + ε|∇u(t)|2∇u(t) : ∇ζ dx = 0 (15)

for all ζ ∈ W 1,4
Γ (Ω; Rn) by using the symmetry condition

∂eWel(e, c, z) = (∂eWel(e, c, z))t for e ∈ R
n×n
sym , c, z ∈ R,

following from the assumptions in Section 3 (i). The differential inclusion (12c) is equivalent to

0 = dzẼε(u(t), c(t), z(t)) + r(t) + dżR̃(∂tz(t)) + s(t)

with some r(t) ∈ ∂IW 1,p

+
(Ω)(z(t)) and s(t) ∈ ∂IW 1,p

− (Ω)(∂tz(t)) (see (4) and (5) for the definitions

of Ẽ and R̃). This can be expressed to the following system of variational inequalities:

IW 1,p

− (Ω)(∂tz(t)) −
〈

dzẼε(q(t)) + r(t) + dżR̃(∂tz(t)), ζ − ∂tz(t)
〉

≤ IW 1,p

− (Ω)(ζ) for ζ ∈ W 1,p(Ω),

IW 1,p

+
(Ω)(z(t)) + 〈r(t), ζ − z(t)〉 ≤ IW 1,p

+
(Ω)(ζ) for ζ ∈ W 1,p(Ω).

Here, 〈·, ·〉 denotes the dual pairing between (W 1,p(Ω))⋆ and W 1,p(Ω). This system is, in turn,
equivalent to the inequality system

z(t) ≥ 0 and ∂tz(t) ≤ 0, (16a)
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−
〈

dzẼε(q(t)) + r(t) + dżR̃(∂tz(t)), ∂tz(t)
〉

≥ 0, (16b)
〈

dzẼε(q(t)) + r(t) + dżR̃(∂tz(t)), ζ
〉

≥ 0 for ζ ∈ W 1,p
− (Ω), (16c)

〈r(t), ζ − z(t)〉 ≤ 0 for ζ ∈ W 1,p
+ (Ω). (16d)

Due to the lack of regularity of q, (16b) cannot be justified rigorously. To overcome this difficulty,
we use a formal calculation originating from energetic formulations introduced in [MT99].

Proposition 4.1 (Energetic characterization) Let q ∈ Qv∩C2(ΩT ; Rn×R×R) be a smooth
solution of (13)-(15) with (IBC1)-(IBC8). Then the following two conditions are equivalent:

(i) (16b) with r(t) ∈ ∂IW 1,p

+
(Ω)(z(t)) for all t ∈ [0, T ],

(ii) for all 0 ≤ t1 ≤ t2 ≤ T :

Eε(q(t2)) +

∫ t2

t1

〈dżR̃(∂tz), ∂tz〉ds +

∫ t2

t1

∫

Ω

|∇µ|2 + ε|∂tc|
2 dxds − Eε(q(t1))

≤

∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxds + ε

∫ t2

t1

∫

Ω

|∇u|2∇u : ∇∂tbdxds. (17)

Proof. We first show for all t ∈ [0, T ]:

〈r, ∂tz(t)〉 = 0 for all r ∈ ∂IW 1,p

+
(Ω)(z(t)). (18)

The inequality 0 ≤ 〈r, ∂tz(t)〉 follows directly from (16d) by putting ζ = z(t) − ∂tz(t). The ’≥’
- part can be shown by an approximation argument. Applying Lemma 5.1 with fM = z(t) and
f = z(t) and ζ = −∂tz(t), we obtain a sequence {ζM} ⊆ W 1,p

+ (Ω) and constants νM > 0 such that
−ζM → ∂tz(t) in W 1,p(Ω) as M → ∞ and 0 ≤ z(t) − νMζM a.e. in Ω for all M ∈ N. Testing
(16d) with ζ = z(t) − νMζM shows 〈r,−ζM 〉 ≤ 0. Passing to M → ∞ gives 〈r, ∂tz(t)〉 ≤ 0.

To (ii) ⇒ (i) : We remark that (14) and (15) can be written in the following form:
∫

Ω

µ(t)ζ1 − ε(∂tc(t))ζ1 dx = 〈dcẼε(q(t)), ζ1〉, (19a)

〈duẼε(q(t)), ζ2〉 = 0, (19b)

for all t ∈ [0, T ], all ζ1 ∈ H1(Ω) and all ζ2 ∈ W 1,4
Γ (Ω; Rn).

Let t0 ∈ [0, T ). It follows

Eε(q(t0 + h)) − Eε(q(t0))

h
+ −

∫ t0+h

t0

〈dżR̃(∂tz), ∂tz〉dt + −

∫ t0+h

t0

∫

Ω

|∇µ|2 + ε|∂tc|
2 dxdt

≤ −

∫ t0+h

t0

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxdt + ε−

∫ t0+h

t0

∫

Ω

|∇u|2∇u : ∇∂tbdxdt.

Letting h ց 0 gives

d

dt
Ẽε(q(t0)) + 〈dżR̃(∂tz(t0)), ∂tz(t0)〉 +

∫

Ω

|∇µ(t0)|
2 + ε|∂tc(t0)|

2 dx

≤

∫

Ω

∂eWel(e(u(t0)), c(t0), z(t0)) : e(∂tb(t0))dx + ε

∫

Ω

|∇u(t0)|
2∇u(t0) : ∇∂tb(t0) dx

= 〈duẼε(q(t0)), ∂tb(t0)〉.
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Using the chain rule and (13)-(15) yield

d

dt
Ẽε(q(t0)) = 〈duẼε(q(t0)), ∂tu(t0)〉

︸ ︷︷ ︸

apply (19b)

+ 〈dcẼε(q(t0)), ∂tc(t0)〉
︸ ︷︷ ︸

apply (19a) and (13)

+〈dzẼε(q(t0)), ∂tz(t0)〉

= 〈duẼε(q(t0)), ∂tb(t0)〉 +

∫

Ω

−|∇µ(t0)|
2 − ε|∂tc(t0)|

2 dx + 〈dz Ẽε(q(t0)), ∂tz(t0)〉.

In consequence, property (i) follows together with (18). The case t0 = T can be derived
similarly by considering the difference quotient of t0 and t0 − h.

To (i) ⇒ (ii) : This implication follows from the relation Eε(q(t2))−Eε(q(t1)) =
∫ t2

t1
d
dt Ẽε(q(t)) dt

as well as the equations (13)-(15) and (18). ¥

Remark 4.2

(i) In the rate-independent case β = 0 and for convex Eε with respect to z, condition (16c) can
be characterized by a stability condition which reads as

Eε(u(t), c(t), z(t)) ≤ Eε(u(t), c(t), ζ) + R(ζ − z(t)) (20)

for all t ∈ [0, T ] and all test-functions ζ ∈ W 1,p
+ (Ω). Thereby, (17) and (20) give an

equivalent description of the differential inclusion (12c) for smooth solutions. This concept
of solutions are referred to as global energetic solutions and was introduced in [MT99]. We
emphasize that the damage variable z in the rate-independent case β = 0 is a function of
bounded variation and is allowed to exhibit jumps. For a comprehensive introduction, we
refer to [AFP00]. To tackle rate-dependent systems and non-convexity of Eε with respect
to z, we can not use formulation (20) (cf. [MRS09, MRZ10]).

(ii) For smooth solutions q, satisfying (13)-(15), the energy inequality (17) and the variational
inequality (16c), we even obtain the following energy balance:

Eε(q(t2)) +

∫ t2

t1

〈dżR̃(∂tz), ∂tz〉ds +

∫ t2

t1

∫

Ω

|∇µ|2 + ε|∂tc|
2 dxds

= Eε(q(t1)) +

∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxds + ε

∫ t2

t1

∫

Ω

|∇u|2∇u : ∇∂tbdxds

for all 0 ≤ t1 ≤ t2 ≤ T .

This motivates the definition of a solution in the following sense:

Definition 4.3 (Weak solution - viscous problem) A triple q = (u, c, z) ∈ Qv with c(0) =
c0, z(0) = z0, z ≥ 0 and ∂tz ≤ 0 a.e. in ΩT is called a weak solution of the viscous system
(12a)-(12c) with initial-boundary data and constraints (IBC1)-(IBC8) if it satisfies the following
conditions:

(i) for all ζ ∈ L2([0, T ];H1(Ω))

∫

ΩT

(∂tc)ζ dxdt = −

∫

ΩT

∇µ · ∇ζ dxdt, (21)
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where µ ∈ L2([0, T ];H1(Ω)) satisfies for all ζ ∈ L2([0, T ];H1(Ω))

∫

ΩT

µζ dxdt =

∫

ΩT

∇c · ∇ζ + ∂cWch(c)ζ + ∂cWel(e(u), c, z)ζ + ε(∂tc)ζ dxdt, (22)

(ii) for all ζ ∈ L4([0, T ];W 1,4
Γ (Ω; Rn))

∫

ΩT

∂eWel(e(u), c, z) : e(ζ) + ε|∇u|2∇u : ∇ζ dxdt = 0, (23)

(iii) for all ζ ∈ Lp([0, T ];W 1,p
− (Ω)) ∩ L∞(ΩT )

0 ≤

∫

ΩT

|∇z|p−2∇z · ∇ζ + (∂zWel(e(u), c, z) − α + β(∂tz))ζ dxdt +

∫ T

0

〈r(t), ζ(t)〉dt,

(24)

where r ∈ L1(ΩT ) ⊂ L1
(
[0, T ]; (W 1,p(Ω))∗

)
satisfies for all ζ ∈ W 1,p

+ (Ω) and for a.e.
t ∈ [0, T ]

〈r(t), ζ − z(t)〉 ≤ 0, (25)

(iv) for a.e. 0 ≤ t1 ≤ t2 ≤ T

Eε(q(t2)) +

∫

Ω

α(z(t1) − z(t2)) dx +

∫ t2

t1

∫

Ω

β|∂tz|
2 dxds +

∫ t2

t1

∫

Ω

|∇µ|2 + ε|∂tc|
2 dxds

≤ Eε(q(t1)) +

∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxds + ε

∫ t2

t1

∫

Ω

|∇u|2∇u : ∇∂tbdxds.

(26)

Theorem 4.4 (Existence theorem - viscous problem) Let the assumptions in Section 3 be
satisfied and let c0 ∈ H1(Ω), z0 ∈ W 1,p(Ω) with 0 ≤ z0 ≤ 1 a.e. in Ω and a viscosity factor
ε ∈ (0, 1] be given. Then there exists a weak solution q ∈ Qv of the viscous system (12a)-(12c)
in the sense of Definition 4.3. In addition:

r = −χ{z=0}[∂zWel(e(u), c, z)]+, (27)

where χNz
denotes the characteristic function of the level set Nz := {z = 0} and [·]+ := max{0, ·}.

4.2 Limit problem

Our main aim in this work is to establish an existence result for the system (12a)-(12c) with
vanishing ε-terms, i.e. with ε = 0. In the same fashion as in Section 4.1 we introduce a weak
notion of (6a)-(6c) as follows.

Definition 4.5 (Weak solution - limit problem) A triple q = (u, c, z) ∈ Q with z(0) = z0,
z ≥ 0 and ∂tz ≤ 0 a.e. in ΩT is called a weak solution of the system (6a)-(6c) with boundary
and initial conditions (IBC1)-(IBC8) if it satisfies the following conditions:

11



(i) for all ζ ∈ L2([0, T ];H1(Ω)) with ∂tζ ∈ L2(ΩT ) and ζ(T ) = 0

∫

ΩT

(c − c0)∂tζ dxdt =

∫

ΩT

∇µ · ∇ζ dxdt,

where µ ∈ L2([0, T ];H1(Ω)) satisfies for all ζ ∈ L2([0, T ];H1(Ω))

∫

ΩT

µζ dxdt =

∫

ΩT

∇c · ∇ζ + ∂cWch(c)ζ + ∂cWel(e(u), c, z)ζ dxdt,

(ii) for all ζ ∈ L2([0, T ];H1
Γ(Ω; Rn))

∫

ΩT

∂eWel(e(u), c, z) : e(ζ) dxdt = 0,

(iii) for all ζ ∈ Lp([0, T ];W 1,p
− (Ω)) ∩ L∞(ΩT )

0 ≤

∫

ΩT

|∇z|p−2∇z · ∇ζ + ∂zWel(e(u), c, z)ζ − αζ + β(∂tz)ζ dxdt +

∫ T

0

〈r(t), ζ(t)〉dt,

where r ∈ L1(ΩT ) satisfies for all ζ ∈ W 1,p
+ (Ω) and for a.e. t ∈ [0, T ]

〈r(t), ζ − z(t)〉 ≤ 0,

(iv) for a.e. 0 ≤ t1 ≤ t2 ≤ T

E(q(t2)) +

∫

Ω

α(z(t1) − z(t2)) dx +

∫ t2

t1

∫

Ω

β|∂tz|
2 dxds +

∫ t2

t1

∫

Ω

|∇µ|2 dxds

≤ E(q(t1)) +

∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb)dxds.

Theorem 4.6 (Existence theorem - limit problem) Let the assumptions in Section 3 be
satisfied and let c0 ∈ H1(Ω), z0 ∈ W 1,p(Ω) with 0 ≤ z0 ≤ 1 a.e. in Ω be given. Then there exists
a weak solution q ∈ Q of the system (6a)-(6c) in the sense of Definition 4.5.

5 Proof of the existence theorems

5.1 Preliminaries

The proof of Theorem 4.4 is based on recursive functional minimization that comes from an
implicit Euler scheme of the system (12a)-(12c) with respect to the time variable. To obtain
from the time-discrete model the time-continuous model (12a)-(12c), we need some preliminary
results on approximation schemes for test-functions, which will be presented in this section.

Lemma 5.1 (Approximation of test-functions) Let p > n and f, ζ ∈ W 1,p
+ (Ω) with {ζ =

0} ⊇ {f = 0}. Furthermore, let {fM}M∈N ⊆ W 1,p
+ (Ω) be a sequence with fM ⇀ f in W 1,p(Ω)

as M → ∞. Then, there exist a sequence {ζM}M∈N ⊆ W 1,p
+ (Ω) and constants νM > 0, M ∈ N,

such that

(i) ζM → ζ in W 1,p(Ω) as M → ∞,

12



(ii) ζM ≤ ζ a.e. in Ω for all M ∈ N,

(iii) νMζM ≤ fM a.e. in Ω for all M ∈ N.

Proof. Without loss of generality we may assume ζ 6≡ 0 on Ω.
Let {δk} be a sequence with δk ց 0 as k → ∞ and δk > 0. Define for every k ∈ N the

approximation function ζ̃k ∈ W 1,p
+ (Ω) as

ζ̃k := [ζ − δk]+,

where [·]+ stands for max{0, ·}. Let 0 < α < 1 − n
p be a fixed constant. Then ζ̃k ∈ C0,α(Ω) due

to W 1,p(Ω) →֒ C0,α(Ω). Furthermore, set the constant Rk, k ∈ N, to

Rk :=
(

δk/‖ζ‖C0,α(Ω)

)1/α

> 0.

It follows {ζ̃k = 0} ⊇ Ω ∩ BRk
({ζ = 0}) ⊇ Ω ∩ BRk

({f = 0}). Without loss of generality we
may assume Ω \ BRk

({f = 0}) 6= ∅ for all k ∈ N. Furthermore, there exists a strictly increasing
sequence {Mk} ⊆ N such that we find for all k ∈ N:

fM ≥ ηk/2 a.e. on Ω \ BRk
({f = 0}) for all M ≥ Mk

with ηk := inf{f(x) |x ∈ Ω \ BRk
({f = 0})} > 0, k ∈ N, (note that fM → f in C0,α(Ω) as

M → ∞). This implies ν̃k ζ̃k ≤ fM a.e. on Ω for all M ≥ Mk by setting ν̃k := ηk/(2‖ζ‖L∞(Ω)) >

0. The claim follows with ζM := 0 and νk := 1 for M ∈ {1, . . . ,M1 − 1} and ζM := ζ̃δk
and

νM := ν̃k for each M ∈ {Mk, . . . ,Mk+1 − 1}, k ∈ N. ¥

Lemma 5.2 (Approximation of time-dependent test-functions) Let p > n, q ≥ 1 and
f, ζ ∈ Lq([0, T ];W 1,p

+ (Ω)) with {ζ = 0} ⊇ {f = 0}. Furthermore, let {fM}M∈N ⊆ Lq([0, T ];W 1,p
+ (Ω))

be a sequence with fM (t) ⇀ f(t) in W 1,p(Ω) as M → ∞ for a.e. t ∈ [0, T ]. Then, there exist a
sequence {ζM}M∈N ⊆ Lq([0, T ];W 1,p

+ (Ω)) and constants νM,t > 0 such that

(i) ζM → ζ in Lq([0, T ];W 1,p(Ω)) as M → ∞,

(ii) ζM ≤ ζ a.e. in ΩT for all M ∈ N (in particular {ζM = 0} ⊇ {ζ = 0}),

(iii) νM,tζM (t) ≤ fM (t) a.e. in Ω for a.e. t ∈ [0, T ] and for all M ∈ N.

If, in addition, ζ ≤ f a.e. in ΩT then condition (iii) can be refined to

(iii)’ ζM ≤ fM a.e. in ΩT for all M ∈ N.

Proof. Let {δk} with δk ց 0 as k → ∞ and δk > 0 be a sequence and 0 < α < 1 − n
p be a

fixed constant. We construct the approximation functions ζM ∈ Lq([0, T ];W 1,p
+ (Ω)), M ∈ N, as

follows:

ζM (t) :=

M∑

k=1

χAk
M

(t)[ζ(t) − δk]+, (28)

where χAk
M

: [0, T ] → {0, 1} is defined as the characteristic function of the measurable set Ak
M

given by

Ak
M :=

{

P k
M \

(
⋃M

i=k+1 P i
M

)

if k < M,

PM
M if k = M,
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with

P k
M :=

{

t ∈ [0, T ]
∣
∣ Ω \ BRk(t)({f(t) = 0}) 6= ∅

and fM (t) ≥ ηk(t)/2 a.e. on Ω \ BRk(t)({f(t) = 0})
}

, (29)

where the functions Rk, ηk : [0, T ] → R
+ are defined by

Rk(t) =
(

δk/‖ζ(t)‖C0,α(Ω)

)1/α

,

ηk(t) = inf{f(t, x) |x ∈ Ω \ BRk(t)({f(t) = 0})}.

Here, we use the convention Rk(t) := ∞ for ζ(t) ≡ 0. Note that Ak
M , 1 ≤ k ≤ M , are pairwise

disjoint by construction.
Consider a t ∈ [0, T ] with fM (t) ⇀ f(t) in W 1,p(Ω) and ζ(t) 6≡ 0 with {ζ(t) = 0} ⊇ {f(t) =

0}. Let K ∈ N be arbitrary but large enough such that Ω \ BRK(t)({f(t) = 0}) 6= ∅ holds. It

follows the existence of an M̃ ≥ K with t ∈ PK
M for all M ≥ M̃ . Therefore, for each M ≥ M̃

exists a k ≥ K such that t ∈ Ak
M , i.e. ζM (t) = [ζ(t) − δk]+. Thus ζM (t) → ζ(t) in W 1,p(Ω) as

K → ∞. Lebesgue’s convergence theorem shows (i).
Property (ii) follows immediately from (28). It remains to show (iii). Let M ∈ N be arbitrary.
If ζM (t) ≡ 0 we set νM,t = 1. Otherwise we find a unique 1 ≤ k ≤ M with t ∈ Ak

M and
ζM (t) = [ζ(t) − δk]+. This, in turn, implies the existence of a νM,t > 0 with νM,tζM ≤ fM (see
proof of Lemma 5.1).

In the case ζ ≤ f , we use instead of (29) the set:

P k
M :=

{

t ∈ [0, T ]
∣
∣ ‖fM (t) − f(t)‖C0(Ω) ≤ δk

}

.

With a similar argumentation, {ζM} fulfills (i), (ii) and (iii)’. ¥

Lemma 5.3 Let f ∈ Lp(Ω; Rn), g ∈ Lp(Ω) and z ∈ W 1,p(Ω) with f · ∇z ≥ 0 and {f = 0} ⊇
{z = 0} a.e.. Furthermore, we assume that

∫

Ω

f · ∇ζ + gζ dx ≥ 0 for all ζ ∈ W 1,p
− (Ω) with {ζ = 0} ⊇ {z = 0}.

Then
∫

Ω

f · ∇ζ + gζ dx ≥

∫

{z=0}

[g]+ζ dx for all ζ ∈ W 1,p
− (Ω).

Proof. We assume z 6≡ 0 on Ω. Let ζ ∈ W 1,p
− (Ω) be a test-function. For δ > 0 small enough

such that Ω \ Bδ({z = 0}) 6= ∅, we define

ζδ := max
{
ζ,−z‖ζ‖L∞C−1

δ

}

with the constant

Cδ := inf
{
z(x) |x ∈ Ω \ Bδ({z = 0})

}
> 0.

We consider the following partition of Ω:

Ω = Σ1 ∪ Σ≤
2 ∪ Σ>

2
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with

Σ1 := Ω \ Bδ({z = 0}),

Σ≤
2 := Ω ∩ Bδ({z = 0}) ∩ {ζ ≤ −z‖ζ‖L∞C−1

δ },

Σ>
2 := Ω ∩ Bδ({z = 0}) ∩ {ζ > −z‖ζ‖L∞C−1

δ }.

By construction, the sequence {ζδ}δ∈(0,1] satisfies

ζδ(x) =

{

ζ(x), if x ∈ Σ1 ∪ Σ>
2 ,

−z(x)‖ζ‖L∞C−1
δ , if x ∈ Σ≤

2 .

In particular, ζδ = 0 on {z = 0} for every δ ∈ (0, 1] and ζδ
⋆
⇀ ζ in L∞({z > 0}) as δ ց 0. We

estimate
∫

Ω

f · ∇ζ + gζ dx −

∫

{z=0}

[g]+ζ dx

=

∫

Ω

f · ∇(ζ − ζδ) + g(ζ − ζδ) dx −

∫

{z=0}

[g]+ζ dx +

∫

Ω

f · ∇ζδ + gζδ dx

︸ ︷︷ ︸

≥0

≥

∫

Ω

f · ∇(ζ − ζδ) dx +

∫

{z>0}

g(ζ − ζδ) dx

=

∫

Σ1

f · ∇(ζ − ζδ) dx

︸ ︷︷ ︸

=0

+

∫

Σ
≤
2

f · ∇(ζ − ζδ) dx +

∫

Σ>
2

f · ∇(ζ − ζδ) dx

︸ ︷︷ ︸

=0

+

∫

{z>0}

g(ζ − ζδ) dx

= ‖ζ‖L∞C−1
δ

∫

Σ
≤
2

f · ∇z dx +

∫

Σ
≤
2

f · ∇ζ dx

︸ ︷︷ ︸

=
R

Σ
≤
2

\{z=0}
f ·∇ζ dx

+

∫

{z>0}

g(ζ − ζδ) dx

≥

∫

Σ
≤
2
\{z=0}

f · ∇ζ dx +

∫

{z>0}

g(ζ − ζδ) dx.

The terms on the right hand side converge to 0 as δ ց 0. ¥

5.2 Viscous case

This section is aimed to prove Theorem 4.4. The initial displacement u0
ε is chosen to be a

minimizer of the functional u 7→ Eε(u, c0, z0) defined on the space W 1,4(Ω) with the constraint
u|Γ = b(0)|Γ (the existence proof is based on direct methods in the calculus of variations -
see the proof of Lemma 5.4 below). We now apply an implicit Euler scheme of the system
(12a)-(12c). The discretization fineness is given by τ := T

M , where M ∈ N. We set q0
M,ε :=

(u0
M,ε, c

0
M,ε, z

0
M,ε) := (u0

ε, c
0, z0) and construct qm

M,ε for m ∈ {1, . . . ,M} recursively by considering
the functional

E
m
M,ε(u, c, z) := Ẽε(u, c, z) + R̃

(

z − zm−1
M,ε

τ

)

τ +
1

2τ
‖c − cm−1

M,ε ‖2
Ṽ0

+
ε

2τ
‖c − cm−1

M,ε ‖2
L2(Ω).
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The set of admissible states for E
m
M,ε is

Qm
M,ε :=

{

q = (u, c, z) ∈ W 1,4(Ω; Rn) × H1(Ω) × W 1,p(Ω)

with u|Γ = b(mτ)|Γ,

∫

Ω

c − c0 dx = 0 and 0 ≤ z ≤ zm−1
M,ε a.e. in Ω

}

.

A minimization problem for the functional E
m
M,ε(u, c, z) = E

m
M,ε(u, c) =

∫

Ω
1
2 |∇c|2 + Wch(c) +

Wel(e(u), c) dx + 1
2τ ‖c − cm−1

M,ε ‖2
L containing a weighted (H1(Ω, Rn))⋆-scalar product 〈·, ·〉L has

been considered in [Gar00]. However, due to the additional internal variable z, the passage to
M → ∞ becomes much more involved.

In the following, we will omit the ε-dependence in the notation since ε ∈ (0, 1] is fixed until
Section 5.3.

Lemma 5.4 The functional E
m
M has a minimizer qm

M = (um
M , cm

M , zm
M ) ∈ Qm

M .

Proof. The existence is shown by direct methods in the calculus of variations. We can immedi-
ately see that Qm

M is closed with respect to the weak topology in W 1,4(Ω; Rn)×H1(Ω)×W 1,p(Ω).
Furthermore, we need to show coercivity and sequentially weakly lower semi-continuity of E

m
M

defined on Qm
M .

(i) Coercivity. We have the estimate

E
m
M (q) ≥

1

2
‖∇c‖2

L2(Ω) +
1

p
‖∇z‖p

Lp(Ω) +
ε

4
‖∇u‖4

L4(Ω).

Therefore, given a sequence {qk}k∈N in Qm
M with the boundedness property E

m
M (qk) < C

for all k ∈ N, we obtain the boundedness of uk in W 1,4(Ω) by Poincaré’s inequality (uk

has fixed boundary data on Γ), the boundedness of ck in H1(Ω) by Poincaré’s inequality
(
∫

Ω
ck dx is conserved) and the boundedness of zk in W 1,p(Ω) by also considering the

restriction 0 ≤ zk ≤ 1 a.e. in Ω.

(ii) Sequentially weakly lower semi-continuity. All terms in E
m
M except

∫

Ω
Wch(c) dx and

∫

Ω
Wel(e(u), c, z) dx are convex and continuous and therefore sequentially weakly l.s.c..

Now let (uk, ck, zk) ⇀ (u, c, z) be a weakly converging sequence in Qm
M . In particular,

zk → z in Lp(Ω), zk → z a.e. in Ω and ck → c in Lr(Ω) as k → ∞ for all 1 ≤ r < 2⋆

and ck → c a.e. in Ω for a subsequence. Lebesgue’s generalized convergence theorem
yields

∫

Ω
Wch(ck) dx →

∫

Ω
Wch(c) dx using (A6). The remaining term can be treated by

employing the uniform convexity of Wel(·, c, z) (see (A1)):

∫

Ω

Wel(e(uk), ck, zk) − Wel(e(u), c, z) dx

=

∫

Ω

Wel(e(u), ck, zk) − Wel(e(u), c, z) dx +

∫

Ω

Wel(e(uk), ck, zk) − Wel(e(u), ck, zk) dx

≥

∫

Ω

Wel(e(u), ck, zk) − Wel(e(u), c, z) dx

︸ ︷︷ ︸

→0 by Lebesgue’s gen. conv. theorem and (A2)

+

∫

Ω

∂eWel(e(u), ck, zk)(e(uk) − e(u)) dx.

The second term also converges to 0 because of ∂eWel(e(u), ck, zk) → ∂eWel(e(u), c, z) in
L2(Ω) (by Lebesgue’s generalized convergence theorem and (11a)) and e(uk)− e(u) ⇀ 0 in
L2(Ω).

16



Thus there exists qm
M = (um

M , cm
M , zm

M ) ∈ Qm
M such that E

m
M (qm

M ) = infq∈Qm
M

E
m
M (q). ¥

The minimizers qm
M for m ∈ {0, . . . ,M} are used to construct approximate solutions qM and

q̂M to our viscous problem by a piecewise constant and linear interpolation in time, respectively.
More precisely,

qM (t) := qm
M ,

q̂M (t) := βqm
M + (1 − β)qm−1

M

with t ∈ ((m − 1)τ,mτ ] and β = t−(m−1)τ
τ . The retarded function q−M is set to

q−M (t) :=

{

qM (t − τ), if t ∈ [τ, T ],

q0
ε , if t ∈ [0, τ).

The functions bM and b−M are analogously defined adapting the notation bm
M := b(mτ). Further-

more, the discrete chemical potential is given by (note that ∂tĉM (t) ∈ V0)

µM (t) := −(−∆)−1 (∂tĉM (t)) + λM (t) (30)

with the Lagrange multiplier λM originating from mass conservation:

λM (t) := −

∫

Ω

∂cWch(cM (t)) + ∂cWel(e(uM (t)), cM (t), zM (t)) dx. (31)

The discretization of the time variable t will be expressed by the functions

dM (t) := min{mτ |m ∈ N0 and mτ ≥ t},

d−M (t) := min{(m − 1)τ |m ∈ N0 and mτ ≥ t}.

The following lemma clarifies why the functions qM , q−M and q̂M are approximate solutions to
our problem.

Lemma 5.5 (Euler-Lagrange equations and energy estimate) The tuples qM , q−M and q̂M

satisfy the following properties:

(i) for all t ∈ (0, T ) and all ζ ∈ H1(Ω)

∫

Ω

(∂tĉM (t))ζ dx = −

∫

Ω

∇µM (t) · ∇ζ dx, (32)

(ii) for all t ∈ (0, T ) and all ζ ∈ H1(Ω)

∫

Ω

µM (t)ζ dx =

∫

Ω

∇cM (t) · ∇ζ + ∂cWch(cM (t))ζ dx

+

∫

Ω

∂cWel(e(uM (t)), cM (t), zM (t))ζ + ε(∂tĉM (t))ζ dx, (33)

(iii) for all t ∈ [0, T ] and for all ζ ∈ W 1,4
Γ (Ω; Rn)

0 =

∫

Ω

∂eWel(e(uM (t)), cM (t), zM (t)) : e(ζ) + ε|∇uM (t)|2∇uM (t) : ∇ζ dx, (34)
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(iv) for all t ∈ (0, T ) and all ζ ∈ W 1,p(Ω) such that there exists a constant ν > 0 with 0 ≤
νζ + zM (t) ≤ z−M (t) a.e. in Ω

0 ≤

∫

Ω

|∇zM (t)|p−2∇zM (t) · ∇ζ + ∂zWel(e(uM (t)), cM (t), zM (t))ζ − αζ + β(∂tẑM (t))ζ dx,

(35)

(v) for all t ∈ [0, T ]

Eε(qM (t)) +

∫ dM (t)

0

R(∂tẑM ) ds +

∫ dM (t)

0

∫

Ω

ε

2
|∂tĉM |2 +

1

2
|∇µM |2 dxds

≤ Eε(q
0
ε) +

∫ dM (t)

0

∫

Ω

∂eWel(e(u
−
M + b − b−M ), c−M , z−M ) : e(∂tb) dxds

+ ε

∫ dM (t)

0

∫

Ω

|∇u−
M + ∇b −∇b−M |2∇(u−

M + b − b−M ) : ∇∂tbdxds. (36)

Proof. Using Lebesgue’s generalized convergence theorem, the mean value theorem of differen-
tiability and growth conditions (11a), (A4)-(A6), we obtain the variational derivatives of Ẽε with
respect to u, c and z:

〈duẼε(q), ζ〉 =

∫

Ω

∂eWel(e(u), c, z) : e(ζ) + ε|∇u|2∇u : ∇ζ dx for ζ ∈ W 1,4(Ω; Rn), (37a)

〈dcẼε(q), ζ〉 =

∫

Ω

∇c · ∇ζ + ∂cWch(c)ζ + ∂cWel(e(u), c, z)ζ dx for ζ ∈ H1(Ω), (37b)

〈dzẼε(q), ζ〉 =

∫

Ω

|∇z|p−2∇z · ∇ζ + ∂zWel(e(u), c, z)ζ dx for ζ ∈ W 1,p(Ω). (37c)

To (i)-(v):

(i) This follows from (30).

(ii) qm
M fulfills 〈dcE

m
M (qm

M ), ζ1〉 = 0 for all ζ1 ∈ V0 and all m ∈ {1, . . . ,M}. Therefore,

0 = 〈dcẼε(qM (t)), ζ1〉 + 〈∂tĉM (t), ζ1〉Ṽ0
+ ε〈∂tĉM (t), ζ1〉L2(Ω).

On the one hand, definition (30) implies

〈∂tĉM (t), ζ1〉Ṽ0
= 〈(−∆)−1 (∂tĉM (t)) , ζ1〉L2(Ω)

= 〈−µM (t) + λM (t), ζ1〉L2(Ω)

= −〈µM (t), ζ1〉L2(Ω)

and consequently

0 = 〈dcẼε(qM (t)), ζ1〉 − 〈µM (t), ζ1〉L2(Ω) + ε〈∂tĉM (t), ζ1〉L2(Ω) for all ζ1 ∈ V0. (38)

On the other hand, definitions (30) and (31) yield for ζ2 ≡ C̃ with constant C̃ ∈ R:

〈dcẼε(qM (t)), ζ2〉 − 〈µM (t), ζ2〉L2(Ω) + ε〈∂tĉM (t), ζ2〉L2(Ω)

= C̃Ln(Ω)λM (t) + 〈(−∆)−1 (∂tĉM (t)) , ζ2〉L2(Ω)
︸ ︷︷ ︸

=0

−〈λM (t), ζ2〉L2(Ω)
︸ ︷︷ ︸

C̃Ln(Ω)λM (t)

+0
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= 0. (39)

Setting ζ1 = ζ − −
∫

ζ and ζ2 = −
∫

ζ, inserting (37b) into (38) and (39), and adding (38) to
(39) shows finally (ii) (cf. [Gar00, Lemma 3.2]).

(iii) This property follows from (37a) and 0 = 〈duE
m
M (qm

M ), ζ〉 = 〈duẼε(q
m
M ), ζ〉 for all ζ ∈

W 1,4
Γ (Ω; Rn).

(iv) By construction, zm
M minimizes E

m
M (um

M , cm
M , ·) in the space W 1,p(Ω) with the constraints

0 ≤ z and z − zm−1
M ≤ 0 a.e. in Ω. This implies

−〈dzẼε(q
m
M ), ζ − zm

M 〉 −

〈

dżR̃

(
zm
M − zm−1

M

τ

)

, ζ − zm
M

〉

L2(Ω)

≤ 0 (40)

for all ζ ∈ W 1,p(Ω) with 0 ≤ ζ ≤ zm−1
M a.e. in Ω. Now, let the functions ζ ∈ W 1,p(Ω) and

ν > 0 with 0 ≤ νζ + zM (t) ≤ z−M (t) a.e. in Ω be given. Since ν > 0, we obtain from (40):

−〈dz Ẽε(qM (t)), ζ(t)〉 − 〈dżR̃ (∂tẑM (t)) , ζ(t)〉L2(Ω) ≤ 0.

This and (37c) gives (iv).

(v) Testing E
m
M with q = (um−1

M + bm
M − bm−1

M , cm−1
M , zm−1

M ) and using the chain rule yields:

Eε(q
m
M ) + R

(
zm
M − zm−1

M

τ

)

τ +
1

2τ
‖cm

M − cm−1
M ‖2

Ṽ0
+

ε

2τ
‖cm

M − cm−1
M ‖2

L2(Ω)

≤ Eε(u
m−1
M + bm

M − bm−1
M , cm−1

M , zm−1
M )

= Eε(q
m−1
M ) + Eε(u

m−1
M + bm

M − bm−1
M , cm−1

M , zm−1
M ) − Eε(q

m−1
M )

= Eε(q
m−1
M ) +

∫ mτ

(m−1)τ

d

ds
Eε(u

m−1
M + b(s) − bm−1

M , cm−1
M , zm−1

M ) ds

= Eε(q
m−1
M )

+

∫ mτ

(m−1)τ

∫

Ω

∂eWel(e(u
m−1
M + b(s) − bm−1

M ), cm−1
M , zm−1

M ) : e(∂tb) dxds

+ ε

∫ mτ

(m−1)τ

∫

Ω

|∇um−1
M + ∇b(s) −∇bm−1

M |2∇(um−1
M + b(s) − bm−1

M ) : ∇∂tbdxds.

Summing this inequality for k = 1, . . . ,m one gets:

Eε(q
m
M ) +

m∑

k=1

τ



R

(

zk
M − zk−1

M

τ

)

+
1

2

∥
∥
∥
∥
∥

ck
M − ck−1

M

τ

∥
∥
∥
∥
∥

2

Ṽ0

+
ε

2

∥
∥
∥
∥
∥

ck
M − ck−1

M

τ

∥
∥
∥
∥
∥

2

L2(Ω)





≤ Eε(q
0
ε) +

∫ mτ

0

∫

Ω

∂eWel(e(u
−
M + b − b−M ), c−M , z−M ) : e(∂tb) dxds

+ ε

∫ mτ

0

∫

Ω

|∇u−
M + ∇b −∇b−M |2∇(u−

M + b − b−M ) : ∇∂tbdxds.

Because of
∥
∥
∥

ck
M−ck−1

M

τ

∥
∥
∥

2

Ṽ0

= ‖∇µk
M‖2

L2(Ω) by (30), above estimate shows (v). ¥

The discrete energy inequality (36) gives rise to a-priori estimates for the approximate solutions.
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Lemma 5.6 (Energy boundedness) There exists a constant C > 0 independent of M , t and
ε such that

Eε(qM (t)) +

∫ dM (t)

0

R(∂tẑM ) ds +

∫ dM (t)

0

∫

Ω

ε

2
|∂tĉM |2 +

1

2
|∇µM |2 dxds ≤ C(Eε(q

0
ε) + 1).

Proof. Exploiting (A3) yields the estimate (C > 0 denotes a context-dependent constant inde-
pendent of M , t and ε):

∫

Ω

∂eWel(e(u
−
M (s) + b(s) − b−M (s)), c−M (s), z−M (s)) : e(∂tb(s)) dx

≤ C‖∇∂tb(s)‖L∞(Ω)

∫

Ω

Wel(e(u
−
M (s)), c−M (s), z−M (s)) + |e(b(s) − b−M (s))| + 1dx. (41)

In addition,
∫

Ω

|∇u−
M (s) + ∇b(s) −∇b−M (s)|2∇(u−

M (s) + b(s) − b−M (s)) : ∇∂tb(s) dx

≤ C‖∇∂tb(s)‖L∞(Ω)

∫

Ω

|∇u−
M (s)|3 + |∇(b(s) − b−M (s))|3 dx. (42)

To simplify the notation, we define the function:

γ(t) :=

{

Eε(qM (t)) +
∫ dM (t)

0
R(∂tẑM ) ds +

∫ dM (t)

0

∫

Ω
ε
2 |∂tĉM |2 + 1

2 |∇µM |2 dxds, if t ∈ [0, T ],

Eε(q
0
ε), if t ∈ [−τ, 0).

Using (41) and (42), the discrete energy inequality (36) can be estimated as follows:

γ(t) ≤ Eε(q
0
ε) + C

∫ dM (t)

0

‖∇∂tb(s)‖L∞(Ω)Eε(q
−
M (s)) ds

+ C
∥
∥∇∂tb

∥
∥

L1([0,T ];L∞(Ω))

∥
∥|∇(b − b−M )|3 + |e(b − b−M )| + 1

∥
∥

L∞([0,T ];L1(Ω))

≤ Eε(q
0
ε) + C

∫ d−
M

(t)

−τ

‖∇∂tb(s + τ)‖L∞(Ω)Eε(qM (s)) ds + C

≤ Eε(q
0
ε) + C

∫ t

−τ

‖∇∂tb(s + τ)‖L∞(Ω)γ(s) ds + C.

Gronwall’s inequality shows for all t ∈ [0, T ]

γ(t) ≤ C + Eε(q
0
ε) + C

∫ t

−τ

(C + Eε(q
0
ε))‖∇∂tb(s + τ)‖L∞(Ω) exp

(∫ t

s

‖∇∂tb(l + τ)‖L∞(Ω) dl

)

ds

≤ C(Eε(q
0
ε) + 1).

¥

Corollary 5.7 (A-priori estimates) There exists a constant C > 0 independent of M such
that

(i) ‖uM‖L∞([0,T ];W 1,4(Ω;Rn)) ≤ C,

(ii) ‖cM‖L∞([0,T ];H1(Ω)) ≤ C,

(iii) ‖zM‖L∞([0,T ];W 1,p(Ω)) ≤ C,

(iv) ‖∂tĉM‖L2(ΩT ) ≤ C,

(v) ‖∂tẑM‖L2(ΩT ) ≤ C,

(vi) ‖µM‖L2([0,T ];H1(Ω)) ≤ C

for all M ∈ N.
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Proof. We use Lemma 5.6. The boundedness of {∇(uM (t)− bM (t))} in L4(Ω; Rn) and uM (t)−
bM (t) ∈ H1

Γ(Ω; Rn) yield (i) by Poincaré’s inequality. The boundedness of {∇cM (t)} in L2(Ω)
and mass conservation imply (ii) by Poincaré’s inequality. The boundedness of {∇zM (t)} in
Lp(Ω) and 0 ≤ zM (t) ≤ 1 a.e. in Ω for all M and all t ∈ [0, T ] show (iii). The properties
(iv) and (v) follow immediately from Lemma 5.6. The boundedness of {∇µM} in L2(ΩT ) and
{
∫

Ω
µM (t) dx} with respect to M and t show (vi) by Poincaré’s inequality. Indeed, {

∫

Ω
µM (t) dx}

is bounded with respect to M and t because of (33) and (32) tested with ζ ≡ 1. ¥

Due to the a-priori estimates we can select weakly (weakly-⋆) convergent subsequences (see
Lemma 5.8). Furthermore, exploiting the Euler-Lagrange equations of the approximate solu-
tions, we even attain strong convergence properties (see Lemma 5.9 and Lemma 5.11).

Lemma 5.8 (Weak convergence of the approximate solutions) There exists a subse-
quence {Mk} and elements (u, c, z) = q ∈ Qv and µ ∈ L2([0, T ];H1(Ω)) with c(0) = c0, z(0) = z0,
0 ≤ z ≤ 1 and ∂tz ≤ 0 a.e. in ΩT such that the following properties are satisfied:

(i) zMk
, z−Mk

⋆
⇀ z in L∞([0, T ];W 1,p(Ω)),

zMk
(t), z−Mk

(t) ⇀ z(t) in W 1,p(Ω) a.e. t,

zMk
, z−Mk

→ z a.e. in ΩT and

ẑMk
⇀ z in H1([0, T ];L2(Ω)),

(ii) uMk

⋆
⇀ u in L∞([0, T ];W 1,4(Ω)),

(iii) cMk
, c−Mk

⋆
⇀ c in L∞([0, T ];H1(Ω)),

cMk
(t), c−Mk

(t) ⇀ c(t) in H1(Ω) a.e. t,

cMk
, c−Mk

→ c a.e. in ΩT and

ĉMk
⇀ c in H1([0, T ];L2(Ω)),

(iv) µMk
⇀ µ in L2([0, T ];H1(Ω))

as k → ∞.

Proof. To simplify notation we omit the index k in the proof.

(iii) Since ĉM is bounded in L2([0, T ];H1(Ω)) and ∂tĉM is bounded in L2(ΩT ) we obtain ĉM → ĉ
in L2(ΩT ) as M → ∞ for a subsequence by a compactness result from J. P. Aubin and
J. L. Lions (see [Sim86]). Therefore, we can extract a subsequence such that ĉM (t) → ĉ(t)
in L2(Ω) for a.e. t ∈ [0, T ] and ĉM → ĉ a.e. on ΩT . We denote this subsequence also with
{ĉM}. The boundedness of {ĉM (t)}M∈N in H1(Ω) even shows ĉM (t) ⇀ ĉ(t) in H1(Ω) for

a.e. t ∈ [0, T ]. In addition, the boundedness of {ĉM} in L∞([0, T ];H1(Ω)) shows ĉM
⋆
⇀ ĉ

in L∞([0, T ];H1(Ω)). Furthermore, we obtain from the boundedness of {∂tĉM} in L2(ΩT )
for every t ∈ [0, T ]:

‖cM (t) − ĉM (t)‖L1(Ω) = ‖ĉM (dM (t)) − ĉM (t)‖L1(Ω)

≤

∫ dM (t)

t

‖∂tĉM (s)‖L1(Ω) ds

≤ C(dM (t) − t)1/2‖∂tĉM‖L2(ΩT ) → 0 as M → ∞.

Lebesgue’s convergence theorem yields ‖cM − ĉM‖L1(ΩT ) → 0 as M → ∞. Analogously,

we obtain ‖cM − c−M‖L1(ΩT ) → 0 as M → ∞. Thus, the convergence properties for ĉM also

holds for cM and c−M with the same limit c = c− = ĉ a.e. . The boundedness of {ĉM} in
H1([0, T ];L2(Ω)) shows ĉM ⇀ c in H1([0, T ];L2(Ω)) for a subsequence.

(i) We obtain the convergence properties for {zM} with the same argumentation as in (iii).
Note that the limit function is also monotonically decreasing with respect to t.

(ii) This property follows from the boundedness of {uM} in L∞([0, T ];H1(Ω; Rn)).

(iv) This property follows from the boundedness of {µM} in L2([0, T ];H1(Ω)). ¥
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In the sequel, we take advantage from the elementary inequality (x, y are elements of an inner
product space X with scalar product 〈·, ·〉)

Cuc‖x − y‖q ≤
〈(
‖x‖q−2x − ‖y‖q−2y

)
, x − y

〉
(43)

for a constant Cuc > 0 depending on X and q ≥ 2. To see this, (43) is equivalent to

Cuc ≤
〈
b, ‖a + b‖q−2(a + b) − ‖a‖q−2a

〉
for all a, b ∈ X, ‖b‖ = 1

by introducing the variables a := x/‖x−y‖ and b := (x−y)/‖x−y‖ for x 6= y. This is equivalent
to

Cuc ≤ ‖a + b‖q−2 + 〈b, a〉 (‖a + b‖q−2 − ‖a‖q−2) for all a, b ∈ X, ‖b‖ = 1. (44)

Now the equivalence ‖a + b‖ ≤ ‖a‖ ⇔ 〈a, b〉 ≤ − 1
2‖b‖

2 gives the estimate:

‖a + b‖q−2 + 〈b, a〉 (‖a + b‖q−2 − ‖a‖q−2) ≥ ‖a + b‖q−2 +
1

2
‖b‖2(‖a‖q−2 − ‖a + b‖q−2)

=
1

2
‖a + b‖q−2 +

1

2
‖a‖q−2

Since ‖b‖ = 1, the right hand side is bounded from below by a positive constant and therefore
(44) follows.

Lemma 5.9 There exists a subsequence {Mk} such that uMk
, u−

Mk
→ u in L4([0, T ];W 1,4(Ω; Rn))

as k → ∞.

Proof. We omit the index k in the proof.
Applying (A1), taking inequality (43) for q = 4 into account and considering (34) with the
test-function ζ = uM (t) − u(t) − bM (t) + b(t), we get

η‖e(uM ) − e(u)‖2
L2(ΩT ;Rn×n) + εCuc‖∇uM −∇u‖4

L4(ΩT ;Rn×n)

≤

∫

ΩT

(∂eWel(e(uM ), cM , zM ) − ∂eWel(e(u), cM , zM )) : (e(uM ) − e(u)) dxdt

+ ε

∫

ΩT

(|∇uM |2∇uM − |∇u|2∇u) : (∇uM −∇u) dxdt

=

∫

ΩT

∂eWel(e(uM ), cM , zM ) : e(ζ) + ε|∇uM |2∇uM : ∇ζ dxdt

︸ ︷︷ ︸

=0 by (34)

+

∫

ΩT

∂eWel(e(uM ), cM , zM ) : (e(bM ) − e(b)) dxdt

︸ ︷︷ ︸

(⋆)

+ε

∫

ΩT

|∇uM |2∇uM : (∇bM −∇b) dxdt

︸ ︷︷ ︸

(⋆⋆)

−

∫

ΩT

(∂eWel(e(u), cM , zM ) : (e(uM ) − e(u)) dxdt

︸ ︷︷ ︸

(⋆⋆⋆)

−ε

∫

ΩT

|∇u|2∇u : (∇uM −∇u) dxdt

︸ ︷︷ ︸

(⋆⋆⋆⋆)

.

(45)
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Since ∂eWel(e(uM ), cM , zM ) is bounded in L2(ΩT ; Rn×n) (by (11a) and Corollary 5.7) as well as
e(bM ) → e(b) in L2(ΩT ; Rn×n), we obtain (⋆) → 0 as M → ∞. The boundedness of |∇uM |2∇uM

in L4/3(ΩT ; Rn×n) by Corollary 5.7 and ∇bM → ∇b in L4(ΩT ; Rn×n) lead to (⋆⋆) → 0. We
also have ∂eWel(e(u), cM , zM ) → ∂eWel(e(u), c, z) in L2(ΩT ; Rn×n) by (11a) and Lebesgue’s
generalized convergence theorem. Furthermore, e(uM ) ⇀ e(u) in L2(ΩT ; Rn×R

n) by Lemma 5.8.
This gives (⋆ ⋆ ⋆) → 0. Since ∇uM ⇀ ∇u in L4(ΩT ; Rn) by Lemma 5.8, we obtain (⋆ ⋆ ⋆⋆) → 0.
Therefore, (45) implies e(uM ) → e(u) in L2(ΩT ; Rn×n) and ∇uM → ∇u in L4(ΩT ; Rn×n) as
M → ∞. Poincaré’s inequality finally shows uM → u in L4([0, T ];W 1,4(Ω; Rn)). Now, we
choose a subsequence such that uM (t) → u(t) in W 1,4(Ω; Rn) for a.e. t ∈ [0, T ] and uM → u a.e.
in ΩT . We also denote this subsequence with {uM}.

Analogously, we obtain a u− ∈ L4([0, T ];W 1,4(Ω)) satisfying u−
M → u− with the same con-

vergence properties. We will show u = u− a.e. . Consider (34) for qM (t) and for q−M (t):

0 =

∫

ΩT

∂eWel(e(uM ), cM , zM ) : e(ζ) + ε|∇uM |2∇uM : ∇ζ dxdt, (46a)

0 =

∫

ΩT

∂eWel(e(u
−
M ), c−M , z−M ) : e(ζ) + ε|∇u−

M |2∇u−
M : ∇ζ dxdt. (46b)

We choose the test-function ζ(t) = uM (t) − u−
M (t) − bM (t) + b−M (t) ∈ W 1,4

Γ (Ω). An estimate
similar to (45) gives:

η‖e(uM ) − e(u−
M )‖2

L2(ΩT ) + εC−1
ineq‖∇uM −∇u−

M‖4
L4(ΩT )

≤

∫

ΩT

(∂eWel(e(uM ), cM , zM ) − ∂eWel(e(u
−
M ), cM , zM )) : (e(uM ) − e(u−

M )) dxdt

+ ε

∫

ΩT

(|∇uM |2∇uM − |∇u−
M |2∇u−

M ) : (∇uM −∇u−
M ) dxdt

=

∫

ΩT

∂eWel(e(uM ), cM , zM ) : e(ζ) + ε|∇uM |2∇uM : ∇ζ dxdt

︸ ︷︷ ︸

=0 by (46a)

−

∫

ΩT

∂eWel(e(u
−
M ), c−M , z−M ) : e(ζ) + ε|∇u−

M |2∇u−
M : ∇ζ dxdt

︸ ︷︷ ︸

=0 by (46b)

+

∫

ΩT

(∂eWel(e(u
−
M ), c−M , z−M ) − ∂eWel(e(u

−
M ), cM , zM )) : (e(uM ) − e(u−

M )) dxdt

+

∫

ΩT

(∂eWel(e(uM ), cM , zM ) − ∂eWel(e(u
−
M ), c−M , z−M )) : (e(bM ) − e(b−M )) dxdt

+ ε

∫

ΩT

(|∇uM |2∇uM − |∇u−
M |2∇u−

M ) : (∇bM −∇b−M ) dxdt.

Observe that ∂eWel(e(u
−
M ), c−M , z−M ) − ∂eWel(e(u

−
M ), cM , zM ) → 0 in L2(ΩT ) by Lebesgue’s gen-

eralized convergence theorem (using growth condition (11a), Lemma 5.8 and convergence prop-
erties of uM and u−

M ) as well as e(bM ) − e(b−M ) → 0 in L2(ΩT ; Rn×n) and ∇bM −∇b−M → 0 in
L4(ΩT ; Rn×n). Hence, each term on the right hand side converges to 0 as M → ∞ ¥

Lemma 5.10 There exists a subsequence {Mk} such that cMk
, c−Mk

→ c in L2([0, T ];H1(Ω)) as
k → ∞.
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Proof. We omit the index k in the proof.
Lemma 5.8 implies cM (t) → c(t) in L2⋆/2+1(Ω) for a.e. t ∈ [0, T ]. Using Corollary 5.7 and
Lebesgue’s convergence theorem, we get cM → c in L2⋆/2+1(ΩT ). Next, we test (33) with
ζ = cM (t) and integrate from t = 0 to t = T . Then we use Lebesgue’s generalized convergence
theorem, growth conditions (A4) and (A6) as well as Lemma 5.8 to obtain

∫

ΩT

|∇cM |2 dxdt → −

∫

ΩT

∂cWch(c)c + ∂cWel(e(u), c, z)c + ε(∂tc)c − µcdxdt

as M → ∞. On the other hand, we test (33) with c(t) and integrate from t = 0 to t = T .
Note that c ∈ L2⋆

(ΩT ) and ∂cWch(cM ) → ∂cWch(c) in L2⋆/(2⋆−1)(ΩT ) as M → ∞ by Lebesgue’s
generalized convergence theorem. Hence, we derive for M → ∞:

∫

ΩT

|∇c|2 dxdt = −

∫

ΩT

∂cWch(c)c + ∂cWel(e(u), c, z)c + ε(∂tc)c − µcdxdt.

Therefore, cM → c in L2([0, T ];H1(Ω)) as M → ∞. The convergence ‖cM‖L2([0,T ];H1(Ω)) →

‖c‖L2([0,T ];H1(Ω)) implies ‖c−M‖L2([0,T ];H1(Ω)) → ‖c‖L2([0,T ];H1(Ω)). We also have c−M ⇀ c in

L2([0, T ];H1(Ω)) (by Lemma 5.8 (ii)) and consequently c−M → c in L2([0, T ];H1(Ω)) as M → ∞.
¥

Note that in connection with Corollary 5.7 we even get for each q ≥ 1

cM , c−M → c in Lq([0, T ];H1(Ω))

for a subsequence as M → ∞.

Lemma 5.11 There exists a subsequence {Mk} such that zMk
, z−Mk

→ z in Lp([0, T ];W 1,p(Ω))
as k → ∞.

Proof. To simplify notation we omit the index k in the proof.
Applying Lemma 5.2 with f = ζ = z and fM = z−M gives a sequence of approximations

{ζM}M∈N ⊆ Lp([0, T ];W 1,p
+ (Ω)) ∩ L∞(ΩT ) with the properties (note that we have z−M (t) ⇀ z(t)

in W 1,p(Ω) for a.e. t ∈ [0, T ] by Lemma 5.8):

ζM → z in Lp([0, T ];W 1,p(Ω)) as M → ∞ (47a)

0 ≤ ζM ≤ z−M a.e. on ΩT for all M ∈ N. (47b)

We test (35) with ζ = ζM (t) − zM (t) for ν = 1 (possible due to (47b)), integrate from t = 0 to
t = T and use (43) to obtain the following estimate:

Cuc

∫

ΩT

|∇zM −∇z|p dxdt

≤

∫

ΩT

(|∇zM |p−2∇zM − |∇z|p−2∇z) · ∇(zM − z) dxdt

≤

∫

ΩT

|∇zM |p−2∇zM · ∇(zM − ζM ) dxdt

+

∫

ΩT

|∇zM |p−2∇zM · ∇(ζM − z) − |∇z|p−2∇z · ∇(zM − z) dxdt

≤

∫

ΩT

(∂zWel(e(uM ), cM , zM ) − α + β∂tẑM )(ζM − zM ) dxdt
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+

∫

ΩT

|∇zM |p−2∇zM · ∇(ζM − z) − |∇z|p−2∇z · ∇(zM − z) dxdt

≤ ‖∂zWel(e(uM ), cM , zM ) − α + β∂tẑM‖L2(ΩT )
︸ ︷︷ ︸

bounded by (A5) and Cor. 5.7

‖ζM − zM‖L2(ΩT )

+ ‖∇zM‖p−1
Lp(ΩT )

︸ ︷︷ ︸

bounded by Cor. 5.7

‖∇ζM −∇z‖Lp(ΩT ) −

∫

ΩT

|∇z|p−2∇z · ∇(zM − z) dxdt.

Observe that ∇ζM −∇z → 0 in Lp(ΩT ; Rn) and ζM −zM → 0 in L2(ΩT ) (by property (47a) and
by Lemma 5.8) as well as ∇zM −∇z ⇀ 0 in Lp(ΩT ; Rn) by Lemma 5.8. Using these properties,
each term on the right hand side converges to 0 as M → ∞.

We also obtain
‖z−M‖Lp([0,T ];W 1,p(Ω)) → ‖z‖Lp([0,T ];W 1,p(Ω)) from ‖zM‖Lp([0,T ];W 1,p(Ω)) → ‖z‖Lp([0,T ];W 1,p(Ω)).

Because of z−M ⇀ z in Lp([0, T ];W 1,p(Ω)) (by Lemma 5.8 (i)) we even have z−M → z in
Lp([0, T ];W 1,p(Ω)) as M → ∞. ¥

In conclusion, Corollary 5.7, Lemma 5.8, Lemma 5.9, Lemma 5.10 and Lemma 5.11 imply the
following convergence properties:

Corollary 5.12 There exists subsequence {Mk} and an element (u, c, z) = q ∈ Qv with c(0) = c0

and z(0) = z0 such that

(i) zMk
, z−Mk

→ z in Lp([0, T ];W 1,p(Ω)),

zMk
(t), z−Mk

(t) → z(t) in W 1,p(Ω) a.e.
t,
zMk

, z−Mk
→ z a.e. in ΩT and

ẑMk
⇀ z in H1([0, T ];L2(Ω))

(ii) cMk
, c−Mk

→ c in L2⋆

([0, T ];H1(Ω)),

cMk
(t), c−Mk

(t) → c(t) in H1(Ω) a.e. t,

cMk
, c−Mk

→ c a.e. in ΩT and

ĉMk
⇀ c in H1([0, T ];L2(Ω))

(iii) uMk
, u−

Mk
→ u in L4([0, T ];W 1,4(Ω; Rn)),

uMk
(t), u−

Mk
(t) → u(t) in W 1,4(Ω; Rn)

a.e. t,
uMk

, u−
Mk

→ u a.e. in ΩT

(iv) µMk
⇀ µ in L2([0, T ];H1(Ω))

(v) ∂cWch(cMk
) → ∂cWch(c) in L2(ΩT )

as k → ∞.

The above convergence properties allow us to establish an energy estimate, which is in an asymp-
totic sense stronger than the one in Lemma 5.5 (v). We emphasize that (36) has in comparison
with (48) no factor 1/2 in front of the terms β|∂tẑM |2, ε|∂tĉM |2 and |∇µM |2.

Lemma 5.13 (Precise energy inequality) For every 0 ≤ t1 < t2 ≤ T :

Eε(qM (t2)) +

∫ dM (t2)

d−
M

(t1)

∫

Ω

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 + |∇µM |2 dxds − Eε(q
−
M (t1))

≤

∫ dM (t2)

d−
M

(t1)

∫

Ω

∂eWel(e(u
−
M + b − b−M ), c−M , z−M ) : e(∂tb) dxds

+ ε

∫ dM (t2)

d−
M

(t1)

∫

Ω

|∇u−
M + ∇b −∇b−M |2∇(u−

M + b − b−M ) : ∇∂tbdxds + κM (48)

with κM → 0 as M → ∞.
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Proof. We know E
m
M (qm

M ) ≤ E
m
M (um−1

M + bm
M − bm−1

M , cm
M , zm

M ). The regularity properties of the
functions b, ĉM and ẑM ensure that the chain rule can be applied and the following integral
terms are well defined:

Eε(u
m
M , cm

M , zm
M )

≤ Eε(u
m−1
M + bm

M − bm−1
M , cm

M , zm
M )

= Eε(u
m−1
M , cm−1

M , zm−1
M )

+ Eε(u
m−1
M + bm

M − bm−1
M , cm−1

M , zm−1
M ) − Eε(u

m−1
M , cm−1

M , zm−1
M )

+ Eε(u
m−1
M + bm

M − bm−1
M , cm

M , zm−1
M ) − Eε(u

m−1
M + bm

M − bm−1
M , cm−1

M , zm−1
M )

+ Eε(u
m−1
M + bm

M − bm−1
M , cm

M , zm
M ) − Eε(u

m−1
M + bm

M − bm−1
M , cm

M , zm−1
M )

= Eε(u
m−1
M , cm−1

M , zm−1
M )

+

∫ mτ

(m−1)τ

〈duẼε(u
m−1
M + b(s) − bm−1

M , cm−1
M , zm−1

M ), ∂tb(s)〉(H1)∗×H1 ds

+

∫ mτ

(m−1)τ

〈dcẼε(u
m−1
M + bm

M − bm−1
M , ĉM (s), zm−1

M ), ∂tĉM (s)〉(H1)∗×H1 ds

+

∫ mτ

(m−1)τ

〈dz Ẽε(u
m−1
M + bm

M − bm−1
M , cm

M , ẑM (s)), ∂tẑM (s)〉(W 1,p)∗×W 1,p ds.

Summing from m =
d−

M
(t1)

τ + 1 to dM (t2)
τ yields:

Eε(qM (t2)) − Eε(q
−
M (t1))

≤ ε

∫ dM (t2)

d−
M

(t1)

∫

Ω

|∇(u−
M + b − b−M )|2∇(u−

M + b − b−M ) : ∇∂tbdxds

+

∫ dM (t2)

d−
M

(t1)

∫

Ω

∂eWel(e(u
−
M + b − b−M ), c−M , z−M ) : e(∂tb) dxds

+

∫ dM (t2)

d−
M

(t1)

∫

Ω

∂cWel(e(u
−
M + bM − b−M ), ĉM , z−M )∂tĉM dxds

︸ ︷︷ ︸

(⋆)

+

∫ dM (t2)

d−
M

(t1)

∫

Ω

∇ĉM · ∇∂tĉM + ∂cWch(ĉM )∂tĉM dxds

︸ ︷︷ ︸

(⋆⋆)

+

∫ dM (t2)

d−
M

(t1)

∫

Ω

∂zWel(e(u
−
M + bM − b−M ), cM , ẑM ) ∂tẑM + |∇ẑM |p−2∇ẑM · ∇∂tẑM dxds

︸ ︷︷ ︸

(⋆⋆⋆)

.

(49)

By using convexity of x 7→ |x|p, we obtain the following elementary inequality

(|∇ẑM (t, x)|p−2∇ẑM (t, x) − |∇zM (t, x)|p−2∇zM (t, x)) · ∇∂tẑM (t, x) ≤ 0.

This estimate and (35), tested with ζ = −∂tẑM (t) for ν = τ and integrated from t = 0 to t = T ,
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lead to the estimate:

(⋆ ⋆ ⋆) ≤ −

∫ dM (t2)

d−
M

(t1)

∫

Ω

−α∂tẑM + β|∂tẑM |2 dxds

+

∫ dM (t2)

d−
M

(t1)

∫

Ω

(∂zWel(e(u
−
M + bM − b−M ), cM , ẑM ) − ∂zWel(e(uM ), cM , zM ))∂tẑM dxds

︸ ︷︷ ︸

=:κ3
M

.

Furthermore,

(⋆) ≤

∫ dM (t2)

d−
M

(t1)

∫

Ω

∂cWel(e(uM ), cM , zM )∂tĉM dxds

+

∫ dM (t2)

d−
M

(t1)

∫

Ω

(∂cWel(e(u
−
M + bM − b−M ), ĉM , z−M ) − ∂cWel(e(uM ), cM , zM ))∂tĉM dxds

︸ ︷︷ ︸

=:κ1
M

.

Using the elementary estimate (∇ĉM −∇cM )∇∂tĉM ≤ 0, we obtain

(⋆⋆) ≤

∫ dM (t2)

d−
M

(t1)

∫

Ω

∇cM · ∇∂tĉM + ∂cWch(cM )∂tĉM dxds

+

∫ dM (t2)

d−
M

(t1)

∫

Ω

(∂cWch(ĉM ) − ∂cWch(cM ))∂tĉM dxds

︸ ︷︷ ︸

=:κ2
M

.

Hence, applying equations (33) and (32) shows

∫ dM (t2)

d−
M

(t1)

〈dcẼε(qM ), ∂tĉM 〉(H1)∗×H1 ds =

∫ dM (t2)

d−
M

(t1)

∫

Ω

µM∂tĉM − ε|∂tĉM |2 dxds

=

∫ dM (t2)

d−
M

(t1)

∫

Ω

−|∇µM |2 − ε|∂tĉM |2 dxds.

Thus,

(⋆) + (⋆⋆) ≤

∫ dM (t2)

d−
M

(t1)

∫

Ω

−|∇µM |2 − ε|∂tĉM |2 dxds + κ1
M + κ2

M .

Lebesgue’s generalized convergence theorem, the growth conditions (A4), (A5), (A6) and Corol-
lary 5.12 ensure that κ1

M , κ2
M and κ3

M converge to 0 as M → ∞. Here, we want to emphasize
that we need boundedness of ∂tĉM and ∂tẑM in L2(ΩT ) and the convergence e(uM ) → e(u) in
L4(ΩT ), which we have only due to the regularization for every fixed ε > 0 as M → ∞ (see
Corollary 5.12). To finish the proof, set κM := κ1

M + κ2
M + κ3

M . ¥

We are now in the position to prove the existence theorem for the viscous case.

Proof of Theorem 4.4. The proof is divided into several steps:
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(i) Using growth conditions (A4), (A6), (11a), Corollary 5.12 and Lebesgue’s generalized con-
vergence theorem, we can pass to M → ∞ in the time integrated version of the integral
equations (32), (33) and (34). This shows (i) and (ii) of Definition 4.3.

(ii) Let 0 ≤ t1 < t2 ≤ T be arbitrary. Because of d−M (t1) ≤ t1 < t2 ≤ dM (t2), Lemma 5.13
particularly implies

Eε(qM (t2)) +

∫ t2

t1

∫

Ω

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 + |∇µM |2 dxdt − Eε(q
−
M (t1))

≤

∫ dM (t2)

d−
M

(t1)

∫

Ω

∂eWel(e(u
−
M + b − b−M ), c−M , zM ) : e(∂tb) dxdt

+ ε

∫ dM (t2)

d−
M

(t1)

∫

Ω

|∇u−
M + ∇b −∇b−M |2∇(u−

M + b − b−M ) : ∇∂tbdxdt + κM (50)

with κM → 0 as M → ∞. Due to growth condition (A2), (A6), Corollary 5.12 and
Lebesgue’s generalized convergence theorem we obtain

Eε(qM (t)) → Eε(q(t)) and Eε(q
−
M (t)) → Eε(q(t)) (51)

as M → ∞ for a.e. t ∈ [0, T ]. A sequentially weakly lower semi-continuity argument based
on Corollary 5.12 shows:

lim inf
M→∞

∫ t2

t1

∫

Ω

−α∂tẑM + β|∂tẑM |2 + ε|∂tĉM |2 + |∇µM |2 dxdt

≥

∫

Ω

α(z(t1) − z(t2)) dx +

∫ t2

t1

∫

Ω

β|∂tz|
2 + ε|∂tc|

2 + |∇µ|2 dxdt. (52)

Growth condition (11a), Corollary 5.12 and Lebesgue’s generalized convergence theorem
show:

∂eWel(e(u
−
M + b − b−M ), c−M , zM )

⋆
⇀ ∂eWel(e(u), c, z) in L∞([0, T ];L2(Ω)),

|∇u−
M + ∇b −∇b−M |2∇(u−

M + b − b−M )
⋆
⇀ |∇u|2∇u in L∞([0, T ];L4/3(Ω)).

Since e(∂tb) ∈ L1([0, T ];L2(Ω)) and ∇∂tb ∈ L1([0, T ];L4(Ω)) we get:

∫ dM (t2)

d−
M

(t1)

∫

Ω

∂eWel(e(u
−
M + b − b−M ), c−M , zM ) : e(∂tb) dxdt

→

∫ t2

t1

∫

Ω

∂eWel(e(u), c, z) : e(∂tb) dxdt,

∫ dM (t2)

d−
M

(t1)

∫

Ω

|∇u−
M + ∇b −∇b−M |2∇(u−

M + b − b−M ) : ∇∂tbdxdt

→

∫ t2

t1

∫

Ω

|∇u|2∇u : ∇∂tbdxdt. (53)

Now, using (51), (52) and (53) gives (iv) of Definition 4.3 by passing to M → ∞ in (50)
for a subsequence.
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(iii) Let ζ̃ ∈ Lp([0, T ];W 1,p
− (Ω))∩L∞(ΩT ) be a test-function with {ζ̃ = 0} ⊇ {z = 0}. Applying

Lemma 5.2 with f = z and fM = zM and ζ = −ζ̃ gives a sequence of approximations
{ζM}M∈N ⊆ Lp([0, T ];W 1,p

+ (Ω)) ∩ L∞(ΩT ) with the properties:

ζM → −ζ̃ in Lp([0, T ];W 1,p(Ω)) as M → ∞, (54a)

0 ≤ νM,tζM (t) ≤ zM (t) a.e. in Ω for a.e. t ∈ [0, T ] and all M ∈ N. (54b)

Let ζ̃M denote the function −ζM . Then, (54b) in particular implies 0 ≤ νM,tζ̃M (t)+zM (t) ≤

z−M (t) a.e. in Ω for a.e. t ∈ [0, T ]. Now, (35) holds for ζ = ζ̃M (t). Integration from t = 0
to t = T and using growth condition (A5), Corollary 5.12 and Lebesgue’s generalized
convergence theorem as well as the strong convergence (54a) yield for M → ∞:

−

∫

ΩT

|∇z|p−2∇z · ∇ζ̃ + ∂zWel(e(u), c, z)ζ̃ − αζ̃ + β(∂tz)ζ̃ dxdt ≤ 0. (55)

(iv) Property (55) implies that

−

∫

Ω

|∇z(t)|p−2∇z(t) · ∇ζ +
(
∂zWel(e(u(t)), c(t), z(t)) − α + β(∂tz(t))

)
ζ dx ≤ 0

holds for all ζ ∈ W 1,p
− (Ω) with {ζ = 0} ⊇ {z(t) = 0} and for a.e. t ∈ [0, T ]. Applying

Lemma 5.3 with f = |∇z(t)|p−2∇z(t) and g = ∂zWel(e(u(t)), c(t), z(t)) − α + β(∂tz(t))
shows

∫

Ω

|∇z(t)|p−2∇z(t) · ∇ζ +
(
∂zWel(e(u(t)), c(t), z(t)) − α + β(∂tz(t))

)
ζ dx

≥

∫

{z(t)=0}

[∂zWel(e(u(t)), c(t), z(t)) − α + β(∂tz(t))]+ζ dx

≥

∫

{z(t)=0}

[∂zWel(e(u(t)), c(t), z(t))]+ζ dx (56)

for all ζ ∈ W 1,p
− (Ω). Setting

r := −χ{z=0}[∂zWel(e(u), c, z)]+,

we get (24) from (56) by integration from t = 0 to t = T and we also have

〈r(t), ζ − z(t)〉 = −

∫

{z(t)=0}

[∂zWel(e(u(t)), c(t), z(t))]+(ζ − z(t)) dx ≤ 0

for any ζ ∈ W 1,p
+ (Ω) and a.e. t ∈ [0, T ]. Therefore, (25) is shown. ¥

5.3 Vanishing viscosity: ε ց 0

For each ε ∈ (0, 1], we denote with qε = (uε, cε, zε) ∈ Qv a viscous solution according to Theorem
4.4. Whenever we refer to the equations and inequalities (21)-(27) of Definition 4.3 the variables
q = (u, c, z), µ and r should be replaced by qε = (uε, cε, zε), µε and rε. By the use of Lemma
5.14, Lemma 5.15 and Lemma 5.16 below, we identify a suitable subsequence where we can pass
to the limit.
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Lemma 5.14 (A-priori estimates) There exists a C > 0 independent of ε > 0 such that

(i) ‖uε‖L∞([0,T ];H1(Ω;Rn)) ≤ C,

(ii) ε1/4‖uε‖L∞([0,T ];W 1,4(Ω;Rn)) ≤ C,

(iii) ‖cε‖L∞([0,T ];H1(Ω)) ≤ C,

(iv) ‖zε‖L∞([0,T ];W 1,p(Ω)) ≤ C,

(v) ‖∂tcε‖L2([0,T ];(H1(Ω))⋆) ≤ C,

(vi) ε1/2‖∂tcε‖L2(ΩT ) ≤ C,

(vii) ‖∂tzε‖L2(ΩT ) ≤ C,

(viii) ‖µε‖L2([0,T ];H1(Ω)) ≤ C

for all ε ∈ (0, 1].

Proof. According to Lemma 5.6, the discretization qM,ε of qε fulfills

Eε(qM,ε(t)) +

∫ dM (t)

0

R(∂tẑM,ε) ds +

∫ dM (t)

0

∫

Ω

ε

2
|∂tĉM,ε|

2 +
1

2
|∇µM,ε|

2 dxds ≤ C(Eε(q
0
ε) + 1),

(57)

where C is independent of M, t, ε. By the minimizing property of q0
ε , we also obtain Eε(q

0
ε) ≤

Eε(q
0
1) ≤ E1(q

0
1) for all ε ∈ (0, 1]. Therefore, the left hand side of (57) is bounded with respect

to M ∈ N, t ∈ [0, T ] and ε ∈ (0, 1]. This leads to the boundedness of

Eε(qε(t)) +

∫ t

0

R(∂tzε) ds +

∫ t

0

∫

Ω

ε

2
|∂tcε|

2 +
1

2
|∇µε|

2 dxds ≤ C (58)

for a.e. t ∈ [0, T ] and for all ε ∈ (0, 1]. We immediately obtain (iv), (vi) and (vii). Due to
∫

cε(t) dx = const and the boundedness of ‖∇cε(t)‖L2(Ω), Poincaré’s inequality yields (iii). In
addition, (ii) follows from Poincaré’s inequality. Now, using (58), growth conditions (11b) and
Korn’s inequality, we attain the desired a-priori estimates (i). Due to (22) and (21) we obtain
boundedness of

∫

Ω
µε(t) dx. Since ‖∇µε(t)‖L2(ΩT ) is also bounded, Poincaré’s inequality yields

(viii).
Finally, we know from the boundedness of {∇µε} in L2(ΩT ) that {∂tcε} is also bounded in

L2([0, T ]; (H1(Ω))∗) with respect to ε by using equation (21). Therefore, (v) holds. ¥

Lemma 5.15 (Weak convergence of viscous solutions) There exists a subsequence {εk}
(which is also denoted by ε) and elements (u, c, z) = q ∈ Q and µ ∈ L2([0, T ];H1(Ω)) with
z(0) = z0, 0 ≤ z ≤ 1 and ∂tz ≤ 0 a.e. in ΩT such that

(i) zε
⋆
⇀ z in L∞([0, T ];W 1,p(Ω)),

zε(t) ⇀ z(t) in W 1,p(Ω) a.e. t,
zε → z a.e. in ΩT and
zε ⇀ z in H1([0, T ];L2(Ω)),

(ii) uε
⋆
⇀ u in L∞([0, T ];H1(Ω; Rn)),

(iii) cε
⋆
⇀ c in L∞([0, T ];H1(Ω)),

cε(t) ⇀ c(t) in H1(Ω) a.e. t and
cε → c a.e. in ΩT ,

(iv) µε ⇀ µ in L2([0, T ];H1(Ω))

as ε ց 0.

Proof.

(i) This property follows from the boundedness of {zε} in L∞([0, T ];W 1,p(Ω)) and in
H1([0, T ];L2(Ω)) (see proof of Lemma 5.14). The function z obtained in this way is mono-
tonically decreasing with respect to t.

(ii) This property follows from the boundedness of {uε} in L∞([0, T ];H1(Ω; Rn)).
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(iii) Properties (iii) and (v) of Lemma 5.14 show that cε converges strongly to an element c in
L2(ΩT ) as ε ց 0 for a subsequence by a compactness result due to J. P. Aubin and J. L.
Lions (see [Sim86]). This allows us to extract a further subsequence such that cε(t) → c(t)
in L2(Ω) for a.e. t ∈ [0, T ]. Taking also the boundedness of {cε} in L∞([0, T ];H1(Ω)) into
account, we obtain a subsequence with cε(t) ⇀ c(t) in H1(Ω) for a.e. t ∈ [0, T ] and cε → c

a.e. in ΩT as well as cε
⋆
⇀ c in L∞([0, T ];H1(Ω)).

(iv) This property follows from the boundedness of {µε} in L2([0, T ];H1(Ω)). ¥

Lemma 5.16 (Strong convergence of viscous solutions) The following convergence prop-
ertise are satisfied for a subsequence ε ց 0:

(i) uε → u in L2([0, T ];H1(Ω; Rn)),

(ii) cε → c in L2([0, T ];H1(Ω)),

(iii) zε → z in Lp([0, T ];W 1,p(Ω)).

Proof.

(i) We consider an approximation sequence {ũδ}δ∈(0,1] ⊆ L4([0, T ];W 1,4(Ω)) with

ũδ → u in L2([0, T ];H1(Ω)) as δ ց 0, (59a)

ũδ − b ∈ L4([0, T ];W 1,4
Γ (Ω)) for all δ > 0. (59b)

Since ε and δ are independent, we consider a sequence {δε}ε∈(0,1] with

ε1/4‖∇ũδε
‖L4(ΩT ) → 0 and δε ց 0 as ε ց 0. (60)

Testing (23) with ζ = uε − ũδε
(possible due to (59b)), applying the uniform monotonicity

of ∂eWel (assumption (A1)) and (43) for p = 4 (compare with the calculation performed
in (45)) gives

η

2
‖e(uε) − e(u)‖2

L2(ΩT )

≤ η‖e(u) − e(ũδε
)‖2

L2(ΩT ) + η‖e(uε) − e(ũδε
)‖2

L2(ΩT ) + εCuc‖∇uε −∇ũδε
‖4

L4(ΩT )

≤ η‖e(u) − e(ũδε
)‖2

L2(ΩT )

+

∫

ΩT

(∂eWel(e(uε), cε, zε) − ∂eWel(e(ũδε
), cε, zε)) : (e(uε) − e(ũδε

)) dxdt

+ ε

∫

ΩT

(|∇uε|
2∇uε − |∇ũδε

|2∇ũδε
) : (∇uε −∇ũδε

) dxdt

= η‖e(u) − e(ũδε
)‖2

L2(ΩT )

+

∫

ΩT

∂eWel(e(uε), cε, zε) : (e(uε) − e(ũδε
)) + ε|∇uε|

2∇uε : (∇uε −∇ũδε
) dxdt

︸ ︷︷ ︸

=0 by (23)

−

∫

ΩT

∂eWel(e(ũδε
), cε, zε) : (e(uε) − e(ũδε

)) dxdt
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− ε

∫

ΩT

|∇ũδε
|2∇ũδε

: (∇uε −∇ũδε
) dxdt

︸ ︷︷ ︸

(⋆)

. (61)

Finally,

|(⋆)| ≤ ε‖∇ũδε
‖3

L4(ΩT )‖∇uε −∇ũδε
‖L4(ΩT )

≤

(

ε1/4‖∇ũδε
‖L4(ΩT )

︸ ︷︷ ︸

→0 as εց0 by (60)

)3(

ε1/4‖∇uε‖L4(ΩT )
︸ ︷︷ ︸

≤C by Lemma 5.14

+ ε1/4‖∇ũδε
‖L4(ΩT )

︸ ︷︷ ︸

→0 as εց0 by (60)

)

.

From growth condition (11a), Lemma 5.15 and Lebesgue’s generalized convergence theo-
rem, we obtain

∂eWel(e(ũδε
), cε, zε) → ∂eWel(e(u), c, z) in L2(ΩT )

for a subsequence ε ց 0. By uε
⋆
⇀ u in L∞([0, T ];H1(Ω; Rn)) for a subsequence ε ց 0

(Lemma 5.15 (iii)) as well as (59a), we also have

e(uε) − e(ũδε
) ⇀ 0 in L2(ΩT )

as ε ց 0 for a subsequence. Therefore, every term on the right hand side of (61) converges
to 0 as ε ց 0 for a subsequence. This shows uε → u in L2([0, T ];H1(Ω; Rn)) as ε ց 0 for
a subsequence by Korn’s inequality.

(ii) Testing (22) with cε and c and passing to ε ց 0 for a subsequence eventually shows strong
convergence cε → c in L2([0, T ];H1(Ω)) (see the argumentation in Lemma 5.10 and notice
that

∫

ΩT
ε(∂tcε)cε dxdt ≤ ε‖∂tcε‖L2(ΩT )‖cε‖L2(ΩT ) → 0 as ε ց 0).

(iii) According to Lemma 5.2 with f = ζ = z and fM = zεM
(here we choose εM = 1/M) we

find an approximation sequence {ζεk
} ⊆ Lp([0, T ];W 1,p

+ (Ω)) ∩ L∞(ΩT ) with εk ց 0 and
the properties:

ζεk
→ z in Lp([0, T ];W 1,p(Ω)) as k → ∞, (62a)

0 ≤ ζεk
≤ zεk

a.e. in ΩT for all k ∈ N. (62b)

We denote the subsequences also with {zε} and {ζε}, respectively. The desired property
zε → z in Lp([0, T ];W 1,p(Ω)) as ε ց 0 follows with the same estimate as in the proof of
Lemma 5.11 by using the uniform convexity of x 7→ |x|p and the integral inequality (24)
with ζ := ζε − zε (note that 〈rε, ζε − zε〉 = 0 holds by (27) and (62b)). Indeed, we obtain

C−1
ineq

∫

ΩT

|∇zε −∇z|p dxdt

≤ ‖∂zWel(e(uε), cε, zε) − α + β∂tzε‖L2([0,T ];L1(Ω))
︸ ︷︷ ︸

bounded

‖ζε − zε‖L2([0,T ];L∞(Ω))
︸ ︷︷ ︸

→0

+ ‖∇zε‖
p−1
Lp(ΩT )

︸ ︷︷ ︸

bounded

‖∇ζε −∇z‖Lp(ΩT )
︸ ︷︷ ︸

→0

−

∫

ΩT

|∇z|p−2∇z · ∇(zε − z) dxdt

︸ ︷︷ ︸

→0

as ε ց 0 for a subsequence. Here, we have used zε → z and ζε → z in L2([0, T ];L∞(Ω))
as ε ց 0 for a subsequence due to Lemma 5.15 and the compact embedding W 1,p(Ω) →֒
L∞(Ω). ¥
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Corollary 5.17 The following convergence properties are fulfilled:

(i) zε → z in Lp([0, T ];W 1,p(Ω)),
zε(t) → z(t) in W 1,p(Ω) a.e. t,
zε → z a.e. in ΩT and
zε ⇀ z in H1([0, T ];L2(Ω)),

(ii) cε → c in L2⋆

([0, T ];H1(Ω)),
cε(t) → c(t) in H1(Ω) a.e. t and
cε → c a.e. in ΩT ,

(iii) uε → u in L2([0, T ];H1(Ω; Rn)),
uε(t) → u(t) in H1(Ω; Rn) a.e. t and
uε → u a.e. in ΩT ,

(iv) µε ⇀ µ in L2([0, T ];H1(Ω)),

(v) ∂cWch(cε) → ∂cWch(c) in L2(ΩT )

as ε ց 0 for a subsequence.

Now we are well prepared to prove the main result of this work.

Proof of Theorem 4.6. We can pass to ε ց 0 in (22) and (23) by the already known conver-
gence features (see Corollary 5.17) noticing that

∫

ΩT
ε|∇uε|

2∇uε : ∇ζ dxdt and
∫

ΩT
ε(∂tcε)ζ dxdt

converge to 0 as ε ց 0. We get

∫

ΩT

∂eWel(e(u), c, z) : e(ζ) dxdt = 0 (63)

for all ζ ∈ L4([0, T ];W 1,4
Γ (Ω; Rn)). A density argument shows that (63) also holds for all ζ ∈

L2([0, T ];H1
Γ(Ω; Rn)). Writing (21) in the form

∫

ΩT

(cε − c0)∂tζ dxdt =

∫

ΩT

∇µε · ∇ζ dxdt,

by only allowing test-functions ζ ∈ L2([0, T ];H1(Ω)) with ∂tζ ∈ L2(ΩT ) and ζ(T ) = 0, we can
also pass to ε ց 0 by using Corollary 5.17.

To obtain a limit equation in (24) and (25), observe that

[∂zWel(e(uε), cε, zε)]
+ → [∂zWel(e(u), c, z)]+ in L1(ΩT ),

χ{zε=0}
⋆
⇀ χ, in L∞(ΩT )

for a subsequence ε ց 0 and an element χ ∈ L∞(ΩT ). Setting r := −χ[∂zWel(e(u), c, z)]+ and
keeping (27) into account, we find for all ζ ∈ L∞(ΩT ):

∫

ΩT

rεζ dxdt →

∫

ΩT

rζ dxdt (64)

for a subsequence ε ց 0. Thus, we can also pass to ε ց 0 for a subsequence in (24) by using
Lebesgue’s generalized convergence theorem, growth condition (A5), Corollary 5.17 and (64).
Let ξ ∈ L∞([0, T ]) with ξ ≥ 0 a.e. on [0, T ] be a further test-function. Then, (25) and (27) imply

0 ≥

∫ T

0

(∫

Ω

rε(t)(ζ − zε(t)) dx

)

ξ(t) dt =

∫

ΩT

rε(ζ − zε)ξ dxdt

→

∫

ΩT

r(ζ − z)ξ dxdt =

∫ T

0

(∫

Ω

r(t)(ζ − z(t)) dx

)

ξ(t) dt.
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This shows
∫

Ω
r(t)(ζ − z(t)) dx ≤ 0 for a.e. t ∈ [0, T ].

It remains to show that (26) also yields to a limit inequality. First observe that (26) implies:

Eε(qε(t2)) +

∫

Ω

α(zε(t1) − zε(t2)) dx +

∫ t2

t1

∫

Ω

β|∂tzε|
2 + |∇µε|

2 dxdt − Eε(qε(t1))

≤

∫ t2

t1

∫

Ω

∂eWel(e(uε), cε, zε) : e(∂tb) dxdt + ε

∫ t2

t1

∫

Ω

|∇uε|
2∇uε : ∇∂tbdxdt. (65)

To proceed, we need to prove ε
∫

Ω
|∇uε(t)|

4 dx → 0 as ε ց 0 for a.e. t ∈ [0, T ]. Indeed, testing
(23) with ζ := uε − b gives

ε

∫

ΩT

|∇uε|
4 dxdt = ε

∫

ΩT

|∇uε|
2∇uε : ∇bdxdt −

∫

ΩT

∂eWel(e(uε), cε, zε) : e(uε − b) dxdt.

We immediately see that the first term converges to 0 as ε ց 0. The second term also converges
to 0 because of

∫

ΩT
∂eWel(e(u), c, z) : e(u − b) dxdt = 0 (equation (63)). This, together with

Corollary 5.17, proves Eε(qε(t)) → E(q(t)) for a.e. t ∈ [0, T ]. In conclusion, we can pass to
ε ց 0 in (65) for a.e. 0 ≤ t1 < t2 ≤ T by Corollary 5.17 together with Lebesgue’s generalized
convergence theorem, growth condition (A2), (11a) and (A6) as well as by a sequentially weakly
lower semi-continuity argument for

∫

Ω
β|∂tzε|

2 dx and for
∫

Ω
|∇µε|

2 dx. ¥
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