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Abstract

We propose a new approach to competitive analysis by introducing the novel concept of online ap-
proximation schemes. Such scheme algorithmically constructs an online algorithm with a competitive
ratio arbitrarily close to the best possible competitive ratio for any online algorithm. We study the prob-
lem of scheduling jobs online to minimize the weighted sum of completion times on parallel, related,
and unrelated machines, and we derive both deterministic and randomized algorithms which are almost
best possible among all online algorithms of the respective settings. Our method relies on an abstract
characterization of online algorithms combined with various simplifications and transformations. We
also contribute algorithmic means to compute the actual value of the best possible competitive ratio up
to an arbitrary accuracy. This strongly contrasts all previous manually obtained competitiveness results
for algorithms and, most importantly, it reduces the search for the optimal competitive ratio to a question
that a computer can answer. We believe that our method can also be applied to many other problems and
yields a completely new and interesting view on online algorithms.
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1 Introduction

Competitive analysis [13,27] is the most popular method for studying the performance of online algorithms.
It provides an effective framework to analyze and classify algorithms based on their worst-case behavior
compared to an optimal offline algorithm over an infinite set of input instances. For some problem types,
e.g., online paging, competitive analysis may not be adequate to evaluate the performance of algorithms,
but for a vast majority of online problems it is practical, natural, and yields meaningful results. A classical
such problem is online scheduling to minimize the weighted average completion time. It has received lots of
attention in the past two decades. For different machine environments, a long sequence of papers emerged
introducing new techniques and algorithms, improving upper and lower bounds on the competitive ratio of
particular algorithms as well as on the best possible competitive ratio that any online algorithm can achieve.
Still, unsatisfactory gaps remain. As for most online problems, a provably optimal online algorithm, w.r.t.
to competitive analysis, among all online algorithms is only known for very special cases.

In this work we close these gaps and present nearly optimal online scheduling algorithms. We provide
online approximation schemes that compute algorithms with a competitive ratio that is at most a factor 1 + ε

larger than the optimal ratio for any ε > 0. To that end, we introduce a new way of designing online
algorithms. Apart from structuring and simplifying input instances, we find an abstract description of online
algorithms, which allows us to reduce the infinite-size set of online algorithms to a relevant set of finite
size. This is the key for eventually allowing an enumeration scheme that finds an online algorithm with a
competitive ratio arbitrarily close to the optimal one. Besides improving on previous algorithms, our method
also provides an algorithm to compute the competitive ratio of the designed algorithm, and even the best
possible competitive ratio, up to any desired accuracy. To the best of our knowledge, this is the first time that
a competitive ratio, or even the optimal competitive ratio, are shown to be computable by some algorithm.
And it is clearly in strong contrast to all previously given (lower) bounds that stem from manually designed
input instances. Our result is surprising, as there are typically no means of enumerating all possible input
instances and all possible online algorithms. Even for only one given algorithm, usually one cannot compute
its competitive ratio, already due to difficulties like the halting problem. We show how to overcome these
obstacles and open the doors to a computer-assisted design of online algorithms.

We believe that our method of abstraction for online algorithms can be applied successfully to other
problems. Furthermore, we hope that this new approach to competitive analysis contributes to a better
understanding of online algorithms and may lead to a new line of research in online optimization.

1.1 Problem Definition and Previous Results

Competitive analysis. Given a minimization problem, a deterministic online algorithm A is called ρ-
competitive if, for any problem instance I, it achieves a solution of value A(I) ≤ ρ ·OPT(I), where OPT(I)
denotes the value of an optimal offline solution for the same instance I. A randomized online algorithm
is called ρ-competitive, if it achieves in expectation a solution of value E

[
A(I)

]
≤ ρ · OPT(I) for any in-

stance I. The competitive ratio ρA of A is the infimum over all ρ such that A is ρ-competitive. The minimum
competitive ratio ρ∗ achievable by any online algorithm is called optimal. Note that there are no require-
ments on the computational complexity of competitive algorithms. Indeed, the competitive ratio measures
the best possible performance under the lack of information given unbounded computational resources.

We define an online approximation scheme as a procedure that computes a nearly optimal online algo-
rithm and at the same time provides a nearly exact estimate of the optimal competitive ratio.

Definition 1.1. An online approximation scheme computes for a given ε > 0 an online algorithm A with a
competitive ratio ρA ≤ (1 + ε)ρ∗. Moreover, it determines a value ρ′ such that ρ′ ≤ ρ∗ ≤ (1 + ε)ρ′.

Online scheduling. A scheduling instance consists of a fixed set of m machines and a set of jobs J, where
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deterministic randomized
problem lower bounds upper bounds lower bounds upper bounds

1| r j, pmtn |
∑

C j 1 1 [21] 1 1 [21]
1| r j, pmtn |

∑
w jC j 1.073 [7] 1.566 [25] 1.038 [7] 4/3 [22]

1| r j |
∑

C j 2 [12] 2 [12] e
e−1 ≈ 1.58 [29] e

e−1 [4]
1| r j |

∑
w jC j 2 [12] 2 [2] e

e−1 [29] 1.686 [9]

P| r j, pmtn |
∑

C j 1.047 [12] 5/4 [26] 1 5/4 [26]
P| r j, pmtn |

∑
w jC j 1.047 [30] 1.791 [26] 1 1.791 [26]

P| r j |
∑

w jC j 1.309 [30] 1.791 [26] 1.157 [24] 1.791 [26]

R| r j |
∑

w jC j 1.309 [30] 8 [11] 1.157 [24] 8 [11]

Table 1: Lower and upper bounds on the competitive ratio for deterministic and randomized online algorithms.

each job j ∈ J has processing time p j ∈ Q
+, weight w j ∈ Q

+, and release date r j ∈ Q
+. The jobs arrive online

over time, that is, each job becomes known to the scheduling algorithm only at its release date. We consider
three different machine environments: identical parallel machines (denoted by P), related machines (Q)
where each machine i has associated a speed si and processing a job j on machine i takes p j/si time, and
unrelated machines (R) where the processing time of a job j on each machine i is explicitly given as a
value pi j. The objective is to schedule the jobs on the given set of machines so as to minimize

∑
j∈J w jC j,

where C j denotes the completion time of job j. We consider the problem with and without preemption.
Using the standard scheduling notation [10], we denote the non-preemptive (preemptive) problems that we
consider in this paper by Pm| r j, (pmtn) |

∑
w jC j, Qm| r j, (pmtn) |

∑
w jC j, and Rm| r j, pmtn |

∑
w jC j.

Previous results. The offline variants of all these problems are NP-hard. This is true already for the
special case of a single machine [14, 15]. However, polynomial-time approximation schemes have been
developed [1], even when the number of machines is part of the input.

The online setting has been a highly active field of research in the past fifteen years. A whole sequence
of papers appeared introducing new algorithms, new relaxations and analytical techniques that decreased
the gaps between lower and upper bounds on the optimal competitive ratio [2–9, 11, 12, 16–20, 22–26, 29].
We do not intend to give a detailed history of developments; instead, we refer the reader to overviews, e.g.,
in [6, 18]. Table 1 summarizes the current state-of-the-art. Interestingly, despite the considerable effort,
optimal competitive ratios are known only for 1| r j, pmtn |

∑
C j [21] and for non-preemptive single-machine

scheduling [2, 4, 12, 29]. In all other scheduling settings remain unsatisfactory, even quite significant gaps.

1.2 New Results and Methodology

In this paper, we introduce the concept of online approximation schemes and present such schemes for the
scheduling problems Pm| r j, (pmtn) |

∑
w jC j, Qm| r j, (pmtn) |

∑
w jC j, and Rm| r j, pmtn |

∑
w jC j (assuming

a constant range of machines speeds in the case of Qm| r j |
∑

w jC j). For any ε > 0, we show that the
competitive ratios of our new algorithms are by at most a factor 1 + ε larger than the respective optimal
competitive ratios. We obtain such nearly optimal online algorithms for the deterministic as well as for the
randomized setting. Moreover, we give an algorithm which estimates the optimal competitive ratio for these
problems to any desired accuracy. These results reduce the long-time ongoing search for the best possible
competitive ratio for the considered problems to a question that can be answered by a finite algorithm.

To achieve our results, we introduce a completely new way of designing online algorithms. We present
a novel abstraction in which online algorithms are formalized as algorithm maps. Such a map receives as
input a set of unfinished jobs together with the schedule computed so far. Based on this information, it
returns a schedule for the next time instant. This view captures exactly how online algorithms operate under
limited information. The total number of algorithm maps is unbounded. However, we show that there is a

3



finite subset which approximates the entire set. More precisely, for any algorithm map there is a map in our
subset whose competitive ratio is at most by a factor 1 + ε larger. To achieve this reduction, we first apply
several standard techniques, such as geometric rounding, time-stretch, and weight-shift, to transform and
simplify the input problem without increasing the objective value too much; see, e.g., [1]. The key, however,
is the insight that it suffices for an online algorithm to base its decisions on the currently unfinished jobs
and a very limited part of the so far computed schedule—rather than the entire history. This allows for an
enumeration of all relevant algorithm maps. For randomized algorithms we even show that we can restrict to
instances with only constantly many jobs. As all our structural insights also apply to offline algorithms for
the same problems and even more general variants, they might turn out to be useful for other settings as well.

Our algorithmic scheme contributes more than an improved competitive ratio. It also outputs (up to
a factor 1 + ε) the exact value of the competitive ratio of the derived algorithm, which implies a (1 + ε)-
estimate for the optimal competitive ratio. This contrasts strongly all earlier results, where (matching) upper
and lower bounds on the competitive ratio of a particular and of all online algorithm had to be derived
manually, instead of executing an algorithm using, e.g., a computer. In general, there are no computational
means to determine the competitive ratio of an algorithm. It is simply not possible to enumerate all possible
input instances. Even more, there are no general means of enumerating all possible online algorithms to
determine the optimal competitive ratio. However, for the scheduling problems studied in this paper our
extensive simplification of input instances and our abstract view on online algorithms allow us to overcome
these obstacles, losing only a factor of 1 + ε in the objective.

Although the enumeration scheme heavily exploits unbounded computational resources, the resulting
algorithm itself has polynomial running time. As a consequence, there are efficient online algorithms for
the considered problems with almost optimal competitive ratios. Hence, the granted additional, even un-
bounded, computational power of online algorithms does not yield any significant benefit here.

The techniques derived in this paper provide a completely new and interesting view on the behavior
of online algorithms. We believe that they contribute significantly to the understanding of such algorithms
and possibly open a new line of research in which they yield even further insights. In particular, it seems
promising that our methods could also be applied to other online problems.

Outline of the paper. In Section 2 we introduce several general transformations and observations that
simplify the structural complexity of online scheduling in the setting of Pm| r j, pmtn |

∑
w jC j. Based on this,

we present our abstraction of online algorithms and develop an online approximation scheme in Section 3.
Next, we sketch in Section 4 how to extend the techniques of Section 2 for the non-preemptive setting
and more general machine environments such that the online approximation scheme of Section 3 remains
applicable. Finally, we present online approximation schemes for the randomized setting in Section 5. Due
to space constraints, most proofs can be found in the appendix.

2 General Simplifications and Techniques

In this section, we discuss several transformations that simplify the input and reduce the structural com-
plexity of online schedules for Pm| r j, pmtn |

∑
w jC j. Later, we outline how to adapt these for more general

settings. Our construction combines several transformation techniques known for offline PTASs (see [1] and
the references therein) and a new technique to subdivide an instance online into parts which can be handled
separately. We will use the terminology that at 1 + O(ε) loss we can restrict to instances or schedules with
certain properties. This means that we lose at most a factor 1 + O(ε), as ε → 0, by limiting our attention to
those. We bound several relevant parameters by constants. If not stated differently, any mentioned constant
depends only on ε and m.

Lemma 2.1 ( [1]). At 1 + O(ε) loss we can restrict to instances where all processing times, release dates,
and weights are powers of 1 + ε, no job is released before time t = 1, and r j ≥ ε · p j for all jobs j.
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This standard geometric rounding procedure used in the lemma above allows us to see intervals of the
form Ix := [Rx,Rx+1) with Rx := (1 + ε)x as atomic entities for which a schedule can be computed already
at the beginning of the interval. This is possible since no further job is released before the beginning of the
next interval. Moreover, we assume at 1+ε loss that all jobs that finish within Ix have completion time Rx+1.

Simplification within intervals. Our goal is to reduce the number of situations that can arise at the be-
ginning of an interval. To this end, we partition the set of jobs released at time Rx into the set of large
jobs Lx, with processing times at least ε3Rx, and the set of small jobs Sx with all remaining jobs. Running
Smith’s Rule [28] on small jobs allows us to group very small jobs to job packs, which we treat as single
jobs. Together with Lemma 2.1 we obtain bounds on the lengths of jobs of each release date.

Lemma 2.2. At 1 + O(ε) loss, we can assume that for each interval Ix there are lower and upper bounds for
the lengths of the jobs S x ∪ Lx which are within a constant factor of Rx and the constants are independent
of x. Also, the number of distinct processing times of jobs in each interval is upper-bounded by a constant.

We look for jobs in Sx and Lx which can be excluded from processing within Ix at a loss of not more
than 1 + O(ε). This allows to bound the number of released jobs per interval.

Lemma 2.3. At 1 + O(ε) loss, we can restrict to instances where for each x, the number of jobs released at
time Rx is bounded by a constant ∆.

To prove the above claims, we use the technique of time-stretching, see [1]. In an online interpretation
of this method, we shift the work assigned to any interval Ix to the interval Ix+1. This can be done at a loss
of 1 + ε and we obtain free space of size ε · Ix′−1 in each interval Ix′ . Again using time-stretching, we can
show that no job needs to completed later than constantly many intervals after its release interval.

Lemma 2.4. There is a constant s such that at 1 + O(ε) loss we can restrict to schedules such that for each
interval Ix there is a subinterval of Ix+s−1 as large as the total volume of the jobs released at Rx during which
only jobs in Rx are executed. We call this subinterval the safety net of interval Ix. We can assume that each
job released at Rx finishes before time Rx+s.

We can also simplify the complexity of the computed schedules by limiting the way jobs are preempted.
We say that two large jobs are of the same type if they have the same processing time and the same release
date. A job is partially processed if it has been processed, but not yet completed.

Lemma 2.5. There is a constant µ > 0 such that at 1 + O(ε) loss we can restrict to schedules such that
• at the end of each interval, there are at most m large jobs of each type which are partially processed

and each of them is processed to an extent which is a multiple of p j · µ and
• each small job finishes without preemption in the same interval where it started.

Irrelevant history. The schedule that an online algorithm computes for an interval may depend on the set
of currently unfinished jobs and possibly the entire schedule used so far. In the remainder of this section we
show why we can assume that an online algorithm only takes a finite amount of history into account in its
decision making, namely, the jobs with relatively large weight released in the last constantly many intervals.

Our strategy is to partition the time horizon into periods. For each integer k ≥ 0, we define a period Qk

which consists of the s consecutive intervals Ik·s, ..., I(k+1)·s−1. For ease of notation, we will treat a period Q
as the set of jobs released in that period. For a set of jobs J we denote by rw(J) :=

∑
j∈J r jw j their release

weight. Note that rw(J) forms a lower bound on the quantity that these jobs must contribute to the objective
in any schedule. Due to Lemma 2.4, we also obtain an upper bound of (1 + ε)s · rw(J) for the latter quantity.

The following lemma identifies when a period Qk+p is in comparison with the preceding p periods
insignificant enough to schedule all jobs within their safety net. In this case, the jobs of Qk+p have no
influence on the decisions for the further instance. Hence, we can reset completely and forget the past.
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Lemma 2.6. Let Qk, ...,Qk+p be consecutive periods such that period Qk+p is the first of this series with
rw(Qk+p) ≤ ε

(1+ε)s ·
∑p−1

i=0 rw(Qk+i). Then at 1 + ε loss we can move all jobs in Qk+p to their safety nets.

The above observation defines a natural partition of a given instance I into parts by the insignificant
periods. Formally, let a1, ..., a` be all ordered indices such that Qai is insignificant compared to the preceding
periods according to Lemma 2.6 (a0 := 0). Let a`+1 be the index of the last period. For each i ∈ {0, ..., `}
we define a part Pi consisting of all periods Qai+1, ...,Qai+1 . Again, identify with Pi all jobs released in
this part. We treat now each part Pi as a separate instance that we present to a given online algorithm.
For the final output, we concatenate the computed schedules for the different parts. It then suffices to
bound A(Pi)/OPT(Pi) for each part Pi since A(I)/OPT(I) ≤ maxi{A(Pi)/OPT(Pi)} · (1 + O(ε)).

Lemma 2.7. At 1 + O(ε) loss we can restrict to instances which consist of only one part.

Each but the last period of one part fulfills the opposite condition of the one from Lemma 2.6. This
implies exponential growth for the series of partial sums of release weights (albeit with a small growth
factor). From this observation, we get:

Lemma 2.8. There is a constant K such that the following holds: Let Q1,Q2, ...,Qp be consecutive periods
such that rw(Qi+1) > ε

(1+ε)s ·
∑i
`=1 rw(Q`) for all i. Then in any schedule in which each job j finishes at

time r j ·(1+ε)s the latest (e.g., using the safety net) it holds that
∑p−K−1

i=1
∑

j∈Qi w jC j ≤ ε·
∑p

i=p−K
∑

j∈Qi w jC j.

The objective value of one part is therefore dominated by the contribution of the last K periods of this
part. We will need this later to show that at 1 + ε loss we can assume that an online algorithm bases
its decisions only on a constant amount of information. Denote the corresponding number of important
intervals by Γ := Ks.

This enables us to partition the jobs into relevant and irrelevant jobs. Intuitively, a job is irrelevant if
it is released very early (cf. Lemma 2.8) or its weight is very small in comparison to some other job. The
subsequent lemma states that the irrelevant jobs can almost be ignored for the objective value of a schedule.

Definition 2.9. A job j is irrelevant at time Rx if it was irrelevant at time Rx−1, or r j < Rx−Γ, or it is
dominated at time Rx. This is the case if there is a job j′, either released at time Rx or already relevant at
time Rx−1 with release date at least Rx−Γ, such that w j <

ε
∆·Γ·(1+ε)Γ+s w j′ . Otherwise, a job released until Rx is

relevant at time Rx. Denote the respective subsets of some job set J by Relx(J) and Irx(J).

Lemma 2.10. Consider a schedule of one part in which each job j finishes at time r j · (1+ε)s the latest (e.g.,
using the safety net) and let x be an interval index in this part. Then

∑
j∈Irx(J) C jw j ≤ O(ε) ·

∑
j∈Relx(J) C jw j.

The above lemma implies that at 1 + O(ε) loss we can restrict to online algorithms which schedule the
remaining part of a job in its safety net, once it has become irrelevant.

3 Abstraction of Online Algorithms

In this section we show how to construct an online approximation scheme based on the observations of
Section 2. To do so, we restrict ourselves to such simplified instances and schedules. In Section 4, we will
sketch adjustments of these simplifications that are necessary to apply our framework to other problems.

The key idea is to characterize the behavior of an online algorithm by a map: For each interval, the map
gets as input the schedule computed so far and all information about the currently unfinished jobs. Based on
this information, the map outputs how to schedule the available jobs within this interval.

More precisely, we define the input by a configuration and the output by an interval-schedule.

Definition 3.1. An interval-schedule S for an interval Ix is defined by
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• the index x of the interval,
• a set of jobs J(S ) available for processing in Ix together with the properties r j, p j,w j of each job j ∈

J(S ) and its already finished part f j < p j up to Rx,
• for each job j ∈ J(S ) the information whether j is relevant at time Rx, and
• for each job j ∈ J(S ) and each machine i a value qi j specifying for how long j is processed by S on

machine i during Ix.
An interval-schedule is called feasible if there is a feasible schedule in which the jobs of J(S ) are processed
corresponding to the q j values within the interval Ix. Denote the set of feasible interval-schedules as S.

Definition 3.2. A configuration C for an interval Ix consists of
• the index x of the interval,
• a set of jobs J(C) released up to time Rx together with the properties r j, p j,w j, f j of each job j ∈ J(C),
• an interval-schedule for each interval Ix′ with x′ < x.

The set of all configurations is denoted by C. A configuration C for an interval Ix such that at time Rx, and
not earlier, no jobs are left unprocessed is an end-configuration.

We say that an interval-schedule S is feasible for a configuration C if the set of jobs in J(C) which are
unfinished at time Rx matches the set J(S ) with respect to release dates, total and remaining processing time,
weight and relevance of the jobs.

Instead of online algorithms we work from now on with algorithm maps, which are defined as func-
tions f : C → S. An algorithm map determines a schedule f (I) for a given scheduling instance I by
iteratively applying f to the corresponding configurations. W.l.o.g. we consider only algorithm maps f such
that f (C) is feasible for each configuration C and f (I) is feasible for each instance I. Like for online algo-
rithms, we define the competitive ratio ρ f of an algorithm map f by ρ f := maxI f (I)/OPT(I). Due to the
following observation, algorithm maps are a natural generalization of online algorithms.

Proposition 3.3. For each online algorithm A there is an algorithm map fA such that when A is in configu-
ration C ∈ C at the beginning of an interval Ix, algorithm A schedules the jobs according to fA(C).

Recall, that we restrict our attention to algorithm maps describing online algorithms which obey the
simplifications introduced in Section 2. The essence of such online algorithms are the decisions for the
relevant jobs. To this end, we define equivalence classes for configurations and for interval-schedules.
Intuitively, two interval-schedules (configurations) are equivalent if we can obtain one from the other by
scalar multiplication with the same value, while ignoring the irrelevant jobs.

Definition 3.4. Let S , S ′ be two feasible interval-schedules for two intervals Ix, Ix′ . Denote by JRel(S ) ⊆
J(S ) and JRel(S ′) ⊆ J(S ′) the relevant jobs in J(S ) and J(S ′). Let further σ : JRel(S ) → JRel(S ′) be a
bijection and y an integer. The interval-schedules S , S ′ are (σ, y)-equivalent if rσ( j) = r j(1 + ε)x′−x, pσ( j) =

p j(1 + ε)x′−x, fσ( j) = f j(1 + ε)x′−x, qσ( j) = q j(1 + ε)x′−x and wσ( j) = w j (1 + ε)y for all j ∈ JRel(S ). The
interval-schedules S , S ′ are equivalent (denoted by S ∼ S ′) if a map σ and an integer y exist such that they
are (σ, y)-equivalent.

Definition 3.5. Let C,C′ be two configurations for two intervals Ix, Ix′ . Denote by JRel(C), JRel(C′) the jobs
which are relevant at times Rx,Rx′ in C,C′, respectively. Configurations C,C′ are equivalent (denoted by
C ∼ C′) if there is a bijection σ : JRel(C)→ JRel(C′) and an integer y such that

• rσ( j) = r j(1 + ε)x′−x, pσ( j) = p j(1 + ε)x′−x, fσ( j) = f j(1 + ε)x′−x and wσ( j) = w j (1 + ε)y for all j ∈
JRel(C), and

• the interval-schedules of Ix−k and Ix′−k are (σ, y)-equivalent when restricted to the jobs in JRel(C)
and JRel(C′) for each k ∈ N.
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A configuration C is realistic for an algorithm map f if there is an instance I such that if f processes I
then at time Rx it is in configuration C. The following lemma shows that we can restrict the set of algorithm
maps under consideration to those which treat equivalent configurations equivalently. We call algorithm
maps obeying this condition in addition to the restrictions of Section 2 simplified algorithm maps.

Lemma 3.6. At 1 + O(ε) loss we can restrict to algorithm maps f such that f (C) ∼ f (C′) for any two
equivalent configurations C,C′.

Proof. Let f be an algorithm map. For each equivalence class C′ ⊆ C of the set of configurations we pick
a representative C which is realistic for f . We define a new algorithm map f̄ by defining f̄ (C′) to be the
interval-schedule for C′ which is equivalent to f (C) for each configuration C′ ∈ C′. One can show by
induction that f̄ is always in a configuration such that an equivalent configuration is realistic for f . Hence,
equivalence classes without realistic configurations for f are not relevant. We claim that ρ f̄ ≤ (1 + O(ε))ρ f .

Consider an instance Ī. We show that there is an instance I such that f̄ (Ī)/OPT(Ī) ≤ (1 +

O(ε)) f (I)/OPT(I) which implies the claim. Consider an interval Ix̄. Let C̄ be the end-configuration ob-
tained when f̄ is applied iteratively on Ī. Let C be the representative of the equivalence class of C̄, which
was chosen above and which is realistic for f (C is also an end-configuration). Therefore, there is an in-
stance I such that C is reached at time Rx when f is applied on I. Hence, I is the required instance since
the relevant jobs dominate the objective value (see Lemma 2.10) and C ∼ C̄. �

Lemma 3.7. There are only constantly many simplified algorithm maps. Each simplified algorithm map
can be described using finite information.

Proof. From the simplifications introduced in Section 2 follows that the domain of the algorithm maps under
consideration contains only constantly many equivalence classes of configurations. Also, the target space
contains only constantly many equivalence classes of interval-schedules. For an algorithm map f which
obeys the restrictions of Section 2, the interval-schedule f (C) is fully specified when knowing only C and
the equivalence class which contains f (C) (since the irrelevant jobs are moved to their safety net anyway).
Since f (C) ∼ f (C′) for a simplified algorithm map f if C ∼ C′, we conclude that there are only constantly
many simplified algorithm maps. Finally, each equivalence class of configurations and interval-schedules
can be characterized using only finite information, and hence the same holds for each simplified algorithm
map. �

The next lemma shows that up to a factor 1 + ε worst case instances of simplified algorithm maps
span only constantly many intervals. Using this property, we will show in the subsequent lemmas that the
competitive ratio of a simplified algorithm map can be determined algorithmically up to a 1 + ε factor.

Lemma 3.8. There is a constant E such that for any instance I and any simplified algorithm map f there
is a realistic end-configuration C̃ for an interval Ix̃ with x̃ ≤ E which is equivalent to the corresponding
end-configuration when f is applied to I.

Proof. Consider a simplified algorithm map f . For each interval Ix, denote by C f
x the set of realistic equiva-

lence classes for Ix, i.e., the equivalence classes which have a realistic representative for Ix. Since there are
constantly many equivalence classes and thus constantly many sets of equivalence classes, there must be a
constant E independent of f such that C f

x̄ = C
f
x̄′ for some x̄ < x̄′ ≤ E. Since f is simplified it can be shown

by induction that C f
x̄+k = C

f
x̄′+k for any k ∈ N, i.e., f cycles with period length x̄′ − x̄.

Consider now some instance I and let C with interval Ix be the corresponding end-configuration when f
is applied to I. If x ≤ E we are done. Otherwise there must be some k ≤ x̄′ − x̄ such that C f

x̄+k = C
f
x since f

cycles with this period length. Hence, by definition of C f
x̄+k there must be a realistic end-configuration C̃

which is equivalent to C for the interval Ix̃ with x̃ := x̄ + k ≤ E. �

8



Lemma 3.9. Let f be a simplified algorithm map. There is an algorithm which approximates ρ f up to a
factor 1 + ε, i.e., it computes a value ρ′ with ρ′ ≤ ρ f ≤ (1 + O(ε))ρ′.

Proof sketch. By Lemma 2.10, the relevant jobs in a configuration dominate the entire objective value. In
particular, we do not need to know the irrelevant jobs of a configuration if we only want to approximate its
objective value up to a factor of 1 + O(ε). For an end-configuration C denote by valC(JRel(C)) the objective
value of the jobs in JRel(C) in the history of C. We define r(C) := valC(JRel(C))/OPT(JRel(C)) to be the
achieved competitive ratio of C when restricted to the relevant jobs. According to Lemma 3.8, it suffices to
construct the sets C f

0 , ...,C
f
E in order to approximate the competitive ratio of all end-configurations in these

sets. We start with C f
0 and determine f (C) for one representant C of each equivalence class C ∈ C f

0 . Based
on this we determine the set C f

1 . We continue inductively to construct all sets C f
x with x ≤ E.

We define rmax to be the maximum ratio r(C) for an end-configuration C ∈ ∪0≤x≤EC
f
x . Due to Lemma 3.8

and Lemma 2.10 the value rmax implies the required ρ′ fulfilling the properties claimed in this lemma. �

Our main algorithm works as follows. We first enumerate all simplified algorithm maps. For each sim-
plified algorithm map f we approximate ρ f using Lemma 3.9. We output the map f with the minimum (ap-
proximated) competitive ratio. Note that the resulting online algorithm has polynomial running time: All
simplifications of a given instance can be done efficiently and for a given configuration, the equivalence
class of the schedule for the next interval can be found in a look-up table of constant size.

Theorem 3.10. We obtain an online approximation scheme for Pm| r j, pmtn |
∑

w jC j.

4 Extensions to Other Settings

4.1 Non-preemptive Scheduling

When preemption is not allowed, the definition of the safety net (Lemma 2.4) needs to be adjusted since
we cannot ensure that at the end of each interval Ix+s there is a machine idle. However, we can guaran-
tee that there is a reserved space somewhere in [Rx,Rx+s) to process the small and big jobs in S x ∪ Lx.
Furthermore, we cannot enforce that a big job j is processed for exactly a certain multiple of p jµ in each
interval (Lemma 2.5). To solve this, we pretend that we could preempt j and ensure that after j has been
preempted its machine stays until j continues. Next, we can no longer assume that each part can be treated
independently (Lemma 2.7). Since some of the remaining jobs at the end of a part may have already started
processing, we cannot simply move them to their safety net. Here we use the following simplification.

Lemma 4.1. Let first(i) denote the job that is released first in part Pi. At 1 + ε loss, we can restrict to
instances such that

∑i−1
`=1 rw(P̀ ) ≤ ε

(1+ε)s · rw(first(i)), i.e., first(i) dominates all previous parts.

Therefore, at 1+ε loss it is enough to consider only the currently running jobs from the previous part and
the last Γ intervals from the current part when taking decisions. Finally, we add some minor modifications
to handle the case that a currently running job is dominated by some other job. With these adjustments, we
have only constantly many equivalence classes for interval-schedules and configurations, which allows us
to construct an online approximation scheme as in Section 3.

Theorem 4.2. We obtain an online approximation scheme for Pm| r j |
∑

w jC j .

4.2 Scheduling on Related Machines

In the related machine setting, each machine i has associated a speed si, such that processing job j on
machine i takes p j/si time units. W.l.o.g. the slowest machine has unit speed. Let smax denote the maximum
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speed in an instance. An adjusted version of Lemma 2.1 can ensure that at 1 + ε loss r j ≥ ε p j/smax for all
jobs j (rather than r j ≥ εp j). Furthermore, we can bound the number of distinct processing times and the
number of released jobs of each interval, using similar arguments as in the unit-speed case.

Lemma 4.3. At 1+O(ε) loss we can restrict to instances where for each release date the number of released
jobs and the number of distinct processing times is bounded by some constant depending only on ε, m,
and smax.

We establish the safety net for the jobs of each release date Rx only on the fastest machine and thereby
ensure the condition of Lemma 2.4 in the related machine setting. For the non-preemptive setting we incor-
porate the adjustments introduced in Section 4.1. Since at 1+ε loss we can round the speeds of the machines
to powers of 1 + ε we obtain the following result.

Theorem 4.4. We obtain online approximation schemes for Qm| r j, pmtn |
∑

w jC j and Qm| r j |
∑

w jC j, as-
suming that the speeds of any two machines differ by at most a constant factor.

In the preemptive setting we can strengthen the result and give an online approximation scheme for the
case that machine speeds are part of the input, that is, we obtain a nearly optimal competitive ratio for any
speed vector. The key is to bound the variety of different speeds. To that end, we show that at 1 + ε loss a
very fast machine can simulate m − 1 very slow machines.

Lemma 4.5. For Qm| r j, pmtn |
∑

w jC j, at 1 + O(ε) loss, we can restrict to instances in which smax is
bounded by m/ε.

As speeds are geometrically rounded, we have for each value m only finitely many speed vectors. Thus, our
enumeration scheme finds a nearly optimal online algorithm with a particular routine for each speed vector.

Theorem 4.6. We obtain an online approximation scheme for Qm| r j, pmtn |
∑

w jC j .

4.3 Preemptive Scheduling on Unrelated Machines

When each job j has its individual processing time pi j on machine i, the problem complexity increases
significantly. We restrict to preemptive scheduling and show how to decrease the complexity to apply our
approximation scheme. The key is to bound the range of the finite processing times for each job (which is
unfortunately not possible in the non-preemptive case, see [1] for a counterexample).

Lemma 4.7. At 1+ε loss we can restrict to instances in which for each job j the ratio of its finite processing
times is bounded by m/ε.

The above lemma allows us to introduce the notion of job classes. Two jobs j, j′ are of the same class
if they have finite processing times on exactly the same machines and pi j/pi j′ = pi′ j/pi′ j′ for any two such
machines i and i′. For fixed m, the number of different job classes is bounded by a constant W.

For each job class, we define large and small tasks similar to the identical machine case: for each job j
we define a value p̃ j := maxi{pi j|pi j < ∞} and say a job is large if p̃ j ≥ ε

2r j/W and small otherwise. For
each job class separately, we perform the adjustments of Section 2. This yields the following lemma.

Lemma 4.8. At 1 + O(ε) loss we can restrict to instances and schedules such that
• for each job class, the number of distinct values p̃ j of jobs j with the same release date is bounded by

a constant,
• for each job class, the number of jobs with the same release date is bounded by a constant ∆̃,
• a large job j is only preempted at integer multiples of p̃ j · µ̃ for some constant µ̃ and small jobs are

never preempted and finish in the same interval where they start.
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The above lemmas imply that both, the number of equivalence classes of configurations and the number
of equivalence classes for interval-schedules are bounded by constants. Thus, we can apply the enumeration
scheme from Section 3.

Theorem 4.9. We obtain an online approximation scheme for Rm| r j, pmtn |
∑

w jC j .

5 Randomized algorithms

When algorithms are allowed to make random choices and we consider expected values of schedules, we can
restrict to instances which span only constantly many periods. Assuming the simplifications of Section 2,
this allows a restriction to instances with a constant number of jobs.

Lemma 5.1. For randomized algorithms, at 1 + ε loss we can restrict to instances in which all jobs are
released in at most (1 + ε)s /ε consecutive periods.

Proof idea. Beginning at a randomly chosen period Qi with i ∈ [0,M), with M := d(1 + ε)s /εe, we move
all jobs released in Qi+kM, k = 0, 1, . . ., to their safety net. At 1 + ε loss, this gives us a partition into parts,
at the end of which no job remains, and we can treat each part independently. �

A randomized online algorithm can be viewed as a function that maps every possible configuration C to
a probability distribution of interval-schedules which are feasible for C. To apply our algorithmic framework
from the deterministic setting that enumerates all algorithm maps, we discretize the probability space and
define discretized algorithm maps. To this end, let Γ̄ denote the maximum number of intervals in instances
with at most (1 + ε)s /ε periods.

Definition 5.2 (Discretized algorithm maps). Let C̄ be the set of configurations for intervals Ix with x ≤ Γ̄,
let S̄ be the set of interval-schedules for intervals Ix with x ≤ Γ̄, and let δ > 0. A δ-discretized algorithm
map is a function f : C̄ × S̄ → [0, 1] such that f (C, S ) = k · δ with some k ∈ N0 for all C ∈ C̄ and S ∈ S̄,
and

∑
S∈S̄ f (C, S ) = 1 for all C ∈ C̄.

The following lemma shows that by restricting to δ-discretized algorithm maps we do not lose too much
in the competitive ratio.

Lemma 5.3. There is a value δ > 0 such that for any (randomized) algorithm map f there is a δ-discretized
randomized algorithm map g with ρg ≤ ρ f (1 + ε).

Proof idea. Let f be a randomized algorithm map and let δ > 0 such that 1/δ ∈ N. We define a new δ-
discretized algorithm map g. For each configuration C we define the values g(C, S ) such that b f (C, S )/δc·δ ≤
g(C, S ) ≤ d f (C, S )/δe · δ and

∑
S∈S g(C, S ) = 1. To see that ρg ≤ (1 + ε) ρ f , consider an instance I and

a possible schedule S (I) for I. There is a probability p that f outputs S (I). We show that the schedules
with large probability p dominate E

[
f (I)

]
/OPT(I). We show further that if p is sufficiently large, the

probability that g produces S (I) is in [p/(1 + ε), p(1 + ε)), which implies the Lemma. �

Like in the deterministic case, we can now show that at 1 + ε loss it suffices to restrict to simplified
δ-discretized algorithm maps which treat equivalent configurations equivalently, similar to Lemma 3.6 (re-
placing Γ by Γ̄ in Definition 2.9 of the irrelevant jobs). As there are only constantly many of these maps, we
enumerate all of them, test each map for its competitive ratio, and select the best of them.

Theorem 5.4. We obtain randomized online approximation schemes for Pm| r j, (pmtn) |
∑

w jC j,
Qm| r j, pmtn |

∑
w jC j, and Rm| r j, pmtn |

∑
w jC j and for Qm| r j |

∑
w jC j with a bounded range of machine

speeds.
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A Proofs of Section 2

First, we will show that the number of distinct processing times of large jobs in each interval can be upper-
bounded by a constant. To achieve this, we partition the jobs of an instance into large and small jobs. With
respect to a release date Rx we say that a job j with r j = Rx is large if p j ≥ ε

2Ix = ε3Rx and small otherwise.
Abusing notation, we refer to |Ix| also by Ix. Note that Ix = ε · (1 + ε)x.

Lemma A.1. The number of distinct processing times of jobs in each set Lx is bounded by 4 log1+ε
1
ε .

Proof. For any j ∈ Lx the processing time p j is a power of 1 + ε, say p j = (1 + ε)y. Hence, we have that
ε3 (1 + ε)x < (1 + ε)y ≤ 1

ε (1 + ε)x. The number of integers y which satisfy the above inequalities is bounded
by 4 log1+ε

1
ε , which yields the constant claimed in the lemma. �

Furthermore, we can bound the number of large jobs of each job size which are released at the same
time.

Lemma A.2. Without loss, we can restrict to instances with |Lx| ≤ (m/ε2 + m)4 log1+ε
1
ε for each set Lx.

Proof. Let Lx,p ⊆ Lx denote the set of jobs in Lx with processing time p. By an exchange argument, one
can show that in an optimal schedule at each point in time at most m jobs in Lx,p are partially (i.e., to some
extent but not completely) processed. Since p j ≥ ε

2Ix for each job j ∈ Lx, at most m/ε2 + m jobs in Lx,p

are touched within Ix. By an exchange argument we can assume that they are the m/ε2 + m jobs with the
largest weight in Lx,p. Hence, the release date of all other jobs in Lx,p can be moved to Rx+1 without any
cost. Since due to Lemma A.1 there are at most 4 log1+ε

1
ε distinct processing times p of large jobs in Lx,

the claim follows. �

We now just need to take care of the small jobs. Denote by w j/p j the Smith’s ratio of a job j. An
ordering where the jobs are ordered non-increasingly by their Smith’s ratios is an ordering according to
Smith’s rule. The next lemma shows that scheduling the small jobs according to Smith’s Rule is almost
optimal and small jobs do not even need to be preempted or to cross intervals. For a set of jobs J we define
p(J) :=

∑
j∈J p j.

Lemma A.3. At 1+ε loss we can restrict to schedules such that for each interval Ix the small jobs scheduled
within this interval are chosen by Smith’s Rule from the set

⋃
x′≤x S x′ , no small job is preempted, any small

job finishes in the same interval where it started and p(Sx) ≤ m · Ix for each interval Ix.

Proof. By an exchange argument one can show that it is optimal to schedule the small jobs by Smith’s Rule
if they can be arbitrarily divided into smaller jobs (where the weight is divided proportional to the processing
time of the smaller jobs). Start with such a schedule and stretch time once. The gained free space is enough
to finish all small jobs which are partially scheduled in each interval.

For the last claim of the lemma, note that the total processing time in each interval Ix is mIx. Order the
small jobs non-increasingly by their Smith’s Ratios and pick them until the total processing time of picked
jobs just does not exceed mIx. The release date of all other jobs in S x can be safely moved to Rx+1 since due
to our modifications we would not schedule them in Ix anyway. �

Lemma 2.4 (restated). There is a constant s such that at 1 + O(ε) loss we can restrict to schedules such
that for each interval Ix there is a subinterval of Ix+s−1 as large as the total volume of the jobs released at
Rx during which only jobs in Rx are executed. We call this subinterval the safety net of interval Ix. We can
assume that each job released at Rx finishes before time Rx+s.

14



Proof. By Lemmas A.3 and A.2 we bound p(S x) + p(Lx) by

p(S x) + p(Lx) ≤ m · Ix + (m/ε2 + m) ·
(
4 log1+ε

1
ε

)
·

1
ε

(1 + ε)x

≤ m · (1 + ε)x
(
ε +

8
ε3 log1+ε

1
ε

)
= ε · Ix+s−1

for a suitable constant s, depending on ε and m. Stretching time once, we gain enough free space at the end
of each interval Ix+s−1 to establish the safety net for each job set p(S x) + p(Lx).

�

Lemma A.4. There is a constant d such that we can at 1+O(ε) loss restrict to instances such that p j >
ε

2d ·Ix

for each job j ∈ S x ∪ Lx.

Proof. We call a job j tiny if p j ≤
ε

2d · Ix. Let Tx = { j1, j2, ..., j|Tx |} denote all tiny jobs released at Rx.
W.l.o.g. assume that they are ordered non-increasingly by their Smith’s Ratios w j/p j. Let ` be the largest
integer such that

∑`
i=1 pi ≤

ε
d · Ix. We define the pack P1

x := { j1, ..., j`}. We denote by
∑`

i=1 pi the processing
time of pack P1

x and by
∑`

i=1 wi its weight. We continue iteratively until we assigned all tiny jobs to packs.
By definition of the processing time of tiny jobs, the processing time of all but possibly the last pack released
at time Rx is in the interval [ ε

2d · Ix,
ε
d · Ix].

Using timestretching, we can show that at 1 + O(ε) loss all tiny jobs of the same pack are scheduled in
the same interval on the same machine. Here we use that in any schedule obeying Smith’s Rule and using
the safety net (see Lemma 2.4) in each interval there is at most one partially but unfinished pack from each
of at most s previous release dates. Hence, we can treat the packs as single jobs whose processing time and
weight matches the respective values of the packs. Also, at 1 + ε loss we can ensure that also the very last
pack has a processing time in [ ε

2d · Ix,
ε
d · Ix]. Finally, at 1 + O(ε) loss we can ensure that the processing times

and weights of the new jobs (which replace the packs) are powers of 1 + ε. �

Lemma A.5. Assume that there is a constant d such that p j >
ε

2d · Ix for each job j ∈ S x. Then at 1 + O(ε)
loss, the number of distinct processing times of jobs each set S x is upper-bounded by (log1+ε ε · 2d).

Proof. From the previous lemmas, we have

e2

2d
· (1 + ε)x < (1 + ε)y < ε3(1 + ε)x.

The number of integers y satisfying these inequalities is upper-bounded by the claimed constant. �

Lemma 2.2 now follows from the lemmas A.1 and A.5. Lemma 2.3 follows from lemmas A.3, A.4 and
A.2. Next, we prove Lemma 2.5:

Proof of Lemma 2.5. The claim about the number of partially processed jobs of each type can be assumed
without any loss. For the extent of processing, note that due to Lemmas A.2, 2.4, and A.4 there is a constant
c such that at each time Rx the total processing time of unfinished large jobs is bounded by c ·Rx. We stretch
time once. The gained space is sufficient to schedule p j · µ processing units of each unfinished large job j
(for an appropriately chosen universal constant µ). This allows us to enforce the claim. The claim about the
non-preemptive behavior of small jobs follows from Lemma A.3. �
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Proof of Lemma 2.6. In any schedule the jobs in ∪p−1
i=0 Qk+i contribute at least

∑p−1
i=0 rw(Qk+i) towards the

objective. If we move all jobs in Qk+p to their safety nets, they contribute at most

∑
j∈Qk+p

r j (1 + ε)s · w j = (1 + ε)s · rw(Qk+p)

≤ ε ·

p−1∑
i=0

rw(Qk+i)

≤ ε · OPT

to the objective. �

Proof of Lemma 2.7. We modify a given online algorithm such that each part is treated as a separate in-
stance. To bound the cost in the competitive ratio, we show that A(I)

OPT(I) ≤ maxi{
A(Pi)

OPT(Pi)
} · (1 + O(ε)). By

the above lemmas, there is a (1 + O(ε))-approximative (offline) solution in which at the end of each part Pi

each job has either completed or has been moved to its safety net. Denote this solution by OPT′(I) and by
OPT′(Pi) its respective part for each part Pi. Note that OPT′(I) =

∑
i OPT′(Pi). Then,∑k

i=1 A(Pi))
OPT(I)

≤

∑k
i=1 A(Pi))∑k

i=1 OPT′(Pi)
· (1 + O(ε)) ≤ max

i=1,...,k
{

A(Pi)
OPT(Pi)

} · (1 + O(ε)).

�

Proof of Lemma 2.8. We show that (1 + ε)s ∑p−K−1
i=1 rw(Qi) < ε ·

∑p
i=p−K rw(Qi) for a sufficiently large

value K. This will then be the claimed constant. Let δ′ := ε
(1+ε)s . By assumption, we have that

rw(Qi+1) > δ′ ·
∑i
`=1 rw(Q`) for each i. This implies that rw(Qi+1)∑i+1

`=1 rw(Q`)
> δ′

1+δ′ for each i. Hence,∑i
`=1 rw(Q`)

rw(Qi+1) +
∑i
`=1 rw(Q`)

≤ 1 −
δ′

1 + δ′
< 1

for each i and hence,

i∑
`=1

rw(Q`) ≤ (1 −
δ′

1 + δ′
)

i+1∑
`=1

rw(Q`).

In other words, if we remove Qi+1 from ∪i+1
`=1Q` then the total release weight of the set decreases by a factor

of at least 1 − δ′/(1 + δ′) < 1. For any K this implies that

p−K−1∑
i=1

rw(Qi) <
(
1 −

δ′

1 + δ′

)K p∑
`=1

rw(Q`)

and hence
p−K−1∑

i=1

rw(Qi) <
1

1 −
(
1 − δ′

1+δ′

)K

(
1 −

δ′

1 + δ′

)K p∑
i=p−K

rw(Qi).

By choosing K sufficiently large, the claim follows. �
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Proof of Lemma 2.10. We partition Irx(J) into two groups: Irold
x (J) := { j ∈ Irx(J)|r j < Rx−Γ} and Irnew

x (J) :=
{ j ∈ Irx(J)|r j ≥ Rx−Γ}. Lemma 2.8 implies that

(1 + ε)srw(Irold
x (J)) ≤ ε · rw(Irnew

x (J) ∪ Relx(J)) (A.1)

(recall that the former value is an upper bound on the total weighted completion time of the jobs in Irold
x (J)).

For every job j ∈ Irnew
x (J) there must be a job j′ ∈ Irold

x (J) ∪ Relx(J) such that w j <
ε

∆Γ·(1+ε)Γ+s w j′ . We
say that such a job j′ dominates j. At most ∆ jobs are released at the beginning of each interval and hence
|Irnew

x (J)| ≤ ∆Γ. In particular, if dom( j′) denotes all jobs in Irnew
x (J) which are dominated by j′ then∑

j∈dom( j′)

w jr j ≤ ∆Γ
ε

∆Γ · (1 + ε)Γ+s w j′r j′ · (1 + ε)Γ

This implies that

(1 + ε)srw(Irnew
x (J)) ≤ (1 + ε)s

∑
j∈Irnew

x (J)

w jr j

≤
∑

j′∈Irold
x (J)∪Relx(J)

∆Γ
ε

∆Γ · (1 + ε)Γ+s w j′r j′ · (1 + ε)Γ+s

≤ ε ·
∑

j′∈Irold
x (J)∪Relx(J)

w j′r j′

= ε · (rw(Irold
x (J)) + rw(Relx(J)))

Together with Inequality A.1 this implies that

(1 + ε)srw(Irx(J)) = (1 + ε)s(rw(Irnew
x (J) + rw(Irold

x (J)))

≤
(
ε · (rw(Irold

x (J)) + rw(Relx(J))
)

+
(
ε · rw(Irnew

x (J) ∪ Relx(J))
)

≤ 2ε · rw(Relx(J)) + ε(rw(Irx(J))

and the latter inequality implies that

∑
j∈Irx(J)

C jw j ≤ (1 + ε)srw(Irx(J))

≤ 2ε
(1 + ε)s

(1 + ε)s − ε
rw(Relx(J))

≤ 3ε · rw(Relx(J))

�

B Proofs of Section 4

Lemma B.1. In the non-preemptive setting, at 1+O(ε) loss we can ensure that at the end of each interval Ix,
• there are at most m large jobs from each type which are partially (i.e., neither fully nor not at all)

processed, and
• for each partially but not completely processed large job j there is a value kx, j such that j is processed

for at least kx, j · p j · µ time units in Ix,
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• we calculate the objective with adjusted completion times C̄ j = Rc( j) for some value c( j) for each job j
such that

∑
x<c( j) kx, j · p j · µ ≥ p j.

Proof. Note that the first property holds for any non-preemptive schedule and is listed here only for the sake
of clarity. The other two properties can be shown similiarly as in the proof of Lemma 2.5. �

Proof of Lemma 4.1. Assume that we have an online algorithm A with competitive factor ρA on instances in
which for every i the first job first(i) released in part Pi satisfies

∑i−1
`=1 rw(P̀ ) ≤ wfirst(i)ε/ (1 + ε)s (i.e., first(i)

dominates all previously released parts). Based on A we construct a new algorithm A′ for arbitrary instances
with competitive ratio at most (1 + ε) ρA: When a new part Pi begins, we scale the weights of all jobs in Pi

such that
∑i−1
`=1 rw(P̀ ) ≤ w′first(i)ε/ (1 + ε)s, where the values w′j denote the adjusted weights. Denote by Ī(i)

the resulting instance up to (and including) part Pi. We schedule the resulting instance using A. We take
the computed schedule for each part Pi and use it for the jobs with their original weight, obtaining a new
algorithm A′. The following calculations shows that this procedure costs only a factor 1 + ε. To this end, we
proof that for any instance I it holds that

A′(I)
OPT(I)

≤ max
i

A(Ī(i))
OPT(Ī(i))

· (1 + O(ε)) ≤ (1 + O(ε))ρA.

For each Pi we define A′(I|Pi) to be the amount that the jobs in Pi contribute in A′(I). Similarly, we
define OPT(I|Pi). We have that

A′(I)
OPT(I)

≤ max
i

A′(I|Pi)
OPT(I|Pi)

≤ max
i

A′(I|Pi)
OPT(Pi)

.

We claim that for each i holds A′(I|Pi)
OPT(Pi)

≤ (1 + O(ε)) · A(Ī(i))
OPT(Ī(i)) . For each part Pi let vi denote the scale factor

of the weight of each job in Ī(i) in comparison to its original weight. The optimum for the instance Ī(i) can
be bounded by

OPT(Ī(i)) ≤ OPT(Pi) · vi + (1 + ε)s
i−1∑
`=1

rw(P̀ ) ≤ OPT(Pi) · vi + ε · rfirst(i) · w′first(i) ≤ (1 + ε) OPT(Pi) · vi.

Furthermore holds by construction A′(I|Pi) · vi ≤ A(Īi). Thus, maxi
A′(I|Pi)
OPT(Pi)

≤ maxi
A(Īi)

OPT(Īi) · (1 + O(ε)). �

Proof of Lemma 4.5. Given a schedule on related machines with speed values s1, ..., smax, we stretch time
twice. Thus, we gain in each interval Ix free space of size εIx on the fastest machine. For each machine
whose speed is at most ε

m smax, we take its schedule of the interval Ix and simulate it on the fastest machine.
Thus, those slow machines are not needed and can be removed. The remaining machines have speeds
in [ εm smax, smax]. Assuming the slowest machines has unit speed gives the desired bound. �

Proof of Lemma 4.7. Consider a schedule for an instance which does not satisfy the property. We stretch
time twice and thus we gain a free space of εIx in each interval Ix. Consider some Ix and a job j which is
scheduled in Ix. Let i be a fastest machine for j. We remove the processing volume of j scheduled in Ix

on slow machines i′ with pi′ j >
m
ε pi j and schedule it on i in the gained free space. This way, we obtain a

feasible schedule even if a job never runs on a machine where it is slow. Thus, we can set pi′ j = ∞ if there
is a fast machine i such that pi j ≤

ε
m pi′ j. �
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C Proofs of Section 5

Proof of Lemma 5.1. Let A be a randomized online algorithm with a competitive ratio of ρA on instances
which span at most (1 + ε)s /ε periods. We construct a new randomized online algorithm A′ which works on
arbitrary instances I such that ρA′ ≤ ρA(1+ε). At the beginning of A′, we choose an offset o ∈ {0, ...,M−1}
uniformly at random with M := d(1 + ε)s /εe. In instance I, we move all jobs to their safety net which are
released in periods Q ∈ Q := {Qi|i ≡ o mod M}. This splits the instance into parts P1, ..., Pk where each
part P̀ consists of the periods Qo+(`−1)·M, ...,Qo+`·M−1. Note that at the end of each part no job remains. We
need to bound the increase in the total expected cost caused by moving all jobs in periods in Q to their safety
nets. This increase is bounded by

E

∑
Q∈Q

∑
j∈Q

(1 + ε)s r j · w j

 ≤ (1 + ε)s E

∑
Q∈Q

rw(Q)


≤ (1 + ε)s 1

M

∑
Q∈I

rw(Q)

≤ ε · rw(I)

≤ ε · OPT(I) .

Thus, the total expected cost of the computed schedule is

E

ε · OPT(I) +

k∑
i=1

A(Pi)

 ≤ ε · OPT(I) +

k∑
i=1

ρA · OPT(Pi)

≤ ε · OPT(I) + ρA · OPT(I)

≤ (ρA + ε) · OPT(I)

≤ ρA(1 + ε) · OPT(I).

Thus, at 1 + ε loss in the competitive ratio we can restrict to parts Ii which span a constant number of
periods. �

Proof of Lemma 5.3. Consider an instance I. Let δ > 0 and k ∈ N be values to be determined later with
the property that 1/δ ∈ N. For each configuration C and each interval-schedule S we define a value g(C, S )
such that

⌊
f (C,S )
δ

⌋
· δ ≤ g(C, S ) ≤

⌈
f (C,S )
δ

⌉
· δ and

∑
S∈S g(C, S ) = 1. Now we want to bound ρg.

The idea is that for determining the ratio E
[
g(I)

]
/OPT(I) it suffices to consider schedules S (I) which

are computed with sufficiently large probability. We show that also f computes them with almost the same
probability. Let S (I) denote a schedule for the entire instance I. We denote by P f (S (I)) and Pg(S (I)) the
probability that f and g compute the schedule S (I) when given the instance I. Assume that P f (S (I)) ≥
k · δ. Denote by C0, ...,CΓ̄−1 the configurations that algorithms are faced with when computing S (I), i.e.,
each configuration Cx contains the jobs which are released but unfinished at the beginning of interval Ix

in S (I) and as history the schedule S (I) restricted to the intervals I0, ..., Ix−1. Denote by Sx the schedule
of S (I) in the interval Ix. Hence, P f (S (I)) =

∏Γ̄−1
x=0 f (Cx, Sx). Note that from P f (S (I)) ≥ k · δ follows

that f (Cx, Sx) ≥ k · δ for all x. For these schedules, Pg(S (I)) is not much larger since

Pg(S (I)) =

Γ̄−1∏
x=0

g(Cx, Sx) ≤
Γ̄−1∏
x=0

k + 1
k

f (Cx, Sx) ≤
(
k + 1

k

)Γ̄

P f (S (I)).
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Let S(I) denote the set of all schedules for I. We partition S(I) into schedule sets Sg
H(I) :=

{S (I)|Pg(S (I)) ≥ k ·δ} and Sg
L(I) := S(I)\SH(I). We estimate the expected value of a schedule computed

by algorithm map g on I by

E
[
g(I)

]
=

∑
S (I)∈Sg

H(I)

Pg(S (I)) · S (I) +
∑

S (I)∈Sg
L(I)

Pg(S (I)) · S (I)

≤
∑

S (I)∈Sg
H(I)

P f (S (I)) ·
(
k + 1

k

)Γ̄

· S (I) + |S(I)| · k · δ · (1 + ε)s · rw(I)

≤

(
k + 1

k

)Γ̄ ∑
S (I)∈Sg

H(I)

P f (S (I)) · S (I) + |S(I)| · k · δ · (1 + ε)s · rw(I)

≤

(
k + 1

k

)Γ̄

E
[

f (I)
]
+ |S(I)| · k · δ · (1 + ε)s · rw(I).

We choose k such that
(

k+1
k

)Γ̄
≤ 1+ε/2 and δ such that |S(I)|·k·δ·(1 + ε)s ≤ ε/2 for all instances I (note here

that |S(I)| can be upper bounded by a value independent of I since our instances contain only constantly
many jobs). This yields

E
[
g(I)

]
OPT(I)

≤ (1 + ε/2) ·
E

[
f (I)

]
OPT(I)

+ ε/2 ·
rw(I)

OPT(I)
≤ (1 + ε) ·

E
[

f (I)
]

OPT(I)
,

and we conclude that ρg ≤ (1 + ε) ρ f . �
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