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Figure 1.1: CFEM (left), CR-NCFEM (middle), RT-MFEM (right).

1 Introduction
Given a bounded polygonal domain Ω in the plane and data f ∈ L2(Ω), the Poisson
model problem seeks the weak solution u ∈ H1(Ω) of

−∆u = f in Ω and u = 0 on ∂Ω. (1.1)

This paper compares the error of three popular finite element methods (FEM) for
the numerical solution of (1.1) as depicted in Figure 1.1, the conforming Courant
FEM (CFEM) [11], the nonconforming Crouzeix-Raviart FEM (CR-NCFEM)
[12], and the mixed Raviart-Thomas FEM (RT-MFEM) [18] with respective solu-
tions uC, uCR, and (pRT, uRT) based on a shape-regular triangulation of Ω.

As the main result (in Theorems 1 and 2) we will show that

‖∇u − pRT‖L2(Ω) . ‖∇NC(u − uCR)‖L2(Ω) ≈ ‖∇(u − uC)‖L2(Ω) (1.2)

holds up to data oscillation osc( f ,T ) and up to mesh-size independent generic
multiplicative constants (hidden in the notation . and ≈). The conjecture

‖∇NC(u − uCR)‖L2(Ω) . ‖∇u − pRT‖L2(Ω)

is false in general (Theorem 3). It is remarkable that those results do not rely on
the regularity of the solution u.

A comparison of the methods under consideration has been initiated in [5],
where the hypercircle method proves ‖∇u− pRT‖ . ‖∇NC(u− uCR)‖ . ‖∇(u− uC)‖.
This paper gives direct proofs and a throughout comparison. The novel result

‖∇NC(u − uCR)‖L2(Ω) . ‖p − Π0 p‖L2(Ω) + osc( f ,T ) (1.3)

from [14, Section 3.1] with the L2 projection of the flux p := ∇u onto its piecewise
constant integral means Π0 p leads to a third proof of ‖∇NC(u− uCR)‖L2(Ω) . ‖∇(u−
uC)‖L2(Ω) with other tools.

An immediate application to least-squares finite element methods improves a
comparison result of [15] and disproves a further conjecture. The comparison re-
sults also clarify that various approximation classes for the optimality of adaptive
FEM coincide.
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The outline of this paper is as follows. Section 2 introduces the precise no-
tation and states the main results in Theorems 1, 2, and 3 and comments on it.
Section 3 gives their proofs based on arguments from the a posteriori error analy-
sis. Section 4 illustrates the equivalences in a typical situation and in the context
of the counterexample of Theorem 3 below. The arguments are expected to be
possibly generalised to further applications and numerical schemes as well as to
higher dimensions and more general boundary conditions.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is
employed and A . B abbreviates an inequality A ≤ C B with some mesh-size
independent generic constant 0 ≤ C < ∞; A ≈ B abbreviates A . B . A. All
hidden generic factors depend on a lower bound of the minimal angle in T .

2 Results

2.1 Three Finite Element Methods
This section defines the three finite element methods of Figure 1.1 and states the
main results of this paper. The proofs follow in the subsequent section.

Let T denote a shape-regular triangulation of a polygonal bounded Lipschitz do-
main Ω into (closed) triangles, i.e., Ω̄ = ∪T and any two elements are either
disjoint or share exactly one edge or share exactly one vertex. Let hT ∈ P0(T )
denote the T -piecewise constant mesh width function with hT |T = diam(T ) for
all T ∈ T . Let E denote the set of edges of T and N the set of vertices, N(Ω)
denotes the interior nodes. Throughout the paper, let

Pk(T ) = {vk : Ω→ R | ∀T ∈ T , vk|T is a polynomial of total degree ≤ k}

denote the set of piecewise polynomials and Π0 : L2(Ω)→ P0(T ) denote the L2-
projection onto T -piecewise constant functions or vectors, i.e., (Π0 f )|T =

>
T

f dx
for all T ∈ T and all f ∈ L2(Ω;Rm).

Given such a shape-regular triangulation T , recall the three FEM under con-
sideration.

CFEM. The Courant finite element space reads

VC(T ) := {vC ∈ P1(T ) | vC is continuous and vanishes on ∂Ω}. (2.1.a)

The corresponding (unique) Galerkin approximation uC ∈ VC(T ) satisfies∫
Ω

∇uC · ∇vC dx =

∫
Ω

f vC dx for all vC ∈ VC(T ). (2.1.b)
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CR-NCFEM. The Crouzeix-Raviart finite element space reads

CR1
0(T ) := {vCR ∈ P1(T ) | vCR is continuous at midpoints of interior

edges and vanishes at midpoints of boundary edges}. (2.2.a)

A general function in CR1
0(T ) does not belong to H1(Ω). However, theT -piecewise

gradient ∇NCvCR, with (∇NCvCR)|T = ∇(vCR|T ) for all T ∈ T , exists and ∇NCvCR ∈

P0(T ;R2). The (unique) Crouzeix-Raviart approximation uCR ∈ CR1
0(T ) satisfies∫

Ω

∇NCuCR · ∇NCvCR dx =

∫
Ω

f vCR dx for all vCR ∈ CR1
0(T ). (2.2.b)

RT-MFEM. The mixed lowest-order Raviart-Thomas finite element space reads

RT0(T ) := {q ∈ H(div,Ω) | ∀T ∈ T ∃ aT ∈ R
2 ∃ bT ∈ R∀x ∈ T,
q|T (x) = aT + bT x}.

(2.3.a)

The (unique) mixed finite element approximation (pRT, uRT) ∈ RT0(T ) × P0(T )
satisfies∫

Ω

pRT · qRT dx +

∫
Ω

uRT div qRT dx = 0 for all qRT ∈ RT0(T );

Π0 f + div pRT = 0.
(2.3.b)

2.2 Main Results
This subsection presents the comparison results proved in Section 3. The Lebesgue
and Sobolev spaces L2(Ω) and H1(Ω) are defined as usual, C(Ω) denotes the set
of continuous functions on Ω and we define ‖ · ‖ := ‖ · ‖L2(Ω) and osc( f ,T ) :=
‖hT ( f − Π0 f )‖.

Theorem 1 (Equivalence of CFEM and CR-NCFEM). It holds

‖∇u − ∇uC‖ . ‖∇u − ∇NCuCR‖ . ‖∇u − ∇uC‖ + osc( f ,T ).

Theorem 2 (Comparison of RT-MFEM and CR-NCFEM). It holds

‖∇u − ∇NCuCR‖ . ‖h f ‖ + ‖∇u − pRT‖ . ‖∇u − ∇NCuCR‖ + osc( f ,T ).

Theorem 3 (Superiority of RT-MFEM). The conjecture

‖∇u − ∇NCuCR‖ . ‖∇u − pRT‖ + osc( f ,T )

is false in general in the sense that, given f ≡ 2 and M > 0, there exist some
convex Lipschitz domain Ω = ΩM and a quasi uniform triangulation T = TM such
that

M
(
‖∇u − pRT‖ + osc( f ,T )

)
≤ ‖∇u − ∇NCuCR‖.
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Figure 2.1: Criss-cross triangulation of the unit square (left) and a red-refined
triangle (right).

2.3 Comments
Two possible conjectures. In the context of Theorems 1–3 and the hypercircle
identities, two possible conjectures read

‖∇u − ∇uC‖ . ‖∇uC − ∇NCuCR‖ + osc( f ,T )

and
‖∇u − ∇NCuCR‖ . ‖∇uC − ∇NCuCR‖ + osc( f ,T ).

The two statements are false in general, because for f ≡ 1, and the criss-cross
triangulation T of the unit square Ω = [0, 1]2 into four congruent triangles as
depicted in Figure 2.1, it holds uC = uCR , u.

Results for the Least-Squares FEM. Amongst the possible immediate applica-
tions, we briefly discuss the least-squares finite element method. The least-squares
functional

LS( f ; qLS, vLS) := ‖ f + div qLS‖
2 + ‖qLS − ∇vLS‖

2

is minimised amongst all (qLS, vLS) ∈ RT0(T ) × VC(T ). It is well known [3] that
the Least-Squares FEM is quasi-optimal in the sense that

‖∇u− pLS‖H(div,Ω) + ‖∇(u−uLS)‖ . min
qRT∈RT0(T )

‖∇u−qRT‖H(div,Ω) + min
vC∈VC(T )

‖∇(u−vC)‖.

In particular, with regard to Theorems 1 and 2, the choice qRT := pRT and vC := uC

for pRT and uC the Raviart-Thomas and the Courant solution leads to

‖∇u − pLS‖H(div,Ω) + ‖∇(u − uLS)‖ ≈ ‖∇(u − uC)‖ + ‖ f − Π0 f ‖. (2.4)

Since ‖∇(u − uC)‖ ≤ ‖∇(u − uLS)‖, this proves

‖∇u − pLS‖H(div,Ω) . ‖∇(u − uLS)‖ + ‖ f − Π0 f ‖.
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The counterexample from Theorem 3 shows that the possible conjecture

‖∇(u − uLS)‖ . ‖∇u − pLS‖ + ‖ f − Π0 f ‖

is false in general. This is a consequence of supercloseness of [6] and elementary
calculations. This result is counterintuitive in the sense that the rule of thumb in
minimisation of LS( f ; •, •) expects two contributions of similar size.

At least for piecewise constant right-hand sides f , the equivalence (2.4) is also
an improvement of [15, Theorem 5.1] on the separate approximation within the
least-squares method.

Equality of Approximation Classes. The notion of optimality of adaptive FEM
in the literature is based on the concept of an approximation class [9, 2]. Given
some s > 0 and an initial regular triangulation T0, one defines admissible triangu-
lations T with |T | ≤ |T0|+ N and considers a minimum of an approximation term
approx(T , u, f ) specified below. For the Courant FEM,

approx(T , u, f ) :=
√
‖∇u − ∇uC‖

2 + osc( f ,T )2,

where uC ∈ VC(T ) is the solution of (2.1.b) with right-hand side f . For CR-
NCFEM [1, 17],

approx(T , u, f ) :=
√
‖∇u − ∇NCuCR‖

2 + ‖hT f ‖2

or (the equivalent term)

approx(T , u, f ) :=
√
‖∇u − ∇NCuCR‖

2 + osc( f ,T )2

are in use for the CR-NCFEM solution uCR ∈ CR1
0(T ) of (2.2.b) with right-hand

side f . For RT-MFEM [8, Definition 3.5], [10],

approx(T , u, f ) :=
√
‖∇u − pRT‖

2 + osc( f ,T )2

are in use for the discrete solution pRT ∈ RT0(T ) based on (2.3) with data f .
Given any such approximation term approx(T , u, f ), the approximation class

As := {(u, f ) ∈ H1
0(Ω) × L2(Ω) | u solves (1.1) with right-hand side f

and |(u, f )|As < ∞}

is defined via the seminorm

|(u, f )|As := sup
N∈N

min
|T |≤N+|T0 |

N s approx(T , u, f ).
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Clearly, the approximation class depends on the approximation term approx(T , u, f )
at hand and hence on the FEM at hand. Correspondingly, we have

As(C),As(CR), andAs(RT)

according to the above choices related to the discretisation scheme at hand. From
the comparison results of this paper, we deduce

As := As(C) = As(CR) ⊂ As(RT)

forAs defined as before with p := ∇u and the approximation term

approx(T , u, f ) :=
√
‖p − Π0 p‖2 + osc( f ,T )2.

The aforementioned result (1.3) from [14, Section 3.1] leads to

‖p − Π0 p‖ + osc( f ,T ) ≈ ‖∇u − ∇NCuCR‖ + osc( f ,T )

and, hence, (1.2) proves the equivalence of the approximation terms which then
shows the equality of the approximation classes.

The counterexample of Theorem 3 motivates the conjecture

As(RT) , As.

A detailed discussion of a proof requires the approximation of the curved bound-
ary ∂B(0, 1) (it is no longer sufficient to consider refinements of some fixed T0)
and lies beyond the scope of this paper. Similar arguments apply to the approxi-
mation classes of the least square finite element method.

3 Proofs

3.1 Proof of Theorem 1
The first proposition is already included in [7, Theorem 5.1] with a different proof.

Proposition 4. Any vCR ∈ CR1
0(T ) satisfies

min
vC∈VC(T )

‖∇NCvCR − ∇vC‖ ≈ min
v∈H1

0 (Ω)
‖∇NCvCR − ∇v‖.

Proof. Let ΩT := ∪{K ∈ T | T ∩ K , ∅} denote the patch of first order layers
around T and let E(ΩT ) := {E ∈ E | E ∩ T , ∅} and T (ΩT ) := {T ∈ T | T ⊂ ΩT }

denote its edges and triangles. For z ∈ N define T (z) := {T ∈ T | z ∈ T }.
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Given vCR ∈ CR1
0(T ) define IC vCR ∈ VC(T ) by

(IC vCR)(z) = |T (z)|−1
∑

T∈T (z)

(vCR|T )(z) (3.1)

for any interior node z ∈ N(Ω). For vCR ∈ CR1
0(T (ΩT )), define

ρ1(vCR) := ‖∇NC(vCR − IC vCR)‖L2(T )

and

ρ2(vCR) :=
√ ∑

E∈E(ΩT )

|E|‖[(∇NCvCR) · τE]E‖
2
L2(E) ,

where τE denotes a unit vector tangential to E. If ρ2(vCR) = 0, then vCR ∈ C(ΩT )
and vCR|E = 0 for a boundary edge E ⊂ ∂Ω ∩ Ω̄T , hence IC vCR = vCR on T
and ρ1(vCR) = 0. Since ρ1 and ρ2 are seminorms on CR1

0(T (ΩT )), there exists
a constant, such that ρ1 . ρ2 on CR1

0(T (ΩT )). A scaling argument shows that
the constant is independent of the mesh-size. The sum over all T ∈ T and the
bounded overlap of the patches (ΩT | T ∈ T ) show that

‖∇NC(vCR − IC vCR)‖ .
√∑

E∈E

|E| ‖[(∇NCvCR) · τE]E‖
2
L2(E) .

By a straight-forward modification of [13, Theorem 3.1],√∑
E∈E

|E| ‖[(∇NCvCR) · τE]E‖
2
L2(E) ≈ min

v∈H1
0 (Ω)
‖∇NCvCR − ∇v‖ .

Hence, one inequality is proven. The reverse inequality follows from ∇VC(T ) ⊂
∇H1

0(Ω).
The remaining part of this subsection is devoted to our proof of Theorem 1. A

different proof can be found in [5]. The inclusion VC(T ) ⊂ CR1
0(T ) and Galerkin

orthogonality show

‖∇NCuCR − ∇uC‖ = min
vC∈VC(T )

‖∇NCuCR − ∇vC‖ .

Together with Proposition 4 and the triangle inequality it follows

‖∇u − ∇uC‖ ≤ ‖∇u − ∇NCuCR‖ + ‖∇NCuCR − ∇uC‖ . ‖∇u − ∇NCuCR‖

which is the first inequality in Theorem 1.

8



For the proof of the second inequality let e := INC u − uCR, where the noncon-
forming interpolation INC u ∈ CR1

0(T ) is defined uniquely by?
E

INC u ds =

?
E

u ds for all E ∈ E.

Since ∇NC(INC u) = Π0(∇u), it holds

‖∇u − ∇NCuCR‖L2(Ω) ≤ ‖∇u − ∇NC INC u‖L2(Ω) + ‖∇NCe‖L2(Ω)

≤ ‖∇(u − uC)‖L2(Ω) + ‖∇NCe‖L2(Ω).
(3.2)

Since ∇NCe is constant on E ∈ E, [e] is affine on E ∈ E and vanishes in the
midpoint of E, it follows for eC := IC e ∈ VC(T ) (with IC from (3.1)) that

‖∇NCe‖2L2(Ω) =

∫
Ω

∇NCe · ∇NC(e − eC) dx

=
∑
E∈E

∫
E

[(e − eC)∇NCe · νE]E ds

≤
∑

E∈E:E⊂Ω

‖[∇NCe · νE]E‖L2(E)

∥∥∥〈e − eC〉E

∥∥∥
L2(E)

≤

√ ∑
E∈E:E⊂Ω

|E| ‖[∇NCe · νE]E‖
2
L2(E)

√∑
E∈E

|E|−1
∥∥∥〈e − eC〉E

∥∥∥2

L2(E)
.

Let ΩE := ∪{T ∈ T | E ∩ T , ∅} denote the patch of first order around E and let
T (ΩE) denote its triangles. Define for vCR ∈ CR1(T (ΩE))

ρ3(vCR) := |E|−
1
2
∥∥∥〈vCR − IC vCR〉E

∥∥∥
L2(E)

and ρ4(vCR) := ‖∇NCvCR‖L2(ΩE).

If ρ4(vCR) = 0 then vCR is constant on each T ∈ T (ΩE). Since vCR is continuous
on the midpoints of interior edges of T (ΩE), vCR is constant on ΩE. Hence, vCR =

IC vCR on E and ρ3(vCR) = 0. Since ρ3 and ρ4 are seminorms on CR1(T (ΩE)),
there exists a constant such that ρ3 . ρ4 on CR1(T (ΩE)). A scaling argument
shows that the constant is independent of the mesh-size. The sum over all interior
edges of T and the bounded overlap of the patches (ΩE | E ∈ E) show that∑

E∈E

|E|−1
∥∥∥〈e − eC〉E

∥∥∥2

L2(E)
. ‖∇NCe‖2.

This leads to
‖∇NCe‖2 .

∑
E∈E

|E| ‖[∇NCe · νE]E‖
2
L2(E) . (3.3)

For any vertex x ∈ N let ϕx denote the associated hat function (i.e., ϕx is con-
tinuous, T -piecewise affine, and ϕx(y) = δxy for all y ∈ N). Given any E =
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conv{a, b} ∈ E with E = T+ ∩ T− for T+ = conv{a, b, c},T− = conv{a, b, d} ∈ T ,
let bE := 6ϕaϕb − 10ϕaϕbϕc − 10ϕaϕbϕd be some bubble function supported on
ωE := T+ ∪ T−. Compute

|E|1/2 ‖[(∇NCe) · νE]E‖L2(E) =

∣∣∣∣∣∣
∫

E
[(∇NC INC u − ∇NCuCR) · νE]E ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

E
bE [(∇NC INC u − u) · νE]E ds −

∫
E
ψE [(∇NCuCR) · νE]E ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
ωE

∇NC(INC u − u) · ∇bE dx −
∫

Ω

∆u bE dx −
∫

Ω

∇NCuCR · ∇NCψE dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

Ω

∇NC(INC u − u) · ∇bE dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫

Ω

f (bE − ψE) dx

∣∣∣∣∣∣.
(3.4)

Since, by definition,
>

T±
(bE − ψE) dx = 0 and ‖bE − ψE‖L∞(Ω) ≈ 1, the Poincaré

inequality leads to∣∣∣∣∣∣
∫

Ω

f
(
bE−ψE

)
dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
ωE

(
f −Π0 f

) (
bE−ψE

)
dx

∣∣∣∣∣∣ . |ωE |
1/2‖ f −Π0 f ‖L2(ωE). (3.5)

Moreover, ‖∇bE‖L2(Ω) ≈ 1 and ∇NC INC u = Π0(∇u) yield∣∣∣∣∣∣
∫

Ω

∇NC(INC u − u) · ∇bE dx

∣∣∣∣∣∣ . ‖∇NC(u − INC u)‖L2(ωE) ≤ ‖∇(u − uC)‖L2(ωE). (3.6)

The combination of (3.2)–(3.6) plus the finite overlap of (ωE | E ∈ E) proves the
second inequality in Theorem 1.

3.2 Proof of Theorem 2
Let ũCR ∈ CR1

0(T ) denote the Crouzeix-Raviart solution with respect to the right-
hand side f = Π0 f . Marini [16] shows that

pRT = ∇NCũCR −
1
2 (Π0 f )(• −mid(T ))

where mid(T )|T = mid(T ) and mid(T ) denotes the barycentre of T ∈ T and
(• −mid(T )) ∈ P1(T ) equals (x −mid(T )) at x ∈ T ∈ T . Hence,

‖∇u − ∇NCuCR‖ ≤ ‖∇u − pRT‖ + ‖pRT − ∇NCũCR‖ + ‖∇NCũCR − ∇NCuCR‖

. ‖∇u − pRT‖ + ‖h f ‖.

This proves the first inequality in Theorem 2. The proof of the second one exploits
Marini’s identity again,

‖∇u − pRT‖ ≤ ‖∇u − ∇NCũCR‖ + ‖∇NCũCR − pRT‖ . ‖∇u − ∇NCuCR‖ + ‖h f ‖.
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The efficiency of ‖h f ‖ up to oscillations [19], namely

‖h f ‖ . ‖∇u − ∇NCuCR‖ + osc( f ), (3.7)

concludes the proof.

3.3 Proof of Theorem 3
The counterexample concerns the quadratic polynomial uB,

uB(x) := (1 − |x|2)/2 in the unit disk B = B(0, 1).

Note that uB ∈ C∞(R2) solves −∆u = 2 in B and u = 0 on ∂B. Moreover, ∇u =

−x ∈ RT0(T ).
Given a small 0 < h � 1 as the uniform edge-length of a regular polygon Ω

with vertices on ∂B, let T denote a shape-regular quasi-uniform triangulation of
Ω with maximal mesh size ≈ h. Let u ∈ H1

0(Ω) solve −∆u = 2 in Ω.
The point of departure is the claim ‖∇(u − uB)‖ . h3/2. To prove this, observe

that, since uB − u is harmonic with boundary values uB|∂Ω,

‖∇(u − uB)‖ = min { ‖∇v‖ | v ∈ H1(Ω) : v|∂Ω = uB|∂Ω}.

Therefore it remains to design some function w ∈ H1(Ω) with w|∂Ω = uB|∂Ω and
‖∇w‖ . h3/2. To do so, set for any E ∈ E with E = conv{a, b} = ∂Ω ∩ T for some
T ∈ T and nodal basis functions ϕa and ϕb of the Courant FEM,

wE :=
1
2

h2ϕaϕb ∈ H1(Ω) with supp wE = T and w =

 ∑
E∈E:E⊂∂Ω

wE

 ∈ H1(Ω).

Since wE(x) = uB(x) for all x ∈ E, and ‖∇wE‖ ≈ h2, it follows

‖∇(u − uB)‖ ≤
√ ∑

E∈E:E⊂∂Ω

‖∇wE‖
2 ≈ h3/2.

For Q( f ,T ) := {qRT ∈ RT0(T ) | div qRT = −Π0 f }, the RT-MFEM approximation
pRT of ∇u on Ω is characterised by

‖∇u − pRT‖ = min{ ‖∇u − qRT‖ | qRT ∈ Q(2,T )}.

This is well-understood in the context of minimisation under side restrictions and
its connection to saddle-point problems [4]. Since ∇uB ∈ Q(2,T ), it follows

‖∇u − pRT‖ ≤ ‖∇(u − uB)‖ . h3/2. (3.8)

Since f ≡ 2, it holds osc f = 0 and ‖h f ‖ ≈ h. Hence, (3.7) and (3.8) imply

Ch−1/2(‖∇u − pRT‖ + osc( f ,T )) ≤ ‖∇u − ∇NCuCR‖

Given M > 0, the choice h = (C/M)2 proves the assertion of Theorem 3.
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4 Numerical Illustration
The first experiment illustrates the counterexample of Theorem 3 which appears
to be non-generic. The second example with a corner-singularity shows equality
of convergence rates as a typical behaviour.

4.1 Illustration of Theorem 3
In the first experiment, the domains Ω j, j = 2, 3, . . . , 9, are regular polygons with
2 j edges whose vertices lie on the unit sphere ∂B(0, 1) as in the proof of Theorem
3. For each domain Ω j a series of red-refined triangulations Tj,` := red(`)(Tj) of an
initial triangulation Tj determines the discrete solutions u( j,`)

CR and p( j,`)
RT of (2.2.b)

and (2.3.b). For the red-refinement of the triangulation each triangle is refined
as in Figure 2.1. The initial triangulations are given as follows. T2 is the criss-
cross triangulation and given the triangulation Tj, a red-refinement red(Tj) of Tj is
modified in that the new boundary nodes are projected to the circle ∂B(0, 1). This
defines Tj+1; the triangulations T2, T3, T6 are depicted in Figure 4.1.

Table 1 contains the quotients of the flux errors with exact solution u( j) based
on the Poisson model problem on Ω j and its flux approximations ∇NCu( j,`)

CR and p( j,`)
RT

based on the triangulation Tj,`,

q(`, j) :=
‖∇u( j) − p( j,`)

RT ‖

‖∇u( j) − ∇NCu( j,`)
CR ‖

. (4.1)

The convergence history plot of Figure 4.2 shows the flux errors plotted against
the number of degrees of freedom. The crosses and the triangles mark the errors
for the Crouzeix-Raviart and the Raviart-Thomas solution. In order to compute
the error, for each domain Ω j some P2 reference solution is computed on Tj,11− j.
The dashed lines connect the errors for the triangulations T2,T3, . . . ,T9 of the
proof of Theorem 3 and show the expected convergence rates.

The Raviart-Thomas errors show a larger convergence rate on the initial trian-
gulations than the Crouzeix-Raviart errors, while for a fixed domain the Raviart-
Thomas errors converge with the same convergence rate as the Crouzeix-Raviart
errors after a very long preasymptotic plateaux. The same behaviour can be ob-
served in Table 1: For a fixed ` the quotients q(`, j) are decreasing while for a
fixed j the quotients first increase and then stay on the same level.

4.2 Numerical Comparison on L-shaped Domain
The second example is devoted to a prototypical equivalent behaviour of the three
finite element schemes. The corner singular functions on a typical corner of a

12



Figure 4.1: T2, T3 and T6 from Subsection 4.1

Table 1: Quotient q(`, j) from (4.1) for RT-MFEM and CR-NCFEM
` = 0 1 2 3 4 5 6 7

j = 2 .94097 .90727 .90405 .90346 .90335 .90333 .90333 .90333
3 .51218 .72172 .77759 .80313 .81703 .82517 .83011
4 .34413 .56908 .66257 .71381 .74579 .76746
5 .23909 .43216 .53576 .60128 .64662
6 .16793 .31867 .41264 .47906
7 .11856 .23084 .30735
8 .08424 .16622
9 .06103
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Figure 4.2: Errors of CR-NCFEM (×) and RT-MFEM (O) in Subsection 4.1.
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polygonal domain Ω ⊂ R2 for instance, do not allow for the improved convergence
of the Raviart-Thomas MFEM.

To illustrate this, let the origin 0 be a nonconvex vertex of ∂Ω with maximal
interior angle ω such that, up to some smooth truncation function, the leading
singular function has the form

using(r, ϕ) = rα sin(αϕ) for 0 < r < 1 and 0 < ϕ < ω

with 1/2 < α := π/ω < 1. Given any triangle T with vertex 0, the approximation
error of the flux ∇using = αrα−1(sinαϕ, cosαϕ) by Raviart-Thomas functions is
bounded from below by

min
a,b,c∈R

‖∇using(x) − (a, b) − cx‖L2(T ) ≈ hαT

and hence is of the same order as the interpolation error of the piecewise affine
nodal or edge-wise interpolation in the Courant or Crouzeix-Raviart FEM. For
meshes where this defines the convergence rates like in the numerical examples
below, this shows that the Raviart-Thomas MFEM has the same order of conver-
gence and is not superior to the remaining two finite element schemes.

The L-shaped domain Ω = [−1, 1]2 \ ([0, 1] × [−1, 0]) illustrates this with the
right-hand side f ≡ 2. The solutions of (2.1.b), (2.2.b) and (2.3.b) are computed
on a sequence of red-refined triangulations T0,T1, . . . ,T6 and a sequence of graded
meshes TG

j for j = 3, 4, 8, 16, 32, 64, 128, 256 with grading parameter β = 3/2
where j denotes the vertices on one side of one macro triangle. The initial trian-
gulation T0 for the red-refined triangulations and the graded mesh TG

3 are depicted
in Figure 4.3. The errors for solutions on a red-refined triangulation are computed
by a P2 reference solution on T9 and the errors for a solution on a graded mesh
TG

j are computed by a P2 reference solution on red(2)(TG
j ). Figure 4.4 reveals the

expected convergence rates 1/3 (resp. 1/2) for uniform (resp. graded) meshes for
all three methods. The equivalence of the three methods is clearly visible.
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