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Abstract

We show that many couplings between parabolic systems for processes in solids

can be formulated as a gradient system with respect to the total free energy or

the total entropy. This includes Allen-Cahn, Cahn-Hilliard, and reaction-diffusion

systems and the heat equation. For this, we write the coupled system as an Onsager

system (X,Φ,K) defining the evolution U̇ = −K(U)DΦ(U). Here Φ is the driving

functional, while the Onsager operator K(U) is symmetric and positive semidefinite.

If the inverse G = K−1 exists, the triple (X,Φ,G) defines a gradient system.

Onsager systems are well suited to model bulk-interface interactions by using the

dual dissipation potential Ψ∗(U,Ξ) = 1
2〈Ξ,K(U)Ξ〉. Then, the two functionals Φ and

Ψ∗ can be written as a sum of a volume integral and a surface integral, respectively.

The latter may contain interactions of the driving forces in the interface as well as the

traces of the driving forces from the bulk. Thus, capture and escape mechanisms like

thermionic emission appear naturally in Onsager systems, namely simply through

integration by parts.
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Keywords: Gradient flow, Onsager system, Onsager operator, dual dissipation poten-

tial, dual entropy-production potential, thermionic emission, reversible reactions.

1 Introduction

The aim of this work is to present a unifying thermomechanical framework for the mod-
eling of dissipative effects in solids. In particular, this will allow us to derive thermody-
namically consistent couplings between several effects usually considered separately. This
will include Allen-Cahn and Cahn-Hilliard systems for vectors of phase indicators and the
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dissipative evolution of internal variables like viscoplasticity or magnetization. Moreover,
reaction-diffusion system of mass-action type can also be handled. Most importantly, the
coupling to the energy balance (heat equation) is discussed in detail to obtain a correct
energy balance and a positive entropy-production rate.

The main idea of the paper is to formulate all these processes in terms of a gradient
system. For most of the individual systems the gradient structure is well established
and used in different occasions. For reaction-diffusion system a full gradient structure
was established only recently in [Mie11b], including the non-isothermal case with a heat
equation. However, the coupling of different gradient systems is nontrivial, and the main
observation of this paper is that the coupling is largely simplified if we consider the dual
formulations, which we call Onsager systems.

A gradient system is a triple (X,Φ,G), where X is the state space, Φ : X → R is the
energy functional driving the dynamics, and G is a metric tensor, i.e. G(U) : TUX → T∗

UX

is a symmetric and positive (semi)definite operator, which is called the Riemannian tensor
(if X is a finite-dimensional manifold). The evolution equation is given by

G(U)U̇ = −DΦ(U).

In many cases an Onsager system (X,Φ,K) is equivalent to a gradient system, as its
equation is

U̇ = −K(U)DΦ(U), (1.1)

and now K(U) : T∗
UX → TUX is a symmetric and positive semidefinite operator. Clearly,

if G and K are invertible the two notions are equivalent by setting K(U) = G(U)−1. We
call the triple (X,Φ,K) an Onsager system, because of Onsager’s fundamental symmetry
relations, meaning K = K∗, and the Onsager principle. The latter states that the rate U̇
of a macroscopic variable U is given by the product of a symmetric matrix (the activities)
and the thermodynamically conjugate driving force, namely −DΦ(U). The similar theory
for fluxes (cf. [Ons31]) states that the mobility tensor M in diffusive system must be
symmetric, see Sections 2.2 and 3.2.1.

From the thermodynamical point of view, we will consider two distinct cases, the
isothermal and the non-isothermal case. In the former case the free energy F(y) =
E(y, θ∗) − θ∗S(y, θ∗) is the driving potential Φ. In the non-isothermal case we will use
the state variable (y, r) where r is a scalar temperature-like variable, which is typically
chosen to be the temperature θ, the internal energy density e, or the entropy density s.
Since we are dealing with a closed system, we have the total energy E(y, r) as a con-
served functional while the negative total entropy −S(y, r) serves as the driving func-
tional Φ. Note that the corresponding Onsager operators Kisoth(y) and Knoniso(y, r)
have different physical dimensions, the former defining the dual dissipation potential
Ψ∗

isoth(y;η) = 1
2
〈η,Kisoth(y)η〉 and the latter defining the dual entropy-production po-

tential Ψ∗
noniso(y, r;η, τ) =

1
2
〈
(
η

τ

)
,Knoniso(y, r)

(
η

τ

)
〉.

The advantages of the Onsager form over the gradient systems are manifold. First,
we are used to write ordinary and partial differential equations as rate equations U̇ = ....,
where the right-hand side is often a sum of different terms relating to different physical
effects. Such a structure can easily be mimicked in Onsager system, by writing

U̇ = −
(
K1(U) +K2(U) + · · ·+KN(U)

)
DΦ(U).

2



Thus, we can add different dissipation mechanisms as long as we use the same driving
functional, namely the physical free energy or the negative entropy. This provides a
natural way to add diffusive and reactive effects of chemical species, thermal entropy
production, or dissipation through changing phase indicators.

A second advantage of the Onsager systems is that differential operators for the Kj can
easily be handled, like in the case of the Cahn-Hilliard equation, the heat equation, or in
diffusion systems. Most efficiently K is defined in terms of the dual dissipation potential
Ψ∗(U,Ξ) = 1

2
〈Ξ,K(U)Ξ〉 for the isothermal case (and the dual entropy-production poten-

tial for the non-isothermal case), i.e. K is defined in terms of a nonnegative quadratic
form.

Third, it is easy to handle linear and nonlinear conserved quantities such as the
total energy E in the case of closed non-isothermal systems. We simply have to ask
K(U)DE(U) ≡ 0 to obtain d

dt
E(U(t)) = 0 along solutions of U̇ = −K(U)DΦ(U).

The structure of the paper is the following. In Section 2 we provide definitions and
motivations for gradient and Onsager systems and discuss their relation. In particular,
we address the isothermal case and the non-isothermal cases. In Section 3 we exhibit the
Onsager structure in a series of bulk models such as the Allen-Cahn equation, the Cahn-
Hilliard equation, the heat equation, and the Penrose-Fife model. In Section 2.4 we high-
light that for energy-preserving and entropy-driven systems the free entropy (rather than
the free energy) is the quantity defining the effective driving forces. Section 3.2 follows
[Mie11b], where an Onsager structure for reaction-diffusion systems is established for reac-
tion systems satisfying the detailed balance condition. While Section 3.3 treats isothermal
couplings between several bulk effects, the Onsager structure for non-isothermal cases is
addressed in Section 3.4, in particular for energy-reaction-diffusion systems.

Finally, in Section 4 we study the interaction between bulk effects and interface effects,
where the framework of Onsager systems proves to be very efficient. As in [Bed86, KjB08]
we use bulk fields z : Ω → R

m and interface fields zΓ : Γ → R
k and define the state

as Z = (z, zΓ). We define functionals Φ and Ψ∗ that consist of a bulk integrals and
interface integrals. Then, the Onsager system Ż = −DΞΨ

∗(Z; DΦ(Z)) can be obtained by
simple variational derivative involving suitable integrations by part. We obtain consistent
systems with interface dynamics coupled via boundary interface conditions to the bulk
dynamics, cf. [Bed86, KjB08] for the physical relevance of these systems. Section 4.4
presents an application in photovoltaics, which is treated in more detail in [GlM11].

2 Gradient systems versus Onsager systems

In this section we give some general background about gradient systems and Onsager
systems. All our arguments are formal and assume sufficient smoothness of the potentials
and the solutions, which is the common approach in thermomechanical modeling.

2.1 Gradient systems

A gradient system is a triple (X,Φ,G) where X is the state space containing the states
U ∈ X. For simplicity we assume that X is a reflexive Banach space with dual X∗.
The driving functional Φ : X → R∞ := R ∪ {∞} is assumed to be differentiable (in a
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suitable way) such that the potential restoring force is given by −DΦ(U) ∈ X∗. The third
ingredient is a metric tensor G, i.e. G(U) : X → X∗ is linear, symmetric and positive
(semi-)definite.

The gradient flow associated with (X,Φ,G) is the (abstract) force balance

G(U)U̇ = −DΦ(U) ⇐⇒ U̇ = −∇GΦ(U), (2.1)

where we recall that the “gradient” ∇GΦ of the functional Φ is an element of X (in
contrast to the differential DΦ(U) ∈ X∗) and is calculated via G(U)−1DΦ(U). We call
this equation an abstract force balance, since G(U)U̇ can be seen as a viscous force arising
from the motion of U . In fact, the symmetry of G allows us to define a dissipation potential

Ψ : X ×X → [0,∞] via

Ψ(U, V ) =
1

2
〈G(U)V, V 〉.

The symmetry of G implies that DVΨ(U, V ) = G(U)V .

2.2 Onsager systems

The importance of gradient systems has its major basis in thermodynamics (TD), namely
in Onsager’s symmetry relations or more general in Onsager’s principle, see [Ons31,
DeM84]. Strictly speaking, this principle is only derived for systems close to thermo-
dynamic equilibrium and has two forms, both of which are relevant in the present work.
In the first case one considers a spatially homogeneous system described by a state vector
z, which is a small perturbation of the equilibrium. Then, its macroscopic rate ż is given
in the form Kζ , where ζ = DS(z) is the thermodynamically conjugate driving force and
S is the entropy. The symmetry relation states that the matrix K has to be symmetric,
while the entropy production principle d

dt
S(z(t) = DS(z) · KDS(z) ≥ 0 implies that K

has to be positive semidefinite.
In the second case one considers a spatially extended system with densities ui > 0

defining a vector u = (ui)i=1,...,I : Ω → ]0,∞[I and a total entropy S(u) =
∫
Ω
S(x,u(x))dx.

If the total mi :=
∫
Ω
ui(x) dx is conserved, then the densities satisfy a balance equation

in the form
u̇+ div ju = 0 with a flux vector ju = M∇µ,

where the vector µ of the chemical potentials is given by µ = DS(u), i.e. µi(x) =
∂ui
S(x, u(x)). Again the symmetry and entropy principle state that M is a symmetric

and positive semidefinite tensor (of fourth order), see [Ons31].
Note that in this work we will call µ = DS the thermodynamic driving force (rather

than a potential), while others call the components µi of µ the chemical potentials (for the
gradients ∇µj). In this work a driving force is lying in the dual space of the variable (here
u), while ∇µj relates to gradient in the physical domain Ω. However, more importantly,
we will group the equation u̇ + div

(
M∇µ

)
= 0 with µ = DS in the form u̇ = K(u)DS,

where K(u) = − div
(
M∇�

)
is a symmetric operator.

We combine the thermodynamic considerations into an abstract form and use them
even further away from the thermodynamic equilibrium, see [Ött05] for physical justi-
fications to use these principles beyond the range of linear irreversible TD. In conclu-
sion we call a triple (X,Φ,K) an Onsager system, if Φ : X → R∞ is a functional and
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K(U) : X∗ → X is a linear, symmetric, and positive semidefinite operator. Of course, K
may also be an unbounded operator defined on a suitable subset of X∗. The evolution of
the states U is given via

U̇ = −K(U)DΦ(U). (2.2)

In duality to the case of gradient systems we define a dual dissipation potential

Ψ∗(U,Ξ) =
1

2
〈Ξ,K(U)Ξ〉,

such that (2.2) takes the form U̇ = DΞΨ
∗(U,−DΦ(U)).

Interpreting the metric G and the Onsager operator K in the appropriate way, there
is a one-to-one correspondence between gradient systems and Onsager systems. This
equivalence is most easily seen by using the Legendre transform for relating the dissipa-
tion potential Ψ(U, U̇) of the gradient system (X,Φ,G) to the dual dissipation potential
Ψ∗(U,Ξ) of the Onsager system (X,Φ,K). For this we extend Ψ and Ψ∗ by the value ∞
wherever they are not defined and use the relations

Ψ∗(U,Ξ) = sup{ 〈Ξ, V 〉 −Ψ(U, V ) | V ∈ X } (i.e. “ K(U) = G(U)−1 ”),

Ψ(U, V ) = sup{ 〈Ξ, V 〉 −Ψ∗(U,Ξ) | Ξ ∈ X∗ } (i.e. “ G(U) = K(U)−1 ”).

A major advantage of the Onsager form is its flexibility in modeling. Quite often dif-
ferential equations are written in rate form where the vector field is additively decomposed
into different physical phenomena. This additive split can be also used for the Onsager
operator, as long as all the different effects are driven by the same functional Φ. Below
we will see that K takes the additive form

K = Kdiss +Kdiff +Kreact +Kheat,

such that the evolution equation reads

U̇ = −
(
KdissDΦ+KdiffDΦ +KreactDΦ+KheatDΦ

)
= −KDΦ.

A similar additive split is not possible for the metric G, as the inverse operator of a sum
of operators is difficult to express, in particular if the individual operators Kj may not be
invertible.

2.3 Isothermal and non-isothermal Onsager systems

In applications to thermomechanics we have to distinguish two different cases. In the
isothermal case the temperature is assumed to be constant, and the driving functional
Φ will be the free energy F . We will start with the non-isothermal case, where the
temperature is an independent field that is coupled to the other fields collected into the
vector y. For such systems we have two functionals, namely the total energy, which
is preserved during the evolution of the system, and the total entropy, which acts as a
driving force.

In the non-isothermal case the state space X contains states (y, θ), (y, e), or (y, s),
where e is the internal energy density and s the entropy density. In fact, since the physics
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is independent from our choice of the variable, we follow [Mie11a, Sect. 2.3] and prefer
to use an arbitrary scalar variable r, which can be one of the three variables θ, e, s, or
another suitable variable for describing the heat distribution. With x = (y, r) we consider

E(x) =

∫

Ω

E(x,y(x),∇y(x), r(x))dx and S(x) =

∫

Ω

S(x,y(x),∇y(x), r(x))dx, (2.3)

where the constitutive functions E and S are interconnected by the Gibbs relation, which
now leads to a definition of the temperature, namely

θ = Θ(x,y,∇y, r) :=
∂rE(x,y,∇y, r)

∂rS(x,y,∇y, r)
,

where we always assume (without loss of generality) that the partial derivatives ∂rE and
∂rS are positive.

In the non-isothermal case the total entropy S (with the physically correct sign) is
increasing, so strictly speaking −S is the driving potential for the gradient flow, but we
will not make this distinction in the text, but will always use the corresponding correct
signs in the formulas. Our Onsager system (X,S,K) hence gives rise to the equation
ẋ = +K(x)DS(x). To have energy conservation we need

d

dt
E(x) = 〈DE(x), ẋ〉 = 〈E(x),K(x)DS(x)〉 = 〈S(x),K(x)DE(x)〉 ≡ 0,

where we used the symmetry K = K∗ for the last identity. Hence, it is sufficient (but not
necessary) to impose the condition

K(x)DE(x) = 0 for all x ∈ X.

2.4 Free entropy as driving functional

We also argue that physically relevant driving forces should not depend on the choice of
r ∈ {θ, e, s}. Thus, introducing the Helmholtz free energy ψ = e− θs and the Helmholtz
free entropy η = −ψ/θ = s− e/θ we have the formulas

ψ = F (x, Y, r) = E(x, Y, r)−Θ(x, Y, r)S(x, Y, r) and

η = −ψ/θ = H(x, Y, r) = S(x, Y, r)−
E(x, Y, r)

Θ(x, Y, r)
,

where we use the shorthand Y = (y,∇y). The free entropy η is also called Massieu
potential [Massieu 1869] and was in fact introduced before the free energies of Gibbs
[1873] and Helmholtz [1882].

At first sight, it seems that there is only a simple difference by a factor −θ, which can
be compensated by the Onsager operator (thus turning the dual dissipation potential into
a dual entropy production potential, cf. [Mie11a]). However, if gradients ∇y occur, the
driving forces are calculated via variational derivatives involving integrations by parts.
Then, it is essential whether an x-dependent factor is inside or outside an integration by

6



parts. In fact, assume F(y, r) =
∫
Ω
F (x,y,∇y, r) dx and H(y, r) =

∫
Ω
H(x,y,∇y, r) dx

with F = −ΘH , then DyH(y, r) cannot by replaced by −1
θ
DyF , since

DyH(y, r) + 1
θ
DyF(y, r) = − div

(
∂∇yH) +

1

θ
div(θ∂∇yH

)
=

1

θ
∇θ · ∂∇yH 6≡ 0

in general. This difference will be relevant in the Penrose-Fife model discussed in Section
3.1.5. Using the ∗-multiplication of variational derivatives introduced below we have
DyH(y, r) = −1

θ
∗DyF(y, r).

In many applications the Onsager operator for non-isothermal systems has a special
structure (cf. [Edw98, Ött05, Mie11a]), namely

K(y, r) = ME

(
Ky 0

0 Kheat

)
M∗

E with (2.4a)

Kheatτ = − div
(
kheat(y, r)∇τ

)
and M∗

E =

(
I −

(
�

∂rE

)
∗DyE

0 1
∂rE

)
. (2.4b)

The “∗” multiplication is a special operation for variational derivatives. If Φ(w) =∫
Ω
F (x, w(x),∇w(x))dx, then for a sufficiently smooth function α : Ω → R we define

α∗DwΦ(w) := α ∂wF (x, w,∇w)− div
(
α∂∇wF (x, w,∇w)

)
.

The definition of ME is such that

M∗
EDE =

(
0

1

)
and M∗

EDS =

(
DyS − 1

Θ
∗DyE

1/Θ

)
=

(
DyH(y, r)

1/Θ

)
,

where H(y, θ) is the total free entropy.
Since Kheat1 ≡ 0, we have the desired relation KDE ≡ 0 for energy conservation.

Moreover, the coupled system can be rewritten in the form

ẏ = Ky(y, r)DyH(y, r),

ṙ =
1

∂rE

(
∂yE · ẏ + ∂∇yE : ∇ẏ +Kheat(y, r)

(
1/Θ(y,∇y, r)

))
.

Thus, we conclude that in the non-isothermal case with conserved energy E the correct
driving potential for the non-temperature part y of the system is the free entropy H(y, θ).

2.4.1 Isothermal case

The isothermal case is easily derived from the non-isothermal case as follows. We assume
that the temperature is constant as the system is embedded into a much larger heat bath,
which absorbs or provides heat energy as needed. In this case we can use the above theory
with r = θ and then set θ = θ∗. In particular we set

F∗(y) := F(y, θ∗) = −θ∗H(y, θ∗) and K∗(y) =
1

θ∗
Ky(y, θ).

Thus, the above Onsager system reduces the triple (Y ,F∗,K∗). We refer to [Mie11a,
Sect. 2.6] for a slightly more elaborate discussion of the isothermal limit in terms of an
explicit coupling to a heat bath.
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2.5 Principles of thermodynamics

We finally want to comment on the first and second law of TD for the non-isothermal
systems discussed above. Our point is that Onsager systems have encoded these principles
automatically.

The first law of TD states energy conservation. From our above construction we have
immediately obtained that the total energy is conserved. For systems being defined in
terms of energy density E depending locally on the fields y, ∇y, and r as in (2.3) it is
then easy to derive local energy balances, see [Mie11a, Sect. 4].

The second law of TD states that the entropy has to increase. For the total en-
tropy this follows directly from the positive semidefiniteness of K, namely d

dt
S(x) =

〈DS(x),K(x)DS(x)〉 ≥ 0. For systems being defined in terms of energy density S de-
pending locally on the fields y, ∇y, and r as in (2.3) it is then easy to derive local entropy
balances with suitable entropy flux and a positive entropy production rate, see [Mie11a,
Sect. 4].

However, as the name “Onsager system” suggest, our systems are special dissipative
systems fulfilling not only the two fundamental laws but in addition the Onsager principle:

Onsager principle: rate = sym.pos.semidef. operator × TD conjugate force.

3 Bulk models for solids

In this section we discuss bulk models where the driving functional and the dissipation
potential are given by pure volume integrals. We first collect a few classical parabolic
equations used for modeling solids and recall their gradient structures. Some of these
gradient structures are well-known, while in other cases they are only used rarely.

3.1 Five classical systems in gradient form

3.1.1 Allen-Cahn equation

The Allen-Cahn equation is given in terms of the free energy FAC(z) =
∫
Ω

α
2
|∇z|2+f(z)dx

and takes the form

ż = −kACDFAC(z) = −kAC(− div
(
α∇z

)
+ f ′(z)).

In particular, the dual dissipation potential has the form Ψ∗(z, ζ) =
∫
Ω

kAC

2
|ζ |2 dx, and

the Onsager operator is the multiplication operator KAC(z)ζ = kACζ .

3.1.2 Dissipative materials

In general dissipative material models, which are also called generalized standard mate-

rials (cf. [HaN75, Hac97]), there is a set of internal variables z : Ω → Rm that mod-
els microscopic material properties on the macroscopic level. This may include plas-
tic strains, phase transformation, magnetization, polarization, or damage properties, see
[Fré02, Mie06]. For simplicity, we neglect here the elastic deformation, which is treated
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in [Mie11a, Mie11c]. We again consider a free energy of the form

Fdiss(z) =

∫

Ω

1

2
∇z:A:∇z + f(z)dx.

Using the Onsager matrix Kdiss(z) ∈ Rm×m
sym ≥ 0, the equation takes the form

ż = −Kdiss(z)DFdiss(z) = Kdiss(z)
(
div
(
A∇z

)
− Df(z)

)
.

In plasticity, the evolution equation for z is called flow rule, whereas in ferroelectric
materials it is called switching rule. The Onsager relation ż = −Kdissζ is often generalized
to a nonlinear relation in the form ż = DζΨ

∗
diss(z,−ζ), where ζ = DFdiss(z) and Ψ∗

diss is a
non-quadratic dual dissipation potential, e.g. in the form

Ψ∗
diss(z, ζ) = σyield|ζ |+

ν

q
‖ζ‖q.

For simplicity, we do not follow this generalization any further here.

3.1.3 Cahn-Hilliard equation

In this case the (vector-valued) internal variable ϕ : Ω → R
m consists of conserved phase

indicators with a free energy

FCH(ϕ) =

∫

Ω

α

2
|∇ϕ|2 + f(ϕ)dx.

The equation is a parabolic system of fourth order given as

ϕ̇ = −KCH(ϕ)DFCH(ϕ) = − div
(
M(ϕ)∇

(
− div(α∇ϕ) + Df(ϕ)

))
.

Hence, the Onsager operator KCH is a differential operator, namely

KCH(ϕ)ξ = − div
(
M(ϕ)∇ξ

)
.

Note that the evolution leaves the averages
∫
Ω
ϕ(t, x)dx constant in time t. This follows

from the general property of KCH that for ξ = c ≡ const we have KCHc ≡ 0.

3.1.4 Heat equation

The heat equation c(θ)θ̇ = div
(
κ(θ)∇θ

)
can also be written in Onsager form using the

physical entropy as the driving functional, namely S(θ) =
∫
Ω
S(θ(x)) dx. The total

energy E(θ) =
∫
Ω
E(θ(x)) dx has to be conserved along solutions, where c(θ) = E ′(θ) is

the specific heat which satisfies the Gibbs relation θS ′(θ) = E ′(θ). We define the Onsager
operator

Kheat(θ)τ := −
1

E ′(θ)
div
(
k(θ)∇

τ

E ′(θ)

)
,

which gives Kheat(θ)DE(θ) ≡ 0. The Onsager structure yields the equation

θ̇ = Kheat(θ)DS(θ) = −
1

E ′(θ)
div
(
k(θ)∇

(
S ′(θ)/E ′(θ)

))

= −
1

E ′(θ)
div
(
k(θ)∇(1/θ)

)
=

1

E ′(θ)
div
(k(θ)
θ2

∇θ
)
.

Hence, we obtain the original heat equation if we choose k(θ) = θ2κ(θ).
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3.1.5 Penrose-Fife model

This model couples the Allen-Cahn equation for an internal variable z : Ω → Rm and the
heat equation for the absolute temperature θ : Ω → ]0,∞[. Again the energy functional
E is conserved along the solutions, while the entropy functional S takes the role of the
driving functional:

E(z, θ) =

∫

Ω

E(z, θ)dx and S(z, θ) =

∫

Ω

S(z, θ)−
α

2
|∇z|2dx.

We again assume the Gibbs relation ∂θE = θ∂θS. Using the mobility matrix M(z, θ) ∈
Rm×m

sym > 0 and the heat conduction tensor κ(z, θ) = k(z, θ)/θ2 ∈ Rd×d
sym > 0 we define the

Onsager operator KPF = KAC +Kheat with

KAC =

(
M − 1

∂θE
MDzE

− 1
∂θE

DzE·M
1

∂θE
DzE·MDzE

)
, Kheat =


0 0

0 − 1
∂θE

div
(
k∇
(

�

∂θE

))

 .

Here KPF has the form (2.4a), where Ky = M . Hence, KPF(z, θ)DE(z, θ) ≡ 0, which
guarantees energy conservation.

Next we claim that the Onsager system
(
ż

θ̇

)
= KPF(z, θ)DS(z, θ) gives exactly the

classical Penrose-Fife system [PeF90, PeF93]. The gradient structure was already used,
at least implicitly, in [FeS05] and was highlighted explicitly in [Mie11b]. We have

(
ż

θ̇

)
= KPF(z, θ)

(
DzS

∂θS

)
=

(
M
(
DzS − α∆z − 1

θ
DzE

)

− 1
∂θE

DzE·M
(
DzS−α∆z−

1
θ
DzE

)
− 1

∂θE
div
(
k∇1

θ

)
)

=

(
M
(
DzS − α∆z − 1

θ
DzE

)

− 1
∂θE

DzE·ż +
1

∂θE
div
(
κ∇θ

)
)

Using the free-entropy functional H defined in Section 2.3 the Penrose-Fife assumes a
short and elegant form:

(
ż

θ̇

)
=

(
MDzH(z, θ)

− 1
∂θE

DzE ·MDzH(z, θ) + 1
∂θE

div
(
κ∇θ

)
)
,

which clearly shows that the free entropy H drives the motion of the dissipative variable
z. In some works the term MDzH is replaced by −1

θ
MDzF . We emphasize that this is

thermodynamically not correct, since DzH + 1
θ
DzF = −α

θ
∇θ ·∇z 6≡ 0 in general.

3.2 Reaction-diffusion systems

While the above gradient systems are well known, the gradient/Onsager structure for a
wider class of reaction-diffusion systems is less known. It was used in a few particular cases
(see e.g. [ÖtG97, Yon08, Ede09] and the discussion in Section 3.2.2) but only highlighted
in its own right in [Mie11b]. The central point is that in the Onsager form we have an
additive splitting of the Onsager operator into a diffusive part and a reaction part, namely
u̇ = −

(
Kdiff(u) + Kreact(u)

)
Fchem(u), where u : Ω → ]0,∞[I is the vector of densities of
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the species X1, ..., XI . The free-energy functional Fchem, which is also called the relative
entropy with respect to the reference density u∗, takes the form

Fchem(u) =

∫

Ω

I∑

i=1

u∗iλ(ui(x)/u
∗
i )dx where λ(ν) = ν(log ν − 1). (3.1)

3.2.1 Diffusion systems

For the gradient structure of diffusion systems u̇ = div
(
M(u)∇u

)
one might be tempted

to use a functional involving the gradient ∇u, however we have to use the relative entropy
as a driving functional, because we have to use the same functional for modeling the
reactions. Hence, we use the Wasserstein approach to diffusion introduced by Otto in
[JKO98, Ott01].

The diffusion system will take the form u̇ = −Kdiff(u)DF(u) with an Onsager operator
Kdiff given via

Kdiff(u)µ = − div
(
M̃(u)∇µ

)
,

where M̃(u) : Rm×d → Rm×d is a symmetric and positive semi-definite tensor of order 4.
The Onsager operator can also be implicitly defined via the dual dissipation potential,
which will be useful later:

Ψ∗
Wass(u,µ) =

∫

Ω

1

2
∇µ:M̃(u):∇µdx,

where µ = (µi)i=1,..,I is the vector of chemical potentials, which occurs as the driving force

µ = DuFchem(u) = logu− logu∗.

Hence, if the reference densities µ∗ are spatially constant (which is usually not true in
heterostructures like semiconductors) the Onsager system leads to the diffusion system

u̇ = div
(
M̃(u)∇(logu− logu∗)

)
= div

(
M(u)∇u

)
, where M̃(u) = M(u)diag(u).

We emphasize that M̃ has to be symmetric by Onsager’s symmetry relations, which
leads to unsymmetric operators M, if there is cross-diffusion. E.g. assuming I = 2,
u∗ = (1, 1), and isotropy, we arrive at the coupled system

(
u̇1
u̇2

)
=

(
div
(
m̃1(u1,u2)

u1
∇u1 +

m̃12(u1,u2)
u2

∇u2
)

div
(
m̃12(u1,u2)

u1
∇u1 +

m̃2(u1,u2)
u2

∇u2
)
)
,

where m̃1, m̃2 > 0 and m̃1m̃2−m̃
2
12 ≥ 0. Hence, m̃12 6= 0 means cross-diffusion and yields

the unsymmetry of M.

3.2.2 Chemical reaction kinetics

Chemical reaction systems are ODE systems u̇ = R(u), where often the right-hand side
is written in terms of polynomials associated to the reaction kinetics. It was observed
in [Mie11b] that under the assumption of detailed balance (also called reversibility) such
systems have a gradient structure with the relative entropy as the driving functional.

11



We assume that there are R reactions of mass-action type (cf. e.g. [DeM84, GiM04,
KjB08]) between the species X1, ..., XI denoted by

αr
1X1 + · · ·+ αr

IXI

kfw
r⇀↽

kbw
r

βr
1X1 + · · ·+ βr

IXI ,

where kbw
r and kfw

r are the backward and forward reaction rates, and the vectors αr, βr ∈
NI

0 contain the stoichiometric coefficients. For the chemical reaction 2CO + 1O2 ⇀↽ 2CO2

we have α = (2, 1, 0)T and β = (0, 0, 2)T.
The associated reaction system for the densities (in a spatially homogeneous system,

where diffusion can be neglected) reads

u̇ = R(u) := −

R∑

r=1

(
kfw
r uαr

−kbw
r uβr)(

αr − βr
)
, (3.2)

where we use the monomial notation uα = uα1

1 · · ·uαI

I .
The main assumption to obtain a gradient structure is that of detailed balance, which

means that there exists a reference density vector u∗ such that all R reactions are balanced
individually, namely

∃u∗ ∈ ]0,∞[I ∀ r = 1, ..., R ∀u ∈ ]0,∞[I : kfw
r (u)uαr

∗ = kbw
r (u)uβr

∗ =: k∗r(u). (3.3)

Here we have used the freedom to allow for reaction coefficients depending on the densities
(and later also on other material properties like temperature).

As in [Mie11b] we now define the Onsager matrix

H(u) =
R∑

r=1

k∗r(u)Λ
(
uαr

uαr
∗

, u
βr

u
βr

∗

)(
αr−βr

)
⊗
(
αr−βr

)
with Λ(a, b) =

a− b

log a− log b
(3.4)

and find that the reaction system (3.2) takes the form

u̇ = R(u) = −H(u)DFchem(u). (3.5)

This follows easily by using the definition of Λ and the rules for logarithms, namely
(
αr−βr

)
·
(
µ−µ∗) = log

(
uαr

/uαr

∗

)
− log

(
uβr

/uβr

∗

)
.

The quotient Λ(a, b) = a−b
log a−log b

(or variants of it) have occurred occasionally in the

modeling of reaction kinetics: In [ÖtG97, Eqn. (113)] the reaction N2+3H2⇀↽ 2NH3 is
written in GENERIC, which includes the gradient structure for the reaction. In [Ede09,
Def. 3.22] the mapping (µ, η) 7→ 1/Λ(eµ, eη) is called the ideal resistance function. In
[Yon08, Sect.VII] the definition of ∆j contains

∫ 1

0
eσaj dσ = (eaj − 1)/aj = Λ(eaj , 1) to

show that the reaction terms have the Onsager structure displayed in (3.5).

3.2.3 Coupling diffusion and reaction

We summarize the previous two subsections by stating the following general result from
[Mie11b] for Onsager structures for reaction-diffusion system.
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Theorem 3.1 If the reaction diffusion system u̇ = div
(
M(u)∇u) +R(u) with R(u) =

−
∑R

r=1

(
kfw
r (u)uαr

−kbw
r (u)uβr)(

αr−βr
)

satisfies the detailed balance condition (3.3) and

if M̃(u) = M(u)diag(u) is symmetric and positive semidefinite, then it is an Onsager

system u̇ = −KRD(u)DFchem with

Fchem(u) =

∫

Ω

I∑
i=1

u∗iλ(ui(x)/u
∗
i )dx, Ψ

∗
RD(u,µ) =

1

2

∫

Ω

∇µ:M̃(u):∇µ+ µ·H(u)·µdx.

We mention that many reaction-diffusion systems studied in the literature (including
semiconductor models involving an elliptic equation for the electrostatic potential), see
e.g. [GlH05, DeF06, DeF07, Gli09, BoP11], have the structure developed above. So far,
the gradient structure was not used explicitly, only the Liapunov property of the free
energy Fchem was exploited for deriving a priori estimates.

3.3 Consistent isothermal coupling to general bulk systems

We first discuss the isothermal case, where the driving functional is the free energy.
Using the above Onsager structures for the internal variables z (non-conserved) and ϕ
(conserved) and the chemical densities u we are now able to write consistent bulk systems
by simply adding the free energies and the dual dissipation functionals:

F(z, ϕ,u) = Fdiss(z) + FCH(ϕ) + FRD(u) + Fcoupl(z, ϕ,u),

Ψ∗(z, ϕ,u; ζ, ξ,µ) = Ψ∗
diss(z; ζ) + Ψ∗

CH(ϕ; ξ) + Ψ∗
RD(u;µ) + Ψ∗

coupl(z, ϕ,u; ζ, ξ,µ).

Neglecting the coupling term Ψ∗
coupl in the dual dissipation potential we are led to




ż

ϕ̇

u̇


 = −




Kdiss(z) 0 0

0 KCH(ϕ) 0

0 0 KRD(u)







DFdiss(z) + DzFcoupl(z, ϕ,u)

DFCH(ϕ) + DϕFcoupl(z, ϕ,u)

DFchem(u) + DuFcoupl(z, ϕ,u)


 . (3.6)

Of course, the Onsager operator K may be much more general than indicated here. Staying
in the diagonal form of (3.6) we may allow that each of the diagonal entries Kdiss, KCH, and
KRD may depend on (z, ϕ,u). Moreover, we may introduce off-diagonal terms through
Ψ∗

coupl.
For the full generality, one should not think about adding three terms with a small

coupling. One should rather take one free energy like

F(z, ϕ,u) =

∫

Ω

F (x, z(x), ϕ(x),u(x)) +
γ

2
|∇z(x)|2 +

δ

2
|∇ϕ(x)|2dx.

In particular, we may consider the case where the reference density vector u∗ in the
detailed-balance condition (3.3) depends on (z, ϕ). As an example consider the case
without conserved phase-field variables and u = (u1, u2) and let

F(z,u) =

∫

Ω

f(z) +
γ

2
|∇z|2 + w1(z)λ

(
u1/w1(z)

)
+ w2(z)λ

(
u2/w2(z)

)
dx,
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where the functions wj : z 7→ wj(z) > 0 are given and λ(ν) = ν(log ν−1) as above.
Together with the dual dissipation potential

Ψ∗(z,u; ζ,µ) =
1

2

∫

Ω

ζ ·kAC(z,u)ζ +m1(z,u)|∇µ1|
2 +m2(z,u)|∇µ2|

2

+ kreact(z,u)
(
(α−β) · µ

)2
dx

we find the following coupled system:

ż = kAC(z,u)
(
div
(
γ∇z

)
− f ′(z) +

u1
w1(z)

Dzw1(z) +
u2

w2(z)
Dzw2(z)

)
,

(
u̇1
u̇2

)
=

(
div
(
m1(z,u)∇(log u1− logw1(z))

)

div
(
m2(z,u)∇(log u2− logw2(z))

)
)

− kreact(z,u)Λ
(

uα

w(z)α
, uβ

w(z)β

)
(α−β)⊗ (α−β) · (logu− logw(z)).

Using the functions Wj(z) = logwj(z) and employing the definition of Λ we can
reformulate the system in the form

ż = kAC(z,u)
(
div
(
γ∇z

)
− f ′(z) + u1DzW1(z) + u2DzW2(z)

)
,

(
u̇1
u̇2

)
=

(
div
(
m1(z,u)

u1
∇u1 −m1(z,u)DzW1(z)∇z

)

div
(
m2(z,u)

u2
∇u2 −m2(z,u)DW2(z)∇z

)
)

− kreact(z,u)
(
uαe−α·W (z) − uβe−β·W (z)

)
(α−β).

Thus, even without assuming any coupling inside the Onsager structure, we still obtain a
kind of cross-diffusion arising from the z-dependence of the reference densities wj(z).

3.4 Non-isothermal coupled systems

We now add to the variables y := (z, ϕ,u) the absolute temperature θ > 0 and use
Onsager operators in the form (2.4), following the derivation of Section 2.3, where now

Ky(y) =



Kdiss

KCH

KRD


 .

As in the Penrose-Fife model (cf. Section 3.1.5) we again treat a closed systems in which
the total energy E is conserved while the total entropy increases and serves as a driving
functional. Now the Onsager operator K is given in terms of an entropy-production
potential

Ψ∗(y, θ;η, τ) =
1

2

〈(
η

τ

)
,K(y, θ)

(
η

τ

)〉
.

3.4.1 Reaction-diffusion systems with temperature

We now restrict to a system described by (u, θ) with functionals

E(u, θ) =

∫

Ω

E(x,u(x), θ(x))dx and S(u, θ) =

∫

Ω

S(x,u(x), θ(x))dx,
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where the integrands are strictly local, i.e. they do not depend on ∇u and ∇θ. As
throughout the paper, the densities may explicitly depend on the material point, but we
will omit this dependence in the sequel. The energy density E and the entropy density S
satisfy the Gibbs relation ∂θE = θ∂θS and the positivity of the specific heat ∂θE > 0.

The dual entropy-production potential Ψ∗ will depend on the state (u, θ) and the
thermodynamically conjugate variables (µ, τ). In principle, Ψ∗ will contain three parts,
namely a diffusion, a reaction, and a heat conduction part. However, the heat conduction
and the diffusion can be joined into one quadratic form on (∇µ,∇τ), thus allowing for
“cross-diffusion” effects between chemical diffusion and heat transfer, which is needed to
model thermophilic or thermophobic reactions occurring e.g. in polymers, see [AWR12].

To guarantee energy conservation, we mimic the definition of ME in (2.4b) (see also
[Mie11b, Sect. 3.6]) and consider

Ψ∗(u, θ;µ, τ) = Ψ̃∗(u, θ;µ− τ
∂θE

∂uE,
τ

∂θE
) (3.7a)

with Ψ̃∗(u, θ; µ̃, τ̃) =
1

2

∫

Ω

(∇µ̃,∇τ̃):M(u, θ)(∇µ̃,∇τ̃) + µ̃ ·H(u, θ)µ̃dx, (3.7b)

where H is given as in (3.4). The mobility tensor M(u, θ) : RI×d × Rd → RI×d × Rd is
symmetric and positive semidefinite and has the block structure

M(u, θ) =

(
Muu(u, θ) Muθ(u, θ)

M
∗
uθ(u, θ) Mθθ(u, θ)

)
.

The construction of Ψ∗ is such that Ψ∗(u, θ;µ, τ) = Ψ∗(u, θ; (µ, τ)+λDE(u, θ)) for all
λ ∈ R. Hence, the associated Onsager operator K satisfies KDE ≡ 0. Moreover, we see
that Ψ∗ only depends on

DuS −
1

θ
DuE = ∂uS −

1

θ
∂uE = ∂uH and

∂θS

∂θE
=

1

θ
,

where H = −ψ/θ = S − E/θ is the free entropy.
The Onsager system d

dt

(
u

θ

)
= KDS for the evolution of (u, θ) is the coupled PDE

u̇ = − div ju +H(u, θ)
(
∂uS(u, θ)−

1
θ
∂uE(u, θ)

)
,

θ̇ = − 1
∂θE

div jθ +
1

∂θE
∂uE·

(
div ju −H(u, θ)

(
∂uS(u, θ)−

1
θ
∂uE(u, θ)

)
,

where ju = Muu(u, θ)∇
(
∂uS(u, θ)−

1
θ
∂uE(u, θ)

)
+Muθ(u, θ)∇(1/θ)

)
and

jθ = M∗
uθ(u, θ)∇

(
∂uS(u, θ)−

1
θ
∂uE(u, θ)

)
+Mθθ(u, θ)∇(1/θ)

)
. In the simplest isotropic

case one chooses Muu(u, θ)∇µ = (miui∇µi)j=1,...,I, Muθ = 0, and Mθθ(u, θ) = θ2κ.
We refer to [GiM04, Sect. 2.5] and [Yon08, Sect.VII] for useful representations of

s = S(u, θ), e = E(u, θ), and u∗ = w(θ).

3.4.2 Reaction-diffusion systems with internal energy

A major advantage of gradient and Onsager systems is that it is very easy to change
coordinates. For energy-preserving non-isothermal reaction-diffusion systems it is often
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easier to formulate the theory in terms of the density vector u : Ω → ]0,∞[I and the
internal energy e : Ω → R. Thus, the functionals are

Ê(u, u) =

∫

Ω

e(x)dx and Ŝ(u, e) =

∫

Ω

Ŝ(x,u(x), e(x))dx.

Now the Gibbs relation leads to the definition of temperature as θ = Θ(u, e) := 1/∂eS(u, e),
where the relation ∂eŜ(u, e) > 0 is imposed.

The major advantage of the formulation in terms of (u, e) is that energy conservation
is a linear constraint. Moreover, following [AGH02] it is reasonable to assume that Ŝ is
a concave function in (u, e). Finally, the driving force through the free entropy is most
simple, as ∂uH = ∂uŜ, since using Ê(u, e) := e we have ∂uÊ ≡ 0, cf. [Mie11a, Sect. 2.3].

Thus, the equations in Section 3.4.1 can be equivalently written in (u, e) using the
dual entropy-production potential

Ψ̂∗(u, e;µ, ε) =
1

2

∫

Ω

(∇µ,∇ε):M̂(u, e)(∇µ,∇ε) + µ·Ĥ(u, e)µ dx,

where M̂ and Ĥ are obtained from M and H, respectively, by substituting θ = Θ̂(u, e).
As a consequence of the simple form of Ê , and hence of Ψ̂∗, the evolution equations for
(u, e) take the simpler form

u̇ = − div
(
M̂uu(u, e)∇

(
∂uŜ(u, e)

)
+ M̂ue(u, e)∇

(
∂eŜ(u, e)

))
+ Ĥ(u, e)∂uS(u, e),

ė = − div
(
M̂

∗
ue(u, e)∇

(
∂uS(u, e)

)
+ M̂ee(u, e)∇

(
∂eŜ(u, e)

))
.

This form has the major advantage that we can read of “parabolicity” in the sense of
Petrovsky (cf. [LSU68, Sect.VII.8]) for the full coupled system by assuming that M̂ is
positive definite and that D2S is negative definite. Hence, local existence results can be
obtained from [Ama93].

Moreover, we are able to postulate suitable strongly coupled models by assuming that
Ŝ has the form

Ŝ(u, e) = s(e)− u ·

(
logu− logw(e)

)
, (3.8)

where u∗ = w(e) are now the reference densities in the detailed balance condition (3.3),
which may now depend on the internal energy (i.e. on the temperature). The concavity
can be checked by using

−
(
µ

ε

)
·D2Ŝ(u, e)

(
µ

ε

)
=
∑I

i=1 ui
(
µi

ui
− ε

w′
i(e)

wi(e)

)2
+ ε2

(
− s′′(e)−

∑I

i=1 ui
w′′

i (e)

wi(e)

)
.

Thus, we have strict convexity on the whole domain ]0,∞[I×]e0,∞[ if and only if s′′(e) < 0
and w′′

i (e) ≤ 0 for all i. Hence, good choices for s(e) and w(e) are given in the form

s(e) = c log e or s(e) = c eσ with c > 0 and σ ∈ ]0, 1[,

wi(e) = aie
bi for some ai > 0 and bi ∈ [0, 1].

(3.9)

In the case s(e) = c log e we find the simple relation 1/θ = ∂eŜ(u, e) =
(
c+b·u)/e, where

b = (bi)i=1,...,I. Hence, we obtain the simple linear relation e = E(u, θ) =
(
c+b·u) θ.
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Ω+

Γ+

Γ−

Ω−

Γ

Figure 1: Body Ω = Ω+ ∪ Ω− with interface Γ.

4 Bulk-interface interaction

4.1 General setup for interfaces

We now consider a domain Ω containing an interface Γ separating Ω into an upper part Ω+

and a lower part Ω−, i.e. Ω is the disjoint union of Ω+, Γ, and Ω−. For later convenience
we denote that part of the surface of Ω± that coincides with Γ by Γ± (see Figure 1), such
that for functions z : Ω → Rm we can define one-sided limits z± = z|Γ±

. However, we
also allow for extra fields zΓ : Γ → Rk describing new species or some of the species on
Ω, i.e. we allow for k 6= m.

The full state is Z = (z, zΓ) containing bulk functions as well as interface functions.
We derive our coupled system again in the Onsager form Ż = −K(Z)DΦ(Z), where now
the driving functional Φ as well as the dual dissipation potential Ψ∗, which defines K, are
given in terms of a bulk integral and an interface integral:

Φ(Z) = ΦΩ(z) + ΦΓ(ẑ) with ẑ := (zΓ, z+, z−) and

Ψ∗(z, zΓ; ξ, ξΓ) = Ψ∗
Ω(z; ξ) + Ψ∗

Γ(ẑ; ξ̂) with ξ̂ = (ξΓ, ξ+, ξ−).

While the bulk integrals ΦΩ and Ψ∗
Ω only depend on the bulk fields z and the bulk forces

ξ, respectively, the interface integrals ΦΓ and Ψ∗
Γ depend on the interface fields zΓ and ξΓ

as well as on the one-sided interface limits z± and ξ±.
The general Onsager system is now defined as

(
ż

żΓ

)
= D(ξ,ξΓ)Ψ

∗
(
z, zΓ , −Dz,zΓΦ(z, zΓ)

)
,

where the derivative D(ξ,ξΓ)Ψ
∗ involves integrations by part which give rise to nontrivial

coupling conditions on Γ. We will first display this in a scalar heat equation and then
treat a more general case.

We refer to [Bed86, KjB08] for careful treatments of thermochemical effects at inter-
faces. The works also provide evidence for the physical necessity to introduce own species
and temperature fields on the interface.
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4.2 Coupled bulk and interface heat conduction

We assume that the only relevant variable is the temperature, but there is a temperature
θ : Ω → ]0,∞[ in the bulk and another independent temperature θΓ : Γ → ]0,∞[ in the
interface. This may model for instance a thin steel plate Γ inside a rubber material. The
total entropy and total energy are given via

S(θ, θΓ) =

∫

Ω

c log θdx+

∫

Γ

cΓ log θΓda and E(θ, θΓ) =

∫

Ω

c θdx+

∫

Γ

cΓθΓda,

where c > 0 is the specific heat of the bulk material (per unit volume) and cΓ > 0 is the
specific heat of the interface material (per unit surface area). These specific heats may
also depend on x ∈ Ω or y ∈ Γ.

For the dissipation potential we assume the simplest quadratic form

Ψ∗(θ, θΓ, τ, τΓ) =

∫

Ω

k

2
|∇(

τ

c
)|2dx+Ψ∗

Γ(θ̂, τ̂) with

Ψ∗
Γ(θ̂, τ̂) =

∫
Γ

kΓ
2
|∇Γ(

τΓ
cΓ
)|2 + mΓ

2

(
τ+
c+
− τ−

c−

)2
+ m+

2

(
τ+
c+
− τΓ

cΓ

)2
+ m−

2

(
τ−
c−
− τΓ

cΓ

)2
da,

where k may depend on x ∈ Ω and θ and kΓ, mΓ, and m± may depend on y ∈ Γ and
θ̂ := (θΓ, θ+, θ−). Here kΓ denotes the heat conduction coefficient in the interface, mΓ

gives a condition for heat transmission through the interface, whereas m± gives heat flow
from the bulk into the interface.

With Θ = (θ, θΓ) the Onsager system Θ̇ = K(Θ)DS(Θ) takes the form

in Ω : θ̇ = −
1

c
div
(
k∇

1

θ

)
,

in Γ : θ̇Γ = − 1
cΓ
divΓ

(
kΓ∇Γ

1
θΓ

)
+m+

(
1
θΓ
− 1

θ+

)
+m−

(
1
θΓ
− 1

θ−

)
,

in Γ+ : 0 = 1
c+
k+∇

1
θ
· ν+ −m+

(
1
θΓ
− 1

θ+

)
−mΓ

(
1
θ−
− 1

θ+

)
,

in Γ− : 0 = 1
c−
k−∇

1
θ
· ν− −m−

(
1
θΓ
− 1

θ−

)
−mΓ

(
1
θ+
− 1

θ−

)
.

Recall that we are dealing with closed systems, hence we also have the no-flux condition
k∇(1/θ) · ν = 0 on the outer boundary ∂(Ω∪Γ). This coupled system contains the usual
bulk equation which is coupled to the interface by Robin-type boundary conditions that
depend on the temperatures inside the interface Γ and on the limit of the bulk temperature
on the other side of the interface. Moreover, there is an own heat equation on the interface
where the flux terms from the boundary appear as source terms.

The above general nonlinear system also includes a linear system if we choose

k(θ) = θ2κΩ, kΓ(θ̂) = θ2Γκ
Γ, m±(θ̂) = µ±θ±θΓ, mΓ(θ̂) = µΓθ+θ−.

We obtain the linear system

in Ω : cθ̇ = div
(
κΩ∇θ

)
,

in Γ : cΓθ̇Γ = divΓ
(
κΓ∇ΓθΓ

)
+ cΓµ+(θ+−θΓ) + cΓµ−(θ−−θΓ),

in Γ+ : 0 = 1
c+
κΩ+∇θ · ν+ + µ+(θ+−θΓ) + µΓ(θ+−θ−),

in Γ− : 0 = 1
c−
κΓ−∇θ · ν− + µ−(θ−−θΓ) + µΓ(θ−−θ+).
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4.3 General structure of bulk-interface interaction

We now return to the general case of bulk-interface systems with the state Z = (z, zΓ)
and a driving functional specified in the form

F(Z) = FΩ(z) + FΓ(ẑ) =

∫

Ω

FΩ(z,∇z)dx +

∫

Γ

FΓ(ẑ,∇ΓzΓ)da,

where as before ẑ = (zΓ, z+, z−). To include Allen-Cahn and Cahn-Hilliard systems we
allow F to depend on the gradients ∇z and ∇ΓzΓ as well.

For the dual dissipation potential we also specify the structure more explicitly, namely

Ψ∗(Z; Ξ) = Ψ∗
Ω(z; ξ) + Ψ∗

Γ(ẑ; ξ̂) with ξ̂ = (ξΓ, ξ+, ξ−),

Ψ∗
Ω(z; ξ) =

∫

Ω

1

2
∇ξ:M(z):∇ξ +

1

2
ξ·H(z)ξdx, and

Ψ∗
Γ(ẑ, ξ̂) =

∫

Γ

1

2
∇ΓξΓ:MΓ(ẑ):∇ΓξΓ +

1

2
ξ̂·T(ẑ)ξ̂da.

To write the Onsager system Ż = −DΞΨ
∗(Z; DF(Z)) more explicity, we use the

natural projections QΓ, Q+, Q− associated with the components of ẑ = (zΓ, z+, z−).
Using the variational derivatives

δzFΩ := ∂zFΩ − div
(
∂∇zFΩ

)
and δzΓFΓ := ∂zΓFΓ − divΓ

(
∂∇ΓzΓFΓ

)

and suitable integrations by part the general bulk-interface system in Onsager form reads

in Ω : ż = − div
(
MΩ(z)∇

(
δzFΩ

))
−H(z)

(
δzFΩ

)
,

in Γ : żΓ = − divΓ

(
MΓ(ẑ)∇

(
δzΓFΓ

))
−QΓT(ẑ)

(
δẑFΓ, δzFΩ|Γ+

, δzFΩ|Γ−

)
,

in Γ+ : 0 = MΩ(z)∇
(
δzFΩ

)
· ν+ +Q+T(ẑ)

(
δẑFΓ, δzFΩ|Γ+

, δzFΩ|Γ−

)
,

in Γ+ : 0 = MΩ(z)∇
(
δzFΩ

)
· ν− +Q−T(ẑ)

(
δẑFΓ, δzFΩ|Γ+

, δzFΩ|Γ−

)
.

(4.1)

We refer to [GlM11, Thm. 3.1] for a proof of the equivalence of (4.1) and the Onsager
system Ż = −DΞΨ

∗(Z; DF(Z)) with the potentials F and Ψ∗ as defined above.

4.4 Semiconductors with interfaces for photovoltaics

In thin-film solar cells the interfaces strongly influence the overall currents of the whole
solar cell. Hence a proper modeling of the interaction between the bulk and the interface
effects is necessary. In addition to the previous analysis, we also need to take into account
the electrical charges of the species, namely the free electrons with density n and the holes
with density p.

In the simplest case the bulk model is the so-called van Roosbroeck system, which
couples an equation for the electrostatic potential φ = φu with the drift-diffusion-reaction
equations for u = (n, p):

(vRS)





− div(ε∇φu) = dΩ(x)− n+ p,

ṅ = div
(
mn

(
∇n− n∇φu

))
− k (np− 1),

ṗ = div
(
mp

(
∇p + p∇φu

))
− k (np− 1).

(4.2)
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The different signs in “−n” and “+p” in the Poisson equation for φu and in front of the
drift term ∇φu denote the negative charge of the electrons and the positive charge of the
holes. Here ε is the electric permittivity, and dΩ is a prescribed doping profile of charges.
The coefficients mp and mn are the mobilities of the electrons and holes, respectively, and
k is the reaction strength. Without loss of generality, we have normalized the densities
such that the intrinsic density equals nin = 1. On the boundary we add no-flux conditions
for the charges and Dirichlet conditions for the electrostatic potential φu.

It is shown in [Mie11b, Sect. 4.1] that (4.2) forms an Onsager system for the total free
energy FΩ and the dual dissipation potential Ψ∗

Ω given by

FΩ(n, p) =

∫

Ω

ε

2
|∇φn,p|

2 + λ(n) + λ(p)dx, (4.3a)

Ψ∗
Ω(u,µ) =

1

2

∫

Ω

mn n|∇µn|
2+mp p|∇µp|

2+kΛ(np, 1)(µn+µp)
2dx, (4.3b)

where Λ is defined in (3.4).
Following [GlM11] we now consider a domain Ω with one or several interfaces denoted

by Γ ⊂ Ω. Thin-film solar cells have a thickness of a few hundred nanometers and contain
several interfaces. These are treated in particular ways in order to make them active in
the sense that they carry own interfacial species which may diffuse and react inside the
interface or with species from the adjacent sides Γ± from the bulk. A particular reaction
is the simple capture and escape of species from the interface into the bulk, which is then
called thermionic emission.

For notational simplicity we assume here that the interface species are simply uΓ =
(nΓ, pΓ) : Γ → ]0,∞[2 and hasten to say that uΓ is in general different from the one-sided
limits u+ = u|Γ+

. We will write U = (u,uΓ) for the full state of the bulk-interface
system. Moreover, the interface may carry its own doping profile dΓ such that the joint
electrostatic potential φ = φU satisfies the Poisson equation

− div(ε∇φU) = dΩ − n + p+ (δΓ − nΓ + pΓ)δΓ,

where δΓ denotes the two-dimensional Hausdorff measure restricted to the interface Γ.
Thus, the potential φU depends on the bulk and the interface charges in a linear way.

The total free energy now consists of the bulk part FΩ from (4.3a) and an interface
part, namely

F(u,uΓ) =

∫

Ω

ε

2
|∇φu,uΓ

|2 + λ(n) + λ(p)dx+

∫

Γ

λ(nΓ) + λ(pΓ)da.

The corresponding differential DF takes the form

(
µ

µΓ

)
:= DF(u,uΓ) =

(
DuF(u,uΓ)

DuΓ
F(u,uΓ)

)
=

(
logu+

(
−1
1

)
φU

loguΓ +
(
−1
1

)
φU |Γ

)
.

To define a sufficiently general dual dissipation potential Ψ∗, which contains the bulk
part Ψ∗

Ω from (4.3b) as well as an interfacial terms, we use again the abbreviations û :=
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(uΓ,u+,u−) and µ̂ := (µΓ,µ+,µ−) and set

Ψ∗(u,uΓ;µ,µΓ) = Ψ∗
Ω(u,µ) + Ψ∗

Γ(û; µ̂) with

Ψ∗
Γ(û; µ̂) = Ψ∗

in-plane(û; µ̂) + Ψ∗
transfer(û; µ̂),

Ψ∗
in-plane(û; µ̂) =

1

2

∫

Γ

mΓ
nnΓ|∇ΓµΓ n

|2 +mΓ
ppΓ|∇ΓµΓ p

|2 + µΓ·H
Γ(û)·µΓda,

Ψ∗
transfer(û; µ̂) =

1

2

∫

Γ

T (û)|µ+−µ−|
2 +B+(û)|µ+−µΓ|

2 +B−(û)|µ−−µΓ|
2da.

Here Ψ∗
in-plane contains all dissipative effects that solely occur inside of Γ, while Ψ∗

transfer

provides the coefficients for movements between Γ, Γ+, and Γ−. In particular, T is the
intensity of the transmissions between Γ+ and Γ−, and B± is the intensity for motions
between Γ± and Γ.

As was indicated in Section 4.3 the coupled system has the form

in Ω : 0 = − div(ε∇φu,uΓ
)− (dΩ−n+p)− (dΓ−nΓ+pΓ)δΓ,

in Ω : u̇ = div
(
M(u)∇µ)−H(u)µ (= van Roosbroeck system)

in Γ+: 0 =M+∇µ+ · ν+ − T (û)(µ+−µ−)−B+(û)(µ+−µΓ),

in Γ : u̇Γ = divΓ
(
MΓ∇ΓµΓ

)
︸ ︷︷ ︸

interfacial drift-diffusion

− H
Γ(û)µΓ︸ ︷︷ ︸

interfacial reaction

− B+(µΓ−µ+)−B−(µΓ−µ−)︸ ︷︷ ︸
transfer between Γ and Γ+∪Γ−

in Γ− : 0 =M−∇µ− · ν− − T (û)(µ−−µ+)−B−(û)(µ−−µΓ).

We conclude by summarizing this section. The structure of Onsager system is suf-
ficiently rich to derive energy-reaction-diffusion system including possible bulk-interface
interactions. Using the abstract form of Onsager systems specified in terms of bulk and
interface integrals it is straight forward to derive thermomechanically consistent coupled
systems. The derived equations are in general nonlinear coupled systems, the analysis of
which still needs to be developed.
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