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Abstract. Time-stepping procedures for the solution of evolution equations can be
performed on parallel architecture by parallelizing the space computation at each time
step. This, however, requires heavy communication between processors and becomes
inefficient when many time-steps are to be computed and many processors are available.
In such cases parallelization in time is advantageous.

In this paper we present a method for parallelization in time of linear multistep
discretizations of linear evolution problems; we consider a model parabolic and a model
hyperbolic problem, and their, respectively, A(θ)-stable and A-stable linear multistep
discretizations. The method consists of a discrete decoupling procedure, whereby N+1
decoupled Helmholtz problems with complex frequencies are obtained; N being the
number of time steps computed in parallel. The usefulness of the method rests on our
ability to solve these Helmholtz problems efficiently. We discuss the theory and give
numerical examples for multigrid preconditioned iterative solvers of relevant complex
frequency Helmholtz problems. The parallel approach can easily be combined with
a time-stepping procedure, thereby obtaining a block time-stepping method where
each block of steps is computed in parallel. In this way we are able to optimize
the algorithm with respect to the number of processors available, the difficulty of
solving the Helmholtz problems, and the possibility of both time and space adaptivity.
Extensions to other linear evolution problems and to Runge-Kutta time discretization
are briefly mentioned.

keywords: wave equation, heat equation, Helmholtz equation, triangular Toeplitz
systems, shifted Laplacian preconditioner, multigrid.

1. Introduction

We describe a parallel numerical method for the solution of linear evolution problems.
The two model problems we discuss are the heat and the wave equation. After a time
discretization by a linear multistep method, a semi-discrete, lower triangular Toeplitz
system of equations is obtained. We will show that up to a controllable error this system
is equivalent to N + 1 decoupled Helmholtz problems with complex frequencies; N is
here the number of time steps computed in parallel. The complex wavenumbers depend
on the linear multistep method, the underlying evolution problem, and the number of
time steps computed in parallel. We discuss A(θ)-stable linear multistep methods for the
parabolic problem and A-stable and explicit linear multistep methods for the hyperbolic
problem. An important property of our approach is that it can be combined with a
time-stepping procedure: after a certain number of time steps computed in parallel, the
computation can be restarted in a sequential way. Thereby we are able to use adaptivity
in time and space. In this paper we will use the Galerkin finite element method (FEM)
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to discretize the problem in space, though other discretization methods could also be
used.

Let us stress that we do not require the computation of inverse Laplace transforms.
This allows uniform discussion of both parabolic and hyperbolic problems and makes
our approach different from the methods developed for parabolic problems in [15, 22].
In order to obtain a decoupled system of Helmholtz problems we use purely algebraic
transformations including the discrete Fourier transform; the resulting algorithm is also
known as Bini’s algorithm for approximate inversion of special Toeplitz matrices [3].
The original algorithm is restricted to accuracy

√
eps where eps is the machine precision;

eps ∼ 10−16 for double precision computations. We describe a correction term that can
efficiently be computed and that reduces the maximum accuracy to eps2/3.

The effectiveness of the above described method rests on our ability to efficiently
solve the linear systems arising from the FEM discretization of the Helmholtz problems.
We will describe a multigrid preconditioned GMRES iteration for the solution of these
systems. We will argue both theoretically and experimentally the following points.

• A(θ)-stable time discretization of linear parabolic problems: the speed of conver-
gence of the preconditioned GMRES is independent of either the time or space
discretization parameters or of the number of time steps computed in parallel.

• A-stable time discretization of linear hyperbolic problems: if the computational
(time) interval [0, T ] is fixed and the time step ∆t decreases, then for A-stable,

pth order BDF methods the number of iterations increases as ∆t−p/(p+1).
• A-stable time discretization of linear hyperbolic problems: if the time step ∆t is

fixed and the number of time-steps to be computed in parallel is increased, then
the iteration count is bounded for BDF methods and increases linearly for the
Trapezoidal rule.

Hence, in some situations, the iteration count is negatively affected by the number of
time steps that are computed in parallel. Since we can control the number of time steps
computed in parallel by combining the parallel computation with time stepping, this
problem can be avoided. In the numerical examples we will show that we can never-
theless efficiently compute hundreds of time steps in parallel for high order A(θ)-stable
discretization of the heat equation and A-stable discretization of the wave equation.

Though in this paper we restrict the discussion to the heat equation and the wave
equation and to linear multistep discretizations, the methods described are extendible
to other linear evolution problems and other time discretizations based on equal time
steps. In particular, an important generalization which we only briefly describe, is to
Runge-Kutta time discretization.

The investigation of the efficient solution of Helmholtz problems with complex fre-
quencies is of interest beyond our decoupling procedure. Such problems need to be
solved also in methods resting on computation of inverse Laplace transforms; see [15]
and [22].

2. Triangular Toeplitz systems

In this section we will describe how to approximate a lower triangular matrix by a
matrix that can be inverted in O(N log N) time. This method is often attributed to
Bini [3] and has a number of times been re-interpreted (and re-invented), see [2, 14]. In
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fact Bini’s method is also closely related to the earlier work by Schönhage [21] on fast
methods for operations on polynomials. Here we give a short proof of the main result.

To shorten the presentation we will use the following notation: Given a vector c =
(c0, c1, . . . , cN )T , TU (c) is the upper triangular Toeplitz matrix with c as the first row,
similarly TL(c) is the lower triangular Toeplitz matrix with c as the first column, and
C(c) is the circulant matrix with c as the first column, i.e.

TU (c) =




c0 c1 ··· cN−1 cN

0 c0 ··· cN−2 cN−1

...
...

. . .
...

...
0 0 ··· c0 c1
0 0 ··· 0 c0


 , TL(c) = TU (c)T , and C(c) =




c0 cN ··· c2 c1
c1 c0 ··· c3 c2
...

...
. . .

...
...

cN−1 cN−2 ··· c0 cN
cN cN−1 ··· c1 c0


 .

We refer to [13] for a detailed introduction to Toeplitz and circulant matrices. We will

also make use of a permutation-like operator P ∈ R
(N+1)×(N+1) defined by

(1) Pc = (0, cN , cN−1, . . . , c1)
T , for all c = (c0, c1, . . . , cN )T .

Lemma 2.1. Let c ∈ C
N+1 and let Λ = diag(1, λ, λ2, . . . , λN ), where 0 < λ < 1. Then

TL(c) = Λ−1C(cλ)Λ − λN+1TU (Pc), where cλ = Λc.

Proof. Multiplication of a vector x by TL(c) can be written as

(TL(c)x)n =
n∑

j=0

cn−jxj = λ−n
n∑

j=0

λn−jcn−jλ
jxj, n = 0, 1, . . . , N,

which shows that

TL(c) = Λ−1TL(cλ)Λ = Λ−1C(cλ)Λ − Λ−1TU (Pcλ)Λ.

It is now easily checked that Λ−1TU (Pcλ)Λ = λN+1TU (Pc). �

The circulant matrix C(cλ) is diagonalized by the discrete Fourier change of basis [13],
therefore the above result allows us to invert an approximation to the lower triangular
Toeplitz matrix by using the FFT and inversion of a diagonal matrix. In later sections
the entries of the diagonal matrix will be operators, or matrices, hence there we will
greatly benefit from the trivial parallelization of the approximate inversion procedure.

Remark 2.2. Considering Λ−1C(cλ)Λ as an approximation of the lower triangular
Toeplitz matrix TL(c), the error matrix Λ−1TU (Pcλ)Λ = λN+1TU (Pc) has entries of
order O(λN+1), nevertheless in finite precision arithmetic arbitrary accuracy cannot be
obtained as the matrix Λ is highly ill-conditioned for small λ. If eps is the machine
precision then multiplication by Λ−1 increases the rounding errors to λ−N eps, hence
in order to make the combined error λ−N eps +λN+1 as small as possible the optimal

choice of the parameter is λ = eps
1

2N+1 ≈ √
eps

1
N giving accuracy eps

N+1
2N+1 ≈ √

eps.

In double precision arithmetic eps ≈ 10−16, however, to allow for further accumulation

of rounding errors we have found it advisable to choose λ = 10
−6
N ; the choice is moti-

vated by experimental evidence and is used throughout in the numerical experiments of
Section 6.1.
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2.1. Coefficients given by a Taylor expansion. The coefficients cj in Lemma 2.1
can be thought of as the leading coefficients of a Taylor expansion

c(ζ) =

∞∑

j=0

cjζ
j.

In this case we will still use the notation c = (c0, c1, . . . , cN+1)
T , i.e., c will represent

the vector of leading N + 1 coefficients of the generating function c.
In order to easily invert the circulant matrix C(cλ), we can write it as

C(cλ) = F−1
N+1 diag(FN+1cλ)FN+1,

where the matrix FN+1 represents the discrete Fourier transform:

(FN+1x)n =

N∑

j=0

xjζ
jn
N+1, ζN+1 = e−2πi/(N+1), n = 0, 1, . . . , N.

If c(ζ) is known explicitly, it may be advantageous to approximate C(cλ) as follows

(2) C(cλ) ≈ F−1
N+1 diag

(
c(λ), c(λζ1

N+1), . . . , c(λζN
N+1)

)
FN+1.

If c(ζ) is a polynomial of degree k, then for N ≥ k, c(λζn
N+1) = (FN+1cλ)n and no error

is committed in (2), otherwise

c(λζn
N+1) − (FN+1cλ)n =

∞∑

j=N+1

λjcjζ
nj
N+1,

which finally gives an O(λN+1) error in the approximation (2). The approximation
proposed in Lemma 2.1 together with (2) is equivalent to approximating the cj by the
trapezoidal quadrature of the Cauchy integral representation; see [2, 21].

Let us make one final remark here. If

d(ζ) = 1/c(ζ) =

∞∑

j=0

djζ
j,

then TL(c)−1 = TL(d). If c0 6= 0 and |cj | ≤ pj, for some constant p, such an ex-

pansion d(ζ) can always be constructed, e.g. by using 1/(1 − w) =
∑∞

l=0 wl with
w = −∑∞

j=1(cj/c0)ζ
j and ζ small enough so that |w| < 1. Approximating TL(c)−1

by Λ−1C(cλ)−1Λ is then related to the trapezoidal quadrature of the Cauchy integral
representation of the dj .

3. Linear multistep discretization of evolution problems

We consider a time dependent problem of the form

(3) ∂l
tu + Lu = f, t ∈ [0, T ],

where ∂l
t is the lth partial derivative w.r.t. time, L is a time independent linear operator,

and u, f are functions of time with u(t), f(t) ∈ X for some Banach space X and t ∈ [0, T ].
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Method α β k type order

Implicit Euler (BDF1) 1 − ζ 1 1 implicit 1
BDF2 3

2 − 2ζ + 1
2ζ2 1 2 implicit 2

Trapezoidal Rule (TR) 1 − ζ 1
2 + 1

2ζ 1 implicit 2
Explicit Euler (EE) 1 − ζ ζ 1 explicit 1
Leapfrog (LF) 1 − ζ2 2ζ 2 explicit 2
BDF3 11

6 − 3ζ + 3
2ζ2 − 1

3ζ3 1 3 implicit 3

Table 1. Generating polynomials of some popular linear k-step methods.

We discretize (3) in time as follows. Let ∆t > 0, tj = j∆t, j = 0, 1, . . . , N , and let a
linear k-step method be given by the coefficients of its generating polynomials

α(ζ) =
k∑

j=0

αjζ
j, β(ζ) =

k∑

j=0

βjζ
j,

we will also make use of the quotient of the generating polynomials

δ(ζ) :=
α(ζ)

β(ζ)
=

∞∑

j=0

δjζ
j.

We use the convention that αj = βj = 0 whenever j > k. Some well-known examples
of such methods are given in Table 1. In this work we find it more convenient to use
the ordering of the multistep coefficients which is reversed compared to most of the
literature. At this stage, the only condition we make on the linear multistep method is
that δ(ζ) is analytic and never zero inside the annulus 0 < |ζ| < 1. Later some further
conditions will be imposed that ensure A or A(θ)-stability.

To discretize higher order derivatives, i.e., l > 1 above, we will need also higher powers
of generating polynomials for which we will use the following notation:

(α(ζ))l =
lk∑

j=0

α
(l)
j ζj, (β(ζ))l =

lk∑

j=0

β
(l)
j ζj.

Discretizing (3) in time by the linear multistep discretization transforms (3) to the
discrete convolutional system which at time tN = N∆t has the form

(4)
1

(∆t)l

N∑

j=0

α
(l)
N−juj + L

N∑

j=0

β
(l)
N−juj =

N∑

j=0

β
(l)
N−jfj + f̃N ,

where the sub-indices of functions indicate its evaluation at the corresponding time step,
i.e., for u : R → X, uj := u(j∆t), j ∈ Z. The initial data u−lk, . . . , u−1 and f−lk, . . . , f−1

is assumed to be known and to have been moved to the right-hand side; see the definition
of f̃ in (5).

For the first order time derivative, i.e., l = 1, it is clear how the above discrete
convolutional system arises after the linear multistep discretization. For higher order
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derivatives, one can first construct a first order system equivalent to (3), e.g. for l = 2,

∂tU +

(
0 −I
L 0

)
U =

(
0
f

)
, where U =

(
u

∂tu

)
, Iu := u, ∀u ∈ X,

discretize it by the linear multistep formula, and then recover the scalar semi-discrete
system (4).

Writing (4) in matrix notation we obtain

TL(αl/∆tl) ⊗ Iu + TL(βl) ⊗ Lu = TL(βl) ⊗ If + f̃ ,

where as usual u = (u0, u1, . . . , uN )T , f = (f0, f1, . . . , fN )T , αl = (α
(l)
0 , α

(l)
1 , . . . , α

(l)
N )T ,

and βl = (β
(l)
0 , β

(l)
1 , . . . , β

(l)
N )T . Note that here we chose to use tensor notation because

uj can be scalars, but also operators, or, as in the next section, vectors.

The vector f̃ modifying the right-hand side, is given in matrix notation by

(5) f̃ := TU (Pβl) ⊗ If in − TU (Pαl/∆tl) ⊗ Iuin − TU (Pβl) ⊗ Luin,

where the initial data is given by uin = (0, 0, . . . , u−lk, . . . , u−1)
T , similarly for f in. Note

that only the first lk elements of the modifying vector f̃ are non-zero.
For a parameter 0 < λ < 1 we can proceed as in the previous section by approximating

the Toeplitz operators by circulant operators to write a perturbed system

(6) C(αl
λ/∆tl) ⊗ Iuλ + C(βl

λ) ⊗Luλ = C(βl
λ) ⊗ Ifλ + f̃λ,

where we use the notation vλ = Λ ⊗ Iv for v ∈ XN+1. Note that ũ = Λ−1 ⊗ Iuλ is
then the approximation to u. The error e = u − ũ satisfies the equation

TL(αl/∆tl) ⊗ Ie + TL(βl) ⊗ Le =

λN+1
(
−TU (Pβl) ⊗ If + TU (Pαl/∆tl) ⊗ Iũ + TU (Pβl) ⊗ Lũ

)
.

(7)

Comparing the right-hand side in the above equation with (5) we realize that the error
is a solution of an evolution problem whose initial data are the last lk entries of −f and
−ũ scaled by λN+1.

Remark 3.1. In (7) we can again substitute the circulant matrix approximation of the
lower Toeplitz matrices to compute a correction. In this way we obtain an error of order
O(λ2N+2). The correction can be repeated until satisfactory accuracy is obtained thereby

avoiding the accuracy restriction of
√

eps. For example choosing λN+1 = eps1/3 after

one correction gives an accuracy of eps2/3; for two corrections the optimal choice would
be λN+1 = eps1/4. The correction strategy is well known as iterative refinement.

Final manipulation will be to perform a discrete Fourier transform to obtain a decou-
pled system of equations

(8)
1

(∆t)l
Σ1 ⊗ Iû + Σ2 ⊗ Lû = Σ2 ⊗ If̂ +

̂̃
f ,

where v̂ = FN+1 ⊗ Ivλ. Further, Σ1 and Σ2 are diagonal matrices with (Σ1)mm =

(FN+1α
l
λ)m and (Σ2)mm = (FN+1β

l
λ)m, m = 0, 1, . . . , N . Note that if N ≥ lk then

(9) (Σ1)mm = αl(λζm
N+1) and (Σ2)mm = βl(λζm

N+1), m = 0, 1, . . . , N,
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otherwise the above equalities are true up to an error of O(λN+1); see Section 2.1.
Multiplying (8) by Σ−1

2 ⊗I we see that we indeed obtain N +1 decoupled Helmholtz-
like problems of the type

(10)
(sm

∆t

)l
ûm + Lûm = f̂m, sm = δ(λζm

N+1) =
α(λζm

N+1)

β(λζm
N+1)

,

where, to simplify the notation, f̂m = (f̂)m +
(
βl(λζm

N+1)
)−1

(
̂̃
f)m.

4. Semi-discretized evolution equation: Method of lines

Let Ω be a bounded domain in R
d, d = 2, 3, with Lipschitz boundary Γ. We consider

two model problems:
Heat equation: Find u(·, t) ∈ H1(Ω) such that

(P)
∂tu(x, t) −∇.∇u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

u(·, t) = u0(x), x ∈ Ω
u|Γ = g, (x, t) ∈ Γ × [0, T ],

where g(·, t) ∈ H1/2(Γ) denotes the given boundary data, u0 ∈ H1(Ω) the initial condi-
tion, and f(·, t) ∈ H−1(Ω) the given forcing term.
Wave equation: Find u(·, t) ∈ H1(Ω) such that

(H)
∂2

t u(x, t) −∇.∇u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),
u(·, t) = u0(x), ∂tu(·, t) = v0(x), x ∈ Ω

u|Γ = g, (x, t) ∈ Γ × [0, T ],

where g(·, t) ∈ H1/2(Γ) is the given boundary data, u0, v0 ∈ H1(Ω) the initial conditions,
and f(·, t) ∈ H−1(Ω) the given forcing term.

We do not assume any smoothness conditions in time or compatibility condition of
the initial and boundary data because, in this paper, we are only interested in errors
committed by our method of solving the discrete convolutional system of equations by
a decoupling procedure. Of course, if we wanted to give the convergence estimates for
the full method we would need such assumptions.

Remark 4.1. At this stage we could proceed as in the previous section and discretize in
time and introduce the O(λN+1) perturbation in order to arrive at a decoupled system.
Thereby we would obtain N + 1 decoupled Helmholtz problems:

Lûn + ωnûn = f̂n,

ûn|Γ = ĝn,
n = 0, 1, . . . , N.(11)

These Helmholtz problems are uniquely solvable if the linear multistep method is A(θ)-
stable for (P) and for (H) if it is A-stable; for more details and for explicit methods see
the next section.

An approximate solution of (11) can then be computed by a number of standard nu-
merical methods, e.g., finite differences, spectral methods, etc. In this paper we choose
to solve the problems using the finite element method (FEM). In order to more easily fit
the framework of the previous sections we introduce the space discretization by the FEM
first and then apply the time-discretization to the resulting ODE.
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4.1. Finite Element discretization in space. We next explain the discretization of
domain operators by the finite element method. We will denote by S ⊂ H1(Ω) a finite
element space, by Y := γ0 S its restriction to the boundary, and by X := S∩H1

0(Ω) the
subspace of finite element functions with zero boundary trace.

Let the continuous sesquilinear forms a, b, c : H1(Ω) × H1(Ω) → C be defined by

(12) a(u, v) :=

∫

Ω
∇u · ∇v, b(u, v) :=

∫

Ω
uv, c(u, v) :=

∫

Γ
uv.

We will also make use of the operators corresponding to the first two sesquilinear forms:

(13) Au = a(u, ·), Bu = b(u, ·).
Note that we can think of these operators as acting on the discrete spaces as well, where
we then have A : X → X′ and B : X → X or B : X′ → X′.

4.2. The fully discrete equations. Let us assume that g∗j ∈ S are given such that

(14) c(g∗j , v) = c(gj , v), for all v ∈ S, j = 0, 1, . . . , N,

where gj(·) := g(·, tj), j = 0, 1, . . . , N . Then the fully discrete system has the following
form: Find u∗ = (u∗

0, u
∗
1, . . . , u

∗
N )T , u∗

j ∈ X, j = 0, 1, . . . , N , such that

TL(αl/∆tl) ⊗ Bu∗ + TL(βl) ⊗Au∗ =

TL(βl) ⊗ Bf − TL(αl/∆tl) ⊗ Bg∗ − TL(βl) ⊗Ag∗ + f̃ ,
(15)

where g∗ = (g∗0 , g∗1 , . . . , g
∗
N )T . The approximate solution of the original problem, (P) or

(H), is given by u = u∗ + g∗.
We next define the perturbed system with Toeplitz matrices replaced by circulant

matrices: Find u∗
λ = (u∗

λ,0, u
∗
λ,1, . . . , u

∗
λ,N )T , u∗

λ,j ∈ X, j = 0, 1, . . . , N , such that

C(αl
λ/∆tl) ⊗ Bu∗

λ + C(βl
λ) ⊗Au∗

λ =

C(βl
λ) ⊗ Bfλ − C(αl

λ/∆tl) ⊗ Bg∗
λ − C(βl

λ) ⊗Ag∗
λ + f̃λ.

(16)

As in the previous sections, in the discrete Fourier space, the above system decouples
into N +1 independent linear problems; these will be investigated in the next subsection.

4.3. Analysis of the discrete Helmholtz problems. The system (16) is equivalent
to N + 1 problems of the following type: Find û∗ ∈ X such that

(17) Aû∗ + ωBû∗ = Bf̂ −Aĝ∗ − ωBĝ∗.

The discussion in this section applies to all of the N +1 problems, therefore we omit the
extra index.

Let {µj} be the eigenvalues of the discrete Laplacian:

(18) There exists uj ∈ X \{0}, s.t., Auj + µjBuj = 0.

If ω /∈ {µj} then the equation (17) has a unique solution. It is well known that µj < 0
for all j and that |µj | ≤ Ch−2 where h is the diameter of the smallest element in the
space discretization. The frequencies ω lie on the curve

ω ∈ CP :=

{
δ(λζ)

∆t
| |ζ| = 1

}
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for the parabolic model problem and are on

ω ∈ CH :=

{(
δ(λζ)

∆t

)2

| |ζ| = 1

}

for the hyperbolic problem. Therefore to determine whether the resulting Helmholtz
problems are solvable it is important to check whether, and if so, where does the above
curve intersect the negative real line.

In the case of (P) and A(θ)-stable linear multistep methods, 0 < θ ≤ π/2, the
wavenumbers are always well-separated from the negative real axis because

CP ⊂ {z | z = r exp(iϕ), |ϕ| ≤ π − θ}.
In the case of (H) and explicit methods the CFL condition ensures that the curve

CH misses the eigenvalues of the discrete operator: For example for the leapfrog formula

δ(ζ) = 1−ζ2

2ζ , the curve cuts the negative real line at (1+λ2)2

4λ2∆t2
; the usual CFL condition

∆t = o(h) ensures solvability.
For A-stable linear multistep methods it holds that Re δ(ζ) > 0 for |ζ| < 1, therefore

CH misses the negative real line and (17) has a unique solution for all ∆t. For example
for the Backward Euler (BDF1), δ(ζ) = 1 − ζ, backward difference formula of order 2
(BDF2), δ(ζ) = 3

2−2ζ+1
2ζ2, and the second order trapezoidal rule, δ(ζ) = 2(1−ζ)/(1+ζ),

we have that

(19) Re δ(λζ) ≥ (1 − λ)/∆t > 0.

Lemma 4.2. Let δ(ζ) define a linear k-step method and let the number of time steps N
be such that N ≥ lk, where l = 1 for (P) and l = 2 for (H). If

(20) µj /∈ CP , for (P), resp. µj /∈ CH, for (H), j = 0, 1, . . . ,

where µj are the eigenvalues of the discrete Laplacian as defined in (18), then the solution
u∗

λ of (16) exists and is unique.
In particular the condition (20) is satisfied if the underlying linear multistep method

is A(θ)-stable, for (P), resp. if it is A-stable for (H).

Finally we can use the results from the first few sections to provide an expression for
the error.

Theorem 4.3. Let u∗ and u∗
λ be the solutions of (15) respectively (16) and let u =

u∗ + g∗, uλ = u∗
λ + g∗

λ, and ũ = Λ−1 ⊗ Iuλ. The error e = u − ũ is then the solution
of the discrete evolution problem

TL(αl/∆tl) ⊗ Be + TL(βl) ⊗Ae =

λN+1
(
TU (Pαl/∆tl) ⊗ Bũ + TU (βl) ⊗Aũ − TU (βl) ⊗ Bf

)
.

Proof. Using the results from the previous section, see (7), we immediately obtain that
e∗ = u∗ − Λ−1 ⊗ Iu∗

λ satisfies

TL(αl/∆tl) ⊗ Be∗ + TL(βl) ⊗Ae∗ =

λN+1
(
TU (Pαl/∆tl) ⊗ B(g∗ + ũ∗) + TU (Pβl) ⊗A(g∗ + ũ∗) − TU (Pβl) ⊗ Bf

)
,
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where ũ∗ = Λ−1 ⊗ Iu∗
λ. The result follows from the identities u = u∗ + g∗ and ũ =

ũ∗ + g∗. �

The importance of the above result is that it shows that the error is the solution of a
discrete evolution problem scaled by λN+1, or equivalently, the solution of the problem
with initial data of size O(λN+1). This in turn allows us to easily compute a correction
to the solution; see Remark 3.1. Note that, discretization errors, coming from, e.g.,
quadrature, are not aggravated by multiplication with the ill-conditioned matrix Λ−1.
However, errors in the solution of the Helmholtz problems can be.

5. Some extensions and generalizations

In this paper we consider the heat and wave equations and linear multistep discretiza-
tion. Extensions to some other linear evolution problems are straightforward. For ex-
ample to implement the dissipative wave equation ∂2

t u+ k∂tu−∆u = f the only change
to the code would be to substitute the wave number δ(ζ)/∆t in (10) by the dissipative

equivalent
√

(δ(ζ)/∆t)2 + kδ(ζ)/∆t.
Further, other time discretization methods based on equally spaced time steps produce

lower triangular Toeplitz semi discrete-systems to which the decoupling procedure can
also be applied. In particular Runge-Kutta methods are an important alternative to
linear multistep methods, especially for hyperbolic problems, because A-stable Runge-
Kutta methods of higher orders than 2 are readily available. In this case details of the
implementation are somewhat more technical, for an m-stage Runge-Kutta method the
wave numbers become m×m-matrices, requiring the solution of m Helmholtz problems at
the frequencies given by the eigenvalues of the m×m-matrix. For a similar perspective
on Runge-Kutta methods for the wave equation, but in the context of time domain
boundary integral operators, see [1].

6. Algorithmic realization and numerical experiments

In this section we will discuss the practical realization of the proposed parallel time
discretization approach and compare it to the classical time stepping procedures which
correspond to forward elimination of the lower triangular Toeplitz system. The im-
plementation of both methods is almost trivial. Nevertheless, Algorithm 1 gives some
pseudo-code for a model situation in order to extract the differences. In the algorithm
description we assume that elements of u ∈ XN+1 are stored as M × (N + 1) matrices
and we denote by uj the jth column of u and by (uT )j the jth row of u. To simplify
the presentation we consider the fully discrete system (15) with homogeneous initial and
boundary data written as a discrete convolutional system: Find u ∈ XN+1, such that

1

∆tl

n∑

j=0

α
(l)
n−jBuj +

n∑

j=0

β
(l)
n−jAuj =

n∑

j=0

β
(l)
n−jBfj, n = 0, 1, . . . , N.

In what follows we will always use M to denote the dimension of the space X.
Assuming the linear systems can be solved in nearly O(M) time, the overall complex-

ity of Algorithm 1(a) is O(kNM). In the decoupled version 1(b) we get O(NM log N)
(neglecting parallelism for the moment). The dependence on the step number k dis-
appears at the price of an additional logarithmic factor. Consequently, the decoupling
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Algorithm 1 Classical k-step algorithm and decoupled multistep method.

Require: Data: f ∈ R
M×(N+1), Generating polynomials: α, β, Parameters: ∆t, ε.

(a) Time stepping loop (b) Parallelized

1: for n = 0 : N do

2: r := β
(l)
0 Bfn;

3: for j = 1 : k do

4: r := r + β
(l)
j (Bfn−j − Aun−j) −

α
(l)
j

∆tl
Bun−j;

5: end for

6: Solve (β0A +
α

(l)
0

∆tl
B)un = r;

7: end for

1: λ := ε1/N ;
2: Λ := diag(1, λ, λ2, . . . , λN );
3: z := λ exp(2πi/(N + 1));
4: parfor j = 1 : M do

5: (f̂T )j := FN+1((ΛfT )j);
6: end for

7: parfor n = 0 : N do

8: Solve (βl(zn)A + αl(zn)
∆tl

B)ûn =

βl(zn)f̂n;
9: end for

10: parfor j = 1 : M do

11: (uT )j := Λ−1F−1
N+1((û

T )j);
12: end for

return u.

provides huge savings of computational time compared to forward elimination if the
Toeplitz system is densely populated. However, in the context of linear multistep meth-
ods where we are confronted with band limited systems the effort for both algorithms is
comparable in a sequential computational environment.

The discussion of storage complexity depends strongly on the needs of the underlying
application. If the solution is required at all time steps, then both algorithms belong to
the class O(MN). If only the solution at final time is of interest then the time stepping
strategy is superior because it requires only O(kM) data to be stored simultaneously
while Algorithm 1(b) needs access to the data at all time steps at once.

A key property of modern algorithms is parallelism, which is the greatest advantage
of the decoupling procedure. Indicated by the use of keyword parfor, the loops in Algo-
rithm 1(b) can be executed in parallel. While the loops computing the discrete Fourier
transformations can be parallelized with respect to the space variables, the loop for the
solution of the decoupled systems is parallel with respect to the time discretization lead-

ing to O(MN log N
P ) time complexity if P ≤ min{M,N} processors are available. Since

within each loop no communication between the individual processes is necessary, al-
gorithm 1(b) is embarrassingly parallel. All internodal communication is concentrated
between the loops where the data needs to be redistributed. This allows its simple use of
distributed computing networks. On the contrary, in the time-stepping algorithm 1(a),
parallelization is restricted to the individual time steps, i.e., to vector and matrix oper-
ations. The biggest drawback of such a parallelization is that communication between
the working units is necessary throughout the computation. Therefore optimal upscaling
with respect to the number of parallel machines is hard to achieve for time stepping in
practice.
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There is a difference in the linear systems to be solved in the algorithms. While in the
time-stepping algorithm real symmetric positive definite systems have to be solved, we
are confronted with complex and possibly indefinite Helmholtz problems in the decoupled
case. The disadvantage of Algorithm 1(b) of requiring complex arithmetic is alleviated
by the fact that only half of the systems need to be solved since the linear systems
occur in complex-conjugate pairs. The availability of fast solvers for the indefinite linear
systems will be discussed in Section 6.2.

An important aspect of the parallel algorithm is that it can easily be combined with
the time-stepping algorithm. That is, we suggest a block time-stepping algorithm where
triangular blocks of size P are solved by the parallel Fourier techniques. The optimal
choice of P would be governed by the number of nodes in the parallel cluster, the available
memory, and the difficulty of solving the Helmholtz problems. The latter point is due
to the fact, explained in the coming sections, that generally the Helmholtz problems
become more difficult to solve for increasing P .

6.1. Numerical experiments. We continue the discussion with some numerical ex-
periments aiming for the practical investigation of the error bound from Theorem 4.3
for some of the implicit linear multistep time discretizations listed in Table 1. All the
computations are done in Matlab. For most of the experiments, we restrict ourselves to
the more challenging case of the wave equation and consider two simple model situations
that allow the computation of exact errors. Let

wa,b : R × R
d → R, x 7→ cos(b(t − 〈a,x〉)e−10(t−〈a,x〉−3)2 ,(21)

where a ∈ R
d, ‖a‖ = 1, b ∈ R. It is easy to see that wa,b fulfills the homogeneous wave

equation. Moreover, every linear combination of these functions is a solution to the wave
equation which will be exploited in the first model problem. Let T = 6, Ω = [−0.5, 0.5]2.
Consider

∂2
t u(x, t) − ∆u(x, t) = 0, (x, t) ∈ Ω × [0, T ],

u(x, 0) = 0, x ∈ Ω,

∂tu(x, 0) = 0, x ∈ Ω,

u(x, t) = w[1,0],1(x) + w[−1,1],2(x) x ∈ ∂Ω.

(22)

The results of the related computations are listed in Table 2. They are based on a
conforming P1 Finite Element space discretization with respect to uniform refinements
of the initial triangulation depicted in Figure 1. The level parameter ref = 2, 3, . . . , 8
denotes the number of uniform refinements applied to T0. It further denotes the number
of uniform refinements of the time interval [0, 6]. The arising linear systems are solved
by preconditioned GMRES to accuracy 10−8 as described in the subsequent section.
Note that, the initial time discretizations are far too coarse to resolve the solution.
This explains the slow convergence at the lower levels. As expected the trapezoidal
rule performs best. For the BDF2 it takes quite a while to reach the predicted second-
order convergence. For both methods the difference between the time stepping and the
decoupling result is of order ε = 10−6 which matches the prediction since we chose the

optimal value for the parameter λ = ε
1
N , where N = 2ref denotes the number of time

steps.
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(a) T0. (b) T1. (c) T2.

Figure 1. Initial triangulation T0 of [−0.5, 0.5]2 and uniform refinements Tref ,
ref = 1, 2.

For hyperbolic problems we are restricted to the use of A-stable or explicit methods
with sufficiently fine time discretization. Nevertheless, some accuracy can be obtained by
using A(θ)-stable methods and our decoupling procedure gives an interesting viewpoint
on the development of instabilities. Next, we have a closer look at the behavior of
simulations based on the BDF3 time discretization. Let T = 10, Ω = [0, 1]2. Consider

∂2
t u(x, t) − ∆u(x, t) = 0, (x, t) ∈ Ω × [0, T ],

u(x, 0) = sin(2πx), x ∈ Ω,

∂tu(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω.

(23)

We use the same space discretization as before but, due to the larger time interval, we
use slightly larger time steps. If h indicates the mesh width of Tref and ∆t the time step,
then ∆t = 10h is chosen on all levels. The BDF3 method is not A-stable and therefore
expected to fail after a certain number of time steps. This situation has not been
reached after 256 time steps; see Table 3(b). This is theoretically justified by the fact

that the related curve CH :=
{(

αBDF3(10
−6/N ζ)

)2
/∆t2 | |ζ| = 1

}
, for N = 256, does not

intersect the negative real axis. Doubling the number of time steps makes the above curve
cross the negative real axis and (keeping space resolution) gives ‖ets‖L∞([0,T ],L2(Ω)) =
16.51 and ‖epar‖L∞([0,T ],L2(Ω)) = 0.389. Decreasing λ would again make the curve avoid

the negative real axis, see Figure 2, but would make the matrix Λ−1 more singular
thereby creating numerical difficulties.

6.2. A few remarks on the efficient solution of the linear Helmholtz-type

systems. The application of the parallel Algorithm 1(b) requires the solution of discrete
Helmholtz problems of the form

H(ω) := Au + ωBu = f, A,B ∈ R
M×M , f ∈ C

M , ω ∈ C(λ) ⊂ C.(24)

where C(λ) = CP or C(λ) = CH. We have highlighted the dependence on the parameter
λ ∈ (0, 1) explicitly. In Figure 2 such curves are depicted for several implicit and explicit
linear multistep methods.
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ref ‖ets
ref‖L∞([0,T ],L2(Ω)) ‖epar

ref ‖L∞([0,T ],L2(Ω)) difference rate

2 0.52449640 0.52449633 4.1e-07 1.05
3 1.08740731 1.08740752 1.1e-06 -1.05
4 0.91896229 0.91896275 9.1e-07 0.23
5 0.52220239 0.52220257 5.0e-07 0.82
6 0.15753554 0.15753554 1.8e-07 1.70
7 0.04117602 0.04117600 7.6e-08 1.96
8 0.01061508 0.01061506 1.1e-07 2.03

(a) Trapezoidal rule.

ref ‖ets
ref‖L∞([0,T ],L2(Ω)) ‖epar

ref ‖L∞([0,T ],L2(Ω)) difference rate

2 0.41693631 0.41693631 1.9e-08 -
3 0.54310906 0.54310906 8.5e-08 -0.40
4 0.64303205 0.64303206 1.5e-07 -0.25
5 0.62529911 0.62529916 2.4e-07 0.02
6 0.36945373 0.36945381 2.2e-07 0.77
7 0.14528735 0.14528733 1.3e-07 1.40
8 0.04089906 0.04089903 7.2e-08 1.86

(b) BDF2.

Table 2. Convergence history for model problem (22): ets
ref and epar

ref denote
the errors of Algorithm 1(a) and (b) respectively on refinement level ref; the
difference column gives relative distances between the two approximations mea-
sured in the ‖ · ‖L∞([0,T ],L2(Ω)) norm.

In contrast to the linear systems arising from time-stepping algorithms problem (24)
is in general indefinite. The availability of efficient solvers strongly depends on the shape
of the curves C(λ), but not as much on the scaling, i.e., on ∆t, as we will see later. If
the problem is positive definite we may use multigrid techniques to solve (24). It is
known that the linear problems (24) can be solved by means of multigrid or multigrid
preconditioned iterative solvers in optimal time complexity O(M) provided Re ω ≥ 0
and Im ω = 0; see [17]. We could not find corresponding multigrid convergence results
for the case Re ω ≥ 0 and Im ω 6= 0, but in experiments the same kind of behavior is
seen.

We will now briefly discuss the availability of efficient solvers for indefinite Helmholtz
problems that appear whenever the curves related to the linear multistep method in-
tersect the left half complex plane. This will happen using A(θ)-stable methods for
parabolic problems and A-stable methods for hyperbolic problems for values of λ close

to one. Let us recall that the choice of the parameter λ = ε
1
N >

√
eps

1
N strongly depends

on N as well as the number of time steps performed in parallel; see Remark 2.2. The
parameter λ tends to 1 as N → ∞.
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ref ‖ets
ref‖L∞([0,T ],L2(Ω)) ‖epar

ref ‖L∞([0,T ],L2(Ω)) difference rate

2 0.48881127 0.48881127 9.8e-10 -
3 0.48783902 0.48783902 4.4e-09 0
4 0.91685161 0.91685161 2.0e-07 -0.94
5 0.75215079 0.75215078 2.8e-07 0.29
6 0.69648890 0.69648886 4.8e-07 -0.10
7 0.59814940 0.59814966 1.1e-06 0.22
8 0.20057960 0.20057953 2.6e-06 1.56

(a) BDF2.

ref ‖ets
ref‖L∞([0,T ],L2(Ω)) ‖epar

ref ‖L∞([0,T ],L2(Ω)) difference rate

2 0.51198670 0.51198670 3.0e-09 -
3 0.49146349 0.49146349 7.43-09 0.06
4 1.14187459 1.14187447 2.2e-07 -1.21
5 3.12117657 3.12118521 1.1e-05 -1.45
6 2.71643601 2.71644405 1.2e-05 0.20
7 0.26507886 0.26507961 5.1e-06 3.38
8 0.02912403 0.02911598 2.3e-04 3.16

(b) BDF3.

Table 3. Convergence history for model problem (23): ets
ref and epar

ref denote
the errors of Algorithm 1(a) and (b) respectively on level ref; the difference
column gives relative distances between the approximations measured in the
‖ · ‖L∞([0,T ],L2(Ω)) norm.

The matrices A and B from (24) are matrix representations of the operators A and B
defined in (13). While A is positive semi definite, B is assumed to be positive definite.
In the setting of the previous section A and B are also symmetric and sparse.

Some linear system solvers are not affected by the indefiniteness of H(ω), e.g. sparse
direct solvers will be equally fast in all cases since the sparsity pattern of the matrix
is independent of the wavenumber; we refer to the textbook [4] for an overview on fast
direct solvers for sparse linear systems. Furthermore, so called Fast Poisson Solvers (see
[23, Section 3.5] for an introduction) can be applied if the underlying domain has a
tensorized structure, the appearing coefficients are constant, and the H(ω) is based on a
finite difference discretization or finite elements on uniform grids. In the latter situation
the eigenvalues and eigenvectors of H(ω) are known explicitly and can be exploited to
solve (24) by means of fast Fourier transforms in almost optimal complexity O(M log M).
In the described situation the method of cyclic reduction (see [12]) is a further option.

In more general situations we want to make use of iterative solvers. However, their use
is not straightforward compared to the case of positive definite systems. There are some
multigrid techniques available for indefinite systems (see e.g. [5, 7, 6]). The key problem
is that the spectral properties of the operator changes with respect to the refinement
level. This demands either the coarsest level to resolve the frequency or the careful use
of smoothing operators depending on the actual refinement level.
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The GMRES (Generalized Minimal Residual) method introduced in [20] is one of the
most effective methods for solving large sparse systems of equations if equipped with
a suitable preconditioner. Starting from an initial guess x0 ∈ C

M and the associated
residual r0 := f − Hx0, the algorithm computes a sequence of iterates x1, x2, . . . such
that the m − th residual rm := f − Hxm satisfies

(25) ‖rm‖2 = min
p∈Pm:p(0)=1

‖p(H)r0‖2, m = 0, 1, . . . ,M − 1,

where ‖ · ‖2 denotes the Euclidean norm in C
M . If H is diagonalizable, i.e., there exists

an invertible matrix X ∈ C
M×M and a diagonal matrix D = diag(d), d ∈ C

M , such
that H = XDX−1, then p(H) = Xp(D)X−1 and the residual has been proved in [20,
Proposition 4] to be bounded as follows:

(26) ‖rm‖2 ≤ κ(X)

(
min

p∈Pm:p(0)=1
max

j=1,...,M
|p(dj)|

)

︸ ︷︷ ︸
=:εm

‖r0‖2.

Here, κ(X) := ‖X‖‖X−1‖ denotes the condition number of X. Under the assumption
that all eigenvalues of H are contained in a ball BR(q) with radius R > 0 centered at
q ∈ C \ {0} Theorem 5 in [20] gives a bound on εm

(27) εm ≤
(

min
p∈Pm:p(0)=1

max
z∈BR(q)

|p(z)|
)

=

(
R

|q|

)m

.

The equality in (27) is known as the Zorantonellos’s lemma [18]. If R
|q| ≤ c < 1, then the

GMRES iteration will produce a decreasing sequence of residuals that fulfill ‖rm‖ < tol

for a given tolerance tol > 0 as soon as m > log(tol/κ(X))
log(c) .

In the following we will denote the generalized spectrum of A and B by σB(A), i.e.,
µ ∈ σB(A) if there exists non-zero u ∈ R

M such that

(28) Au = µBu.

Then (ω + µ, u) ∈ C × R
M is a generalized eigenpair of

H(ω) := A + ωB

and problem (24) is uniquely solvable if and only if ω 6= −µ for all solutions µ of (28).
The spectrum of matrices H(ω) from (24) is in general not clustered in a ball that does
not contain zero and the GMRES convergence bound (27) is not applicable.

A suitable preconditioner for the problem at hand is the shifted Laplacian precondi-
tioner which has been introduced and analyzed in [10, 8, 9, 24]. The shifted Laplacian
preconditioner is simply given by P (z) = A+zB, where the shift z is chosen in such a way
that P (z) can be inverted efficiently by means of multigrid techniques. The eigenvalues
of the preconditioned operator P (z)−1H(ω) are given by

µ + ω

µ + z
, µ ∈ R≥0 : Au = µBu.

If we consider the related Möbius transform

(29) M : C → C, M(ξ) :=
ξ + ω

ξ + z
,
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then for the spectrum of the preconditioned operator it holds that

σ(P (z)−1H(ω)) ⊂ M(R≥0) ⊂ M(R).

We refer to [16, Chapter 3.V] for a detailed description of Möbius transforms. The most
important property of such a transform for our purposes is the preservation of circles
including lines regarded as circles with infinite radius. As a consequence we can state that
the eigenvalues of the preconditioned operator lie on the circle centered at qM := ω−z̄

z−z̄

with radius RM :=
∣∣∣z−ω

z−z̄

∣∣∣ . Therefore GMRES convergence for the preconditioned system

P (z)−1H(ω)u = (A + zB)−1(A + ωB)u = P (z)−1f.(30)

can be bounded as follows

εm ≤
( |ω − z|
|ω − z̄|

)m

.

This result recovers the convergence bound of the GMRES iteration for the precondi-
tioned system (30) given in [24, Equation (32)].

It is left to determine the shift parameter z = z(ω) in such a way that the rate is
minimized under the constraint that P (z) can be inverted efficiently. In the case of
positive or negative definite H(ω) (Re ω ≥ 0, Re ω < −max(σB(A))), we can choose
z = ω since standard multigrid techniques will be efficient [5]. The critical setting is, that
H(ω) is indefinite implying that −max(σB(A)) ≤ Re ω < 0. Assuming that Im ω 6= 0,
i.e. 0 /∈ M(R), we minimize the convergence bound

min gω(z) = min
|ω − z|2
|ω − z̄|2 subject to z ∈ C+ := {z ∈ C : Re z ≥ 0}.

The constraint z ∈ C+ ensures that the preconditioner can be inverted efficiently by
standard multigrid techniques. Obviously, if ω ∈ C+, i.e. ω is admissible, the optimal
shift

zopt(ω) = ω ∈ C+,

meaning that P (z(ω)) = H(ω)−1. If ω /∈ C+, i.e. ω is not admissible, it is easy to see
that

∂gω(z)

∂ Re z
≥ 0, ∀z ∈ C+.

The minimum is attained at some point on the boundary of C+, that is to say on the
imaginary axis. The remaining 1-dimensional minimization problem with respect to the
imaginary part of the shift

min
z∈∂C+

gω(z) = min
s∈R

gω(0 + s · i)

results in the following choice of zopt

zopt(ω) = sign(Im ω)|ω|i, ω /∈ C+.

Thus, if ω /∈ C+, the convergence rate of GMRES applied to the preconditioned system

(31) P (zopt(ω))−1H(ω)u = P (zopt(ω))−1f
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can be bounded by
√

gω(zopt), i.e. by

(32)

√
1 − sin(θω)

1 + sin(θω)
, where θω := arcsin

( | Im ω|
|ω|

)
∈ (0, π

2 ].

Therefore the systems (24) arising from the decoupling procedure can be solved effi-
ciently as long as θω remains moderately bounded from below for ω ∈ C(λ).

Considering A(θ)-stable linear multistep methods for parabolic problems (see Figure
2(c,e,g)) the minimal value of θω is bounded below by the θ parameter implying that the
convergence rate can be bounded uniformly and independently of all other parameters,
in particular ∆t, h, and the number of time steps to be computed in parallel.

For A-stable linear multistep methods for hyperbolic problems (see Figure 2(d,f)) the
situation is more complicated and we have to consider two regimes. The first regime
is that of keeping the product N∆t constant and letting N increase. For this case the
convergence bound (32) tends to one as the number of time steps N increases. The
second regime is that of fixing the time step ∆t and then seeing how many steps can
efficiently be performed in parallel.

Regime 1 (N∆t = const, N → ∞): Here, see (19), we have that

Re
δ(λζ)

∆t
≥ Re

1 − 10−6/N

T/N
≥ 1

T
=: σ0.

Writing x + iy = δ(λζ)
∆t , x is smallest, i.e. closest to σ0, for y = 0. For the pth order

BDF method x increases for increasing |y| at the rate c|y|p+1; the same statement can
be made for a number of A-stable Runge-Kutta method, e.g., Radau IIA methods, only
here we would be looking at the spectrum of the small matrices δ(ζ)/∆t. From these
arguments we see that the critical values for ω in (24) are on the curve

ω ∈ {z2 | z = σ0 + iy, |y| ≤ const ·∆t−p/(p+1)}.
For this curve, the theory in this section would predict that the number of iterations
needed for convergence of GMRES would increase as Np/(p+1) with increasing N , i.e.,
decreasing ∆t. Numerical experiments for BDF1 and BDF2 (see Figure 5) show that
this convergence analysis is sharp.

Regime 2 (∆t = const, T → ∞): In this regime we fix the time-step appropriate for
the particular problem we are solving and increase the number of time steps. In this
regime the critical curve is ω ∈ {z2 | z = δ(ζ)/∆t, |ζ| = 1}. In this case the number of
iterations will be bounded for all A-stable methods that satisfy Re δ(ζ) > 0 for ζ 6= 1;
this is the case for BDF methods. The trapezoidal rule does not satisfy this condition
and we expect an increase in the iteration count as the number of time-steps is increased.
We will investigate this case more carefully by numerical experiments described below.

We have also investigated the behavior of the multigrid solver by comparing the
behavior of the exact preconditioner with the approximate preconditioner computed by
one multigrid V -cycle with 2 Jacobi pre-/post-smoothings on each level. The results in
Figure 4 tell us that typically one multigrid V -cycle is enough as it has also been observed
in [24, 9, 8, 10, 19, 11]. Note that the gap between the iteration counts of the exact and
the multigrid preconditioner could be reduced by using more sophisticated smoothers of
Gauss-Seidel type instead of the Jacobi iteration. Nevertheless, for hyperbolic problems,
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as we will see below, the main limitation to the number of time steps to be performed
in parallel comes from the loss in the efficiency of the outer Krylov solver rather than
the non-optimal performance of the smoother.

We now present the numerical experiments for the Regime 2 described above. For
different numbers of time steps we iteratively (GMRES with inexact multigrid-based
shifted Laplacian preconditioner; parameters as in Figure 4) solve the discrete Helmholtz
problems appearing in step 8 of Algorithm 1(b) for both, the heat and the wave equation,
as well as several linear multistep methods from Table 1. We thereby fix the time step
∆t = 0.025 and the tolerance ε = 1e − 6. We use a conforming P1-FEM with respect
to the mesh hierarchy {Tref}8

ref=2 (see Figure 1) as before; the right hand side data is
chosen randomly. Figure 6 plots maximal and mean iteration counts versus the number
of time steps computed in parallel. For the heat equation we observe that the maximal
number of iterations is limited independently from the number of time steps. As it
has been proved before there is only a dependence on the order of the linear multistep
method. This dependence reflects the decrease of the stability angle. The mean number
of iterations is almost independent of the number of time steps and the choice of the
linear multistep method. The results are only slightly worse, but still bounded, for the
hyperbolic problem and A-stable BDF methods. However, as expected, the maximal
number of iterations is not bounded for the Trapezoidal rule; see Figure 6(b). The
increase seems to be linear with the number of time step computed in parallel.

From these results we conclude that even for situations where there is a limit on the
number of time-steps computed in parallel, this limit is not severe. The only case for
which we have more reservations is the Trapezoidal discretization of the wave equation,
where the lack of L-stability creates extra difficulties.
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(a) Leapfrog. (b) Leapfrog.

(c) BDF1 (Implicit Eu-
ler).

(d) BDF1 (Implicit Eu-
ler).

(e) BDF2. (f) BDF2.

(g) TR. (h) TR.

(i) BDF3. (j) BDF3.

Figure 2. The curves C(λ) for different time discretization methods (see Table
1) and parameters ranging from λ = 0 (white) to λ = 1 (black); ∆t = 1. On the
left the curves for first order time derivative discretizations are depicted (i.e.,
C(λ) = CP); the related curves for second order in time problems on the right
(i.e., C(λ) = CH).
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Figure 3. Number of iterations for (exact) |ω|i-shifted preconditioned GM-
RES iteration versus frequency ω ∈ C (prescribed tolerance: 10−8). The singular
behavior at the negative real axis reflects the eigenvalues of the discrete Lapla-

cian.
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Figure 4. Number of iterations for |ω|i-shifted preconditioned GMRES itera-
tion versus frequencies ω ∈ C resulting from the parallelized multistep discretiza-
tion (see Algorithm 1(b), ε = 10−6) of the wave equation. The preconditioner is
computed exactly (thin lines) or approximately inverted by 1 multigrid V-cycle
with 2 Jacobi pre-/post-smoothings on each level (prescribed tolerance: 10−8,
bold lines).
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Figure 5. We show the increase in the number of iterations of the multigrid
preconditioned GMRES when solving (24) with ω ∈ {z2 | z = σ0 + iy, |y| ≤
const ·∆t−p/(p+1)} and decreasing ∆t.
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Figure 6. The maximum/mean number of iterations of multigrid-based (see
Figure 4) shifted Laplacian preconditioned GMRES method for the Helmholtz
problems to be solved in the parallelized multistep discretization (see Algorithm
1(b)) of the heat and wave equation respectively.
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