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Abstract

A new finite element method computes conductivity in someruotured
particle-reinforced composite material. The 2-phase ristender consid-
eration is composed of a poorly conducting matrix materildiby highly
conducting circular inclusions which are randomly dispdrs The math-
ematical model is a Poisson-type problem with discontisucasficients.
The discontinuities are huge in contrast and quantity. Topgsed method
generalizes classical continuous piecewiffina finite elements to special
computational meshes which encode the particles in a nktstarcture. Im-
portant geometric parameters such as the volume fractopraserved ex-
actly. The computational complexity of the resulting metli®proportional
to the number of inclusions and this is optimal in comparispdata com-
plexity. The discretization error is proportional to thetp@e distance and
does not depend on the conductivity contrast in the medium.

Keywords finite elements, discontinuous dheient, discrete network, micro-
structure, generalized triangulation
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1 Introduction

Composite materials (@mompositegor short) are engineered materials made from
two or more constituents with significantlyfiérent physical properties. In a typ-
ical configuration, randomly distributed filler particléadlusions) are surrounded
by a second material (matrix) which binds the filler pardiegether.
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The numerical simulation of material properties aims at #ebainderstand-
ing how conductivity depends on controllable variableg.(¢hermal conductivi-
ties of the material components, relative volumes, andgbestshapes) and hence
provides the opportunity to develop materials with enhdnaerformance for the
particular application.

Mathematical and computational challenges result fromgg@metric setting
in which the inclusions are too big for any perturbation gsial or homogenization
method and too many to resolve them easily with standara fedtment meshes.

1.1 Model Problem

This paper considers a representative 2-dimensional nobagbarticle-reinforced
composite occupying the nonempty open bounded convex gdighdomain c
R?. Let Binc be a set of closed, pairwise disjoint disks of positive rédilusions)
contained in a domaife c R?, i.e.,

BcQ and dist(B,B) > 0 forall B, B e Binc with B  B. (1.1)

In the present context, the numbér.= #8;, of inclusions is a very large param-
eter. The two material phases are represented by the unite aficlusionsjnc,
and by the so called matrix (the perforated dom&lR),

Qinc = U int(B) and Qmat:= Q\ Qinc.
BeBinc
The outer boundary := 9Q is partitioned into two part§p andT'y, wherel'p
is closed and has a positive surface measure while itswelatimplement’y :=
'\ I'p is relatively open, and the number of contact polrgan Ty is finite.

The material geometry enters the problem through dfiogent functionc €
L*(Q2) which jumps between the material components. For sinplicis chosen
to be constant with respect to each of the two phases and hipechavith respect
to the matrix material, i.e.,

c(X) = . 1.2a
» { Ceont If X € Qinc. (1.23)

The constant.on: > 1 represents the conductivity contrast in the medium.
Consider the set of admissible temperature distributions

A:=up+VwithV = {ue H(Q) |u=0onIp) (1.2b)

for up € HY(Q) N C%(Q). Given some force densitf € V*, the dfective conduc-
tivity of the composite
Ceff := MINE(u) (1.2¢)
ueA

minimizes the energy functioné,

G(v) := %fgc(x)|Vv(x)|2 dx — fg f(X)v(X) dx for all ve HY(Q). (1.2d)



Figure 1.1: Model domain (unit square) containing 133 darcinclusions with
radiusr = 0.02 (left) and “coarse” shape regular triangulation with @3@lements

(right).

1.2 Challenges to Numerical Simulations

In practical applications, the parametgp,; > 1 is very large. In addition, the
codficient function, which is the output of certain (random) proiibn processes
(e.g. mixing of the particles within a liquid matrix matdriallowed by hardening),
has to be regarded as a statistical parameter. CorrespotaBerlyand [3], the
latter two issues, random micro-structures on multipldescand high contrast in
physical properties, are the two characteristic featufggsweral composites. They
lead to major diiculties for a numerical approximation of problem (1.2).

Classical FEM. A classical method for the approximate solution of (1.2)his t
finite element method. However, in the present contextdstahfinite element ap-
proaches diier from the fact that the material interfad®i,. needs to be resolved
by the underlying mesh in order to get satisfactory resilte required resolution
of the codficient geometry forces even the coarsest available meshas very
fine, i.e., the minimal mesh size has to be at most of orderefrtblusion radii.
Additionally, finite element methods often require high lifjyaneshes (shape reg-
ularity) which puts even more constraints on mesh generafitius, the minimal
number of nodes in a reasonable mesh depends criticallyeodiskribution of the
holes and their distances; Figure 1.1 illustrates the prokih a model situation,
which is eased for visualization purposes.

Minimal Complexity.  Since the underlying geometry is of stochastic nature prob-
lem (1.2), typically, needs to be solved many times fdfedent coéicient config-
urations within a statistical investigation of materiabperties (by a Monte Carlo
method). E.g., the accuracy of the approximation of the etgquetemperature dis-
tribution subject to a to random distribution of particleghe material, is of order



M~Y2 whereM denotes the number of samples. Since thefaent is diferent
for different samples, meshes cannot be re-used but need to be patedrfor ev-
ery single sample of the particle distribution. Hence, thmputation of the finite
element mesh is crucial in all complexity discussions anthoabe neglected as
a precomputation for the problem at hand depicted in Figute With regard to
the possibly huge number of instances of problem (1.2) teatiio be considered,
this paper aims at a reasonable discrete model of minimapltity. Minimality
is determined by the data of the problem and therefore mdainlits geometry.
The geometry representation requires simply storing tlirs pcenters and radii
of the N inclusions (the complexity of the representation of theeobbundary is
supposed to be small compared\tp A model is considered to have minimal com-
plexity if it provides an approximate solution in time andisp complexityO(N).
The finite element method to be presented in this paper satigfe complexity
requirement up to logarithmic factors.

The number of degrees of freedom might be reduced furthersimgumulti-
scale methods, e.g., [15, 16, 18, 7]. These methods are basaditrary coarse
meshes that, more or less, ignore the geometric scales ob#ircient. The influ-
ence of the ca@icient is instead coded in the finite element basis functidree
computation of these basis functions typically involves $ielution of the original
problem on subdomains and, hence, may allow parallel ccatipnot The solu-
tion of these local problems, however, faces the sarfiecdlties as the original
problem, i.e., it requires submeshes fine enough to cagtaredterogeneities (the
influence of the microscopic geometry on macroscopic medtgroperties can only
be studied if the microscopic geometry enters the disatdiz). In this regard, the
method presented here might be employed asfiacient fine scale solver within
some multiscale numerical framework.

1.3 The New Structural Finite Element Approach

In this paper ideas from network approximations [5, 3, 4]J@w®bined with non-
standard finite element methods to derive a new structuriéé fslement method
of almost minimal complexity. In particular, a special gezing treatment inspired
by networks is combined with the flexibility of finite elemeangethods. As in dis-
crete network methods, the inclusions are modeled in a mktatoucture. They
appear as elements of the computational mesh, supplemieptethnnel-like ob-
jects that connect neighboring inclusions and, finallyartgles. The mesh gen-
eralizes standard Delaunay triangulations of points inpllame to sets of disks.
It can be computed and representdficeently. A generalization of continuous
first-order finite elements based on the new, problem-adagibdivisions is in-
troduced. Its realization is conceivably simple and it jideg accurate numerical
approximations at almost minimal complexity. More prelyiséor the solution
u e AN H2(Qmat U Qinc) of (1.2) and its structural finite element approximation



us it holds (see Theorem 7, Corollaries 8 and 9).

IVEV(U = Us)IIFa gy < Ctup,snclNliLe(@),

whereh is a local mesh size parameter. The constant doedepend on contrast.
Its dependencies on the geometry of the material (e.g.hiogdnclusions) are
discussed in detail.

1.4 Outline

Section 2 defines a problem adapted generalization of tilangheshes modeling
the inclusions as (vertex-like) elements of a subdivisiBased on this new type
of meshes a generalized nodal basis defining a generalizédroong first-order

approximation space is introduced. Contrast-independertori error estimates
for the proposed new finite element method are given in Se@io Section 4

discusses open problems and future generalizations of ¢tieoah

1.5 Notation

In this paper, capital letterd,B,C,... indicate sets. Calligraphic capital letters
B,P,... denote sets of sets. For a given set of g&the union of its elements is
denoted byu8 := [ Jgeg B. Basic topological notations are used: For any sukset
of a metric space its closure is denoted¥yits interior byint(X), and its boundary

by bnd(X). In what follows, dist(-, -) denotes the Euclidean distanceRA. The
measurg - | is context-sensitive and refers to the volume of a set w&at its
dimension, i.e.] - | denotes the length of a curve, or the area of a domain. The
distance between nonempty subs&t8 c R? reads

dist(A, B) := Xeiﬁ@ﬁdist(x, X). (1.3)

Given some bounded domaih standard notation for (fractional) Sobolev spaces
W), m > 0, p € NU{0}, and their corresponding norrigiwzq) and seminorms

|- lwpe) is used;H™(Q2) abbreviates\;(©2) (m € N) andLP(Q) abbreviateSNg(Q).
Given two disjoint bounded Lipschitz domaifig andQy, the spacéd™(Q1 U Qy)
denotes the space of all functions L2(Q4 U Q) with ulo, € HM(Q1) andulg, €
H™(Q,). The dual space of a Hilbert spavkeis indicated byV*. The space of
R-valued continuous functions on a $&is denoted byC%(Q).

2 A Minimal Conforming Finite Element Space

This section introduces a conforming finite element spacehwtan be regarded
as a generalization of the classical continuous piecevisedinite element space
on a special mesh.



2.1 Geometric Preliminaries

Cyclic Polygons. A convex polygonT is the closed convex hull of 2 or more
distinct points. The set of vertices (cornef®)T) is the minimal set of points
X1, X2, . .., Xk € R?, such thafl = conv({xy, X, ..., %}). According to the number
of its vertices, a convex polygon is denoted as a comkvgrn. The boundary of
a convexk-gon can be described by the union of at miodine segments called
edges The set of edges of a convex polyg®nis denoted by&(T). A convex
polygonT is calledcyclicif its vertices (cornersY(T) are located on the boundary
of a (closed) diskCD = CD(T) which is denoted as th@rcumdiskof T. Examples
of cyclic polygons are line segment, triangles, or rectasg|

Infinite Delaunay Triangulations. A regular (possibly infinite) triangulation of
a domainQ c R? into cyclic polygons is a set of cyclic polygoissuch that

U7 =Q

and any two distinct cyclic polygons are either

a) disjoint, TN T, =0, or

b) share exactly one vertexT; N T, = V(T1) N V(T2) = {7, or

¢) have one edgE = bnd(T1) N bnd(T2) = E(T1) N E(T2) in common.
The set of all edges resp. vertices of a triangulaffois written as

(7)) = U &E(T) resp. V(T) = U V().
TeT TeT

A regular triangulatiory is calledDelaunay[10] if every elementl € 7 satisfies
the Delaunay criterion
CD(T)NV(T) =V(T), (2.1)

that is, the circumdisc of does not contain any vertices 9f except those of .
Given a set of verticed/, the Delaunay triangulation of coW) is uniquely deter-
mined (if cyclic polygons are considered). It can be corséd, e.g., by exploiting
duality with respect to the Voronoi diagram [24] ®f. The uniqueness is due to
the consideration of cyclic polygons instead of just triasg In the subsequent
paragraph, cycli&-gons withk > 3 will further be decomposed into triangles.

2.2 Geometric Modeling of Particle Composites

The geometry of model problem (1.2) is represented by a fg@teB of closed
disks. EveryB € 8B is described by its centerzy = mid(B) and its radiugg =
dian{B)/2 > 0. The elements aB are denoted ageneralized verticeand parti-
tioned into the two subseij,c andBmat, 1.€.,

B =BincUBmar and Binc N Bmar = 0.



The setBic contains the inclusions of model problem (1.2), i.e., abdisks of
positive radius. The sé,5; contains closed disks of radius zero with

con(UBma) = Q and I'p N T € UBmat.

Thus 8mat contains the corners @ and all points where the type of boundary
condition switches between Dirichlet and Neumann; 8yt; might contain addi-
tional points (disks with vanishing radii) in the interiof the matrixQjnc, which
offers the possibility of refinement and increased local reéswiwvithin the finite
element framework.

By Tmat We denote the Delaunay triangulation @f,5: such that' V(T ma) =
0(UB). Figure 2.1 displays a detail 65 for some set of disk$. Obviously,
T mat consists of two classes of cyclic polygons (see [21]), ngmel

a) (possibly infinitely many) cyclic 2-gor1§,'nat, i.e., line segments whose ver-
tices are located on the circumference of exactly two distiisks, and

b) (finitely many) cyclick-gons7 4. for k > 3.

mat

For simplicity we assume thdtA,, contains exclusively triangles. This assumption
can always be fulfilled if we consider a triangulatiﬁ“ra]at in which the 45,... -
gons of 7T mat are further decomposed into trianglé:%'qat is not Delaunay in the
sense of (2.1) but fulfills the weaker Delaunay criterion

iNt(CD(M) N V(T ma) =0 forall T € Tmas (2.2)

that is, there are no vertices fffmat in the interior of the circumdisk o €

Tma. The subsetr A ¢ of triangles of 7mar provides structural (combinatorial)
information about the set of inclusio8c. It induces a neighborhood relation
N C Binc X Binc defined by the rule: Bq, By) € N if there exists a Te Trﬁat
such that (T) c B; U B, and MT) N By # 0 and T) N B, # 0. For every pair
(B1, B2) € N of neighboring disks we define the channel-like object (adieiof

line segments)
E(B1, By) := U{T € Tmat : V(T) € B U By}.

SinceE(B4, By) is an object that connects exactly two generalized vertjdesks)
we denoteE(Bg, By) a generalized edge.
A finite subdivisiong of Q, which will serve as the finite element mesh later,
is given by
G=8BincUEUT,

whereBj.c is the given set of disks; := {E(B1, By) : (B1, Bo) € N} is the set of
generalized edges afd := 7,5, is the set of triangles.

Remark 1



(a) Generalized Delaunay triangulation. (b) Generalized Delaunay triangulation and
Voronoi tessellation of the centers (detail).

Figure 2.1: Generalized Delaunay triangulation with respe disks in the plane.

a) The subdivisioy can be regarded as a generalization of classical Delaunay
triangulations in the sense that disks might assume theiclasrole of ver-
tices while edges (i.e., objects that connect two neighigoviertices) might
generalize to channels. In the special case of equally simddsions such
subdivisions have been used in discrete network approikimgaf3]. Apart
from minor technical details regarding the treatment ofhedant boundaries,
the subdivisiorg fits into the framework of generalized Delaunay partitions
for multidimensional sets of convex inclusions introduicef20].

b) The subdivisiorz coversQ while the intersection of any two of its elements
is of measure zero.

¢) The number of elementsghis proportional to the cardinality o8 and thus
is quasi minimal.

d) There is a duality concept which links generalized Detgutiiangulations
to Voronoi tessellations with respect to the set of diske @eo the next
subsection). It generalizes straight-line duality betwetassical Voronoi
tessellation and Delaunay triangulation of point sets. \&ferr to [20] for
more insights about geometric duality and further refegsnc

e) The generalized Delaunay triangulati@hcan be computed fast as explained
subsequently. There exist algorithms of ordé#8 x log(#8)) for the com-
putation of Voronoi diagrams with respect to a set of digkssee, e.g.,
[12, 17, 13]. These algorithms, by duality, can also be emgiofor the
computation of the generalized Delaunay subdivision.

2.3 Element Parametrization and Local Mesh Size

The generalized verticeBy,c and the triangle$ form affine families and can easily
be represented by reference elements diideamappings.
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A parametrization of a generalized edge can be given aswislloLetE =
E(B1, By) in & be a generalized edge that connects two generalized \e8ticB,
B and let

e :={yeR?: dist(y, By) = dist(y, Bz) anddist(y, By) < dist(y, B\ {By, B2})}

denote the corresponding dual Voronoi edge, the set of paiith equal distance
to both B; andB,. Without loss of generality we assumg, > rg,, cg, = (0,0),
cs, = (0,6), 6 > 0. Note that the Voronoi dual edge might not be connected
(see Figure 2.3a). The same applies to the generalized sdfjean be seen in
Figure 2.3b. We denote the number of connected componefitpfK (E). The
projectionrzg, := argmin,.g, dist(,,y) defines angles

—I<ap<PE<ef<PE<... <aE(E) sﬂﬁ(E) <3
such that

K(E)
rey(Ze) = | re, [sin(ak. p)). coslak. 5]
k=1

In other words, the parameteg, ...,a5®,BL, ..., 85" are the angular values
of the projections of the Voronoi vertices which are conaddby g, onto Bs.
Those Voronoi vertices are simply the circumcenters ohgies adjacent td.
With the reference element

gref _ ErEf(Bl, By) = (]a’leBIE[ U---U ]aE(E)’ﬁE(E)[) x]0, 1],

the mappinglg : E™ — intE, given by
‘]E(Sv /l) = (1 - /l)rBl (Sin(S)) + MBz ((ﬂBl|2E)_l (rBl (Sm(S))))

cos() cos()

_( (@ -Arp, + arg,)sin(s)
- (((1 — A)rg, — Arp,) cos@) + 5/1) ’

parametrize€. Figure 2.2a visualizes the mappidg. Note that a generalized
edgeE(B,, By) is uniquely determined by the inclusion centers and radlid the
values ofag, Bg, ands.

The projectionng, g, = ngi o mg, can be rewritten as

n (X) := argmin dist(x y)
BB e, max(((y — X)/Ily — Xl ve, (), O}
whereyg, denotes the outer normal Bf.
We finally introduce some7(nmat U B)-piecewise constant meshsize function
h: Q —]0, o[ by

(2.3)

hik = hg := diam{(K) for K € ThmaU B

to be used in the forthcoming finite element analysis. No#Hhhs not constant
with respect to a generalized edge (of positive measuregdntures the distance
between neighboring inclusions (see (2.3)).

9



E"*'=[,8x{0,1]

(a) Parametrization (isolines) of a generalized efigleat con-
nects two generalized vertic® = {x € R?| ||X|| < rg,|| and
Bz = {x € R [Ix—(0,0)ll < rg,ll; 6 = 1,rp, = 0.2, 15, = 0.1,
Qg = —1,ﬂE = 05, K(E) =1.

(b) A generalized nodal basis function taking value 1 on one(c) Nodal basis function
node and zero on all the others. restricted to a general-
ized edge.

Figure 2.2: Edge parametrization and nodal basis function.

2.4 Finite Element Spaces

The degrees of freedom of the finite element spaces are aedsigrihe entries of
B. EveryB e 8 defines a (localy mqraffine basis functiong : R? — [0, 1] with

Ag=1inB while Ag = 0in Qjnc \ B.

More preciselyg is unique continuous function with constant values on the in
clusions as above and whose restriction to each elefhe&f 4 is aline. Those
basis functions generalize nodal basis functions on daksiangular meshes. In
the special case of equally sized inclusions, those basdifun have been used in
the analysis of a network method [4].

10
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(a) Part of a Voronoi tessellation with a mul-  (b) Part of the generalized Delaunay triangu-
tiply connected Voronoi edge (black). lation with a multiply connected generalized
edge (black shaded).

Figure 2.3: Voronoi tessellation and Generalized Delauriaggulation of a set of
disks in the plane emphasizing possible non-connectivitis @lements.

Figure 2.4: Basis functiony,.

The support oflg, denoted bywg, is given by
wg:=BU (UUEe&: ENB#0}) U (UTeT: TNnB=+0}).

Figure 2.2b depicts a nodal basis function. Note that thefseidal basis functions
A = {1g : B e B} forms a partition of unity i2. The generalized nodal basis
functions which are not related to vertices on the Diriclletindaryl'p span the
finite element space

S :=spanA)N V. (2.4)

ObviouslyS* has dimension$ which is minimal in comparison to data complex-
ity and will be the space of choice for very large contrast tredspecial case of
perfectly conducting inclusionggnt = . In the latter case the solution is neces-
sarily constant with respect to every single inclusion @eksection 3.1), which is
captured bys*™.

If ccont < oo then the solution is not constant on the inclusions. Funtiaeis
functions (defined below) shall preserveistiently high accuracy in this setting,
too. EveryB € Binc defines (localy maraffine basis functiona, 13 : R? — [0, 1]
with

if xe B while 25 = 0in Qjn¢ \ B.

A5(X) = Xk_r—(CB)k
B

The subscripk refers to thek-th component of a 2-dimensional vector. It holds
supf %) = we. Figure 2.4 illustrates.
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The enlarged finite element space is then given by
S:=spar(AU{dg: BeBJU(A3: BeBincl) N V. (2.5)
Remark 2

a) If the radii of all inclusions are zero, the spaces S resf. r8duce to the
classical conformingP? finite element space with respect to the Delaunay
triangulation.

b) The number of degrees of freedom in B jger inclusion Be Bi,c, and1
per any other vertex B Bnaaway froml'p. The overall number of degrees
of freedom is bounded B#Bic + #Bmat and, hence, proportional to data
complexity.

c) Further basis functions could easily be designed by cEmgig any contin-
uous function on B and it§haraffine or a more general marpolynomial
extension taug.

3 Galerkin Approximation and A Priori Error Analysis
This section considers the variational formulation of J1aRd its Galerkin ap-

proximation and presents error estimates which are indkgdnof the contrast
parameteccont.

3.1 \Variational Formulation and Solvability

Any minimizeru* € A of (1.2) solves the variational problem

fc(Vu*,Vv)dx:ffvdx forallve V. 3.1
Q Q

The left-hand side of (3.1) defines a symmetric bilinear faym

a(u,v) := f (Vu, Vv) dx.
Q

The sumu* := u+ up is the solution of problem (3.1¥p denotes some extension
(with finite energy) of the given inhomogeneous Dirichleubdary data taQ.
After shifting the inhomogeneous boundary data to the figiid side, the problem
reduces to findi € V such that

a(u,v) = f fvdx —a(up,Vv) =: F(v) forallveV. 3.2

Q

It is obvious that

1 2
rcFllVllHl(Q) < a(v,v) anda(u, v) < CeontlUllH(q)MIH1q) (3.3)

12



for all u,v € V with the constant from Friedrichs’ inequaliGt. Inequality (3.3)
ensures the unigue solvability of the variational proble2) for finite contrast
Ceont < 0.

The Galerkin approximation of the solution of (3.2) withpest to the finite
element spac&, denoted byus € S, is defined as the solution to the discrete
variational system

a(us,V) = F(v) forallve Sp:=Sn HHQ). (3.4)
Remark 3

a) The assembling of the corresponding linear system idyfatandard. It
might be performed in a loop over all elements of the gereadiifinite el-
ement mesh (including triangles, disks, and edges), theatation of the
local stjfness matrices and load vectors, and the sum of the local ieontr
butions to the global matrices. The computation of the eatdf the local
stiffness matrices might be done by transformation to the cooredipg ref-
erence element. The onlyfiiulty is that the transformation on the general-
ized edges is notfne. Still the entries of the local gtiess matrices might
be precomputed as functions of the angle parameterssarilternatively,
numerical quadrature can be used. If two inclusions areekumseach other,
the basis functions are close to be singular and the quadsatule should
take the singular behavior into account.

b) The resulting sfiness matrix has a similar sparsity pattern as the¢fistiss
matrix of the classical Pfinite element method for the Poisson problem with
respect to some regular triangulation. Hence, in the prégedimensional
setting, sparse direct solvergfer robust, fast, and parallel solution of the
linear system, even though the asymptotic complexity isoptinal (e.qg.
O(N®/?) for nested dissection [14]). We refer to the textbook [9] ot
overview on fast direct solvers for sparse linear systerosntoderate con-
trast, [1] and [2] show that an iterative solver based on athical fac-
torization performs almost optimal (i.eO(N(log N))). In the numerical
examples in [1, 2], theses methods give promising resu#ts &l the high
contrast regime.

This paper aims at a priori estimates of the etraus in energy nornj| - ||, := Va(, ")
and therefore estimates of the error in thEeetive conductivity. Sincels is the
best approximation af in energy norm we have

E(u+ Up) — €(us + Up) < [|(u+up) — (us + Up)|i2 = [lu—us||? = \Illgg lu-vi?. (3.5)

Subsections 3.2 and 3.3 will present bounds of the right sadalin (3.5).
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Perfectly Conducting Inclusions. Our analysis shall cover the case of perfectly
conducting inclusions as well. The related model is a viaral problem with
respect to the reduced spae® := {ve V : v|g = constfor all B € Bjc}: Find

u® € V* such that

a®(u®,v) = f fvdx —a®(uy,v) =1 F(v) forallveV®, (3.6)
Qmat

wherea®(u, V) = fQ (YU, Vv)dx for u,v e HY(Q) andu3 € HY(Q) with U, =
uplr, and Vu‘ng "B for all B € Binc. Sincea®(u, v) lUll2 (ol Vi) and
A°(v, V) = ||V, for all u,v € V=, the variational problem (3.6) has a unique
solution.

We shall justify the model problem (3.6). For fixed geome®yy;, Dirichlet
dataup = 0, and force ternf, letuc,,, denote the solution of (3.2) associated with
the contrast parametegon: > 1. Let(,,, € H3(Q) be some bounded extension of
288 (UceonlB — fB Ue.ore AX)x B IN the sense of [23]. The classical jump relation at
the interface®Qinc

o((u ; J(u .
Ceont (( Ccom)lgmc) - _ ( Ccont)lQmat) in H—1/2(6Qinc)’ (37)
C()VQinc anmat

andthe eStimatqguCcontlle(Qmat) < ||Vuccont||a < Cl” f”Lz(Q)! ”UCcont”Hl(Q) < C2||uCcont”H1(Qinc)7
and||Uc,, 2,0 < CallVUcenlli2,,) With constantsS;, C;, C3 > 0 that do not de-

pend onceont Yield

||uCc0nt||L2(Qinc) = f <VuCcont’ Vl’]Ccont> dx = f
Qinc

0Qinc Vanc
ou
Ccom
f F) uCcont dX
0Qmar OV Qmat

1 ~ ~
< Ccont(”VUCcom”Lz(Qmat)HVUCcomHLZ(QmaI) + 1 FllL2(mag 1 UccontlL2(Qmad

L2(Q)

ou

Ccont ~ ~

uCcont dx + Ccontf fuCcont dx
Qinc

< Ccont( +||f ||L2(Q,nc)||Uccom||L2(Q,nc))

H 2@ el 200)
< Caontl Flliz() IV UegondIL 200
whereC depends only o&;, C,, andCs. This implies

ICer2 T Ul 20 < C oo Flliz(er
with a constantC that might depend on the geometry but not@g:. Hence,
Cuc,,,, is uniformly (with respect t@cony) bounded andi,,,, — u™ with respect to
the energy norm agone — .
The Galerkin approximation of the solution of (3.6) with pest to the finite
element spac&*, denoted bys~ € S*, is defined as the solution to the discrete
variational system

a®(us~,V) = F(v) forallve S5 = S®nHJQ). (3.8)
The error estimate (3.5) remains valid wittreplaced byu™ andus replaced by

Uge .
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3.2 Nodal Interpolation and Approximability

An upper bound for the right-hand side in (3.5) is derivedtigh the design of
some finite element function based on a suitable interpoladi the solutionu.
The conditions

f (u—luvdx =0 forallv e PY(R?) and for allB € Binc, (3.9a)
B
u(b) — lu(b) =0 forall B = {b} € Bmnas (3.9b)

define a generalized nodal interpolation oper&torH?(QmatJQinc) — So. Since,
on any inclusiorB € Bj, lu is the L?(B) projection ofu onto the space offéne
functions, we have that

IV™(u = u)ll 2@ < Ci dian(B)Z‘m|u|H2(B) form=0,1 (3.10)

with some universal consta@, independent of the diameter of the diBkand
u € H3(QmatUQinc). The estimate (3.10) already provides approximation @nigs
of the finite element space on the inclusions. It remainsue lgical estimates for
the interpolation error on the triangles (see Lemma 4) apdgtneralized edges
(see Lemma 6).

As usual, the error on a triangle depends on the aspect rap9, i.e., the
ratio between the diameters of the largest circle that candweibed inT and the
circumcircle ofT.

Lemma4 Letue VNH2(QmatU Qinc) and let Te 7~ with vertices on B, By, Bs €
B. Then it holds

IV (U= 12y < CERTINV2UIE g, UBs0ms) (3.11)
with some universal constang-GQvhich depends only on,Grom (3.9).

Proof. A key ingredient of the proof are standard estimates for iberpolation
error with respect to a triangle. It is well known (see [8, Theorem 16.1]) that the
nodal (dfine) interpolanttu of u at the vertices oT satisfies

|u— Itulymy < Cippr* diam(T)* Mulzry  for allue HA(T), m=0,1. (3.12)

The dfficulty is thatlu defined by (3.9) does not interpolatat the vertices of
T in general. Thus, the error is split into two components,

IV (U =TI,y < V(U= 17Uy + 197U = T2 (3.13)

The first term on the right-hand side of (3.13) can be estichdieectly with (3.12)
while the second one requires further considerations.
Notice thatV(Itu — lu)|t is constant o and the inverse estimate

IVallLery < 207+ diam(T) Mgl Ty (3.14)
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holds for allg € P1(T) on any triangleT. Thus

5 5 (3.14) o 5
IV(Tu= 1,y < TIVOTU = 1WEay < 4orllru = 1Ulsq).  (3.15)

The maximal absolute value of th&iae functionq := (Iyu—Iu)|r onT is attained
in some vertexxg = V(T) N By for someBt € {By, By, B3}. If By € Bnay i€,
Bt = Xo, then (tu - Iu)|r = 0. Otherwise, lef’ c Bt be the equilateral triangle
with vertices ondBr and one vertex aky. Forq € P1(T) andp € P1(T) with
IP(Xo)| > |a(Xo)! it holds

lailFsry = 1A < 1P < 2(IT17HIPIE 7 + IVPIE. ) - (3.16)

With the special choicep = (ITu - lu)|r andq = (Isu — lu)|+ this leads to

(3.15)(3.16) ., , ~
IVIru= 10 = Bor? (I U — 1, + V(17U 0)Ee ) 617
(312)(3.10) 2\12 r )
< 16072(CF + CRING IIV2UlE, g, -

Together with (3.13) and (3.12) this implies (3.11) mmﬁ <5C +Cyp). O

The second step of the error analysis considers the a pgstmate of the
interpolation error on the generalized edges. Every cdivityccomponentEy,
k=12,...,K(E) of an edgeE € & is a curvilinear polygon, i.eEx is a simply-
connected, bounded domain with the bound#gy = U?:l 7j, Wherer; are circu-
lar arcs. Note that all internal angles(Ex), y2(Ex), - - . , Ya(Ex) of Ex are bounded
from above byr/2. The subsequent error analysis depends on the smalldet ang

.....

lemma shows that all these angles are bounded from below bgitive constant.
Lemma 5 There existg > 0 such that0 < yg < ye forall E € &.

Proof. Let E € & be some generalized edge connected to the inclBianB,c.
Let 7 be one of the straight arcs that define the edge. By designan element
of the infinite Delaunay triangulatiofi,,: (see Section 2.1). Since its circumdisk
CD(7) is tangential tdB (due to the Delaunay criterion (2.1))py itself cannot be
tangential toB and the angle betweenand the circular ar& N B is necessarily
larger than zeroo

Lemma 6 Letue VNH2(QmatUQinc) and let E= E(By, By) € & be a generalized
edge that connects two generalized vertices (inclusionsBe Binc. Then

IV(U = 1W)IZ2 g, < Ce (INV2UlZ, ) + CellhV2Ul, g, 5,))

holds with G := maxc12 ||hg,/h + h/hg,
which depends only ope.

HLM(E) and some universal constangC

16



Proof. The proof consists of two parts. Parproves the assertion f@gon: = o
and prepares the proof in the cagg,: < oo which is complemented in paiit.

Part I. Without loss of generality, |€E be connected;g, > rg,, andcg, = 0,
ce, = (0,0) for somes > rg, + rg,. The restrictionE N dB; = ¢([a,B]) of E
to By shall be parametrized by some angle [a,8] c [-7/2,7/2] with ¢(s) :=
re,(sin(s), coqs)). The parameter intervak[p] is subdivided by equidistributed
points

azsl<32<8°’<...<s"=,8.

These points are mapped bynto B; and by¢ o 7, onto By (recall (2.3) for the
definition ofrg,). Let

Q(E)={Q, :¢=1,...,L-1} with
Qr = cony¢(s'), ¢(s1), e, (¢(S1)). 7, (4(5)))

be a subdivision oE into quadrilaterals (see Figure 3.1).

‘ BZ ‘ BZ
I'll Q4(E) M Q0(E)
Bl

Figure 3.1: Subdivisiong2s(E) and Q0(E) of some generalized edgé =
E(B1, By) € & into quadrilaterals in the proof of Lemma 6.

The union of quadrilaterals on levél provides a polygonal approximation
E- = Ugea ) Q of E ¢ E-  conv(E) for all L with [E-\ E| — 0 asL — co. A
(bounded) extension operatefg : H2(E) — H2(RY) (see, e.qg., [23]) extendsge
to conE). The extended function is denoted ly.

The nodal (bilinear) interpolation operator with respec@t € Q. is denoted
by Jg and its@Q -piecewise version byg, . Theorem 3.8 from [19] implies

IV(ug — Jque)llLz(g) < Co diam{Q)lIV2ugll 2 (3.18)

forall Q € Q., L € N. The constanCq depends only on the interior angles@f
i.e., Cq can be bounded uniformly for ap € Q_ and allL € N in terms ofyg.
Thus , ,
IV (ue — Jo Va2 e, = QZQ] IV (ue — Joue)IP; g,
QL

(3.18) )
< ) Cilldian(Q)V2uell?, g,
QeQL

(3.19)
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with some constant; which depends only ofie. LetL tend to infinity in (3.19)
to verify

IV(u = 0)IiFy g < CallhV2ulE, g, (3.20)

for 0= LIim Jao_ Ue. If Ccont = oo thend'= lu and the proof is finished.

Part Il. If otherwiseccont < oo then, in generalu¢ S and|[V(lu - O)l| 2(g
needs to be estimated further. The sequence: Jq, (Iu)e — Jg Ue converges (in
HY) toe:= lu-tasL — co. Thus, bounds ofivey|| 2g, ) will lead to a bound on
IV(Ilu = O)ll 2(gy- LetQ € QL with

0Q = X1 @ U [, 3 U 3, X u X, XY

andxt, x? € By andx3, x* € B, andx® = x* as in Figure 3.1 (left). The vector
Vel |g is written as some linear combination of the vectof§ — x€)/|x<*1 — xX|
such that

2
[k, xk+1] 5 Xk+1 - Xk>|

4
(Ve)l
IVeL I gy <IQUIVeLIF g <CaQl ) |
k=1

with a constantC, which depends only on the maximal angle@nand can be
bounded uniformly in terms ofg!. Using (Ve )| xe1y, X< — XKy = e (xX<+1) —
e (X¥) for k = 2 andk = 4, this yields

IVeLIIZ2 g < Ca (Il @I VeUIZ2 g0 ey iy * ||h‘1||Lm(Q>||a|ﬁ2([xz,xslU[XA,XB)Z.D
The summation of (3.21) oveé) € Q| leads to

IVeLlIZ e,y < Ca (INl=@ VL2 e, ne,oesy + I i@ leLIZ e, @08 -

In the limit L — o it follows

IVellZ2 g, < Ca (M@ IIVel2 en@,uey + 1M @812 @8y - (322)

Estimate (3.10) and the trace inequality

4
Il < VB(IMleqey + 1Moy IV 1122 ) (3.23)

valid for any diskB and f € H1(B) (see [6, Proposition 1.6.3]), imply

|€lim@e) = U — IUlum@e) = [U — 1Ulum(p)

(3.23)(3.10)

, om. L (3.24)
< VBCirg  2lulzg form=0,1.

With a universal constants which depends only o, andyg (throughC; and
C»), this leads to

5 (3.21)(3.24 B B
V(U = @)l < Callh(hs,) + h(hls,) Y@MVl s, e,
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This concludes the proof of the lemnm.

The constanCg reflects the fact that two inclusions might touch but thee&orr
sponding &ine approximations of the solution on the disks might not imatahe
touching point. Thus, in rare cases fgn < oo, the discrete system might have in-
finite energy whereas the continuous solution has not. Ghgasfficiently many
degrees of freedom (number of degrees of freedom per inclusrger than or
equal to the number of neighbors per inclusion) this probdésappears.

3.3 A Priori Error Estimates

The approximation property of the finite element sp&aeads as follows.

Theorem 7 Let ue V N H?(QmatU Qinc) be the solution of3.2)and let i € S be
its Galerkin approximation that solvé¢8.4). Then it holds

lu— uslZ < C& [IV2UiZ, .+ Ceont ), CallnV2uli%, g,
BeBinc

with Cg := |lhg/h + h/hg||L~(wg) and some universal constang@vhich depends
only on G, Cr, and G.

Proof. The proof is a straight forward consequence of (3.10), Lemyh@mma 6,
and the equality

M2 = 19V 2, + CoondlWVIIF2 g,y for allve HY(Q). 0

By (3.3) the estimate of Theorem 7 is also valid for the erreasured in the
H1(Q)-norm. The regularity results from [7, Appendix B] read

Creg
Ccont

The constanCieq depends solely on the geometry of the set inclusions¢ahdt
not on cgont. This implies that the contrast is not a critical parameter.

V220 < Credl fllz)s  IV2Ullz0, ) < —— NI Fll2y)- (3.25)

Corollary 8 Letue V N H2(QmatU Qinc) be the solution of3.2)and s € S its
Galerkin approximation that solveé8.4). Then it holds

llu = uslle < CslihllLs@) (I fllLz) + IVUbllLz)) (3.26)

with some universal constaBt which depends only ongg and the constants £
Cg from Theorem 7.

The constants in (3.26) does not depend on the contrast paramztgr > 1.
However, through the constar@s, it might depend on the term (cf. the Definition
of Cg in Theorem 7)
maxrg,, s,}
max —————. 3.27
E(B1,B2)e&E dISt(Bl, Bz) Ccont ( )
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The latter constant is critical with regard to the geomefihe codficient function.
The term may blow up, whenever the distance of two inclusiefetive to their
size becomes very small. However, high contrast reducesHfieict. In the case
of perfectly conducting inclusion€g,nt = o) it even disappears. The generalized
interpolation operator from (3.9) fulfillau(— 1u)|g = 0 for all B € 8 and the proof
of Lemma 6 consists only of patt Lemma 4 can be simplified in a similar way
which leads to the following corollary.

Corollary 9 Let gont = o and let (° € V* N H3(Qmat U Qinc) be the solution of
(3.6)and i~ € S its Galerkin approximation that solvé€8.8). Then it holds

IV(U™ = Us=)liLzg@y = IU® = Usslla < Cs=INV2U™l|L 2,
©@ (Qma)

with a constant G~ which neither depend orfunor on the location of the inclu-
sions.

In the general case,ont < o the critical constant shown in (3.27) can easily be
reduced with higher-order ansatz functions on the inchsioWe can therefore
derive error estimates whose constants are explicit in tidenying geometry.
However, in all cases the dependence on Hfenorm of the solution remains.
This issue is briefly discussed in the Section 4.3.

4 Concluding Remarks

The main result of this paper is a numerical scheme to contpaiperature distri-
butions in composite materials with a large number of pladiand high contrast.
In the model situation under consideration, the methodhssband doesot de-
pend on the contrast,ont — o. Some of the results extend to a more general
geometric setting in a straight-forward way. However, safifBculties remain
open.

4.1 General Inclusion Geometry

For the use in practical applications it is desirable to ipocate more general
inclusion shapes and 3-dimensional geometries. It is stioy20] that the gen-

eralized partitions of Section 2 nicely generalize to sétsbavex inclusions, e.g.,
ellipsoids, convex polyhedra, and line segments. Even ntioeedesign allows in-
clusions to intersect. Thus, generalized Delaunay trieatigms are also available
for non-convex inclusions which can be represented by fimiiens of convex

ones. The design of according finite element methods can be similarly as

presented here. However, the complexity of the mesh andattiesponding finite

element method will grow as the number of shape parametatsd#fine a sin-

gle inclusion grows. For smooth inclusions the correspogdinalysis is straight-
forward; non-smooth inclusions, however, require new rrgjts which are able
to cope with lack of regularity.
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4.2 Convergence

By straight forward arguments it is easy to show that thedirlement solutions
(the solutions of (3.2) and (3.6)) converge kit to the solution of (1.2) if the
meshwidth functiorh tends to 0.

In the matrix, the meshwidth functidncan be decreased in the mat€hy,q; by
simply putting additional artificial inclusions (points) the setBmat. If Coont = o0,
this sufices to be able to construct a convergent sequence of ap@atiximbecause
the (energy-)error in the inclusions is always zero. Thecaswhich additional
vertices of radius zero are added to improve the approxiihaproperties of the
finite element space, is already treated by the theory preden this article. A
different possibility is to leave the initial partition as it iscaincrease the poly-
nomial degree of the shape functions. This strategy, thealled p-refinement,
is recommended for problems where geometry and data aretlsm®be defini-
tion of higher-order finite element spaces is to some exteaight-forward, the
corresponding analysis, however, appears more involved.

If ccont < o0, in addition, the error on the inclusions has to be decreasgd
by increasing the polynomial degree.

4.3 Geometry-Explicit Estimates

The method presented is stable with respect to contraseimgdium. However,
the error bounds might depend on geometric parameters ah#terial, e.g., the
distance between neighboring particles. Whether or nod#pendence on the
local distance is critical depends on the global distrioutdf particles. This can
be seen already in the simplified situation of perfectly emithg Ccont = )
inclusions.

Consider first two inclusions that touch but are isolatedffarther inclusions.
Since the solution is found ikl the (constant) values of the solution on the two
inclusions have to be equal. Provided the force term ficsently smooth I(2),
classical regularity theory ensures smoothness of theisolin some neighbor-
hood of the two inclusions and the constant in the regulastimate depends only
on the distance to further inclusions or the boundary of thraain.

The critical scenario is the appearance of an almost comdupath of inclu-
sions which connects two parts of the outer boundary wiffeint, prescribed
temperature. The temperature gap needs to be compensdtedsmall regions
between the inclusions of the path which might cause stesgiegrts in the solu-
tion. If the inclusions of the path touch pairwise, the patipeérfectly conducting
and hence, the energy is infinite. Depending on the volundidra of particles,
the material shows a phase transition from moderate to fogduwctivity. Mathe-
matically speaking, the solution operator, which maps atpai dateup and f to
the solution of (1.2), is not uniformly bounded with resptecthe geometry of the
set of inclusiond'. Itis shown in [22, Theorem 3.5] that although the energyef t
solution might blow up, the error bound in Corollary 9 is bdad by some generic
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constant independent of the distance of the particles. ,Tdwsmethod is robust
with respect the such critical scenarios and allows medmimgaterial simulation
even in densely packed composites.

In the general case of high but finite contrast the situatigmears more in-
volved and a corresponding regularity theory that is eipland sharp) with re-
spect to both, contrast and geometric parameters, is navgéable and has to be
addressed in future research.
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