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Abstract

A new finite element method computes conductivity in some unstructured
particle-reinforced composite material. The 2-phase material under consid-
eration is composed of a poorly conducting matrix material filled by highly
conducting circular inclusions which are randomly dispersed. The math-
ematical model is a Poisson-type problem with discontinuous coefficients.
The discontinuities are huge in contrast and quantity. The proposed method
generalizes classical continuous piecewise affine finite elements to special
computational meshes which encode the particles in a network structure. Im-
portant geometric parameters such as the volume fraction are preserved ex-
actly. The computational complexity of the resulting method is proportional
to the number of inclusions and this is optimal in comparisonto data com-
plexity. The discretization error is proportional to the particle distance and
does not depend on the conductivity contrast in the medium.

Keywords finite elements, discontinuous coefficient, discrete network, micro-
structure, generalized triangulation
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1 Introduction

Composite materials (orcompositesfor short) are engineered materials made from
two or more constituents with significantly different physical properties. In a typ-
ical configuration, randomly distributed filler particles (inclusions) are surrounded
by a second material (matrix) which binds the filler particles together.
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The numerical simulation of material properties aims at a better understand-
ing how conductivity depends on controllable variables (e.g., thermal conductivi-
ties of the material components, relative volumes, and particles shapes) and hence
provides the opportunity to develop materials with enhanced performance for the
particular application.

Mathematical and computational challenges result from thegeometric setting
in which the inclusions are too big for any perturbation analysis or homogenization
method and too many to resolve them easily with standard finite element meshes.

1.1 Model Problem

This paper considers a representative 2-dimensional modelof a particle-reinforced
composite occupying the nonempty open bounded convex polyhedral domainΩ ⊂
R

2. LetBinc be a set of closed, pairwise disjoint disks of positive radii(inclusions)
contained in a domainΩ ⊂ R2, i.e.,

B ⊂ Ω and dist
(

B, B̃
)

> 0 for all B, B̃ ∈ Binc with B , B̃. (1.1)

In the present context, the numberN := #Binc of inclusions is a very large param-
eter. The two material phases are represented by the union ofthe inclusionsΩinc,
and by the so called matrix (the perforated domain)Ωmat,

Ωinc :=
⋃

B∈Binc

int(B) and Ωmat := Ω \ Ωinc.

The outer boundaryΓ := ∂Ω is partitioned into two partsΓD andΓN, whereΓD

is closed and has a positive surface measure while its relative complementΓN :=
Γ \ ΓD is relatively open, and the number of contact pointsΓD ∩ ΓN is finite.

The material geometry enters the problem through a coefficient functionc ∈
L∞(Ω) which jumps between the material components. For simplicity c is chosen
to be constant with respect to each of the two phases and normalized with respect
to the matrix material, i.e.,

c(x) =

{

1 if x ∈ Ωmat,

ccont if x ∈ Ωinc.
(1.2a)

The constantccont ≥ 1 represents the conductivity contrast in the medium.
Consider the set of admissible temperature distributions

A := uD + V with V := {u ∈ H1(Ω) | u = 0 onΓD} (1.2b)

for uD ∈ H1(Ω) ∩C0(Ω). Given some force densityf ∈ V∗, the effective conduc-
tivity of the composite

ceff := min
u∈A
E(u) (1.2c)

minimizes the energy functionalE,

E(v) :=
1
2

∫

Ω

c(x)|∇v(x)|2 dx−
∫

Ω

f (x)v(x) dx for all v ∈ H1(Ω). (1.2d)
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Figure 1.1: Model domain (unit square) containing 133 circular inclusions with
radiusr = 0.02 (left) and “coarse” shape regular triangulation with 33903 elements
(right).

1.2 Challenges to Numerical Simulations

In practical applications, the parameterccont ≫ 1 is very large. In addition, the
coefficient function, which is the output of certain (random) production processes
(e.g. mixing of the particles within a liquid matrix material followed by hardening),
has to be regarded as a statistical parameter. Corresponding to Berlyand [3], the
latter two issues, random micro-structures on multiple scales and high contrast in
physical properties, are the two characteristic features of general composites. They
lead to major difficulties for a numerical approximation of problem (1.2).

Classical FEM. A classical method for the approximate solution of (1.2) is the
finite element method. However, in the present context, standard finite element ap-
proaches suffer from the fact that the material interface∂Ωinc needs to be resolved
by the underlying mesh in order to get satisfactory results.The required resolution
of the coefficient geometry forces even the coarsest available meshes tobe very
fine, i.e., the minimal mesh size has to be at most of order of the inclusion radii.
Additionally, finite element methods often require high quality meshes (shape reg-
ularity) which puts even more constraints on mesh generation. Thus, the minimal
number of nodes in a reasonable mesh depends critically on the distribution of the
holes and their distances; Figure 1.1 illustrates the problem in a model situation,
which is eased for visualization purposes.

Minimal Complexity. Since the underlying geometry is of stochastic nature prob-
lem (1.2), typically, needs to be solved many times for different coefficient config-
urations within a statistical investigation of material properties (by a Monte Carlo
method). E.g., the accuracy of the approximation of the expected temperature dis-
tribution subject to a to random distribution of particles in the material, is of order
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M−1/2, whereM denotes the number of samples. Since the coefficient is different
for different samples, meshes cannot be re-used but need to be re-computed for ev-
ery single sample of the particle distribution. Hence, the computation of the finite
element mesh is crucial in all complexity discussions and cannot be neglected as
a precomputation for the problem at hand depicted in Figure 1.1. With regard to
the possibly huge number of instances of problem (1.2) that need to be considered,
this paper aims at a reasonable discrete model of minimal complexity. Minimality
is determined by the data of the problem and therefore mainlyby its geometry.
The geometry representation requires simply storing the pairs of centers and radii
of theN inclusions (the complexity of the representation of the outer boundary is
supposed to be small compared toN). A model is considered to have minimal com-
plexity if it provides an approximate solution in time and space complexityO(N).
The finite element method to be presented in this paper satisfies the complexity
requirement up to logarithmic factors.

The number of degrees of freedom might be reduced further by using multi-
scale methods, e.g., [15, 16, 18, 7]. These methods are basedon arbitrary coarse
meshes that, more or less, ignore the geometric scales of thecoefficient. The influ-
ence of the coefficient is instead coded in the finite element basis functions.The
computation of these basis functions typically involves the solution of the original
problem on subdomains and, hence, may allow parallel computation. The solu-
tion of these local problems, however, faces the same difficulties as the original
problem, i.e., it requires submeshes fine enough to capture the heterogeneities (the
influence of the microscopic geometry on macroscopic material properties can only
be studied if the microscopic geometry enters the discretization). In this regard, the
method presented here might be employed as an efficient fine scale solver within
some multiscale numerical framework.

1.3 The New Structural Finite Element Approach

In this paper ideas from network approximations [5, 3, 4] arecombined with non-
standard finite element methods to derive a new structural finite element method
of almost minimal complexity. In particular, a special geometry treatment inspired
by networks is combined with the flexibility of finite elementmethods. As in dis-
crete network methods, the inclusions are modeled in a network structure. They
appear as elements of the computational mesh, supplementedby channel-like ob-
jects that connect neighboring inclusions and, finally, triangles. The mesh gen-
eralizes standard Delaunay triangulations of points in theplane to sets of disks.
It can be computed and represented efficiently. A generalization of continuous
first-order finite elements based on the new, problem-adapted subdivisions is in-
troduced. Its realization is conceivably simple and it provides accurate numerical
approximations at almost minimal complexity. More precisely, for the solution
u ∈ A ∩ H2(Ωmat∪ Ωinc) of (1.2) and its structural finite element approximation
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uS it holds (see Theorem 7, Corollaries 8 and 9).

‖
√

c∇(u− uS)‖2L2(Ω) ≤ C f ,uD ,Binc‖h‖L∞(Ω),

whereh is a local mesh size parameter. The constant doesnot depend on contrast.
Its dependencies on the geometry of the material (e.g., touching inclusions) are
discussed in detail.

1.4 Outline

Section 2 defines a problem adapted generalization of triangular meshes modeling
the inclusions as (vertex-like) elements of a subdivision.Based on this new type
of meshes a generalized nodal basis defining a generalized conforming first-order
approximation space is introduced. Contrast-independenta priori error estimates
for the proposed new finite element method are given in Section 3. Section 4
discusses open problems and future generalizations of the method.

1.5 Notation

In this paper, capital lettersA,B,C,. . . indicate sets. Calligraphic capital letters
B,P,. . . denote sets of sets. For a given set of setsB the union of its elements is
denoted by∪B :=

⋃

B∈B B. Basic topological notations are used: For any subsetX
of a metric space its closure is denoted byX, its interior byint(X), and its boundary
by bnd(X). In what follows,dist(·, ·) denotes the Euclidean distance inR2. The
measure| · | is context-sensitive and refers to the volume of a set relative to its
dimension, i.e.,| · | denotes the length of a curve, or the area of a domain. The
distance between nonempty subsetsA, B ⊂ R2 reads

dist(A, B) := inf
x∈A,y∈B

dist(x, x) . (1.3)

Given some bounded domainΩ, standard notation for (fractional) Sobolev spaces
Wm

p (Ω), m≥ 0, p ∈ N∪{0}, and their corresponding norms‖·‖Wm
p (Ω) and seminorms

| · |Wm
p (Ω) is used;Hm(Ω) abbreviatesWm

2 (Ω) (m ∈ N) andLp(Ω) abbreviatesW0
p(Ω).

Given two disjoint bounded Lipschitz domainsΩ1 andΩ2, the spaceHm(Ω1∪Ω2)
denotes the space of all functionsu ∈ L2(Ω1 ∪ Ω2) with u|Ω1 ∈ Hm(Ω1) andu|Ω2 ∈
Hm(Ω2). The dual space of a Hilbert spaceV is indicated byV∗. The space of
R-valued continuous functions on a setΩ is denoted byC0(Ω).

2 A Minimal Conforming Finite Element Space

This section introduces a conforming finite element space which can be regarded
as a generalization of the classical continuous piecewise affine finite element space
on a special mesh.
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2.1 Geometric Preliminaries

Cyclic Polygons. A convex polygonT is the closed convex hull of 2 or more
distinct points. The set of vertices (corners)V(T) is the minimal set of points
x1, x2, . . . , xk ∈ R2, such thatT = conv({x1, x2, . . . , xk}). According to the number
of its vertices, a convex polygon is denoted as a convexk-gon. The boundary of
a convexk-gon can be described by the union of at mostk line segments called
edges. The set of edges of a convex polygonT is denoted byE(T). A convex
polygonT is calledcyclic if its vertices (corners)V(T) are located on the boundary
of a (closed) diskCD = CD(T) which is denoted as thecircumdiskof T. Examples
of cyclic polygons are line segment, triangles, or rectangles.

Infinite Delaunay Triangulations. A regular (possibly infinite) triangulation of
a domainΩ ⊂ R2 into cyclic polygons is a set of cyclic polygonsT such that

∪T = Ω

and any two distinct cyclic polygons are either

a) disjoint,T1 ∩ T2 = ∅, or

b) share exactly one vertexz, T1 ∩ T2 = V(T1) ∩ V(T2) = {z}, or

c) have one edgeE = bnd(T1) ∩ bnd(T2) = E(T1) ∩ E(T2) in common.

The set of all edges resp. vertices of a triangulationT is written as

E(T ) :=
⋃

T∈T
E(T) resp. V(T ) :=

⋃

T∈T
V(T).

A regular triangulationT is calledDelaunay[10] if every elementT ∈ T satisfies
the Delaunay criterion

CD(T) ∩V(T ) = V(T), (2.1)

that is, the circumdisc ofT does not contain any vertices ofT except those ofT.
Given a set of verticesV, the Delaunay triangulation of conv(V) is uniquely deter-
mined (if cyclic polygons are considered). It can be constructed, e.g., by exploiting
duality with respect to the Voronoi diagram [24] ofV. The uniqueness is due to
the consideration of cyclic polygons instead of just triangles. In the subsequent
paragraph, cyclick-gons withk > 3 will further be decomposed into triangles.

2.2 Geometric Modeling of Particle Composites

The geometry of model problem (1.2) is represented by a finitesetB of closed
disks. EveryB ∈ B is described by its centercB = mid(B) and its radiusrB =

diam
(

B
)

/2 ≥ 0. The elements ofB are denoted asgeneralized verticesand parti-
tioned into the two subsetsBinc andBmat, i.e.,

B = Binc ∪ Bmat and Binc ∩ Bmat = ∅.
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The setBinc contains the inclusions of model problem (1.2), i.e., closed disks of
positive radius. The setBmat contains closed disks of radius zero with

conv(∪Bmat) = Ω and ΓD ∩ ΓN ⊂ ∪Bmat.

ThusBmat contains the corners of∂Ω and all points where the type of boundary
condition switches between Dirichlet and Neumann; butBmat might contain addi-
tional points (disks with vanishing radii) in the interior of the matrixΩinc, which
offers the possibility of refinement and increased local resolution within the finite
element framework.

By Tmat we denote the Delaunay triangulation ofΩmat such thatV(Tmat) =
∂(∪B). Figure 2.1 displays a detail ofTmat for some set of disksB. Obviously,
Tmat consists of two classes of cyclic polygons (see [21]), namely,

a) (possibly infinitely many) cyclic 2-gonsT |mat, i.e., line segments whose ver-
tices are located on the circumference of exactly two distinct disks, and

b) (finitely many) cyclick-gonsT ∆mat for k ≥ 3.

For simplicity we assume thatT ∆mat contains exclusively triangles. This assumption
can always be fulfilled if we consider a triangulationT̃mat in which the 4, 5, . . . -
gons ofTmat are further decomposed into triangles;T̃mat is not Delaunay in the
sense of (2.1) but fulfills the weaker Delaunay criterion

int(CD(T)) ∩V(T̃mat) = ∅ for all T ∈ T̃mat, (2.2)

that is, there are no vertices of̃Tmat in the interior of the circumdisk ofT ∈
T̃mat. The subsetT ∆mat of triangles ofTmat provides structural (combinatorial)
information about the set of inclusionsBinc. It induces a neighborhood relation
N ⊂ Binc × Binc defined by the rule: (B1, B2) ∈ N if there exists a T∈ T ∆mat
such that V(T) ⊂ B1 ∪ B2 and V(T) ∩ B1 , ∅ and V(T) ∩ B2 , ∅. For every pair
(B1, B2) ∈ N of neighboring disks we define the channel-like object (a bundle of
line segments)

E(B1, B2) := ∪{T ∈ Tmat : V(T) ⊂ B1 ∪ B2}.

SinceE(B1, B2) is an object that connects exactly two generalized vertices (disks)
we denoteE(B1, B2) a generalized edge.

A finite subdivisionG of Ω, which will serve as the finite element mesh later,
is given by

G = Binc ∪ E ∪ T ,

whereBinc is the given set of disks,E := {E(B1, B2) : (B1, B2) ∈ N} is the set of
generalized edges andT := T ∆mat is the set of triangles.

Remark 1
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(a) Generalized Delaunay triangulation. (b) Generalized Delaunay triangulation and
Voronoi tessellation of the centers (detail).

Figure 2.1: Generalized Delaunay triangulation with respect to disks in the plane.

a) The subdivisionG can be regarded as a generalization of classical Delaunay
triangulations in the sense that disks might assume the classical role of ver-
tices while edges (i.e., objects that connect two neighboring vertices) might
generalize to channels. In the special case of equally sizedinclusions such
subdivisions have been used in discrete network approximations [3]. Apart
from minor technical details regarding the treatment of element boundaries,
the subdivisionG fits into the framework of generalized Delaunay partitions
for multidimensional sets of convex inclusions introducedin [20].

b) The subdivisionG coversΩ while the intersection of any two of its elements
is of measure zero.

c) The number of elements inG is proportional to the cardinality ofB and thus
is quasi minimal.

d) There is a duality concept which links generalized Delaunay triangulations
to Voronoi tessellations with respect to the set of disks (see also the next
subsection). It generalizes straight-line duality between classical Voronoi
tessellation and Delaunay triangulation of point sets. We refer to [20] for
more insights about geometric duality and further references.

e) The generalized Delaunay triangulationD can be computed fast as explained
subsequently. There exist algorithms of orderO(#B × log(#B)) for the com-
putation of Voronoi diagrams with respect to a set of disksB; see, e.g.,
[12, 17, 13]. These algorithms, by duality, can also be employed for the
computation of the generalized Delaunay subdivision.

2.3 Element Parametrization and Local Mesh Size

The generalized verticesBinc and the trianglesT form affine families and can easily
be represented by reference elements and affine mappings.
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A parametrization of a generalized edge can be given as follows. Let E =
E(B1, B2) in E be a generalized edge that connects two generalized verticesB1, B2 ∈
B and let

ΣE :=
{

y ∈ R2 : dist(y, B1) = dist(y, B2) anddist(y, B1) ≤ dist(y,B \ {B1, B2})
}

denote the corresponding dual Voronoi edge, the set of points with equal distance
to bothB1 andB2. Without loss of generality we assumerB1 ≥ rB2, cB1 = (0, 0),
cB2 = (0, δ), δ > 0. Note that the Voronoi dual edge might not be connected
(see Figure 2.3a). The same applies to the generalized edge as it can be seen in
Figure 2.3b. We denote the number of connected components ofE by K(E). The
projectionπB1 := argminy∈B1

dist(·, y) defines angles

−π2 ≤ α
1
E ≤ β1

E < α
2
E ≤ β2

E < . . . < α
K(E)
E ≤ βK(E)

i j ≤ π2
such that

πB1(ΣE) =
K(E)
⋃

k=1

rB1

[

sin([αk
E, β

k
E]), cos([αk

E, β
k
E])

]T
.

In other words, the parametersα1
E, . . . , α

K(E)
E , β1

E, . . . , β
K(E)
E are the angular values

of the projections of the Voronoi vertices which are connected byΣE, onto B1.
Those Voronoi vertices are simply the circumcenters of triangles adjacent toE.
With the reference element

Eref
= Eref(B1, B2) :=

(

]α1
E, β

1
E[ ∪ · · · ∪ ]αK(E)

E , β
K(E)
E [

)

×]0, 1[,

the mappingJE : Eref → int E, given by

JE(s, λ) = (1− λ)rB1

(

sin(s)
cos(s)

)

+ λπB2

(

(πB1|ΣE)−1
(

rB1

(

sin(s)
cos(s)

)))

=

(

((1− λ)rB1 + λrB2) sin(s)
((1− λ)rB1 − λrB2) cos(s) + δλ

)

,

parametrizesE. Figure 2.2a visualizes the mappingJE. Note that a generalized
edgeE(B1, B2) is uniquely determined by the inclusion centers and radii,and the
values ofαE, βE, andδ.

The projectionπB1,B2 := π−1
B1
◦ πB2 can be rewritten as

πB1,B2(x) := argmin
y∈∂B2

dist(x, y)
max{〈(y− x)/‖y− x‖, νB1(y)〉, 0} , (2.3)

whereνB1 denotes the outer normal ofB1.
We finally introduce some (Tmat ∪ B)-piecewise constant meshsize function

h : Ω→]0,∞[ by

h|K = hK := diam
(

K
)

for K ∈ Tmat∪ B

to be used in the forthcoming finite element analysis. Note that h is not constant
with respect to a generalized edge (of positive measure) butcaptures the distance
between neighboring inclusions (see (2.3)).
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B
1

(0,0)

B
2

(0,δ)

J
E

E

Eref=[α,β]×[0,1]

Σ
E

α β

(a) Parametrization (isolines) of a generalized edgeE that con-
nects two generalized verticesB1 = {x ∈ R2| ‖x‖ ≤ rB1‖ and
B2 = {x ∈ R2| ‖x− (0, δ)‖ ≤ rB2‖; δ = 1, rB1 = 0.2, rB2 = 0.1,
αE = −1, βE = 0.5, K(E) = 1.

(b) A generalized nodal basis function taking value 1 on one
node and zero on all the others.

(c) Nodal basis function
restricted to a general-
ized edge.

Figure 2.2: Edge parametrization and nodal basis function.

2.4 Finite Element Spaces

The degrees of freedom of the finite element spaces are assigned to the entries of
B. EveryB ∈ B defines a (local)Tmat-affine basis functionλB : R2→ [0, 1] with

λB ≡ 1 in B while λB ≡ 0 inΩinc \ B.

More precisely,λB is unique continuous function with constant values on the in-
clusions as above and whose restriction to each elementT ∈ Tmat is affine. Those
basis functions generalize nodal basis functions on classical triangular meshes. In
the special case of equally sized inclusions, those basis function have been used in
the analysis of a network method [4].
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(a) Part of a Voronoi tessellation with a mul-
tiply connected Voronoi edge (black).

(b) Part of the generalized Delaunay triangu-
lation with a multiply connected generalized
edge (black shaded).

Figure 2.3: Voronoi tessellation and Generalized Delaunaytriangulation of a set of
disks in the plane emphasizing possible non-connectivity of its elements.

Figure 2.4: Basis functionλ1
B.

The support ofλB, denoted byωB, is given by

ωB := B ∪ (∪{E ∈ E : E ∩ B , ∅}) ∪ (∪{T ∈ T : T ∩ B , ∅}) .

Figure 2.2b depicts a nodal basis function. Note that the setof nodal basis functions
Λ := {λB : B ∈ B} forms a partition of unity inΩ. The generalized nodal basis
functions which are not related to vertices on the DirichletboundaryΓD span the
finite element space

S∞ := span(Λ) ∩ V. (2.4)

ObviouslyS∞ has dimension #B which is minimal in comparison to data complex-
ity and will be the space of choice for very large contrast andthe special case of
perfectly conducting inclusionsccont = ∞. In the latter case the solution is neces-
sarily constant with respect to every single inclusion (seeSubsection 3.1), which is
captured byS∞.

If ccont < ∞ then the solution is not constant on the inclusions. Furtherbasis
functions (defined below) shall preserve sufficiently high accuracy in this setting,
too. EveryB ∈ Binc defines (local)Tmat-affine basis functionsλ1

B, λ
2
B : R2→ [0, 1]

with

λk
B(x) =

xk − (cB)k

rB
if x ∈ B while λk

B ≡ 0 inΩinc \ B.

The subscriptk refers to thek-th component of a 2-dimensional vector. It holds
supp

(

λk
B

)

= ωB. Figure 2.4 illustratesλ1
B.
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The enlarged finite element space is then given by

S := span
(

Λ ∪ {λ1
B : B ∈ B} ∪ {λ2

B : B ∈ Binc}
)

∩ V. (2.5)

Remark 2

a) If the radii of all inclusions are zero, the spaces S resp. S∞ reduce to the
classical conformingP1 finite element space with respect to the Delaunay
triangulation.

b) The number of degrees of freedom in S is3 per inclusion B∈ Binc, and1
per any other vertex B∈ Bmat away fromΓD. The overall number of degrees
of freedom is bounded by3#Binc + #Bmat and, hence, proportional to data
complexity.

c) Further basis functions could easily be designed by considering any contin-
uous function on B and itsTmat-affine or a more generalTmat-polynomial
extension toωB.

3 Galerkin Approximation and A Priori Error Analysis

This section considers the variational formulation of (1.2) and its Galerkin ap-
proximation and presents error estimates which are independent of the contrast
parameterccont.

3.1 Variational Formulation and Solvability

Any minimizeru∗ ∈ A of (1.2) solves the variational problem
∫

Ω

c〈∇u∗,∇v〉dx =
∫

Ω

f vdx for all v ∈ V. (3.1)

The left-hand side of (3.1) defines a symmetric bilinear forma,

a(u, v) :=
∫

Ω

c〈∇u,∇v〉dx.

The sumu∗ := u+ uD is the solution of problem (3.1);uD denotes some extension
(with finite energy) of the given inhomogeneous Dirichlet boundary data toΩ.
After shifting the inhomogeneous boundary data to the right-hand side, the problem
reduces to findu ∈ V such that

a(u, v) =
∫

Ω

f vdx − a(uD, v) =: F(v) for all v ∈ V. (3.2)

It is obvious that

1
1+CF

‖v‖2H1(Ω) ≤ a(v, v) anda(u, v) ≤ ccont‖u‖H1(Ω)‖v‖H1(Ω) (3.3)
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for all u, v ∈ V with the constant from Friedrichs’ inequalityCF. Inequality (3.3)
ensures the unique solvability of the variational problem (3.2) for finite contrast
ccont < ∞.

The Galerkin approximation of the solution of (3.2) with respect to the finite
element spaceS, denoted byuS ∈ S, is defined as the solution to the discrete
variational system

a(uS, v) = F(v) for all v ∈ S0 := S ∩ H1
0(Ω). (3.4)

Remark 3

a) The assembling of the corresponding linear system is fairly standard. It
might be performed in a loop over all elements of the generalized finite el-
ement mesh (including triangles, disks, and edges), the computation of the
local stiffness matrices and load vectors, and the sum of the local contri-
butions to the global matrices. The computation of the entries of the local
stiffness matrices might be done by transformation to the corresponding ref-
erence element. The only difficulty is that the transformation on the general-
ized edges is not affine. Still the entries of the local stiffness matrices might
be precomputed as functions of the angle parameters andδ. Alternatively,
numerical quadrature can be used. If two inclusions are close to each other,
the basis functions are close to be singular and the quadrature rule should
take the singular behavior into account.

b) The resulting stiffness matrix has a similar sparsity pattern as the stiffness
matrix of the classical P1 finite element method for the Poisson problem with
respect to some regular triangulation. Hence, in the present 2-dimensional
setting, sparse direct solvers offer robust, fast, and parallel solution of the
linear system, even though the asymptotic complexity is notoptimal (e.g.
O(N3/2) for nested dissection [14]). We refer to the textbook [9] foran
overview on fast direct solvers for sparse linear systems. For moderate con-
trast, [1] and [2] show that an iterative solver based on hierarchical fac-
torization performs almost optimal (i.e.O(N(log N)k)). In the numerical
examples in [1, 2], theses methods give promising results also in the high
contrast regime.

This paper aims at a priori estimates of the erroru−uS in energy norm‖ · ‖a :=
√
a(·, ·)

and therefore estimates of the error in the effective conductivity. SinceuS is the
best approximation ofu in energy norm we have

E(u+uD)−E(uS+uD) ≤ ‖(u+uD)− (uS +uD)‖2
a
= ‖u−uS‖2a = inf

v∈S
‖u−v‖2

a
. (3.5)

Subsections 3.2 and 3.3 will present bounds of the right handside in (3.5).
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Perfectly Conducting Inclusions. Our analysis shall cover the case of perfectly
conducting inclusions as well. The related model is a variational problem with
respect to the reduced spaceV∞ := {v ∈ V : v|B = const for all B ∈ Binc}: Find
u∞ ∈ V∞ such that

a
∞(u∞, v) =

∫

Ωmat

f vdx − a∞(u∞D , v) =: F(v) for all v ∈ V∞, (3.6)

wherea∞(u, v) :=
∫

Ωmat
〈∇u,∇v〉dx for u, v ∈ H1(Ω) andu∞D ∈ H1(Ω) with u∞D |ΓD =

uD|ΓD and∇u∞D |B = 0 for all B ∈ Binc. Sincea∞(u, v) ≤ ‖u‖H1(Ω)‖v‖H1(Ω) and
A
∞(v, v) = ‖∇v‖2

L2(Ω)
for all u, v ∈ V∞, the variational problem (3.6) has a unique

solution.
We shall justify the model problem (3.6). For fixed geometryΩmat, Dirichlet

datauD = 0, and force termf , let uccont denote the solution of (3.2) associated with
the contrast parameterccont ≥ 1. Let ũccont ∈ H1

0(Ω) be some bounded extension of
∑

B∈Binc
(uccont|B −

>
B

uccont dx)χB in the sense of [23]. The classical jump relation at
the interface∂Ωinc

ccont
∂
(

(uccont)|Ωinc

)

∂νΩinc

= −∂
(

uccont)|Ωmat

)

∂νΩmat

in H−1/2(∂Ωinc), (3.7)

and the estimates‖∇uccont‖L2(Ωmat) ≤ ‖∇uccont‖a ≤ C1‖ f ‖L2(Ω), ‖ũccont‖H1(Ω) ≤ C2‖uccont‖H1(Ωinc),
and‖ũccont‖L2(Ωinc) ≤ C3‖∇uccont‖L2(Ωinc) with constantsC1,C2,C3 > 0 that do not de-
pend onccont yield

‖uccont‖L2(Ωinc) =

∫

Ωinc

〈∇uccont,∇ũccont〉dx =
∫

∂Ωinc

∂uccont

∂νΩinc

ũccont dx+ c−1
cont

∫

Ωinc

f ũccont dx

≤ c−1
cont

(
∣

∣

∣

∣

∣

∣

∫

∂Ωmat

∂uccont

∂νΩmat

ũccont dx

∣

∣

∣

∣

∣

∣

+ ‖ f ‖L2(Ωinc)‖ũccont‖L2(Ωinc)

)

≤ c−1
cont

(

‖∇uccont‖L2(Ωmat)‖∇ũccont‖L2(Ωmat) + ‖ f ‖L2(Ωmat)‖ũccont‖L2(Ωmat)

+‖ f ‖L2(Ωinc)‖ũccont‖L2(Ωinc)

)

≤ Cc−1
cont‖ f ‖L2(Ω)‖∇uccont‖L2(Ωinc),

whereC depends only onC1, C2, andC3. This implies

‖c1/2
cont∇uccont‖L2(Ωinc) ≤ Cc−1/2

cont ‖ f ‖L2(Ω)

with a constantC that might depend on the geometry but not onccont. Hence,
Euccont is uniformly (with respect toccont) bounded anduccont → u∞ with respect to
the energy norm asccont→ ∞.

The Galerkin approximation of the solution of (3.6) with respect to the finite
element spaceS∞, denoted byuS∞ ∈ S∞, is defined as the solution to the discrete
variational system

a
∞(uS∞ , v) = F(v) for all v ∈ S∞0 := S∞ ∩ H1

0(Ω). (3.8)

The error estimate (3.5) remains valid withu replaced byu∞ anduS replaced by
uS∞ .
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3.2 Nodal Interpolation and Approximability

An upper bound for the right-hand side in (3.5) is derived through the design of
some finite element function based on a suitable interpolation of the solutionu.
The conditions

∫

B
(u− Iu)vdx = 0 for all v ∈ P1(R2) and for allB ∈ Binc, (3.9a)

u(b) − Iu(b) = 0 for all B = {b} ∈ Bmat, (3.9b)

define a generalized nodal interpolation operatorI : H2(Ωmat∪Ωinc)→ S0. Since,
on any inclusionB ∈ Binc, Iu is theL2(B) projection ofu onto the space of affine
functions, we have that

‖∇m(u− Iu)‖L2(B) ≤ CI diam
(

B
)2−m|u|H2(B) for m= 0, 1 (3.10)

with some universal constantCI independent of the diameter of the diskB and
u ∈ H2(Ωmat∪Ωinc). The estimate (3.10) already provides approximation properties
of the finite element space on the inclusions. It remains to give local estimates for
the interpolation error on the triangles (see Lemma 4) and the generalized edges
(see Lemma 6).

As usual, the error on a triangleT depends on the aspect ratioρT , i.e., the
ratio between the diameters of the largest circle that can beinscribed inT and the
circumcircle ofT.

Lemma 4 Let u∈ V∩H2(Ωmat∪Ωinc) and let T∈ T with vertices on B1, B2, B3 ∈
B. Then it holds

‖∇(u− Iu)‖2L2(T) ≤ C2
T ρ
−2
T ‖h∇2u‖2L2(T∪B1∪B2∪B3) (3.11)

with some universal constant CT which depends only on CI from (3.9).

Proof. A key ingredient of the proof are standard estimates for the interpolation
error with respect to a triangleT. It is well known (see [8, Theorem 16.1]) that the
nodal (affine) interpolantITu of u at the vertices ofT satisfies

|u− ITu|Hm(T) ≤ Cipρ
−1
T diam

(

T
)2−m|u|H2(T) for all u ∈ H2(T), m= 0, 1. (3.12)

The difficulty is thatIu defined by (3.9) does not interpolateu at the vertices of
T in general. Thus, the error is split into two components,

‖∇(u− Iu)‖2L2(T) ≤ ‖∇(u− ITu)‖2L2(T) + ‖∇(ITu− Iu)‖2L2(T). (3.13)

The first term on the right-hand side of (3.13) can be estimated directly with (3.12)
while the second one requires further considerations.

Notice that∇(ITu− Iu)|T is constant onT and the inverse estimate

‖∇q‖L∞(T) ≤ 2ρ−1
T diam

(

T
)−1‖q‖L∞(T) (3.14)
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holds for allq ∈ P1(T) on any triangleT. Thus

‖∇(ITu− Iu)‖2L2(T) ≤ |T ||∇(ITu− Iu)|2L∞(T)

(3.14)
≤ 4ρ−2

T ‖ITu− Iu‖2L∞(T). (3.15)

The maximal absolute value of the affine functionq := (ITu− Iu)|T onT is attained
in some vertexx0 = V(T) ∩ BT for someBT ∈ {B1, B2, B3}. If BT ∈ Bmat, i.e.,
BT = x0, then (ITu− Iu)|T = 0. Otherwise, let̃T ⊂ BT be the equilateral triangle
with vertices on∂BT and one vertex atx0. For q ∈ P1(T) and p ∈ P1(T̃) with
|p(x0)| ≥ |q(x0)| it holds

‖q‖2L∞(T) = |q(x0)|2 ≤ |p(x0)|2 ≤ 2
(

|T̃ |−1‖p‖2
L2(T̃)
+ ‖∇p‖2

L2(T̃)

)

. (3.16)

With the special choicesp = (ITu− Iu)|T andq = (IT̃u− Iu)|T̃ this leads to

‖∇(ITu− Iu)‖2L2(T)

(3.15),(3.16)
≤ 8ρ−2

T

(

|T̃ |−1‖IT̃u− Iu‖2
L2(T̃)
+ ‖∇(IT̃u− Iu)‖2

L2(T̃)

)

(3.12),(3.10)
≤ 16ρ−2

T (C2
I +C2

ip)h2
BT
‖∇2u‖2L2(BT).

(3.17)

Together with (3.13) and (3.12) this implies (3.11) withC2
T ≤ 5(CI +Cip). �

The second step of the error analysis considers the a priori estimate of the
interpolation error on the generalized edges. Every connectivity componentEk,
k = 1, 2, . . . ,K(E) of an edgeE ∈ E is a curvilinear polygon, i.e.,Ek is a simply-
connected, bounded domain with the boundary∂Ek =

⋃4
j=1 τ j , whereτ j are circu-

lar arcs. Note that all internal anglesγ1(Ek), γ2(Ek), . . . , γ4(Ek) of Ek are bounded
from above byπ/2. The subsequent error analysis depends on the smallest angle
which is denotedγEk . Correspondingly,γE := mink=1,2,...,K(E) γEk. The following
lemma shows that all these angles are bounded from below by a positive constant.

Lemma 5 There existγE > 0 such that0 < γE ≤ γE for all E ∈ E.

Proof. Let E ∈ E be some generalized edge connected to the inclusionB ∈ Binc.
Let τ be one of the straight arcs that define the edge. By design,τ is an element
of the infinite Delaunay triangulationTmat (see Section 2.1). Since its circumdisk
CD(τ) is tangential toB (due to the Delaunay criterion (2.1)),τ by itself cannot be
tangential toB and the angle betweenτ and the circular arcE ∩ B is necessarily
larger than zero.�

Lemma 6 Let u∈ V∩H2(Ωmat∪Ωinc) and let E= E(B1, B2) ∈ E be a generalized
edge that connects two generalized vertices (inclusions) B1, B2 ∈ Binc. Then

‖∇(u− Iu)‖2L2(E) ≤ CE
(

‖h∇2u‖2L2(E) +CE‖h∇2u‖2L2(B1∪B2)

)

holds with CE := maxk=1,2

∥

∥

∥hBk/h+ h/hBk

∥

∥

∥

L∞(E) and some universal constant CE
which depends only onγE.
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Proof. The proof consists of two parts. PartI proves the assertion forccont = ∞
and prepares the proof in the caseccont < ∞ which is complemented in partII .

Part I. Without loss of generality, letE be connected,rB1 ≥ rB2, andcB1 = 0,
cB2 = (0, δ) for someδ > rB1 + rB2. The restrictionE ∩ ∂B1 = φ([α, β]) of E
to B1 shall be parametrized by some angles ∈ [α, β] ⊂ [−π/2, π/2] with φ(s) :=
rB1(sin(s), cos(s)). The parameter interval [α, β] is subdivided by equidistributed
points

α = s1 < s2 < s3 < . . . < sL
= β.

These points are mapped byφ onto B1 and byφ ◦ πB1 onto B2 (recall (2.3) for the
definition ofπB1). Let

QL(E) := {Qℓ : ℓ = 1, . . . , L − 1} with

Qℓ := conv
(

φ(sℓ), φ(sℓ+1), πB1(φ(s
ℓ+1)), πB1(φ(s

ℓ))
)

be a subdivision ofE into quadrilaterals (see Figure 3.1).

Q

x1 x2

x4
x3

B
1

B
2

 Q
5
(E)

B
1

B
2

 Q
10

(E)

Figure 3.1: SubdivisionsQ5(E) and Q10(E) of some generalized edgeE =

E(B1, B2) ∈ E into quadrilaterals in the proof of Lemma 6.

The union of quadrilaterals on levelL provides a polygonal approximation
EL :=

⋃

Q∈QL(E) Q of E ⊂ EL ⊂ conv(E) for all L with |EL \ E| → 0 asL → ∞. A
(bounded) extension operator (·)E : H2(E) → H2(Rd) (see, e.g., [23]) extendsu|E
to conv(E). The extended function is denoted byuE.

The nodal (bilinear) interpolation operator with respect to Q ∈ QL is denoted
by JQ and itsQL-piecewise version byJQL . Theorem 3.8 from [19] implies

‖∇(uE − JQuE)‖L2(Q) ≤ CQ diam
(

Q
)‖∇2uE‖L2(Q) (3.18)

for all Q ∈ QL, L ∈ N. The constantCQ depends only on the interior angles ofQ,
i.e., CQ can be bounded uniformly for allQ ∈ QL and allL ∈ N in terms ofγE.
Thus

‖∇(uE − JQLuE)‖2L2(EL) =

∑

Q∈QL

‖∇(uE − JQuE)‖2L2(Q)

(3.18)
≤

∑

Q∈QL

C1‖diam
(

Q
)∇2uE‖2L2(Q)

(3.19)
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with some constantC1 which depends only onγE. Let L tend to infinity in (3.19)
to verify

‖∇(u− ũ)‖2L2(E) ≤ C1‖h∇2u‖2L2(E) (3.20)

for ũ := lim
L→∞

JQLuE. If ccont = ∞ thenũ = Iu and the proof is finished.

Part II. If otherwiseccont < ∞ then, in general, ˜u < S and‖∇(Iu − ũ)‖L2(E)

needs to be estimated further. The sequenceeL := JQL(Iu)E − JQLuE converges (in
H1) to e := Iu − ũ asL→ ∞. Thus, bounds on‖∇eL‖L2(EL) will lead to a bound on
‖∇(Iu − ũ)‖L2(E). Let Q ∈ QL with

∂Q = [x1, x2] ∪ [x2, x3] ∪ [x3, x4] ∪ [x4, x1]

and x1, x2 ∈ B1 and x3, x4 ∈ B2 and x5
= x1 as in Figure 3.1 (left). The vector

∇eL|Q is written as some linear combination of the vectors (xk+1 − xk)/|xk+1 − xk|
such that

‖∇eL‖2L2(Q) ≤ |Q|‖∇eL‖2L∞(Q) ≤C2|Q|
4

∑

k=1

∣

∣

∣〈(∇eL)|[xk,xk+1] , x
k+1 − xk〉

∣

∣

∣

2

|xk+1 − xk|2

with a constantC2 which depends only on the maximal angle inQ and can be
bounded uniformly in terms ofγ−1

E . Using〈(∇eL)|[xk,xk+1] , x
k+1 − xk〉 = eL(xk+1) −

eL(xk) for k = 2 andk = 4, this yields

‖∇eL‖2L2(Q) ≤C2

(

‖h‖L∞(Q)‖∇eL‖2L2([x1,x2]∪[x3,x4]) + ‖h
−1‖L∞(Q)‖e‖2L2([x2,x3]∪[x4,x1])

)

.

(3.21)
The summation of (3.21) overQ ∈ QL leads to

‖∇eL‖2L2(EL) ≤C2

(

‖h‖L∞(E)‖∇eL‖2L2(∂EL∩(B1∪B2)) + ‖h
−1‖L∞(E)‖eL‖2L2(∂EL∩(B1∪B2))

)

.

In the limit L→ ∞ it follows

‖∇e‖2L2(E) ≤C2

(

‖h‖L∞(Q)‖∇e‖2L2(∂E∩(B1∪B2)) + ‖h
−1‖L∞(Q)‖e‖2L2(∂E∩(B1∪B2))

)

. (3.22)

Estimate (3.10) and the trace inequality

‖ f ‖L2(∂B) ≤
4√
8
(

‖ f ‖L2(B) + ‖ f ‖1/2L2(B)
‖∇ f ‖1/2

L2(B)

)

, (3.23)

valid for any diskB and f ∈ H1(B) (see [6, Proposition 1.6.3]), imply

|e|Hm(∂B) = |ũ− Iu|Hm(∂B) = |u− Iu|Hm(∂B)

(3.23),(3.10)
≤ 4√

8CI r
2−m−1

2
B |u|H2(B) for m= 0, 1.

(3.24)

With a universal constantC3 which depends only onCI andγE (throughC1 and
C2), this leads to

‖∇(Iu − ũ)‖2L2(E)

(3.21),(3.24)
≤ C3‖h−1(h|Bk) + h(h|Bk)

−1‖L∞(E)‖h∇2u‖2H2(B1∪B2).
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This concludes the proof of the lemma.�
The constantCE reflects the fact that two inclusions might touch but the corre-

sponding affine approximations of the solution on the disks might not match at the
touching point. Thus, in rare cases forccont < ∞, the discrete system might have in-
finite energy whereas the continuous solution has not. Choosing sufficiently many
degrees of freedom (number of degrees of freedom per inclusion larger than or
equal to the number of neighbors per inclusion) this problemdisappears.

3.3 A Priori Error Estimates

The approximation property of the finite element spaceS reads as follows.

Theorem 7 Let u∈ V∩H2(Ωmat∪Ωinc) be the solution of(3.2)and let uS ∈ S be
its Galerkin approximation that solves(3.4). Then it holds

‖u− uS‖2a ≤ C2
S

















‖h∇2u‖2L2(Ωmat)
+ ccont

∑

B∈Binc

CB‖h∇2u‖2L2(B)

















with CB := ‖hB/h + h/hB‖L∞(ωB) and some universal constant CS which depends
only on CI , CT , and CE.

Proof. The proof is a straight forward consequence of (3.10), Lemma4, Lemma 6,
and the equality

‖v‖2a = ‖∇v‖2L2(Ωmat)
+ ccont‖∇v‖2L2(Ωinc)

for all v ∈ H1(Ω). �

By (3.3) the estimate of Theorem 7 is also valid for the error measured in the
H1(Ω)-norm. The regularity results from [7, Appendix B] read

‖∇2u‖L2(Ωmat) ≤ Creg‖ f ‖L2(Ω), ‖∇2u‖L2(Ωinc) ≤
Creg

ccont
‖ f ‖L2(Ω). (3.25)

The constantCreg depends solely on the geometry of the set inclusions andΩ but
not on ccont. This implies that the contrast is not a critical parameter.

Corollary 8 Let u ∈ V ∩ H2(Ωmat∪ Ωinc) be the solution of(3.2) and uS ∈ S its
Galerkin approximation that solves(3.4). Then it holds

‖u− uS‖a ≤ C̃S‖h‖L∞(Ω)(‖ f ‖L2(Ω) + ‖∇uD‖L2(Ω)) (3.26)

with some universal constantC̃S which depends only on Creg and the constants CS,
CB from Theorem 7.

The constantC̃S in (3.26) does not depend on the contrast parameterccont > 1.
However, through the constantsCB, it might depend on the term (cf. the Definition
of CB in Theorem 7)

max
E(B1,B2)∈E

max{rB1, rB2}
dist(B1, B2) ccont

. (3.27)
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The latter constant is critical with regard to the geometry of the coefficient function.
The term may blow up, whenever the distance of two inclusionsrelative to their
size becomes very small. However, high contrast reduces this effect. In the case
of perfectly conducting inclusions (ccont = ∞) it even disappears. The generalized
interpolation operator from (3.9) fulfills (u− Iu)|B = 0 for all B ∈ B and the proof
of Lemma 6 consists only of partI. Lemma 4 can be simplified in a similar way
which leads to the following corollary.

Corollary 9 Let ccont = ∞ and let u∞ ∈ V∞ ∩ H2(Ωmat∪ Ωinc) be the solution of
(3.6)and uS∞ ∈ S∞ its Galerkin approximation that solves(3.8). Then it holds

‖∇(u∞ − uS∞)‖L2(Ω) = ‖u∞ − uS∞‖a ≤ CS∞‖h∇2u∞‖L2(Ωmat)

with a constant CS∞ which neither depend on u∞ nor on the location of the inclu-
sions.

In the general caseccont < ∞ the critical constant shown in (3.27) can easily be
reduced with higher-order ansatz functions on the inclusions. We can therefore
derive error estimates whose constants are explicit in the underlying geometry.
However, in all cases the dependence on theH2-norm of the solution remains.
This issue is briefly discussed in the Section 4.3.

4 Concluding Remarks

The main result of this paper is a numerical scheme to computetemperature distri-
butions in composite materials with a large number of particles and high contrast.
In the model situation under consideration, the method is robust and doesnot de-
pend on the contrastccont → ∞. Some of the results extend to a more general
geometric setting in a straight-forward way. However, somedifficulties remain
open.

4.1 General Inclusion Geometry

For the use in practical applications it is desirable to incorporate more general
inclusion shapes and 3-dimensional geometries. It is shownin [20] that the gen-
eralized partitions of Section 2 nicely generalize to sets of convex inclusions, e.g.,
ellipsoids, convex polyhedra, and line segments. Even more, the design allows in-
clusions to intersect. Thus, generalized Delaunay triangulations are also available
for non-convex inclusions which can be represented by finiteunions of convex
ones. The design of according finite element methods can be done similarly as
presented here. However, the complexity of the mesh and the corresponding finite
element method will grow as the number of shape parameters that define a sin-
gle inclusion grows. For smooth inclusions the corresponding analysis is straight-
forward; non-smooth inclusions, however, require new arguments which are able
to cope with lack of regularity.
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4.2 Convergence

By straight forward arguments it is easy to show that the finite element solutions
(the solutions of (3.2) and (3.6)) converge inH1 to the solution of (1.2) if the
meshwidth functionh tends to 0.

In the matrix, the meshwidth functionh can be decreased in the matrixΩmat by
simply putting additional artificial inclusions (points) in the setBmat. If ccont = ∞,
this suffices to be able to construct a convergent sequence of approximation because
the (energy-)error in the inclusions is always zero. The case, in which additional
vertices of radius zero are added to improve the approximability properties of the
finite element space, is already treated by the theory presented in this article. A
different possibility is to leave the initial partition as it is and increase the poly-
nomial degree of the shape functions. This strategy, the so-called p-refinement,
is recommended for problems where geometry and data are smooth. The defini-
tion of higher-order finite element spaces is to some extent straight-forward, the
corresponding analysis, however, appears more involved.

If ccont < ∞, in addition, the error on the inclusions has to be decreased, e.g.,
by increasing the polynomial degree.

4.3 Geometry-Explicit Estimates

The method presented is stable with respect to contrast in the medium. However,
the error bounds might depend on geometric parameters of thematerial, e.g., the
distance between neighboring particles. Whether or not thedependence on the
local distance is critical depends on the global distribution of particles. This can
be seen already in the simplified situation of perfectly conducting (ccont = ∞)
inclusions.

Consider first two inclusions that touch but are isolated from further inclusions.
Since the solution is found inH1 the (constant) values of the solution on the two
inclusions have to be equal. Provided the force term is sufficiently smooth (L2),
classical regularity theory ensures smoothness of the solution in some neighbor-
hood of the two inclusions and the constant in the regularityestimate depends only
on the distance to further inclusions or the boundary of the domain.

The critical scenario is the appearance of an almost conducting path of inclu-
sions which connects two parts of the outer boundary with different, prescribed
temperature. The temperature gap needs to be compensated inthe small regions
between the inclusions of the path which might cause steep gradients in the solu-
tion. If the inclusions of the path touch pairwise, the path is perfectly conducting
and hence, the energy is infinite. Depending on the volume fraction of particles,
the material shows a phase transition from moderate to high conductivity. Mathe-
matically speaking, the solution operator, which maps a pair the dateuD and f to
the solution of (1.2), is not uniformly bounded with respectto the geometry of the
set of inclusionsI. It is shown in [22, Theorem 3.5] that although the energy of the
solution might blow up, the error bound in Corollary 9 is bounded by some generic

21



constant independent of the distance of the particles. Thus, our method is robust
with respect the such critical scenarios and allows meaningful material simulation
even in densely packed composites.

In the general case of high but finite contrast the situation appears more in-
volved and a corresponding regularity theory that is explicit (and sharp) with re-
spect to both, contrast and geometric parameters, is not yetavailable and has to be
addressed in future research.
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