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Abstract

An adaptive a posteriori error estimator based finite element method for the
numerical solution of a coupled Cahn-Hilliard/Navier-Stokes system with a
double-obstacle homogenous free (interfacial) energy density is proposed. A
semi-implicit Euler scheme for the time-integration is applied which results in
a system coupling a quasi-Stokes or Oseen-type problem for the fluid flow to
a variational inequality for the concentration and the chemical potential ac-
cording to the Cahn-Hilliard model [13]. A Moreau-Yosida regularization is
employed which relaxes the constraints contained in the variational inequality
and, thus, enables semi-smooth Newton solvers with locally superlinear con-
vergence in function space. Moreover, upon discretization this yields a mesh
independent method for a fixed relaxation parameter. For the finite dimen-
sional approximation of the concentration and the chemical potential piecewise
linear and globally continuous finite elements are used, and for the numerical
approximation of the fluid velocity Taylor-Hood finite elements are employed.
The paper ends by a report on numerical examples showing the efficiency of the
new method.

Keywords: A posteriori error estimators, adaptive finite element method,
Cahn-Hilliard/Navier-Stokes system, double obstacle potential, Moreau-Yosida
regularization, semismooth Newton method

1. Introduction

In the present work we consider a diffuse interface model for the description
of the hydrodynamics of two-phase flows, which is related to model ’H’ in the
nomenclatura of Hohenberg and Halperin [26]. It can be found, e.g., in [1] and
reads:
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Find (c(t, x), w(t, x),u(t, x), p(t, x)) such that

∂tu− 1
Re∆u + u · ∇u +∇p+Kc∇w = 0 in ΩT := Ω× (0, T ), (1.1)

div u = 0 in ΩT , (1.2)
∂tc− 1

Pe∇ · (b(c)∇w) + u∇c = 0 in ΩT , (1.3)
w = Φ′(c)− γ2∆c in ΩT , (1.4)

c(x, 0) = c0(x), u(x, 0) = u0(x) ∀x ∈ Ω, (1.5)
∂νc = ∂νw = 0, u = g on ∂Ω× (0, T ). (1.6)

Here Ω ⊂ Rn, n ∈ {1, 2, 3}, is the bounded convex polygonal flow domain
with boundary ∂Ω and outer unit normal ν. We note that more general domains
with sufficiently smooth boundary may be used as well. The function

c =
cA − cB
cA + cB

,

defined on ΩT , denotes the concentration order parameter associated with the
mass concentrations cA and cB in the fluid phases A and B, respectively. It
satisfies c = c(t, x) ∈ [−1, 1] and c ≡ 1 on the pure A-phase and c ≡ −1 on
the pure B-phase region, respectively. Initially, i.e. for t = 0, we assume that
the concentration equals c0. The quantity w represents the chemical potential,
u denotes the mean flow velocity field, i.e. u = 1+c

2 uA + 1−c
2 uB , where uA

and uB denote the fluid velocities in the fluid phases A and B, respectively,
and p denotes the pressure of the fluid. The flow profile at t = 0 is given by
u0. The boundary values g have to satisfy g · ν = 0 and in the following are
assumed to satisfy g ≡ 0. The Péclet number Pe, the Reynolds number Re and
the capillary number K are given constants. The given parameter γ is related
to the width of the interface region. The mobility function b(·) is assumed to
be equal to 1 but other situations can be motivated by practical applications
and are considered for example in [3]. The homogeneous free energy density is
denoted by Φ(c) and in this paper it is chosen to be of double-obstacle type as
proposed in [4], i.e.

Φ(c) :=

{
1
2 (1− c2) if c ∈ [−1, 1],

+∞ if c 6∈ [−1, 1].

In the literature, alternative choices of the homogeneous free energy density are
known with the double-well [18] and the logarithmic potential [13] being two
common alternatives. Note that in contrast to the double-obstacle potential, the
double-well potential allows the unphysical situation of |c| > 1. The logarithmic
potential usually prevents reaching the pure phases due to the barrier nature of
the involved logarithm. When Φ(c) is chosen to be the double-obstacle potential,
then (1.4) becomes

w + γ2∆c ∈ ∂Φ(c) (1.7)
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where ∂Φ is the subdifferential of Φ. It is well known that the potential equation
(1.7) is equivalent to

|c| ≤ 1 a.e. inΩ〈
−γ2∆c− w − c, v − c

〉
≥ 0 ∀v ∈ {v ∈ H1(Ω) | |v| ≤ 1 a.e. inΩ}

(1.8)

Here and below, ’a.e. in Ω’ stands for ’almost everywhere in Ω’ indicating that
the associated relation holds true except on a subset of Ω which has (Lebesgue-)
measure zero.

In what follows, L2(Ω) denotes the space of measurable functions whose square is
Lebesgue integrable with inner product (· , ·) and norm ‖·‖. By L2

(0)(Ω) ⊂ L2(Ω)

we denote the subspace of functions with vanishing mean value and Hm(Ω),
m ≥ 1, represents the usual Hilbert space of functions in L2(Ω) with distri-
butional derivatives of order less or equal m contained in L2(Ω). The norm in
Hm(Ω) is denoted by ‖ · ‖m. We define H1

0 (Ω) by

H1
0 (Ω) = {v ∈ H1(Ω) | v = 0 on ∂Ω},

where the boundary condition holds true in the sense of traces. Let Hm(Ω) =
(Hm(Ω))n and analogously for Hm

0 (Ω). The dual spaces of H1
0 (Ω) and H1

0(Ω)
are denoted by H−1(Ω) and H−1(Ω), respectively. For D ⊂ Ω we denote by
(·, ·)m,D, ‖ · ‖m,D and | · |m,D the usual inner-product, the norm and the semi-
norm in Hm(D), respectively.
Furthermore we set

V = {v ∈ H1(Ω) | (v, 1) = 0}
and

K = {v ∈ H1(Ω) | |v| ≤ 1 a.e. in Ω}.
For more information on Lebesgue and Sobolov spaces we refer the reader to
[2].

Based on the above definitions and conventions, the variational form of (1.1)–
(1.6) reads:

Find (c(t), w(t),u(t), p(t)) in K ×H1(Ω)×H1
0(Ω)× L2

(0)(Ω) such that

(∂tu,v) + 1
Re (∇u : ∇v) +B(u,u,v)

−(p, div v) +K(c∇w,v) = 0 ∀v ∈ H1
0(Ω), a.e. in (0, T ], (1.9)

(−div u, v) = 0 ∀v ∈ L2
(0)(Ω), a.e. in (0, T ],(1.10)

c(t) ∈ K for a.e. t ∈ (0, T ], (1.11)
(∂tc, v)+ 1

Pe (∇w,∇v)−(cu,∇v)=0 ∀v ∈ H1(Ω), a.e. in (0, T ], (1.12)
γ2(∇c,∇(v − c))−(w − c, v − c)≥0 ∀v ∈ K, a.e. in (0, T ], (1.13)

c(x, 0) = c0(x) ∀x ∈ Ω, (1.14)
∂νc = 0, ∂νw = 0 on ∂Ω× (0, T ], (1.15)
u(x, 0) = u0(x) ∀x ∈ Ω, (1.16)

u = 0 on ∂Ω× (0, T ]. (1.17)
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Here, for u,v,w ∈ H1(Ω) we use

B(u,v,w) :=
1

2

∫
Ω

(u · ∇)v ·w dx− 1

2

∫
Ω

(u · ∇)w · v dx,

and

(∇v : ∇w) :=

∫
Ω

∇v : ∇w dx =

∫
Ω

n∑
i,j=1

(∇v)ij(∇w)ij dx.

Moreover, the initial values c0 and u0 satisfy c0 ∈ K and u0 ∈ H1
0(Ω).

For an analytical treatment of the above system we refer to [1, Chapter 6.5].
Especially in two space dimensions there exists a unique solution (c, w,u, p) to
this system and we have

u ∈ C0([0, T ],H1
0(Ω)), c ∈ BCω([0, T ], H1(Ω), ∇w ∈ L2(0, T ;L2(Ω)).

Here, BCω([0, T ], H1(Ω)) is the space of bounded and weakly continuous func-
tions from [0, T ] with values in H1(Ω).

Concerning existing literature on the development of solvers for the coupled
Cahn-Hilliard/Navier-Stokes system we note here that in [29] a robust (with
respect to the interfacial width; here related to γ) nonlinear multigrid method
is introduced with a double-well homogeneous free energy density. We refer to
[28] for the multigrid solver for the Cahn-Hilliard part only. Later, in [27] error
estimates for the coupled system were derived and numerically verified. Coupled
Cahn-Hilliard/Navier-Stokes systems were also considered in [8] with a double-
well potential in case of three-phase flows; see also [5, 6, 7] and the references
therein for further rather qualitative studies of the behavior of multiphase and
mixture flows. The situation of axisymmetric immiscible two-phase flows was
studied in [30] and a conservative multigrid scheme for Cahn-Hilliard fluids was
developed in [31]. Concerning the numerical treatment of the sole Cahn-Hilliard
system many contributions can be found in the literature. For a discussion of
available solvers we refer to [21].

In this paper we are concerned with the development of a robust adaptive fi-
nite element scheme for solving the coupled Cahn-Hilliard/Navier-Stokes system
with a double-obstacle homogeneous free energy density. In order to obtain a
mesh independent solver, we employ a Moreau-Yosida regularization of the con-
straints due to the involved double-obstacle potential. Our time discretization
scheme allows to solve both physical systems in separate, which, in particular,
allows us to use the semi-smooth Newton iteration of [21] for the Cahn-Hilliard
part (see [22] for a general account of semi-smooth Newton methods in Banach
spaces). This paper, thus, extends the development contained in [21] for the
Cahn-Hilliard system with a double-obstacle potential and combines it with the
discretization approach to the coupled system in [27].

The rest of this paper is organized as follows. In section 2 we address the
time discrete problem and establish existence of solutions for each time slice.
The Moreau-Yosida regularization scheme is the subject of section 3. The fi-
nite element discretization and the a posteriori error estimation are discussed in
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sections 4 and 5, respectively. Section 6 contains aspects of the numerical real-
ization and, finally, in section 7 numerical results obtained by the new method
are provided.

2. Time-discrete system

Numerically, we integrate the above system in time by using a semi-implicit
Euler scheme. For this purpose, let τ > 0 be the time step size. Then the values
of c and u at told ∈ [0, T − τ ] are denoted by cold ∈ H1(Ω), uold ∈ H1

0(Ω). The
values of c, w,u and p at time t = told + τ are written as cτ , wτ ,uτ and pτ .
Given (uold, cold), the tupel (cτ , wτ ,uτ , pτ ) solves the problem:
Find c ∈ K and w ∈ H1(Ω),u ∈ H1

0(Ω), p ∈ L2
(0)(Ω) such that

(u− uold,v) + τ
Re (∇u : ∇v) + τB(uold,uold,v)

+τK(c∇w,v)− τ(p, div v) = 0 ∀v ∈ H1
0(Ω), (2.1)

(−div u, v) = 0 ∀v ∈ L2
(0)(Ω), (2.2)

(c, v) + τ
Pe (∇w,∇v) = τ(colduold,∇v) + (cold, v) ∀v ∈ H1(Ω), (2.3)

γ2(∇c,∇(v − c))− (w, v − c) ≥ (cold, v − c) ∀v ∈ K. (2.4)

In order to simplify the notation, from now on we write c, w,u, p instead of
cτ , wτ ,uτ , pτ .

Using v ≡ 1 as a test function in (2.3) yields (c, 1) = (cold, 1) implying that
the mass is conserved when solving (2.1)–(2.4).

We note that for given uold our discretization decouples the Cahn-Hilliard
equation from the Navier-Stokes system. This allows to treat (2.1)–(2.4) se-
quentially. First the Cahn-Hilliard part (2.3)–(2.4) is solved for (c, w) and then
the Navier-Stokes part (2.1)–(2.2) is addressed with known concentration c and
chemical potential w from (2.3)–(2.4). Furthermore the numerical treatment of
(2.1)–(2.2) and (2.3)–(2.4) may be performed on different triangulations of the
domain; see [27].

The system (2.3)–(2.4) without the concentration dependent convection term
τ(colduold,∇v) is investigated in [21]. In that paper, a Moreau-Yosida regular-
ization of the indicator function of K is applied. As a result, the Cahn-Hilliard
variational inequality is replaced by a non-smooth equation which is then solved
by a semi-smooth Newton iteration. The latter is shown to converge in the
original function space setting locally at a superlinear rate. Moreover, once
the function space convergence is established it may be shown similarly as in
[19, 25] that the Newton solver exhibits a mesh independent convergence upon
discretization on sufficiently fine meshes. In addition, for efficiency purposes,
the Moreau-Yosida based semi-smooth Newton solver is intertwined with an
integrated adaptive finite element method which relies on reliable and efficient
residual based a posteriori error estimators. In the subsequent sections of this
paper, we adapt the relevant results of [21] to the present situation of a coupled
Cahn-Hilliard/Navier-Stokes system.
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Before we enter the details of the Moreau-Yosida regularization, the spatial
discretization and the mesh adaptation, we note that similarly to [21] it can be
shown that the Cahn-Hilliard variational inequality (2.3)–(2.4) admits a unique
solution. In fact, observe that (2.3)–(2.4) is related to the first order necessary
and sufficient optimality condition of the problem

minimize
γ2

2
‖∇c‖2 +

τ

2
‖∇w‖2 − (cold, c) over (c, w) ∈ K × V (2.5)

subject to (c− cold, v) +
τ

Pe
(∇w,∇v) = τ(colduold,∇v) ∀v ∈ H1(Ω). (2.6)

One readily shows that (2.5)–(2.6) admits a unique solution (c, w) with a La-
grange multiplier q ∈ H1(Ω) associated with the equality constraint (2.6). The
multiplier satisfies w = q−(q, 1), and it can be inferred that the optimal primal-
dual pair (c, q) of (2.5)–(2.6) yields the solution of (2.3)–(2.4) and vice versa.

Given (c, w) from (2.3)–(2.4), the semi-discrete Navier-Stokes system (2.1)–
(2.2) admits a solution pair (u, p). This can be established by standard argu-
ments for saddle point problems; see [9]. Note that p is unique only up to a
constant.

3. Moreau-Yosida regularized problem

For s > 0, we define λs(c) = s (max(0, c− 1) + min(0, c+ 1)), where the
min- and max-operations are understood in the pointwise almost everywhere
sense. Then λs : V → L2(Ω) is Lipschitz continuous, ker(λs) = K and λs is
monotone, compare, e.g., [21]. Furthermore, λs is Newton (or slantly) differen-
tiable (see [22]) as a mapping from Lr(Ω) to L2(Ω) (r > 2).
In the literature, also penalizations enjoying additional smoothness are consid-
ered; see e.g. [23] for a discussion on this subject and numerical implications.

The quantity λs is now used to replace (2.5)–(2.6) by its Moreau-Yosida
regularized version. The latter notion refers to the fact that the hard constraint
c ∈ K is replaced by a Moreau-Yosida regularization of the indicator function
IK, which satisfies IK(c) = 0 if c ∈ [−1, 1] a.e in ΩT and IK(c) = +∞ otherwise.
The resulting regularized version of (2.5)–(2.6) reads

minimize
γ2

2
‖∇c‖2 +

τ

2
‖∇w‖2 − (cold, c) +

s

2
M(c) (3.1)

over (c, w) ∈ H1(Ω)× V

subject to (c− cold, v) +
τ

Pe
(∇w,∇v) = τ(colduold,∇v) ∀v ∈ H1(Ω), (3.2)

where M(c) = ‖max(0, c − 1)‖2 + ‖min(0, c + 1)‖2 and the max- and min-
operations are understood in the pointwise a.e. sense. Note that the Frechet-
derivative M ′ of M satisfies s

2M
′(c) = λs(c). One readily proves existence of a

unique solution (cs, ws) to (3.1)–(3.2), which is characterized by the first order
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optimality condition〈
F (1)(cs, ws), v

〉
:=(cs − cold, v) +

τ

Pe
(∇ws,∇v)− τ(colduold,∇v) = 0,〈

F (2)(cs, ws), v
〉

:=γ2(∇cs,∇v)− (ws + cold, v) + (λs(cs), v) = 0

for all v ∈ H1(Ω). Note that we have eliminated the adjoint state pertinent to
(3.2) be means of ws to arrive at the above first order optimality system.

As a consequence, the Moreau-Yosida regularized version of (2.1)–(2.4) is
given by (compare, e.g., [21]):
Find cs ∈ H1(Ω), ws ∈ H1(Ω),u ∈ H1

0(Ω), p ∈ L2
(0) such that

(u− uold,v) +
τ

Re
(∇u : ∇v) + τB(uold,uold,v)

+τK(cs∇ws,∇v)− τ(p, div v) = 0 ∀v ∈ H1
0(Ω), (3.3)

(−div u, v) = 0 ∀v ∈ L2
(0)(Ω), (3.4)〈

F (1)(cs, ws), v
〉

= 0 ∀v ∈ H1(Ω), (3.5)〈
F (2)(cs, ws), v

〉
= 0 ∀v ∈ H1(Ω). (3.6)

Proposition 3.1. There exists a unique solution to system (3.3)– (3.6).

Proof. Considering slight modifications only, from [21, Theorem 4.1] it follows
that for given (cold,uold) (3.5)–(3.6) admits a unique solution (cs, ws) ∈ H1(Ω)×
H1(Ω). Since cs∇ws ∈ H−1(Ω) using cs∇ws as a volume force in (3.3)–(3.4)
yields the existence of a unique u ∈ H1

0(Ω) and a pressure p ∈ L2
(0)(Ω) satisfying

(3.3)–(3.4); see, e.g., [35].

As in [21], it can be shown that λs admits the Newton derivative

Gλs(c) = s
(
χA+(c) + χA−(c)

)
satisfying

‖λs(c+ δc)− λs(c)−Gλs(c+ δc)δc‖ = O(‖δc‖Lr ) as ‖δc‖Lr → 0

with H1(Ω) ⊂ Lr(Ω) for some r > 2 depending on the spatial dimension and
O(ρ)/ρ → 0 as ρ → 0. Above, χS denotes the characteristic function of a set
S ⊂ Ω, and we use

A+(c) := {x ∈ Ω : c(x)− 1 > 0},
A−(c) := {x ∈ Ω : c(x) + 1 < 0}.

Note that F (1) is Fréchet differentiable, whereas F (2) is only Newton differen-
tiable due to the occurrence of λs. An associated Newton derivative is given
by

〈GF (2)(c, w)[δc, δw], v〉 = γ2(∇δc,∇v)− (δw, v) + (Gλs(c)[δ
c], v)
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for (δc, δw) ∈ H1(Ω)×H1(Ω) and v ∈ H1(Ω).
The semismooth Newton method associated with solving (3.5)–(3.6) is spec-

ified next.

Semi-smooth Newton iteration for the Cahn-Hilliard system (3.5)–
(3.6).

(i) Choose (c0, w0) ∈ H1(Ω)×H1(Ω) and set k := 0.

(ii) Unless a stopping rule is satisfied, compute the solution (δck, δ
w
k ) of

〈(F (1))′(ck, wk)[δck, δ
w
k ], v〉 = −〈F (1)(ck, wk), v〉 ∀v ∈ H1(Ω),

〈GF (2)(ck, wk)[δck, δ
w
k ], v〉 = −〈F (2)(ck, wk), v〉 ∀v ∈ H1(Ω).

(iii) Set ck+1 := ck + δck, wk+1 := wk + δwk , k := k + 1, and return to (ii).

Concerning the convergence of the above iteration we have the following result.

Theorem 3.2. The semismooth Newton iteration converges at a superlinear
rate to the solution (cs, ws) of (3.5)–(3.6) provided that (c0, w0) is chosen suf-
ficiently close to (cs, ws).

For a proof of a result similar to Theorem 3.2 in a related context we refer to
[21, Prop. 5.5]. Since the necessary modifications are rather straight forward,
we refrain from displaying the proof of Theorem 3.2 here.

In our numerics we observe convergence of the Newton iteration regardless
of the initial choice. In particular, we always choose (c0, w0) = (cold, wold).
Concerning the stopping rule, we note that we stop the iteration as soon as the
absolute residual of the system drops below a user specified tolerance tolSSN .
In our tests we use tolSSN = 10−6 + 10−12‖(F (1)(c0, w0), F (2)(c0, w0))‖.

The update of s follows the suggestion in [21], i.e., for the initial time step,
starting from a rather small s value, we increase s by a factor of 10 and always use
the solution of the previous s-value as the initial guess for solving the problem
belonging to the next larger s-value. We note that more sophisticated update
rules for s are conceivable; see [20, 24]. For the subsequent time steps, we keep
s at a relatively large value and use the initialization with respect to (c, w) as
explained above. The latter strategy is supported by the fact that τ is usually
sufficiently small to obtain good initial guesses by considering the solution of
the previous time step. Moreover, for large t the phase separation exhibits a
rather slow change of the interfacial region separating the phases such that the
pair (cold, wold) from the previous time step yields an excellent initial guess for
solving the semi-discrete Cahn-Hilliard system in the next time step.

From here onwards our investigations are based on (3.3)–(3.6).

4. Finite element approximation

For the discretization of (3.3)–(3.6) in space we introduce shape regular
simplicial meshes T cw and T up such that Ω̄ =

⋃
T∈T cw T and Ω̄ =

⋃
T∈T up T .
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By Ecw and Eup we denote the sets of faces associated with T cw and T up,
respectively. For a triangle T ∈ T cw we denote by hT the diameter of T and by
|T | its area. For a face E ∈ Ecw we denote by hE the length of this face.
The concentration c and the potential w are discretized within the finite element
space given by

Vcwh = {v ∈ C0(Ω) : v|T ∈ P1(T ), ∀T ∈ T cw}

with nodal basis {φ1, . . . , φN}. The velocity of the fluid u and the pressure p
are approximated by the LBB-stable Taylor-Hood finite elements defined one
T up, i.e., we set

Vuh = {v ∈ C0(Ω) : v|T ∈ P2(T ), ∀T ∈ T up},

and

Vph = {v ∈ C0(Ω) : v|T ∈ P1(T ), ∀T ∈ T up};

see [36]. Here Pk(T ) stands for the space of polynomials up to degree k defined
on T .

The spatially discretized version of (3.3)–(3.6) then consists in finding (chs , w
h
s ) ∈

Vcwh × Vcwh and (uh, ph) ∈ Vuh × V
p
h such that the following system is satisfied:

(uh − uold,v
h) +

τ

Re
(∇uh : ∇vh) + τB(uold,uold,v

h)

−τ(ph, div vh) + τK(chs∇whs ,vh) = 0 ∀vh ∈ Vuh
(4.1)

(−div uh, vh) = 0 ∀vh ∈ Vph,
(4.2)〈

F
(1)
h (chs , w

h
s ), vh

〉
= 0 ∀vh ∈ Vcwh ,

(4.3)〈
F

(2)
h (chs , w

h
s ), vh

〉
= 0 ∀vh ∈ Vcwh .

(4.4)

For v ∈ H1(Ω) ∩ C0(Ω) we set〈
F

(1)
h (chs , w

h
s ), v

〉
:=

τ

Pe
(∇whs ,∇v) + (chs − cold, v)h − τ(colduold,∇v), (4.5)

and〈
F

(2)
h (chs , w

h
s ), v

〉
:= γ2(∇chs , ∇v) + (λs(c

h
s ), v)h − (whs , v)h − (cold, v)h, (4.6)

where the semi-inner product (. , .)h on C0(Ω) is defined via mass lumping as

(f, g)h :=

∫
Ω

πh(f(x)g(x))dx =

N∑
i=1

(1, φi)f(xi)g(xi) ∀f, g ∈ C0(Ω),
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with πh : C0(Ω)→ Vcwh denoting the Lagrange interpolation operator.
Using the techniques from [21] one shows that there exists a solution to

(4.3)–(4.4) which can be computed by a modified version of the semi-smooth
Newton method for the semi-discrete Cahn-Hilliard system as specified above.
This solution is bounded in H1(Ω) independently of s. With (chs , w

h
s ) available

from solving (4.3)–(4.4) and kept fixed in (4.1)–(4.2), one computes the solution
(uh, ph) of the latter system, see e.g. [10, Chap. 12].

5. A posteriori error estimation

For an efficient solution of (4.3)–(4.4) we next describe an a posteriori error
estimator based mesh refinement scheme. For the numerical solution of the
pure Cahn-Hilliard problem such a scheme was developed in [21]. We note that
the adaptation of T cw is completely independent from a possible adaptation
of T up. In our computations we use a uniform grid T up for flow and pressure
computations. Mesh adaptation is only performed on T cw for the resolution of
the concentration c and the potential w at the interface. In order to ease the
notation, in what follows we drop the parameter s. Thus, (c, w) ∈ H1(Ω) ×
H1(Ω) and (ch, wh) ∈ Vcwh ×Vcwh refer to the solutions of (3.5)–(3.6) and (4.3)–
(4.4), respectively.

We define the following errors

ec := ch − c, (5.1)

ew := wh − w, (5.2)

eλhs := πh(λs(c
h))− λs(ch), (5.3)

eλs := λs(c
h)− λs(c), (5.4)

the residuals

r(1) := c− cold + τdiv(colduold), (5.5)

r(2) := λs(c)− w − cold, (5.6)

r
(1)
h := ch − cold + τdiv(colduold), (5.7)

r
(2)
h := πh(λs(c

h))− wh − cold, (5.8)

the element indicators

η
(1)
T = hT ‖r(1)

h ‖0,T for all T ∈ T cw, (5.9)

η
(2)
T = hT ‖r(2)

h ‖0,T for all T ∈ T cw, (5.10)

η
(3)
T = ‖eλhs ‖0,T for all T ∈ T cw, (5.11)

and the edge indicators

η
(1)
E = h

1/2
E ‖[∇w

h]E · νE‖0,E for all E ∈ Ecw, (5.12)

η
(2)
E = h

1/2
E ‖[∇c

h]E · νE‖0,E for all E ∈ Ecw, (5.13)
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where, for all E ∈ Ecw, νE is the positively oriented unit normal on E.
Further, to each function f ∈ L2(Ω) we assign a piecewise constant function f
defined by

f |T =
1

|T |
(f, 1)0,T for T ∈ T cw.

The local as well as the ”regional” data oscillations associated with a function
f are given by

osch(f, T ) = ‖hT (f − f)‖0,T for T ∈ T cw, (5.14)

osch(f,D) =

(∑
T∈D

osch(f, T )2

)1/2

for D ⊂ T cw. (5.15)

Next we establish reliability of our a posteriori error estimator ηΩ which is
defined below. Using the above notation, the proof of this result follows the
lines of the proof of Proposition 7.1 in [21].

Proposition 5.1. There exists a constant C depending only on the domain Ω
and the smallest angle of the mesh T cwh such that

s−1‖eλs‖2 +
τ

Pe
‖∇ew‖2 + γ2‖∇ec‖2 ≤ Cη2

Ω, (5.16)

where

η2
Ω =

( τ

Pe

)−1 ∑
T∈T cw

(η
(1)
T )2 + γ−2

∑
T∈T cw

(η
(2)
T )2 +

τ

Pe

∑
E∈Ecw

(η
(1)
E )2 (5.17)

+ γ2
∑

E∈Ecw
(η

(2)
E )2 + γ−2

∑
T∈T cw

(η
(3)
T )2.

Moreover
ηΩ ≤ β(1 + h−1)

with a constant β independent of s and h.

Remark 5.2.

• The estimate (5.16) constitutes a reliable a posteriori error upper bound for
(4.3)–(4.4). The term η

(3)
T arises from using the finite element quantity

πh(λs(c
h)) to approximate λs(c

h). Note, however, that η(3)
T contributes

only in the set

I(ch) := {T ∈ T cw : AN (T ) ∩ IN (T ) 6= ∅} (5.18)

of elements with a discrete active-inactive interface where the discrete in-
active set is defined by

IN (T ) = {xi ∈ T : −1 < ch(xi) < 1},

11



and the discrete active set is given as

AN (T ) = {xi ∈ T : ch(xi) < −1 or ch(xi) > 1}.

As a consequence of these definitions, η(3)
T can be evaluated exactly with a

rather small effort.

• In our numerics we assume div(uold) = 0. Thus, the term div(colduold) in
η

(1)
T reduces to uold∇cold.

• Using mass-lumping only for the term (λs(c
h
s ), v)h results in the same

estimator.

Concerning the efficiency of the residual based a posteriori error estimator,
according to Proposition 7.4 in [21] we obtain the following result.

Proposition 5.3. There exists a constant β depending on s−1, γ, τ, Ω, and the
smallest angle of the mesh T cwh such that

s−1‖eλ+
s
‖2 + s−1‖eλ−

s
‖2 +

τ

Pe
‖∇ew‖2 + γ2‖∇ec‖2 ≥ (5.19)

βη2
Ω − ‖eλhs ‖

2 − osch(r
(1)
h ,Ω)2 − osch(r

(2)
h ,Ω)2.

The term ‖eλhs ‖ arises from the inexact evaluation of λs(ch) due to mass-
lumping. If the lumping technique is replaced by an exact evaluation of λs(ch)
yielding ‖eλhs ‖ = 0 our estimator will be both reliable and efficient.

6. Numerical realization of mesh adaptation and the two-mesh strat-
egy

In this section we address our implementation of the mesh adaptation for
the discretization of the Cahn-Hilliard system and the realization of the joint
discretization of both, the Cahn-Hilliard and the Navier-Stokes systems. The
latter discretization requires a certain mesh compatibility between the adaptive
Cahn-Hilliard mesh and the uniform mesh for the fluid flow.

6.1. Adaptive mesh refinement for the Cahn-Hilliard system
We now discuss the mesh adaptation strategy for T cw. The marking of

elements for a possible refinement or coarsening, respectively, is based on a bulk
criterion [17]. For this purpose let T cw be a given triangulation. We introduce
the set

Ah := {T ∈ T cw : αmin ≤ |T | ≤ αmax} ,

with 0 ≤ αmin < αmax denoting the admissible minimal and maximal element
volumes, respectively. It is convenient to introduce the following indicators for

12



T ∈ T cw:

ηT =
( τ

Pe

)−1

(η
(1)
T )2 + γ−2(η

(2)
T )2,

ηTE =
∑

E∈Ecw(T )

( τ

Pe
(η

(1)
E )2 + γ2(η

(2)
E )2

)
,

and

ηIA = γ−2(η
(3)
T )2.

Our mesh adaptation strategy utilizes the cycle: Solve–estimate–mark–
refine. The solver step for the Cahn-Hilliard system was addressed in the
preceding sections 2-4. The semi-discrete Navier-Stokes problem results in a
saddle point system and will be solved by a Krylov-subspace method as ex-
plained in section 7 below. The estimation step utilizes the error estimator
derived in section 5. For the marking the following algorithm is employed.

Marking algorithm - bulk criterion.

(i) Fix constants θr and θc in ]0, 1[.

(ii) Find a setMT
h ⊂ T cw such that∑

T∈MT
h

ηT ≥ θr
∑

T∈T cw
ηT .

(iii) Find a setME
h ⊂ T cw such that∑

T∈ME
h

ηTE ≥ θr
∑

T∈T cw
ηTE .

(iv) Find a setMλ
h ⊂ T cw ∩ I(ch) such that∑

T∈Mλ
h

ηIA ≥ θr
∑

T∈T cw∩I(ch)

ηIA.

(v) Mark each T ∈ (ME
h ∪MT

h ∪Mλ
h) ∩ Ah for refinement.

(vi) Find the set CTh ⊂ T cw such that

ηT ≤
θc

NT

∑
T∈T cw

ηT

for each T ∈ CTh . Here and below NT denotes the number of elements of
T cw.
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(vii) Find the set CEh ⊂ T cw such that

ηTE ≤
θc

NT

∑
T∈T cw

ηTE

for each T ∈ CEh .

(viii) Find the set Cλh ⊂ T cw ∩ I(ch) such that

ηIA ≤
θc

NT

∑
T∈T cw∩I(ch)

ηIA

for each T ∈ Cλh ∩ I(ch).

(ix) Mark all T ∈
(
CTh ∪ CEh ∪ Cλh

)
∩ Ah for coarsening.

Note that flagging elements for refinement (resp. coarsening) is done in the
three separate steps (2)-(4) (resp. (5)-(7)). This has the advantage of properly
handling the scaling difference between jump, element and interpolation indi-
cator contributions induced by τ and γ in (5.16). Observe also that the above
strategy does not prevent an element T from getting marked for both refinement
and coarsening. In this case the element T is refined only.

Given a mesh at a current time instance in the context of the time-dependent
Cahn-Hilliard problem, we use the above marking strategy once to produce
a new mesh for the next time step. This yields the following overall mesh
adaptation algorithm.

Mesh adaptation scheme.

1. Determine an initial mesh T cw(0) and an initial concentration ch(0) from
c0. Set i := 0.

2. Denote by ti+1 the current time instance and by T cw(i) the mesh obtained
from the previous time step.

3. Use T cw(i) for solving (4.1)–(4.4) to obtain ch(i + 1) and wh(i + 1) as
solution at the current time step.

4. For each T ∈ T cw(i) calculate the above error indicators ηT , ηTE and ηIA
and use them for refining or coarsening T cw(i) to obtain T cw(i+1).

5. Set i := i+ 1 and go to (2).

In our numerics, this strategy performed well whenever we chose τ sufficiently
small relative to the motion of the interface per time step. For resolving spinodal
decomposition one is advised to choose τ sufficiently small anyway to capture
the rapid dynamics at the beginning of the phase separation process. In our
tests, τ = O(γ2) turned out to be suitable. Clearly, due to the characteristics
of the time evolution in our Cahn-Hilliard/Navier-Stokes system an adaptive
selection of τ or an indicator for performing more than one (spatialy) mesh
adaptation cycle are of interest but go beyond the scope of this work.
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6.2. Numerical realization of the two-mesh-strategy
In order to initialize the overall adaptive procedure (1)–(5) we construct the

meshes T cw(0) and T up starting from a common macro-triangulation T 0 of Ω
for both meshes. The macro mesh is then refined to obtain T cw(0) and T up,
respectively. The mesh T cw(0) may also be adapted to the initial concentration.
The numerical solvers are then employed on the meshes resulting from this
refinement procedur.

The crucial ingredient in the numerical solution of (4.1)–(4.4) is the evalua-
tion of the terms (colduold,∇v) and (c∇w,v) since they contain functions defined
on different meshes. In the following we describe the evaluation of (c∇w,v).
The evaluation of (colduold,∇v) is performed similarly.

We evaluate (c∇w,v) triangle-wise over all triangles of T up. On a triangle
U ∈ T up determine the set of all triangles {Ck}nck=1 ⊂ T cw, nc ∈ N, such that
U∩Ck 6= ∅, and perform the integration on each Ck∩U exactly. The set {Ck}nck=1

can be determined easily by exploiting the fact that T cw and T up stem from
the same macro triangulation T 0.

In this context we invoke the following assumption.

Assumption 6.1. There are no triangles U ∈ T up and C ∈ T cw such that
U ∩ C 6= ∅ but U * C and C * U .

Under this assumption exactly two situations may occur:

• The first case is nc = 1 so that either U = C1 or U ⊂ C1. In both cases
integration can be performed by evaluating c and w at the integration
points of U .

• If nc > 1, then we have U =
⋃nc
k=1 Ck. Exact integration over U is obtained

by integrating exactly over each Ck and summing up for k = 1, . . . , nc.

In Figure 6.1 we show the relation of the locally adapted concentration mesh
and the uniform velocity mesh. As one can see, the mesh for the concentration
is locally finer than the mesh for the flow at the interface and it is locally coarser
in the pure phase (bulk) regions.

We note that Assumption 6.1 is satisfied when longest-edge bisection is
used in the refinement strategy. We also point out that the evaluation of
(colduold,∇v) involves three different meshes, i.e. the meshes for cold,uold and
c, respectively. Among other aspects, this ensures mass-conservation of cold.
The latter could not be guaranteed in general if cold would be extended to the
mesh for c.

7. Numerical Results

In this section we report on the results obtained by our overall adaptive finite
element based solver. All computations were performed on a notebook using
a CPU with 1.6 Ghz and 3 GB RAM. The implementation was done in C++
based in parts on iFEM [14]. The linear systems arising in our semi-smooth
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Figure 6.1: Mesh for the concentration (left plot) and flow together with the corresponding
concentration and flow profile (right plot).

Newton iteration were solved by cholmod [15] and a LDLt decomposition.
Due to our mesh adaptation, utilizing an exact solver turned out to be feasible.
In general, one may replace cholmod by a suitably preconditioned Krylov-
subspace method; see [21] for details. For the numerical solution of the Navier-
Stokes part we used a Schur complement method based on a preconditioned
CG iteration with the preconditioner from [12] and an exact inversion of the
Laplacian using the Cholesky decomposition from cholmod. For fully iterative
solvers we refer to [16, 32].

Concerning the behaviour of our iterative solvers, i.e. the Newton iteration
for solving the Cahn-Hillard equation and the Schur-complement method for
solving the Navier-Stokes system, the Newton iteration shows the typical be-
haviour of an active-set method; see [22]. In fact, after a few iterations with little
progress in the residual reduction at the beginning the active set is very well
approximated and the system is solved to the desired accuracy within one more
iteration step. In total, due to the employed direct solvers for the underlying
linear systems the desired accuracy of

tolSSN = 10−6 + 10−12‖(F (1)(c0, w0), F (2)(c0, w0)‖

is typically reached after two or three Newton steps; except possibly for the
first time instance, where a slightly larger number of Newton iterations might
be required. We also tested the iterative solver proposed in [21] and still do
not need more than 5 Newton steps for solving the Cahn-Hilliard/Navier-Stokes
system for a given time instance to the desired accuracy.

In our settings the temporal changes in pressure and flow-field are rather
small such that the quantities obtained from the old time instance are very good
initial guesses for the Schur complement method. Due to the exact inversion of
the Laplacian and the excellent preconditioner this method typically converges
after very few steps to an absolute residual of tolpcg = 10−10.

16



Test problem: lid driven cavity
The first example, taken from [27], is similar to an experiment shown in [7]

and is used here for validation purposes. We note, however, that in our case
b(c) = 1 for the mobility instead of b(c) = exp(−c2) as proposed in [27].

We set Ω = (0, 1)2, τ = 0.0025, Pe = 200, Re = 500, K = 0.0002 and
γ = 1

120 . The Dirichlet boundary values are given by

g(x) =

{
[x2

1(1− x1)2, 0] if x2 = 1,

[0, 0] else,

and the initial value u0 for the flow is given as the solution to the steady-
state Stokes problem with the boundary value g. The initial value for c is
given as a smoothed out horizontal line at y = 0.5, resulting in c0(x, y) =
tanh(100 · (y − 0.5)); see the left plot in Figure 7.1.

For c and w we use the mesh adaptation rule as described in the previous
section and our initial mesh is constructed using the heuristic for adaptation
as proposed in [27]. The flow velocity is obtained on a fixed mesh with uni-
form mesh size h = 0.02. Except for the mass-lumping discussed earlier, all
integrations are performed exactly. For the adaption we use the parameters
αmin = 5 · 10−6, αmax = 0.01, θr = 0.5 and θc = 0.1.

The numerical results obtained from our solution procedure are shown in
Figure 7.1–7.4. In fact, the Figures 7.1–7.3 present the evolution of the concen-
tration in the left plots (c = 1 in light gray, c = −1 in black and the interfacial
region −1 < c < 1 in between) along with the associated locally adapted meshes
in the right plots. Figure 7.4 displays the velocity profile in Ω at t = 3. Since
the capillarity is very small the flow is nearly constant over the whole simulation
time interval.

In Figure 7.5 we present the distribution of the error indicators ηT , ηTE and
ηIA defined in section 6.1. The darker a triangle, the higher is the corresponding
error indicator. One observes that the errors are primarily concentrated in and
near the inactive set (interfacial region) I(ch) and that the indicator ηIA is
about 104 times ηT and ηTE which justifies the separate handling of ηT , ηTE
and ηIA. Our bulk criterion for adaptation refines the interface and the triangles
around it to the smallest triangle size permitted and coarsens the pure phases.
For obtaining a comparable overall error magnitude when using a uniform mesh
one would need 2 × 105 triangles instead of about 2 × 104 to 4 × 104 triangles
in our case. The number of triangles in the adaptive context depends of course
on the length of the interface, i.e. the longer the interfaces, the more triangles
are to be expected. Concerning the efficiency of our adaptive concept we refer
to the study in [21].

Test problem: spinodal decomposition
In our second example we investigate the spinodal decomposition of a viscous

binary fluid in two space dimensions on the unit square. In this example one
clearly sees the advantages of an adaptation scheme based on error estimates
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Figure 7.1: Concentration c (left) and corresponding mesh (right) at time t = 0.

Figure 7.2: Concentration c (left) and corresponding mesh (right) at time t = 2000τ .

Figure 7.3: Concentration c (left) and corresponding mesh (right) at time t = 45000τ .
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Figure 7.4: Flow profile u at t = 2000τ (left) and a zoom into the moving front (right).

Figure 7.5: Error indicators ηT (left), ηTE (middle) and ηIA (right) for adaptation at time
t = 45000τ .
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Figure 7.6: Concentration c (left) and mesh at t = τ (right).

rather than heuristics. We start the phase separation process with c0 being
white (Gaussian) noise of standard deviation 0.01 and zero mean. We choose
τ = 5 × 10−5, γ = 1/120 and Pe = 1. The flow is initialized by u0 = 0 on a
uniform mesh with h = 0.02. Thus the flow field u is only driven by the interface.
The Reynolds number is chosen to be Re = 1 as is the capillarity K. For the
refinement cycle we use θr = 0.7 and θc = 0.1 together with αmin = 5 × 10−6

and αmax = 0.01.
In Figures 7.6–7.9 we show the numerical results. On the left we show the

concentration variable c where again black represents −1 and white 1. On the
right hand side one finds the meshes produced by our adaptive strategy. As
one would expect, at the beginning of the phase separation we observe a fast
evolution involving rather small-scale structures, which require a large number
of triangles and nodes to be resolved well. Our residual based adaptive concept
is able to cope with this effect and automatically refines to a very fine mesh. In
Figure 7.11, in the left plot we show the evolution of the number of elements over
the time steps (# iteration). We observe that the number of triangles peaks
at the beginning and drops as time evolves. Then, as the phase separation
proceeds the phase structures are coarsening yielding ”pure” phases that can be
resolved with only a few triangles while the interfacial region is still resolved
to the maximum level (finest mesh size) permitted. In the right plot of Figure
7.11 we depict the decrease of the Ginzburg-Landau energy of the Cahn-Hilliard
system over time. Due to the chosen parameters we have a diffusion dominated
regime and thus we see the expected coarsening rate of −1/3; see [11, 34]. Note
that the decrease in the number of elements follows the same rate as the free
energy.

Figure 7.10 exhibits the velocity field and the pressure field at t = 5000τ .
Again black indicates low velocities and pressure, respectively, and white indi-
cates high ones. Note how the pressure decreases in the interface region. For
adapted finite elements for capturing this phenomenon we refer to [33].
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Figure 7.7: Concentration c (left) and mesh at t = 50τ (right).

Figure 7.8: Concentration c (left) and mesh at t = 500τ (right).

Figure 7.9: Concentration c (left) and mesh at t = 5000τ (right).
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Figure 7.10: Velocity field (left) and pressure (right) at t = 5000τ .
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