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Abstract

This note constructs a local generalized finite element basis for elliptic
problems with heterogeneous and highly varying diffusion tensor. The basis
functions are solutions of local problems on vertex patches. The error of
the corresponding generalized finite element method decays exponentially
w.r.t. the number of element layers in the patches. Hence, on a uniform
mesh of size H, patches of diameter log(1/H) are sufficient to preserve the
convergence rates of the classical P1-FEM for the Poisson problem. The
analysis does not rely on regularity of the solution or scale separation in the
coefficient. The result justifies the use of the class of variational multiscale
methods, introduced in [Comput. Methods Appl. Mech. Engrg., 196:2313–
2324, 2007].
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scale method
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1 Introduction
It is well known that classical polynomial based finite element methods might per-
form arbitrarily badly for elliptic problems with strongly heterogeneous and vary-
ing diffusion coefficient, see e.g. [4]. In the present context, the heterogeneities
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and oscillations of the coefficient might appear on several, possibly non-separated,
scales. To overcome the lack of performance in such cases, many methods that are
based on general (non-polynomial) ansatz functions have been developed. Early
work [3, 1], that applies to essentially one dimensional problems has been gener-
alized to the multi-dimensional case in several ways during the last fifteen years,
see e.g. [12, 11]. In these methods the problem is split into a coarse and a (possi-
bly several) fine scales. The fine scale effect on the coarse scale is either computed
numerically or modeled analytically. The resulting modified coarse problem can
then be solved numerically and its solution contains crucial information from the
fine scales. Although many of these approaches show very promising results in
practice, their convergence analysis usually assume certain periodicity and scale
separation of the coefficient.

For problems with general L∞ coefficient, [2] gives error bounds for a gener-
alized finite element method that involves the solutions of local eigenvalue prob-
lems. The construction [6] only depends on the solution of the original problem
on certain subdomains. The size of these subdomains strongly depends on the
mesh size. This is suboptimal with regard to the theoretical statement given in
[10], that is, for any shape regular mesh of size H there exist O

((
log(1/H)

)d+1
)

local (non-polynomial) basis functions per nodal point such that the error of the
corresponding Galerkin solution uH satisfies the estimate ‖u − uH‖H1(Ω) ≤ C f H
with a constant C f that depends on f and the global bounds of the diffusion coef-
ficient but not on its variations. However, the derivation is not constructive in the
sense that it involves the solution of the (global) original problem with specific
right hand sides.

In this paper, we show that such a basis can indeed be constructed by solving
only local problems on element patches. We use the modified nodal basis pre-
sented in [14] and prove that these basis functions decay exponentially away from
the node they are associated with. This exponential decay justifies an approxima-
tion on localized patches.

The precise setting of the paper is as follows. Let Ω ⊂ Rd be a bounded polyg-
onal Lipschitz domain and let the diffusion matrix A ∈ L∞

(
Ω,Rd×d

sym

)
be uniformly

elliptic:

0 < α(A,Ω) := ess inf
x∈Ω

inf
v∈Rd\{0}

〈A(x)v, v〉
〈v, v〉

,

∞ > β(A,Ω) := ess sup
x∈Ω

sup
v∈Rd\{0}

〈A(x)v, v〉
〈v, v〉

.

(1)

For given f ∈ L2(Ω), we seek u ∈ V := H1
0(Ω) such that

a (u, v) :=
∫

Ω

〈A∇u,∇v〉 dx =

∫
Ω

f v dx =: F(v) for all v ∈ V. (2)
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The bilinear form a is symmetric, coercive, bounded, and hence, (2) has a unique
solution.

The main result of this paper shows that the error u − ums
H of the generalized

finite element method, which is based on our modified (local) basis functions
mentioned above, is bounded as follows (cf. Theorem 5)

‖A1/2∇(u − ums
H )‖ ≤ C f (H + γk);

H being the mesh size of the underlying coarse finite element mesh, k referring
to the number of element layers that form the support of the of the localized basis
functions, and γ < 1. Moreover, this result is stable with respect to perturbations
arising from the discretization of the local problems. These results give a theoret-
ical foundation for numerous previous experiments where the exponential decay
of the modified basis has been noticed, see e.g. [17].

The outline of the paper is as follows. In Section 2, we derive a set of local
basis functions and define the corresponding multiscale finite element method.
The error analysis is done in Section 3. Section 4 is devoted to the discretization
of the local problems and Section 5 discusses application of this theory to several
state-of-the-art multiscale finite element methods.

2 Local Basis
This section designs a set of local basis functions for the multiscale problem under
consideration. The construction is based on a regular (in the sense of [8]) finite
element mesh T of Ω into closed triangles (d = 2) or tetrahedra (d = 3). Sub-
section 2.1 recalls the classical nodal basis with respect to T and motivates its
lack of approximation properties. Subsection 2.2 defines a modified (coefficient
dependent) nodal basis and analyzes its approximation properties. This basis is
localized in Subsection 2.3.

2.1 Classical Nodal Basis
Let H : Ω → R>0 denote the T -piecewise constant mesh size function with
H|T = diam(T ) for all T ∈ T . The mesh size might vary in space. In practical
applications, the mesh T (resp. its size H) shall be determined by the accuracy
which is desired or the computational capacity that is available but not by the
scales of the coefficient.

The classical (conforming) P1 finite element space is given by

S H := {v ∈ C0(Ω) | ∀T ∈ T , v|T is a polynomial of total degree ≤ 1}. (3.a)
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Let VH := S H ∩ V denote the space of finite element functions that match the ho-
mogeneous Dirichlet boundary condition. LetN denote the set of interior vertices
of T . For every vertex x ∈ N , let λx ∈ S H denote the corresponding nodal basis
function (tent function), i.e.,

λx(x) = 1 and λx(y) = 0 for all y , x ∈ N .

These nodal basis functions form a basis of VH. The availability of such a local
basis is a key property of any finite element method and ensures that the resulting
linear system is sparse.

The (unique) Galerkin approximation uH ∈ VH satisfies

a(uH, v) = F(v) for all v ∈ VH. (3.b)

The above method (3) is optimal with respect to the energy norm ‖| · ‖| := ‖| · ‖|Ω :=
‖A1/2∇ · ‖L2(Ω) on V which is induced by a. It holds

‖|u − uH‖| = min
vH∈VH

‖|u − vH‖|. (4)

Assuming that the solution u is smooth, the combination of (4) and standard in-
terpolation error estimates yields the standard a priori error estimate

‖|u − uH‖| ≤ C‖H‖L∞(Ω)‖∇
2u‖L2(Ω).

This estimate states linear convergence of the classical finite element method (3)
as the maximal mesh width tends to zero. However, the regularity assumption is
not realistic for the problem class under consideration. Moreover, even if the co-
efficient is smooth, it might oscillate rapidly, say at frequency ε−1 for some small
parameter ε. In such a situation the asymptotic result is useless, because∇2u might
oscillate at the same scale, a fact, which is hidden in the constant ‖∇2u‖L2(Ω) ≈ ε

−1.
Unless H . ε, the above finite element space is unable to capture the behavior of
the solution neither on the microscopic nor on the macroscopic level. In what
follows, we present a modification of this method that resolves this issue.

2.2 Multiscale Splitting and Modified Nodal Basis
Let IT : V → VH denote the Clément interpolation operator [9, 19]. Then the
space

V f := {v ∈ V | IT v = 0}

represents the microscopic features of V that are not captured by VH. For v ∈ VH

define Fv by
a(Fv,w) = a(v,w) for all w ∈ V f .
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The finescale projection operator F : VH → V f leads to an orthogonal splitting

V = Vms
H ⊥a V f with Vms

H := (VH − FVH).

Hence, every function u ∈ V can be split into ums
H ∈ Vms

H and uf ∈ V f , u = ums
H + uf,

with a(ums
H , u

f) = 0. Since dim Vms
H = dim VH, the space Vms

H can be regarded as
a modified coarse space. The corresponding Galerkin approximation ums

H ∈ Vms
H

satisfies
a(ums

H , v) = F(v) for all v ∈ Vms
H . (5)

The error (u − ums
H ) of the above method (5) is analyzed in Section 3.1.

The image of the nodal basis function λx under the fine scale projection F is
denoted by φx = Fλx ∈ V f , i.e., φx satisfies the corrector problem

a(φx,w) = a(λx,w) for all w ∈ V f . (6)

Hence, a basis of Vms
H is given by the modified nodal basis

{λx − φx | x ∈ N ∩Ω}. (7)

In general, the corrections φx of nodal basis functions λx, x ∈ N have global
support. Hence, the modified basis (7) and the corresponding method (5) is of
limited use in practice.

2.3 Localization
In this section, we will show that the correction φx decays exponentially fast away
from x and that a simple truncation leads to localized basis functions with good
approximation properties.

Let k ∈ N. Define nodal patches of k-th order ωk
x around x ∈ N by

ωx,1 := int (∪ {T ∈ T | x ∈ T }) ,
ωx,k := int

(
∪

{
T ∈ T | T ∩ ωx,k−1 , ∅

})
, k = 2, 3, 4 . . . .

(8)

Then, the solutions φx,k ∈ V f(ωx,k) := V f ∩ H1
0(ωx,k) of

a(φx,k,w) = a(λx,w) for all w ∈ V f(ωx,k), (9)

are approximations of φx from (6) which have local supports. By extending φx,k

by zero in Ω \ ωx,k we have that φx,k ∈ V f.
We define localized multiscale finite element spaces

Vms
H,k = span{λx − φx,k | x ∈ N}. (10.a)

5



The corresponding multiscale approximation of (2) reads: Find ums
H,k ∈ Vms

H,k such
that

a(ums
H,k, v) = F(v) for all v ∈ Vms

H,k. (10.b)

Note that dim Vms
H,k = |N| = dim VH, i.e., the number of degrees of freedom of

the proposed method (10) is the same as for the classical method (3). The basis
functions of the multiscale method have local support. The overlap is proportional
to the parameter k. The error analysis of Section 3.2 suggests to choose k ≈ log 1

H .

Remark 1 The localized modified basis functions could be localized further to
vertex patches ωx, x ∈ N , by simply multiplying them with the classical nodal
basis functions. This procedure leads to O

((
log(1/H)

)d
)

local basis functions per
vertex which span a generalized finite element space with similar approximation
properties as Vms

H,k [5].

3 Error Analysis
This section analyzes the proposed multiscale method in three steps. First, Sub-
section 3.1 presents an error bound for the idealized method (5). Then, Subsection
3.2 bounds the error of truncation to local patches and proves the main result, that
is, an error bound for the multiscale method (10).

As usual, the error analysis depends on the constant ρ > 0 which represents
shape regularity of the finite element mesh T ;

ρ := max
T∈T

ρT with ρT :=
diam BT

diam T
for T ∈ T , (11)

where BT denotes the largest ball contained in T . In addition, a moderate depen-
dence on the ratio CH := ‖H‖L∞(Ω)‖H−1‖L∞(Ω) appears. However, its influence on
the total error can be controlled by the localization parameter k.

3.1 Discretization Error
Lemma 2 Let u ∈ V solve (2) and ums

H ∈ Vms
H solve (5). Then it holds

‖|u − ums
H ‖| ≤ CITα

−1‖H f ‖L2(Ω).

Proof. Recall the (local) approximation and stability properties of the interpola-
tion operator IT [20, 7]: There exists a generic (computable) constant CIT which
only depends on ρT but not on diam T such that for all k,m ∈ N with 0 ≤ k ≤ m
and for all v ∈ Hm(Ω) and for all T ∈ T it holds

‖∇k(v − IT v)‖L2(T ) ≤ CIT (diam T )m−k‖∇mv‖L2(ωT ) (12)
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with ωT := ∪{K ∈ T | T ∩ K , ∅}.
Due to the splitting from Section 2.2, it holds u − ums

H = uf . Since ITuf = 0,
the estimate (12) and the finite overlap of the patches ωT conclude the proof,

‖|uf‖|2 = F(uf) ≤
∑
T∈T

‖ f ‖L2(T )‖uf − ITuf‖L2(T ) ≤ CITα
−1‖H f ‖L2(Ω)‖|uf‖|.

3.2 Error of Localized Multiscale FEM
First, we estimate the error due to truncation to local patches.

Lemma 3 For all x ∈ N , k ≥ 2 ∈ N, and ` ∈ N>1, the estimate

‖|φx − φx,`k‖| ≤ C2

(C1

`

) k−1
2

‖|φx‖|ωx,`

holds with constants C1,C2 that only depend on ρ but not on x, k, `, or H.

Proof. Let x ∈ N and k ≥ 2, ` ∈ N. Observe that

‖|φx − φx,`k‖|
2 = ‖|φx − φx,`k‖|

2
ωx,`k

+ ‖|φx‖|
2
Ω\ωx,`k

.

The function φx − φx,`k is an element of the linear space X := {φ ∈ V f | ∀ψ ∈
V f(ωx,`k), a(φ, ψ) = 0}; its trace (φx − φx,`k)|ωx,`k belongs to the linear space Y :=
{g ∈ L2(∂ωx,`k) | ∃φ ∈ X : φ|∂ωx,`k = g in the sense of traces}. The trace operator
·|∂ωx,`k is a continuous linear mapping from the Banach space (X, ‖| · ‖|ωx,`k) onto the
Banach space (Y, ‖ · ‖L2(∂ωx,`k)). Given any φ ∈ X, observe that ‖φ|∂ωx,`k‖L2(∂ωx,`k) =

0 implies ‖φ|∂ωx,`k‖H
1
2 (∂ωx,`k)

= 0 and, hence, ‖|φ‖|ωx,`k = 0. Therefore, the trace
operator is a bijection between X and Y and, by the inverse mapping theorem, its
inverse is bounded, i.e., there is a constant C′2 such that

‖|φ‖|ωx,`k ≤ C′2 diam(ωx,`k)−
1
2 ‖φ‖L2(∂ωx,`k) for all φ ∈ X.

A scaling argument shows that C′2 does not depend on diam(ωx,`k). Since φx,`k|∂ωx,`k =

0, this yields

‖|φx − φx,`k‖|ωx,`k ≤ C′2 diam(ωx,`k)−
1
2 ‖φx‖L2(∂ωx,`k).

The trace theorem for H1-functions on simplices [7, Remark 4.1], together
with ITφx = 0 and (12), shows that

C′2 diam(ωx,`k)−
1
2 ‖φx‖L2(∂ωx,`k) ≤ C2‖|φx‖|Ω\ωx,`k
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holds with a constant C2 that does not depend on the diameter of ωx,`k. Thus,

‖|φx − φx,`k‖| ≤ C2‖|φx‖|Ω\ωx,`k . (13)

Further estimation of the right hand side in (13) is possible using cutoff func-
tions η j : Ω→ [0, 1] ∈ V , j = 2, 3, . . . , k with

(η j)|ωx,`( j−1)+1 = 0, (14.a)
(η j)|Ω\ωx,` j = 1, (14.b)

∀T ∈ T , ‖∇η j‖L∞(T ) ≤ Cη`
−1 diam(T )−1. (14.c)

For example, one might choose η j ∈ S H with nodal values

η j(x) = 0 for all x ∈ N ∩ ωx,`( j−1)+1,

η j(x) = 1 for all x ∈ N ∩
(
Ω \ ωx,` j

)
, and

η j(x) =
m

` − 1
for all x ∈ N ∩ ∂ωx,`( j−1)+1+m, m = 0, 1, 2, . . . , ` − 1.

With the above choice, (14.c) holds with a constant Cη that only depends on ρ.
Since | supp(∇λx) ∩ supp(ηk)| = 0 and supp(∇ηk) = ωx,k` \ ωx,(k−1)`+1 we have

‖A1/2∇φx‖
2
L2(Ω\ωx,`k) ≤ ‖A

1/2ηk∇φx‖
2
L2(Ω)

=

∫
Ω

〈
A∇φx,∇(η2

kφx)
〉

dx − 2
∫

Ω

ηkφx 〈A∇φx,∇ηk〉 dx

=

∫
Ω

〈
A∇λx,∇(η2

kφx)
〉

dx − 2
∫

Ω

ηkφx 〈A∇φx,∇ηk〉 dx

≤ 2
∑

T∈T : T⊂ωx,k`\ωx,(k−1)`+1

‖∇ηk‖L∞(T )‖A1/2∇φx‖L2(T )‖A1/2φx‖L2(T ).

The property (14.c) of the cutoff function and the upper bound of the interpolation
error (12) yield

‖A1/2∇φx‖
2
L2(Ω\ωx,`k) ≤ C1`

−1‖A1/2∇φx‖
2
L2(Ω\ωx,(k−1)`)

, (15)

where C1 := 2CIT
√

CACη with CA := maxT∈T
β(A,T )
α(A,T ) . For j = k, k − 1, . . . , 2, a

similar argument (with ηk replaced by η j) yields

‖A1/2∇φx‖
2
L2(Ω\ωx,( j−1)`)

≤ C1`
−1‖A1/2∇φx‖

2
L2(Ω\ωx,( j−2)`)

. (16)

Starting from (15), the successive application of (16) for j = k, k − 1, k − 2, . . . , 2
proves

‖A1/2∇φx‖
2
L2(Ω\ωx,`k) ≤ (C1`

−1)k−1‖A1/2∇φx‖
2
L2(ωx,`)

. (17)

Combining (13) and (17), we finally obtain the assertion.
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Lemma 4 There is a constant C3 depending only on ρ, CH, and β/α, but not on
|N|, k, or ` such that,∥∥∥∥∥∣∣∣∣∣∑

x∈N

v(x)(φx − φx,`k)
∣∣∣∣∣∥∥∥∥∥2

≤ C2
3(`k)d

∑
x∈N

v2(x)‖|φx − φx,`k‖|
2,

Proof. There exists continuous functions ζx : Ω→ [0, 1] such that,

(ζx)|ωx,`l = 1, (ζx)|Ω\ωx,`k+1 = 0,

‖∇ζx‖L∞(T ) ≤
C′

diam(T )
for some constant C′, and

∀v ∈ V f , ζxv ∈ V f .

We note that a(φx, (1−ζx)v) = 0 for all v ∈ V f . Furthermore also a(φx,`k, (1−ζx)v) =

0 for all v ∈ V f since the functions support are disjoint. We get,∥∥∥∥∥∣∣∣∣∣∑
x∈N

v(x) (φx − φx,`k)
∣∣∣∣∣∥∥∥∥∥2

=
∑
x∈N

v(x) a(φx − φx,`k,
∑
y∈N

v(y)(φy − φy,`k))

=
∑
x∈N

v(x) a(φx − φx,`k, ζx

∑
y∈N

v(y)(φy − φy,`k))

≤
∑
x∈N

v(x) ‖|φx − φx,`k‖| ·

∥∥∥∥∥∣∣∣∣∣ζx

∑
y∈N

v(y)(φy − φy,`k)
∣∣∣∣∣∥∥∥∥∥

≤
∑
x∈N

v(x) ‖|φx − φx,`k‖| · β
1/2

∥∥∥∥∥(∇ζx)(1 − IT )
∑
y∈N

v(y)(φy − φy,`k)
∥∥∥∥∥

L2(ωx,`k+1)

+
∑
x∈N

v(x) ‖|φx − φx,`k‖| ·

∥∥∥∥∥∣∣∣∣∣∑
y∈N

v(y)(φy − φy,`k)
∣∣∣∣∣∥∥∥∥∥
ωx,`k+1

≤ C′′
∑
x∈N

v(x) ‖|φx − φx,`k‖| ·

∥∥∥∥∥∣∣∣∣∣∑
y∈N

v(y)(φy − φy,`k)
∣∣∣∣∣∥∥∥∥∥
ωx,`k+2

≤ C′′
∑

x∈N

v2(x)‖|φx − φx,`k‖|
2

1/2 ∑
x∈N

∥∥∥∥∥∣∣∣∣∣∑
y∈N

v(y)(φy − φy,`k)
∣∣∣∣∣∥∥∥∥∥2

ωx,`k+2


1/2

≤ C3(`k)d/2

∑
x∈N

v2(x)‖|φx − φx,`k‖|
2

1/2 ∥∥∥∥∥∣∣∣∣∣∑
x∈N

v(x)(φx − φx,`k)
∣∣∣∣∣∥∥∥∥∥,

where C3 depends on C′, CH, CIT , and β/α. The result follows by dividing by
‖|

∑
x∈N v(x)(φx − φx,`k)‖| on both sides.
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Theorem 5 Let u ∈ V solve (2) and, given k ≥ 2, ` ∈ N, let uH,`k ∈ Vms
H,`k solve

(10). Then

‖|u − uH,`k‖| ≤ C4

(
`
√

k
)d

(C1/`)
k−1

2 ‖ f ‖L2(Ω) + CITα
−1‖H f ‖L2(Ω).

holds with C1 from Lemma 3 and a constant C4 that depends on CH, β/α, and ρ
but not on H, k, `, f , or u.

Proof. Let ũms
H,`k :=

∑
x∈N ums

H (x)
(
λx − φx,`k

)
, where ums

H (x), x ∈ N , are the coeffi-
cients in the basis representation of ums

H . Due to Galerkin orthogonality, Lemma
2, Lemma 4, and the triangle inequality,

‖|u − ums
H,`k‖|

2 ≤ ‖|u − ũms
H,`k‖|

2 = ‖|u − ums
H + ums

H − ũms
H,`k‖|

2

≤ C2
IT
α−2‖H f ‖2L2(Ω) + C3(`k)d

∑
x∈N

ums
H (x)2‖|φx − φx,`k‖|

2. (18)

The application of Lemma 3 yields∑
x∈N

ums
H (x)2‖|φx − φx,`k‖|

2 ≤ C2
2(C1/`)k−1

∑
x∈N

ums
H (x)2‖|φx‖|

2
ωx,`
.

Observe that, ‖|
∑

y∈N∩ωx,`
ums

H (y)φy‖|ωx,L` = 0 implies that
∑

y∈N∩ωx,`
ums

H (y)φy is con-
stant on ωx,`. Hence,

∑
y∈N∩ωx,L`

ums
H (y)φy = IT

(∑
y∈N∩ωx,`

ums
H (y)φy

)
= 0 and there

exists a constant C′4 such that∑
y∈N∩ωx,`

ums
H (y)2‖|φy‖|

2
ωx,`
≤ C′4

∥∥∥∥∥∣∣∣∣∣ ∑
y∈N∩ωx,`

ums
H (y)φy

∣∣∣∣∣∥∥∥∥∥2

ωx`

.

The constant C′4 might depend on the shape regularity of T but a scaling argument
shows that C′4 does not depend on the mesh size H and the parameter `. Hence,∑

x∈N

ums
H (x)2‖|φx‖|

2
ωx,`
≤

∑
x∈N

∑
y∈N∩ωx,`

ums
H (y)2‖|φy‖|

2
ωx,`

≤ C′4
∑
x∈N

∥∥∥∥∥∣∣∣∣∣ ∑
y∈N∩ωx,`

ums
H (y)φy

∣∣∣∣∣∥∥∥∥∥2

ωx,`

≤ C
′′

4 (`)d‖|ums
H ‖|

2.

The constant C
′′

4 depends only on C′4 and CH. This yields

‖|ums
H − ums

H,`k‖| ≤ C4(`2k)d/2(C1/`)(k−1)/2‖|ums
H ‖|

≤ C4α
−1(`2k)d/2(C1/`)(k−1)/2‖ f ‖L2(Ω),

(19)

where C4 only depends on C2, C3, and C
′′

4 . The assertion follows readily be com-
bining (18) and (19).
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4 Discretization of the Fine Scale Computations
We have not yet mentioned anything on how the local basis functions will be
computed. There is a lot of freedom in choosing different finite elements and and
different refinement strategies, see e.g. [14, 15]. We will here focus on a very
simple and natural approach, also considered in [16]. We assume that the local
basis functions are computed using subgrids of a fine scale reference mesh, which
is a (possibly space adaptive) refinement of the coarse grid T .

We letTh be the result of one or several (conforming but possibly non-uniform)
refinements of the coarse mesh T . We introduce h : Ω→ R>0 as the Th-piecewise
constant mesh width function with h|T = diam(T ) for all T ∈ Th. We construct
the finite element space

S h := {v ∈ C0(Ω) | ∀T ∈ T (Ω), v|T is a polynomial of total degree ≤ p}.

We let uh ∈ S h ∩ H1
0(Ω) be the reference solution solving,

a(uh, v) = F(v) for all v ∈ S h ∩ H1
0(Ω).

Locally on each patch we let Vh,x(ωx,k) = S h ∩ H1
0(ωx,k) and furthermore,

V f
h,x(ωx,k) = {v ∈ Vh,x | IT v = 0}. (20)

We now define the numerical approximation of φh
x,k in the following way: find

φh
x,k ∈ V f

h,x(ωx,k) such that,

a(φh
x,k,w) = a(λx,w) for all w ∈ V f

h,x(ωx,k).

We denote the discrete multiscale finite element space

Vms,h
H,k = span{λx − φ

h
x,k | x ∈ N}.

The corresponding discrete multiscale approximation is given by: find ums,h
H,k ∈

Vms,h
H,k such that

a(ums,h
H,k , v) = F(v) for all v ∈ Vms,h

H,k . (21)

Theorem 6 Let u ∈ V solve (2) and let ums,h
H,`k ∈ Vms,h

H,k solve (21). Then

‖|u − ums,h
H,`k‖| ≤ C4

(
`
√

k
)d

(C1/`)
k−1

2 ‖ f ‖L2(Ω) + CITα
−1‖H f ‖L2(Ω) + ‖|u − uh‖|.

11



Proof. We let ‖|u−ums,h
H,`k‖| ≤ ‖|u−uh‖|+‖|uh−ums,h

H,`k‖|. The estimation of ‖|uh−ums,h
H,`k‖|

is almost verbatim the same as in the proof of Theorem 5 with V := S h ∩ H1
0(Ω).

The are only two minor issues.
First, the proof of Lemma 3 requires η2

jφx ∈ S h ∩ V f which requires a suit-
able choice of the cut-off function η j. If η̃ j is any cut-off function that satisfies
(14), then η2

j can be defined as the S h-piecewise rational function φx/ITh

(
η̃2

jφx

)
.

Straight forward computations show that η j satisfies (14). The fact that its defini-
tion depends on φx does not create additional difficulties.

Second, in Lemma 4 we need that ζxv f , with v f ∈ S h∩V f , stays in the the space
S h ∩ V f . We accomplish this by replacing ζxv f with (1 − IT )ITh(ζxv f ) ∈ S h ∩ V f .
The argument then follows because IT and ITh are both stable in H1.

Remark 7 The third part in the error bound in Theorem 6 can be bounded in
terms of data, mesh parameter h, and polynomial degree p using standard a priori
error estimates available for all properly analyzed finite element methods.

Remark 8 The local problems need to be solved in the spaces V f
h,x(ωx,k). This is a

standard finite element space with the additional constraint that the trail and test
functions should have no component in VH. In practice this constraint is realized
using Lagrange multipliers.

The resulting coarse scale system of equations is of the same size as the orig-
inal problem, dim(Vms,h

H,k ) = VH and it is still sparse. The number of non-zero
entries will be larger and depend on k. Note however that the non-zero entries in
the stiffness matrix decay exponentially away from the diagonal.

5 Application to Multiscale Methods
Several multiscale methods for solving elliptic partial differential equations with
heterogeneous coefficients have been developed during the last 15 years.

5.1 The Variational Multiscale Method
The variational multiscale method was first introduced in [12]. The function space
V is here split into a coarse part (standard finite element space on a coarse mesh),
in our case VH, and a fine part, in our case V f . The weak form is then also decou-
pled into a coarse and a fine part. The method reads: find ū ∈ S H and u′ ∈ V f such
that,

a(ū, v̄) + a(u′, v̄) = F(v̄) for all v̄ ∈ VH,

a(u′, v′) = F(v′) − a(ū, v′) for all v′ ∈ V f.

12



The fine scale solution is further decoupled over the coarse elements T ∈ T and
approximated using analytical techniques. Note that the fine scale solution u′ is
an affine map of the coarse scale solution ū. If we let u′ ≈ Mū + m and plug this
in to the method we get a coarse stiffness matrix of the form a(v̄ + Mv̄, w̄) i.e. a
non-symmetric bilinear form for a symmetrical problem.

5.2 The Multiscale Finite Element Method
In [11] the multiscale finite element method was first introduced. Here modified
multiscale basis functions are computed numerically on sub-grids on each coarse
element individually. The basis functions fulfill the equations, find φx,T ∈ H1

0(T )

a(λx − φx,T , v) = 0 for all v ∈ H1
0(T ) and for all T ∈ T .

Here homogeneous Dirichlet boundary conditions are used on the boundary of
each element T i.e. the local problems are totally decoupled. To get a more accu-
rate method one can improve the boundary conditions using information from the
data A. A larger domain can also be considered (this procedure is often referred to
as over-sampling), see e.g. [11]. Note that since the coarse scale basis functions
are modified (both trail and test space) the resulting method is symmetric.

5.3 The Proposed Method
The modified basis function construction given by equation (6-7) was first intro-
duced in a variational multiscale framework in [13, 14]. It has also been used to
modify basis functions in the spirit of the multiscale finite element method, see
e.g. [17]. The exponential decay in terms of layers of coarse elements have been
demonstrated numerically in several works, see e.g. [15, 17, 16]. From these pa-
pers it is clear that l = 1 or at most l = 2 in Theorem 5 is sufficient to get decay
for all problems we have considered, i.e. C1 < 2. The first paper where the expo-
nential decay was analyzed is [16]. Here the theory of iterative solvers was used
to show convergence to a discrete reference solution.

The proposed method has been extended to convection dominated problems
and problems in mixed form [17] as well as time dependent problems [18]. A
posteriori error bounds have been derived and adaptive algorithms designed where
a local mesh and patch size are chosen automatically in order to reduce the error.

5.4 Application of the Presented Analysis
The convergence proof in this paper generalizes the results of [16] and gives a
valid bound also as h → 0 independent of the patch size. The proof does not rest
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on regularity of the solution and gives a very explicit expression for the rate of
convergence. The present analysis confirms the numerical results in [15, 17, 16]
and gives together with [16] the method the solid theoretical foundation that has
previously been missing. The analysis also justifies using the a posteriori error
bounds for adaptivity [14, 17] since we can now prove that the quantities measured
on the patch boundary decays exponentially in the number of coarse layers.

For the variational multiscale method this result says that it is important to
allow larger subgrid patches than just one coarse element. This will result in over-
lap but the local problems are totally decoupled and we have in previous works
demonstrated how adaptivity can be used to only solve local problems where it is
needed, see e.g. [14, 17]. For the multiscale finite element method the analysis
is not directly applicable since the fine scale space V f is not used. It is the decay
in this space which we have proven to be exponential (in number of coarse layers
of elements in the subgrid). If this decay is not present inhomogeneous boundary
conditions are instead needed for the subgrid problems. To our knowledge only
very special cases, e.g. periodic coefficients, can then be analyzed.
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[5] I. Babuška and J. M. Melenk. The partition of unity method. International
Journal of Numerical Methods in Engineering, 40:727–758, 1996.

[6] L. Berlyand and H. Owhadi. Flux norm approach to finite dimensional ho-
mogenization approximations with non-separated scales and high contrast.
Arch. Ration. Mech. Anal., 198(2):677–721, 2010.

[7] C. Carstensen and S. A. Funken. Constants in Clément-interpolation error
and residual based a posteriori error estimates in finite element methods.
East-West J. Numer. Math., 8(3):153–175, 2000.

14



[8] P. Ciarlet. The finite element method for elliptic problems. North-Holland,
1987.

[9] P. Clément. Approximation by finite element functions using local regular-
ization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér.
RAIRO Analyse Numérique, 9(R-2):77–84, 1975.

[10] L. Grasedyck, I. Greff, and S. Sauter. The AL Basis for the Solution of
Elliptic Problems in Heterogeneous Media. Technical report, Institut für
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