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Abstract. The well-known Kalman-Yakubovich-Popov Lemma establishes an equivalence between
dissipativity and the solvability of a linear matrix inequality, see [25]. In this paper we strengthen this result
by showing the equivalence of dissipativity to the solvability of a so-called Lur’e equation, which mainly is a
linear matrix inequality with a rank minimizing condition. Finally, we apply the result to standard systems
to obtain the well-known result about the solvability of the algebraic Riccati equation.

1. Introduction. The importance of the algebraic Riccati equation in control theory
is widely accepted [26]. However, in its original form, the algebraic Riccati equation is only
applicable to standard system, i.e., to systems of the form

Eẋ(t) = Ax(t) +Bu(t), (1.1)

where E = I is the identity matrix, A ∈ Cn,n, B ∈ Cn,m, x(t) ∈ Cn is the state, and
u(t) ∈ Cm is the input. A generalization of the algebraic Riccati equation to descriptor
systems, i.e., to systems of the form (1.1), where E ̸= I is not necessarily the identity, is
considered in [16]. A drawback of the results in [16, 26] is that one has to assume regular
cost/supply functions, i.e., one has to assume that the cost/supply function

s(u(t), x(t)) :=

[
x(t)
u(t)

]∗ [
Q S
S∗ R

] [
x(t)
u(t)

]
,

(with Q = Q∗ ∈ Cn,n, S ∈ Cn,m, and R = R∗ ∈ Cm,m) satisfies the property that R is
invertible. Avoiding this assumption leads to the Lur’e equation, for the case of standard
systems, see [21].

In this paper we will generalize these results to behavioral system, cf. [29, 30, 31], which
will be introduced in Definition 1.2. The advantage of a behavioral approach to this topic
is that it incorporates systems of the form (1.1) as a special case, while at the same time
the results get simpler and one does not have to determine a-priori which of the variables
in (1.1) are inputs u or states x. Also, many systems seem to be described in a behavioral
way most naturally [32], especially electrical RLC circuits [33].

Example 1.1. Consider the following diagram of an electrical RLC circuit, which is
taken from [8].

Fig. 1.1. The simple RLC circuit from [8].
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By V (t) and I(t) we denote the voltage and current, resp., at time t through the source
on the left. R denotes the resistance, L the inductance, and C denotes the capacity. Since
the whole circuit consists of only one loop, i.e., since all electrical elements in the circuit are
in series, the current through each element is equal to I(t) because of Kirchhoff’s current law.
However, the voltages across the individual elements may vary. Let vR(t), vL(t), and vC(t)
denote the voltages across the corresponding elements at time t. Then with the definitions

F :=


L 0 0 0 0
0 0 C 0 0
0 0 0 0 0
0 0 0 0 0

 , G :=


0 −1 0 0 0
−1 0 0 0 0
R 0 0 −1 0
0 −1 −1 −1 1

 , z :=


I
vL
vC
vR
V


the equations which describe the electrical behavior of the circuit in Fig. 1.1 can be written
as

F ż(t) +Gz(t) = 0, (1.2)

see [8]. With this notation and the definition

H :=
1

2


0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0


the power supplied to the system (1.2) via the the port indicated by the dashed line is measured
via the quadratic function s, which is called the supply function, given by

s(z(t)) := z∗(t)Hz(t) = V (t)I(t). (1.3)

We use the following notation. By Cq
∞ we denote the infinitely often differentiable

functions, mapping from R to Cq. By Cq
+ we denote the decaying elements of Cq

∞, i.e.,
all z ∈ Cq

∞ such that for every i ∈ N0 there exist ai, bi > 0 such that the inequality
∥z(t)∥ ≤ bie

−ait holds for all t ∈ [0,∞). By Cq
c we denote all elements of Cq

∞, which
have compact support, i.e., which vanish outside of a bounded interval. We use C∞, C+,
and Cc as abbreviations for C1

∞, C1
+, and C1

c , resp. Furthermore, by C[λ] we denote the
polynomials with coefficients in C, and by C(λ) we denote the associated quotient field, i.e.,
the rational functions. We use the symbol C[λ]p,q to denote the p-by-q polynomial matrices
and the symbol C(λ)p,q to denote the p-by-q rational matrices. For P ∈ C[λ]p,q of the form

P (λ) =
∑K

i=0 λ
iPi, with Pi ∈ Cp,q for i = 0, . . . ,K and PK ̸= 0 we call K the degree or

order of P and we will use the symbol rankC(λ) (P ) to denote the so-called normal rank,
i.e., the rank of P over the field of the rational functions. In contrast to this, for λ0 ∈ C
the expression rank (P (λ0)) denotes the rank of the matrix P (λ0) ∈ Cp,q in the usual sense.
Using the Smith canonical form [9, p. 141, Theorem 3] one can show that

rankC(λ) (P ) = max
λ0∈C

rank (P (λ0)) . (1.4)

We will call λ0 ∈ C a zero of P , if rank (P (λ0)) < rankC(λ) (P ) and the set of all zeros of P
will be denoted by Z (P ). For a polynomial matrix P ∈ C[λ]p,q we define the para-conjugate
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transposed P∼ ∈ C[λ]q,p via P∼(λ) := P ∗(−λ) and a matrix N ∈ C[λ]k,k is called para-
Hermitian if N = N∼, cf. [35]. By C− we denote the strict left half plane of the complex
numbers and by C− the closed left half plane. We use ı to denote the imaginary unit.

In behavioral systems theory a system is usually viewed as a subset B, called the
behavior, of some superset U , called the universe, see [31]. Since in this paper we will only
deal with linear, time-invariant, first-order system we only consider universes of the form
U = Cq

∞ and make the following definition.
Definition 1.2. [18] Let P (λ) := λF +G ∈ C[λ]p,q be a first-order polynomial matrix.

Then the set

B(λF +G) :=
{
z ∈ Cq

∞
∣∣P (

d
dt

)
z = 0

}
= kernelC∞

(
P
(

d
dt

))
is called the behavior of λF +G,

B+(λF +G) :=
{
z ∈ Cq

+

∣∣P (
d
dt

)
z = 0

}
= kernelC+

(
P
(

d
dt

))
is called the decaying behavior of λF +G, and

Bc(λF +G) :=
{
z ∈ Cq

c

∣∣P (
d
dt

)
z = 0

}
= kernelCc

(
P
(

d
dt

))
is called the compact behavior of λF +G. The elements of B(λF +G), B+(λF +G), and
Bc(λF +G) are called (decaying/compact) trajectories of the system.

Let H = H∗ ∈ Cq,q be a Hermitian matrix. Then we measure the power supplied to
the system along the trajectory z ∈ B(λF +G) at the time point t ∈ R via the expression
z∗(t)Hz(t). Consequently, the amount of energy supplied to a system over a time interval
[t0, t1] is then measured by ∫ t1

t0

z∗(t)Hz(t)dt. (1.5)

If the expression in (1.5) becomes negative, then we say that energy is extracted from the
system, otherwise we say that energy is supplied. Of special physical interest are systems
which do not generate energy, i.e., systems from which one can never extract more energy
than the amount that has been supplied to it. This is formalized in the following definition.

Definition 1.3. [27, 28] Let λF +G ∈ C[λ]p,q be a first-order polynomial matrix and
let H = H∗ ∈ Cq,q be Hermitian. Then we say that (λF +G,H) is dissipative if there exists
a so-called storage function, i.e., a continuous function Θ : Cq → R with Θ(0) = 0, which
satisfies the so-called dissipation inequality

Θ(z(t1))−Θ(z(t0)) ≤
∫ t1

t0

z∗(t)Hz(t)dt. (1.6)

The storage function Θ measures the amount of energy which is stored internally in the
system. Thus, the right hand side of the dissipation inequality (1.6) measures the gain in
internally stored energy over the time interval [t0, t1].

Example 1.4. (Example 1.1 revisited) To show that the circuit in Fig. 1.1 is dissipative,
we can assume that the energy, which is stored in the capacitor with capacity C, is given by
1
2Cv2C and the energy, which is stored in the inductor with inductance L, is given by 1

2LI
2.

Thus, for (1.2) and (1.3) we define the storage function

Θ(z(t)) :=
1

2
CvC(t)

2 +
1

2
LI(t)2. (1.7)
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Using (1.3) and the individual equations which make up (1.2) we find

d

dt
Θ(z(t)) = Cv̇C(t)vC(t) + Lİ(t)I(t)

= I(t)vC(t) + I(t)vL(t) = I(t)(vC(t) + vL(t)) (1.8)

= I(t)(V (t)− vR(t)) = I(t)V (t)− I(t)vR(t) = s(z(t))−RI2(t) ≤ z∗(t)Hz(t).

Integrating equation (1.8) from t0 to t1 and using the fundamental theorem of calculus we
obtain that (1.7) is indeed a storage function of the system (1.2) which implies dissipativity.

Definition 1.5. Let λF +G ∈ C[λ]p,q. Then we call

R(λF +G) :=
{
ẑ ∈ Cq

∣∣∃z ∈ B(λF +G) such that ẑ = z(0)
}

the reachable set of λF +G,

R+(λF +G) :=
{
ẑ ∈ Cq

∣∣∃z ∈ B+(λF +G) such that ẑ = z(0)
}

the decaying reachable set of λF +G, and

Rc(λF +G) :=
{
ẑ ∈ Cq

∣∣∃z ∈ Bc(λF +G) such that ẑ = z(0)
}

the compact reachable set of λF +G.
The main result of this paper states that (under the assumptions of controllability,

which is given in Definition 2.6, and feasibility, see Section 5) dissipativity is equivalent
to the solvability of a Lur’e equation. The Lur’e equation is introduced in the following
definition.

Definition 1.6. Let λF + G ∈ C[λ]p,q be a first-order matrix polynomial and let
H = H∗ ∈ C[λ]q,q be Hermitian. Form the para-Hermitian polynomial

N (λ) := λN1 +N0 := λ

[
0 F

−F ∗ 0

]
+

[
0 G
G∗ H

]
. (1.9)

Then we call Z ∈ Cp,q a solution of the Lur’e equation (associated with (λF + G,H)), if
the following conditions are fulfilled:

1.) F ∗Z = Z∗F
2.) 0 ≤ G∗Z + Z∗G+H
3.) rank (G∗Z + Z∗G+H) = rankC(λ) (N )− 2 · rankC(λ) (λF +G) =: s
4.) for every Cholesky factor C ∈ Cs,q of the matrix G∗Z + Z∗G +H = C∗C, we have

that

B+ (N ) =

[
Z
I

]
B+

([
λF +G

C

])
⊕

[
I
0

]
B+ (−λF ∗ +G∗) , (1.10)

and we have

Z

([
λF +G

C

])
= Z (N ) ∩ C−. (1.11)

Furthermore, Z is called a strong solution of the Lur’e equation, if in addition to the above,
for every Cholesky factor C ∈ Cs,q the following condition is fulfilled:

5.) for every ẑ ∈ R+(λF+G) there exists a z0 ∈ R+

([
λF +G

C

])
such that F ẑ = Fz0.
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It is obvious that the properties 2.) and 3.) of Definition 1.6 are equivalent to the
existence of a Cholesky factor C ∈ Cs,q which fulfills G∗Z+Z∗G+H = C∗C. Thus properties
1.) - 3.) of Definition 1.6 can be rewritten as

F ∗Z = Z∗F, G∗Z + Z∗G+H = C∗C, (1.12)

which is an equation in the indeterminates Z and C. The identity (1.12) constitutes the
actual Lur’e equation, cf. [21].

In the following example we show that the Lur’e equation for the circuit in Fig. 1.1 is
solvable. We do this by an educated guess of the solution. In the remainder of the paper
we will develop a constructive method to compute the solution. Since this method is quite
involved it is not convenient for manual calculations, but it gives a hint about how a solution
of the Lur’e equation can be computed numerically. Further notes concerning the numerical
aspects can be found in the Conclusion, Section 9.

Example 1.7. (Example 1.1 revisited) We show that the Lur’e equation associated with
(1.2) and (1.3) has the solution

Z =
1

2


1 0 0 0 0
0 0 1 0 0
1 0 0 0 0
−1 0 0 0 0

 . (1.13)

To prove point 1.) of Definition 1.6 note that

Z∗F = diag
(
0, 0, C

2 , 0,
L
2

)
, (1.14)

is symmetric and point 2.) is fulfilled since

Z∗G+G∗Z +H = diag (R, 0, 0, 0, 0) ≥ 0. (1.15)

Let the matrices N , N1, and N2 be according to (1.9) with F , G, and H as in (1.2) and
(1.3). Then, using the identity (1.4), we find

9 = rank (1 ·N1 +N0) ≤ max
λ0∈C

rank (N (λ0)) = rankC(λ) (N ) ≤ 9,

and

4 = rank (1 · F +G) ≤ max
λ0∈C

rank (λ0F +G) = rankC(λ) (λF +G) ≤ 4.

This means that in Definition 1.6 we have s = 1, which with (1.15) implies that point 3.) is
fulfilled. Let C ∈ C1,5 be a Cholesky factor of H +G∗Z + Z∗G = C∗C, i.e, let

C =
[√

R 0 0 0 0
]
.

Then, by basic manipulations we find that

B+

([
λF +G

C

])
= B+



λL −1 0 0 0
−1 0 λC 0 0
R 0 0 −1 0
0 −1 −1 −1 1√
R 0 0 0 0


 = {0}, (1.16)
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and also that B+ (−λF ∗ +G∗) = {0}. Also, we have that B+(N ) = {0}, if and only if

{0} = B+

([
I 0
Z∗ 0

] [
0 λF +G

−λF ∗ +G∗ H

] [
I Z
0 I

])
= B+

([
0 λF +G

−λF ∗ +G∗ C∗C

])

= B+





0 0 0 0 λL −1 0 0 0
0 0 0 0 −1 0 λC 0 0
0 0 0 0 R 0 0 −1 0
0 0 0 0 0 −1 −1 −1 1

−λL −1 R 0 R 0 0 0 0
−1 0 0 −1 0 0 0 0 0
0 −λC 0 −1 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0




. (1.17)

The correctness of (1.17), however, can again be determined by basic manipulations. Since
one can see by a similar argument that the identity (1.11) holds, we conclude that point
4.) of Definition 1.6 is fulfilled, which means that (1.13) is indeed a solution of the Lur’e
equation associated with the circuit in Fig. 1.1. As a final remark, note that with (1.14) we
can write the storage function Θ in (1.7) as

Θ(z(t)) = z∗(t)Z∗Fz(t).

Similar to the derivation in Example 1.4 one can easily show that the solvability of the Lur’e
equation implies dissipativity. This is done in the following way. Let Z ∈ Cp,q be a solution
of the Lur’e equation and define Θ : Cq → R through

Θ(ẑ) := ẑ∗F ∗Zẑ.

Then Θ is continuous and fulfills Θ(0) = 0. Also, we find that for all z ∈ B(λF + G) and
t ∈ R we have

d

dt
Θ(z(t)) = ż∗(t)F ∗Zz(t) + z∗(t)Z∗F ż(t)

= −z∗(t)G∗Zz(t)− z∗(t)Z∗Gz(t) ≤ z∗(t)Hz(t).

Integration over [t0, t1] results in

Θ(z(t1))−Θ(z(t0)) =

∫ t1

t0

d

dt
Θ(z(t))dt ≤

∫ t1

t0

z∗(t)Hz(t)dt,

which shows that Θ is a storage function. The other direction is harder to show, and the
proof is the content of the remainder of the paper.

2. Preliminaries. In this section we first introduce the Kronecker canonical form, a
very helpful tool for the analysis of behaviors, as defined in Definition 1.2. With this we
will introduce the reachable sets and the notion of a strong solution of the Lur’e equation.
Afterwards, we will derive some basic properties which solutions of the Lur’e equation fulfill
and then, finally, we will introduce the Thompson canonical form, which is the equivalent
to the Kronecker canonical form for para-Hermitian pencils.

6



Theorem 2.1 (Kronecker canonical form). [10, 21] Let λF + G ∈ C[λ]p,q be a first-
order matrix polynomial. Then there exist invertible matrices S ∈ Cp,p and T ∈ Cq,q such
that

S (λF +G)T = diag (K1(λ), . . . ,Kd(λ)) , (2.1)

where each of the blocks Kj(λ) takes one of the forms (K1) - (K4) below.
1. Right singular block with kj rows

λ

−1 0
. . .

. . .

−1 0

+

0 1
. . .

. . .

0 1

 (K1)

2. Finite eigenvalue λj ∈ C of size kj

λ


−1

. . .

. . .

−1

+


λj 1

. . .
. . .

. . . 1
λj

 (K2)

3. Infinite eigenvalue of size kj

λ


0 1

. . .
. . .

. . . 1
0

+


1

. . .

. . .

1

 (K3)

4. Left singular block with kj columns

λ


1

0
. . .

. . . 1
0

+


0

1
. . .

. . . 0
1

 (K4)

Example 2.2. (Example 1.1 revisited) Defining the transformation matrices T ∈ C5,5

and S ∈ C4,4 via

S :=


0 − 1

C 0 0
− 1

LC 0 0 0
0 0 1 0
0 0 0 1

 , and T :=


0 C 0 0 0
0 0 LC 0 0
1 0 0 0 0
0 RC 0 −1 0
1 RC LC −1 1

 , (2.2)

we have (with F , G, and H defined as in (1.2) and (1.3)) that

S(λF +G)T =


−λ 1 0 0 0
0 −λ 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (2.3)
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which means that the Kronecker canonical form for the system depicted in Fig. 1.1 has one
block of type (K1) with size kj = 2 and two blocks of type (K3) with size kj = 1.

The Kronecker canonical form can be used to compute the reachable sets of Definition
1.5, by considering the reachable sets of each block (K1)-(K4) separately. From elementary
considerations we obtain that for blocks Kj of type (K1) we have

R(Kj) = R+(Kj) = Rc(Kj) = Ckj , (2.4)

for blocks Kj of type (K2) we have

R(Kj) = Ckj , R+(Kj) =

{
Ckj for Re (λj) < 0

{0} for Re (λj) ≥ 0
, Rc(Kj) = {0}, (2.5)

and for blocks Kj of type (K3) and (K4) we have

R(Kj) = R+(Kj) = Rc(Kj) = {0}. (2.6)

With these identities and with the columns of the transformation matrix T in (2.1) one
can specify the reachable sets of arbitrary behaviors. A more detailed exposition of this
procedure can be found in [2, Lemma 2.19].

Also, the Kronecker canonical form reveals the set of zeros of a matrix pencil. Again,
looking at the zeros of each block (K1)-(K4) separately we find that Z (Kj) = ∅ for blocks Kj

of type (K1), (K3), and (K4). Only blocks Kj of type (K2) have zeros, namely Z (Kj) = {λj}.
Since with (2.1) we have

Z (λF +G) = Z (S(λF +G)T ) (2.7)

we conclude that the set of zeros of a pencil λF +G is given by the union of all λj , corre-
sponding to blocks of type (K2).

Example 2.3. (Example 1.1 revisited) From the Kronecker canonical form (2.3) of the
circuit in Fig. 1.1 we conclude with (2.4)-(2.6) that all three reachable sets R(λF + G),
R+(λF +G), and Rc(λF +G) are given by the span of the first three columns of the matrix
T from (2.2). However, from (1.16) we conclude that

R+

([
λF +G

C

])
= {0},

which implies that the solution of the Lur’e equation Z given in (1.13) is not a strong
solution.

The advantage of a strong solution of a Lur’e equation is that we can use it to make a
statement about its uniqueness, as shown in the following Lemma.

Lemma 2.4. Let λF + G ∈ C[λ]p,q and H = H∗ ∈ Cq,q and let Z1, Z2 ∈ Cp,q be two
strong solutions of the Lur’e equation. Then

ẑ∗F ∗Z1ẑ = ẑ∗F ∗Z2ẑ

for all ẑ ∈ R+(λF +G).
Proof. For the proof we introduce the so-called available storage [2, 26, 34] associated

with (λF +G,H) as the function Θ+ : Cq → R ∪ {±∞}, which is defined through

Θ+(ẑ) := − inf
z∈B+(λF+G)

z(0)=ẑ

∫ ∞

0

z∗(t)Hz(t)dt.
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Let Z be any strong solution of the Lur’e equation as in Definition 1.6. Let ẑ ∈ R+(λF +G)
be arbitrary. Using property 5.) of Definition 1.6, let

z0 ∈ R+

([
λF +G

C

])
with F ẑ = Fz0. Furthermore, let

z ∈ B+

([
λF +G

C

])
with z(0) = z0 and define µ := Zz. Then from property 4.) of Definition 1.6 we conclude
that (µ, z) ∈ B+ (N ). Using [3, Theorem 5] we conclude that this imples

−Θ+(z0) =

∫ ∞

0

z∗(t)Hz(t)dt,

from which we deduce that

Θ+(ẑ) = Θ+(z0) = −
∫ ∞

0

z∗(t)Hz(t)dt

= −
∫ ∞

0

z∗(t)(C∗C −G∗Z − Z∗G)z(t)dt

=

∫ ∞

0

z∗(t)G∗Zz(t) + z∗(t)Z∗Gz(t)dt

= −
∫ ∞

0

ż∗(t)F ∗Zz(t) + z∗Z∗Gż(t)dt

= −
∫ ∞

0

d

dt
(z∗(t)F ∗Zz(t)) dt

= z∗(0)F ∗Zz(0) = z∗0F
∗Zz0 = ẑ∗F ∗Zẑ.

Since the available storage Θ+ does not depend on Z we obtain the assertion.
We make the following observation for every matrix Z which at least fulfills point 1.) of

Definition 1.6.
Lemma 2.5. Let λF + G ∈ C[λ]p,q and H = H∗ ∈ Cq,q. Let Z ∈ Cp,q be such that

F ∗Z = Z∗F and define

s := rankC(λ)

([
0 λF +G

−λF ∗ +G∗ H

])
− 2 · rankC(λ) (λF +G)

as in Definition 1.6. Then we have

rank (H +G∗Z + Z∗G) ≥ s.

Proof. Since[
I 0
Z∗ I

] [
0 λF +G

−λF ∗ +G∗ H

] [
I Z
0 I

]
=

[
0 λF +G

−λF ∗ +G∗ H +G∗Z + Z∗G

]
we obtain that

rankC(λ)

([
0 λF +G

−λF ∗ +G∗ H

])
= rankC(λ)

([
0 λF +G

−λF ∗ +G∗ H +G∗Z + Z∗G

])
≤ rankC(λ)

([
0 λF +G

−λF ∗ +G∗ 0

])
+ rankC(λ)

([
0 0
0 H +G∗Z + Z∗G

])
= 2 · rankC(λ) (λF +G) + rank (H +G∗Z + Z∗G) ,

9



and thus the claim follows.
Lemma 2.5 is the reason why a solution of the Lur’e equation can also be called a rank

minimizing solution, cf. [26, Remark 10].
Definition 2.6. Let λF + G ∈ C[λ]p,q. Then we call the system B(λF + G) trim if

R(λF + G) = Cq, cf. [25]. Furthermore, we call B(λF + G) controllable if R(λF + G) =
Rc(λF +G) and we call B(λF +G) stabilizable if R(λF +G) = R+(λF +G).

The following Lemma characterizes the concepts from Definition 2.6 through properties
of the Kronecker canonical from.

Lemma 2.7. Let λF +G ∈ C[λ]p,q have the Kronecker canonical form (2.1). Then we
have the following assertions:

1. B(λF +G) is trim if and only if there are no blocks of type (K3) and (K4).
2. B(λF +G) is controllable if and only if there are no blocks of type (K2).
3. B(λF +G) is stabilizable if and only if all blocks of type (K2) satisfy Re (λj) < 0.
Proof. The proof follows immediately from the identities (2.4)-(2.6).
The following Corollary characterizes the concepts from Definition 2.6 algebraically.
Corollary 2.8. Let λF +G ∈ C[λ]p,q1 . Then we have the following:
1. B(λF +G) is trim if and only if rank (F ) = p.
2. B(λF +G) is controllable if and only if Z (λF +G) = ∅.
3. B(λF +G) is stabilizable if and only if Z (λF +G) ⊂ C−.
Proof. The proof follows from Lemma 2.7, identity (2.7), and the Kronecker canonical

form (2.1). A more detailed exposition can be found in [2, Lemma 2.21].
Looking at property 4.) of Definition 1.6 we see that systems of the form B+(N ), with

N = N∼ being para-Hermitian, play a special role. Although such systems can in principle
also be analyzed via the Kronecker canonical form, it would be preferable to respect the para-
Hermitian structure of N . This can be done with the Thompson canonical form, which is
introduced in the following Theorem 2.9.

Note that we only use the Thompson canonical form for theoretical purposes. Since
the Thompson canonical form involves the transformation with non-unitary matrices X,
we conclude that the computation of the Thompson canonical form is not stable, and thus
inappropriate from a numerical point of view. However, by unitary transformations it is
possible to obtain a so-called staircase form in a numerically stable way, cf. [4, 5], from
which important characteristics of the Thompson canonical form can be obtained, see also
the Conclusion, Section 9. The computation of a solution of the Lur’e equation via unitary
transformations will be discussed in a forthcoming paper.

Theorem 2.9 (Thompson canonical form). [22, 23] Let λN1 +N0 ∈ C[λ]k,k be a para-
Hermitian first-order matrix polynomial. Then there exists an invertible matrix X ∈ Ck,k

such that

X∗ (λN1 +N0)X = diag (T1(λ), . . . , Td(λ)) , (2.8)

where each of the blocks Tj(λ) takes one of the forms (T1) - (T6) below. By k̂j we denote
the size of block j and by τ1, . . . , τ6 we denote the number of blocks of type (T1),...,(T6).
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1. Paired non-imaginary eigenvalues λj ∈ C− of size k̂j = 2kj

λ



−1 . . . . . .
−1

1 . . . . . .
1


+



λj 1. . .
. . .. . . 1

λj

λj
1

. . .. . .
. . .

1 λj


kj

kj

(T1)

2. Imaginary eigenvalue ıωj ∈ ıR with even size k̂j = 2kj

ϵj


λ



ı
. .
.

. .
.

ı
ı

. .
.

. .
.

ı


+



1 ωj
. .
.
. .
.

1 . .
.

1 ωj
1 ωj

. .
.
. .
.

1 . .
.

ωj




kj

kj

(T2)

3. Imaginary eigenvalue ıωj ∈ ıR with odd size k̂j = 2kj + 1

ϵj


λ



ı
. .
.

. .
.

ı
ı

ı
. .
.

. .
.

ı


+



1 ωj
. .
.
. .
.

1 . .
.

1 ωj
1 ωj

1 ωj
. .
.
. .
.

1 . .
.

ωj





kj

1

kj

(T3)

4. Infinite eigenvalue with even size k̂j = 2kj

ϵj


λ



ı 0
. .
.
. .
.

ı . .
.

ı 0
ı 0

. .
.
. .
.

ı . .
.

0


+



1
. .
.

. .
.

1
1

. .
.

. .
.

1




kj

kj

(T4)

5. Infinite eigenvalue with odd size k̂j = 2kj + 1

ϵj


λ



ı 0
. .
.
. .
.

ı . .
.

ı 0
ı 0

ı 0
. .
.
. .
.

ı . .
.

0


+



1
. .
.

. .
.

1
1

1
. .
.

. .
.

1





kj

1

kj

(T5)

6. Singular block of size size k̂j = 2kj + 1

λ



−1 0. . .
. . .
−1 0

1
0
. . .. . . 1

0

+



0 1. . .
. . .
0 1

0
1
. . .. . . 0

1


kj

kj + 1

(T6)
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We can use the Thompson canonical form to specify the zeros of a para-Hermitian pencil,
by looking at the zeros of each block (T1) - (T6) separately. This shows that Z (Tj) = ∅ for
all blocks Tj of type (T4), (T5), and (T6). For all blocks Tj of type (T2) and (T3) we have
Z (Tj) = {ıωj}, and for all blocks Tj of type (T1) we find Z (Tj) = {λj ,−λj}.

Definition 2.10. Let N ∈ C[λ]k,k be a para-Hermitian first-order pencil with Thomp-
son canonical form (2.8). Then we say that N has index ν ∈ N \ {0} if there is at least one

block of type (T4) or (T5) with size k̂j = ν and all blocks of type (T4) or (T5) have size

k̂j ≤ ν. We say that N has index ν = 0, if there are no blocks of type (T4) and (T5).

3. Inertia results. In this section we first determine the inertia indices of the blocks in
the Thompson canonical form (T1) - (T6) for points on the imaginary axis. This can already
be found in [7, Section 4] and is repeated here, for the sake of completeness. Afterwards
we will discuss how the results can be used to to make statements about the Thompson
canonical form of the pencil N from (1.9) in the case of a dissipative system. These results
are a simplification of the results in [6, 7].

Definition 3.1. Let the sign function

sign : R ∪ {±∞} → {−1, 1},

be defined as sign (ω) = 1 for ω ≥ 0 and as sign (ω) = −1 for ω < 0. Furthermore, for a
Hermitian matrix B = B∗ ∈ Ck,k with π positive, ζ zero, and ν negative eigenvalues we
call the 1-by-3 vector In (B) :=

[
π ζ ν

]
the inertia index of B and with this we define the

sign-sum function through

η (B) := π + ζ − ν.

For a first-order para-Hermitian matrix polynomial N (λ) = λN1 +N0 ∈ C[λ]k,k we define

N (ı∞) := ıN1 and N (−ı∞) := −ıN1.

Lemma 3.2. For every ω ∈ R ∪ {±∞} and every block of the form (T1)-(T6) the
expression Tj(ıω) is a Hermitian matrix. Thus, η (Tj(ıω)) is well-defined and its values can
be specified as in Table 3.1.

Table 3.1
Sign-sum values of the blocks (T1) - (T6) on the imaginary axis

Block sign-sum for ω ∈ R ∪ {±∞}
(T1) η (Tj(ıω)) = 0

(T2) η (Tj(ıω)) =

{
0 ω ̸= ωj

1 + sign (ϵj) ω = ωj

(T3) η (Tj(ıω)) =

{
sign (ϵj(ωj − ω)) ω ̸= ωj

1 ω = ωj

(T4) η (Tj(ıω)) =

{
0 ω ̸= ±∞
1∓ sign (ϵj) ω = ±∞

(T5) η (Tj(ıω)) =

{
sign (ϵj) ω ̸= ±∞
1 ω = ±∞

(T6) η (Tj(ıω)) = 1

12



Proof. We compute the inertia index of each block of the form (T1)-(T6), from which
the sign-sum function is then easily computed.
T1 Since λj ∈ C\ıR, we see that for every ω ∈ R∪{±∞} there exists a non-singular matrix

A ∈ Ckj ,kj such that we have

Tj(ıω) =
[
0 A
A∗ 0

]
.

Let A = UΣV ∗ be a singular value decomposition of A, cf. [11]. Then we have[
0 A
A∗ 0

]
=

[
U

V

] [
0 Σ
Σ 0

] [
U∗

V ∗

]
∼

[
0 Σ
Σ 0

]
∼

[
I I
−I I

] [
0 Σ
Σ 0

] [
I −I
I I

]
=

[
I I
−I I

] [
Σ Σ
Σ −Σ

]
=

[
2Σ 0
0 −2Σ

]
and, thus, since Σ is non-singular, the inertia is given by

In (Tj(ıω)) =
[
kj 0 kj

]
.

T2 For every ω ∈ R ∪ {±∞} with ω ̸= ωj there exists an invertible matrix A ∈ Ckj ,kj and
a B ∈ Ckj ,kj such that we have

Tj(ıω) =
[
B A
A∗ 0

]
∼

[
I −1

2BA−∗

0 I

] [
B A
A∗ 0

] [
I 0

−1
2A

−1B I

]
=

[
0 A
A∗ 0

]
,

which means that the inertia is given by

In (Tj(ıω)) =
[
kj 0 kj

]
.

Also, we see that

Tj(ıωj) = ϵj



1 0

. .
.
. .
.

1 . .
.

1 0

1 0

. .
.
. .
.

1 . .
.

0


∼ ϵj



1

. .
.

1

1

. .
.

1

1

0


,

from which we deduce that

In (Tj(ıωj)) =
[
kj − 1 1 kj − 1

]
+ In (ϵj) ,

where In (ϵj) is the inertia of the 1-by-1 matrix with the entry ϵj = ±1, i.e.,
In (1) =

[
1 0 0

]
and In (−1) =

[
0 0 −1

]
. Later, we will also need that

In (0) =
[
0 1 0

]
.

T3 For every ω ∈ R ∪ {±∞} with ω ̸= ωj there exists an invertible matrix A ∈ Ckj ,kj and
b ∈ Ckj ,1 such that we have

Tj(ıω) =

 0 b A
b∗ ϵj(ωj − ω)
A∗ 0


∼

I 0 0
0 1 −b∗A−∗

0 0 I

 0 b A
b∗ ϵj(ωj − ω)
A∗ 0

I 0 0
0 1 0
0 −A−1b I


∼

 0 0 A
0 ϵj(ωj − ω)
A∗ 0

 ∼

I −I
ϵj(ωj − ω)

 ,

13



which implies that

In (Tj(ıω)) =
[
kj 0 kj

]
+ In (ϵj(ωj − ω)) .

Also, we see that

Tj(ıωj) = ϵj



1

. .
.

1

1

. .
.

1

0


,

from which we deduce

In (Tj(ıωj)) =
[
kj 1 kj

]
.

T4 For every ıω ∈ ıR there exists an invertible matrix A ∈ Ckj ,kj and a B = B∗ ∈ Ckj ,kj

such that we have

Tj(ıω) =
[
B A
A∗ 0

]
,

which as above implies that

In (Tj(ıω)) =
[
kj 0 kj

]
.

Also, we see that

Tj(±ı∞) = ±ϵj



−1 0

. .
.

. .
.

−1 . .
.

−1 0

−1 0

. .
.

. .
.

−1 . .
.

0


∼ ∓ϵj



1

. .
.

1

1

. .
.

1

1

0


,

from which we deduce that

In (Tj(±ı∞)) =
[
kj − 1 1 kj − 1

]
+ In (∓ϵj) .

T5 For every ıω ∈ ıR there exists an invertible matrix A ∈ Ckj ,kj and b ∈ Ckj ,1 such that
we have

Tj(ıω) =

 0 b A
b∗ ϵj
A∗ 0

 ,

which, similar to the argument for the blocks of type (T3), implies that

In (Tj(ıω)) =
[
kj 0 kj

]
+ In (ϵj) .

14



Also, we see that

Tj(±ı∞) = ±ϵj



−1

. .
.

−1

−1

. .
.

−1

0


,

from which we deduce

In (Tj(±ı∞)) =
[
kj 1 kj

]
.

T6 For every ω ∈ R ∪ {±∞} there exists a full row rank matrix A ∈ Ckj ,kj+1 such that we
have

Tj(ıω) =
[
0 A
A∗ 0

]
,

which shows that

In (Tj(ıω)) =
[
kj 1 kj

]
.

The notion of dissipativity can be related to the sign-sum function via the following
theorem.

Theorem 3.3. Let λF + G ∈ C[λ]p,q be a first-order matrix polynomial such that
B(λF+G) is controllable and let H = H∗ ∈ C[λ]q,q be Hermitian. Form the para-Hermitian
polynomial N = N∼ ∈ C[λ]p+q,p+q via

N (λ) := λ

[
0 F

−F ∗ 0

]
+

[
0 G
G∗ H

]
.

Then (λF +G,H) is dissipative, if and only if

η (N (ıω)) = p+ q − 2 · rankC(λ) (λF +G)

for all ω ∈ R.
Proof. The theorem is proved in [1].

Corollary 3.4. Let λF + G ∈ C[λ]p,q and let H = H∗ ∈ C[λ]q,q. Form the para-
Hermitian polynomial N = N∼ ∈ C[λ]p+q,p+q via

N (λ) := λ

[
0 F

−F ∗ 0

]
+

[
0 G
G∗ H

]
.

Assume that B(λF +G) is controllable and trim and assume that (λF +G,H) is dissipative.
Then the Thompson form (2.8) of N fulfills the following properties:

1. All blocks of type (T2) satisfy ϵj = −1.
2. There are no blocks of type (T3).
3. There are no blocks of type (T4).
4. All blocks of type (T5) satisfy ϵj = 1.

15



Proof. Using the assumption, Corollary 2.8, and Theorem 3.3 we obtain that

η (N (ıω)) = p+ q − 2 · rankC(λ) (λF +G) = q − p, (3.1)

for all ω ∈ R ∪ {±∞}. Assume to the contrary that there is a block of type (T3). Choose
ϵ > 0 such that the interval ı[ωj − ϵ, ωj + ϵ] contains no other zero. Since from (3.1) we
obtain that η (N (ıω)) is constant for all ω ∈ [ωj − ϵ, ωj + ϵ] \ {ωj} we deduce that there are
as many blocks of type (T3) with negative sign, as there are with positive sign, let us say
ℓ-many. In this case, however, we have that

η (N (ıω)) + 2ℓ ≤ η (N (ıωj)) ,

for all ω ∈ [ωj − ϵ, ωj + ϵ] \ {ωj}, since there might also be blocks of type (T2) with ϵj = 1.
This contradicts (3.1). Thus, there can be no blocks of type (T3). Blocks of type (T2) with
ϵj = 1 are then not possible, since they would also increase the rank at one point.

In the same way, blocks of type (T4) and of type (T5) with ϵj = −1 are not possible,
since they would increase the rank at ±∞.

We construct the following canonical form, for para-Hermitian polynomials, which fulfill
the properties 1. - 4. of Corollary 3.4. From this canonical form it is then in principle possible
to obtain, what in [21] is called Lagrangian subspaces.

Lemma 3.5. Consider the first-order para-Hermitian matrix polynomial λN1 + N0 ∈
C[λ]k,k1 . Let the Thompson canonical form of λN1 + N0 be given by (2.8) together with
the other notations, which were introduced in Theorem 2.9. Assume that (2.8) satisfies the
properties 1. - 4. of Corollary 3.4. Then the rank of N1 is even, let us say 2m, and there
exist matrices Ỹ1 ∈ Ck,m, Ỹ2 ∈ Ck,τ5 , and Ỹ3 ∈ Ck,m+τ6 such that Ỹ :=

[
Ỹ1 Ỹ2 Ỹ3

]
∈ Ck,k

is invertible and we have

Ỹ ∗N Ỹ = Ỹ ∗ (λN1 +N0) Ỹ =

 T λS λR1 +R0

−λS∗ I 0
−λR∗

1 +R∗
0 0 0

 ,

where λR1 + R0 ∈ C[λ]m,m+τ6 has full row rank over C(λ), S ∈ Cm,τ5 such that
[
S R1

]
has full row rank over C, T ∈ Cm,m fulfills T = T ∗ ≤ 0, B(

[
λS λR1 +R0

]
) is trim, and

we have that

B+(N ) =
[
Ỹ2 Ỹ3

]
B+

([
λS λR1 +R0

I 0

])
and

Z (N ) ∩ C− = Z

([
λS λR1 +R0

I 0

])
.

Furthermore, if the index of N is less or equal to 1, then S = 0. Also, if N has no purely
imaginary zeros (i.e., the Thompson canonical form has no blocks of type (T2)), then T = 0
and B(

[
λS λR1 +R0

]
) is stabilizable.

Proof. Partition the transformation matrix in (2.8) as

X =:
[
X1 . . . Xd

]
,

according to the diagonal structure in (2.8), i.e., such that Xj ∈ Ck,k̂j . This means that we
have X∗

j (λN1 +N0)Xj = Tj(λ) and X∗
j (λN1 +N0)Xi = 0 for all i ̸= j. With 0kj denoting
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the vector of length kj which only contains zeros, set

Cj :=

[
Ikj

0

]
,

Dj :=


0kj

1

0kj

 if Tj has type (T5),

∈ Ck̂,0 if Tj has type (T1), (T2), (T6),

Ej :=



[
0

Ikj

]
if Tj has type (T1), (T2), (T5),[

0

Ikj+1

]
if Tj has type (T6),

for j = 1, . . . , d. With this define the block matrices,

T := diag (T1(λ), . . . , Td(λ)) ∈ C[λ]k,k,
C := diag (C1, . . . , Cd) ∈ Ck,m,

D := diag (D1, . . . , Dd) ∈ Ck,τ5 ,

E := diag (E1, . . . , Ed) ∈ Ck,m+τ6 .

We see that k = 2m+ τ5 + τ6 and that[
C D E

]
,

is a permutation matrix, and thus invertible. Thus, also the matrix

Ỹ := X
[
C D E

]
is invertible and we have

Ỹ ∗ (λN1 +N0) Ỹ =

C∗

D∗

E∗

 T
[
C D E

]
=

 C∗T C C∗T D C∗T E
(C∗T D)∼ D∗T D D∗T E
(C∗T E)∼ (D∗T E)∼ E∗T E

 .

Looking at the blocks in this matrix, we find that

E∗T E = diag (E∗
1T1E1, . . . , E

∗
dTdEd) = diag (0, . . . , 0) = 0,

D∗T E = diag (D∗
1T1E1, . . . , D

∗
dTdEd) = diag (0, . . . , 0) = 0,

D∗T D = diag (D∗
1T1D1, . . . , D

∗
dTdDd) = I.

Furthermore, we see that there exists a matrix polynomial λR1 + R0 ∈ C[λ]m,m+τ6 and
matrices S ∈ Cm,τ5 and T ∈ Cm,m with T = T ∗ ≤ 0 such that

C∗T E = λR1 +R0,

C∗T D = λS, (3.2)

C∗T C = −T. (3.3)

From (3.2) we see that S vanishes, if all blocks of type (T5) have size k̂j = 1, which by
definition is the case if the index of N is less or equal to 1. From (3.3) we see that T = 0,
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if there are no blocks of type (T2). Also, we observe that C∗T (∞)
[
D E

]
=

[
S R1

]
has

full row rank. With Corollary 2.8 this implies that

B(C∗T
[
D E

]
) = B(

[
λS λR1 +R0

]
)

is trim and, furthermore, stabilizable if N has no blocks of type (T2). From the construction
of C,D,E we obtain that

Z (N ) ∩ C− = Z (λR1 +R0) = Z

([
λS λR1 +R0

I 0

])
and also that B+(−λR∗

1 +R∗
0) = {0}, from which we conclude that

B+(N ) = B+

Ỹ −∗

 T λS λR1 +R0

−λS∗ I 0
λR1 +R∼

0 0 0

 Ỹ −1


= B+

 T λS λR1 +R0

−λS∗ I 0
λR1 +R∼

0 0 0

 Ỹ −1



= ỸB+

 T λS λR1 +R0

−λS∗ I 0
λR1 +R∼

0 0 0

 = Ỹ


0

B+

 λS λR1 +R0

−λI 0
0 0




=
[
Y2 Y3

]
B+

([
λS λR1 +R0

−λI 0

])
,

and thus the claim follows.
The main result of this section, Lemma 3.5, states that a para-Hermitian pencil N

which fulfills the properties 1. - 4. of Corollary 3.4 has a certain structure. In Corollary 3.4,
however, we saw that for dissipative systems these properties are fulfilled, for the special
para-Hermitian matrix N which is given by (1.9). In the next section we will use these two
results to construct a solution of the Lur’e equation from the matrix Ỹ in Lemma 3.5.

4. Controllable and trim systems. In this section we work out the main result for
the special case where B(λF +G) is controllable and trim, see Lemma 4.3. For this, we first
formulate the following lemma, wherein the main part is inspired by [14].

Lemma 4.1. Let λF +G ∈ C[λ]p,q and let H = H∗ ∈ C[λ]q,q. Form the para-Hermitian
polynomial N = N∼ ∈ C[λ]p+q,p+q via

N (λ) := λN1 +N0 := λ

[
0 F

−F ∗ 0

]
+

[
0 G
G∗ H

]
.

Assume that (λF +G,H) is dissipative and that B(λF +G) is controllable and trim. Then
there exist matrices Y1 ∈ Cp,p, Y2 ∈ Cp,q, Y3 ∈ Cq,p, and Y4 ∈ Cq,q such that the matrices

Y :=

[
Y1 Y2

Y3 Y4

]
∈ Cp+q,p+q,

and Y4 are invertible, Y4 = Y ∗
4 , and we have

Y ∗ (λN1 +N0)Y =

[
−Q1 λF̃ + G̃

−λF̃ ∗ + G̃∗ Q2

]
,
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where λF̃ + G̃ ∈ C[λ]p,q has full column rank, F̃ has full column rank, Q1 = Q∗
1 ≥ 0,

Q2 = Q∗
2 ≥ 0, rank (Q2) = rankC(λ) (N )− 2 · rankC(λ) (λF +G),

B+ (N ) =

[
Y2

Y4

]
B+

([
λF̃ + G̃

Q2

])
,

and

Z (N ) ∩ C− = Z

([
λF̃ + G̃

Q2

])
.

Furthermore, if N has index less or equal to 1 and no purely imaginary zeros, then for every
ŷ ∈ Cq there exists a

y0 ∈ R+

([
λF̃ + G̃

Q2

])
with F̃ ŷ = F̃ y0 and we have Q1 = 0.

Proof. Using part 1. of Corollary 2.8 we see that the dimension of the kernel of N1 is
given by

p+ q − 2 · rank (F ) = q − p,

which means that

τ5 + τ6 = q − p, (4.1)

since (in the absence of blocks of type (T4)) only blocks of type (T5) and (T6) contribute
to the dimension of the kernel of the leading matrix; each block of type (T5) and (T6) by 1.
Also, the dimension of the kernel of N (over C(λ)), and thus the number of blocks of type
(T6), is given by

τ6 = p+ q − rankC(λ) (N ) = q − p− (rankC(λ) (N )− 2 · rankC(λ) (λF +G)),

which together with (4.1) gives that

τ5 = rankC(λ) (N )− 2 · rankC(λ) (λF +G) .

Thus, from Lemma 3.5 (with m = rankF = p, m+ τ5 + τ6 = q) we deduce the existence of
Y1 ∈ Cp,p, Ỹ2 ∈ Cp,q, Y3 ∈ Cq,p, and Ỹ4 ∈ Cq,q, such that

Ỹ :=

[
Y1 Ỹ2

Y3 Ỹ4

]
is invertible and

Ỹ ∗N Ỹ =

[
−Q1 λR̃1 + R̃0

−λR̃∗
1 + R̃∗

0 Q̃2

]
, (4.2)

where rank(Q̃2) = τ5 = rankC(λ) (N )− 2 · rankC(λ) (λF +G). If, additionally, N has index
less or equal to 1 and no purely imaginary zeros we obtain from Lemma 3.5 (since then
S = 0 and B(λR̃1 + R̃0) is stabilizable and trim) that λR̃1 + R̃2 and Q̃2 are such that for
every x̂ ∈ Cq = R+(λR̃1 + R̃0) there exists an

x0 ∈ R+

([
λR̃1 + R̃0

Q̃2

])
(4.3)
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with R̃1x̂ = R̃1x0. Using the singular value decomposition [11] of Ỹ4 we obtain the existence
of invertible matrices U and V such that

Ỹ4 = U

[
I 0
0 0

]
V.

Transform (4.2) with diag (I,W ) where W := V −1U∗, i.e., define Y4 := Ỹ4W , Y2 := Ỹ2W ,
F̃ := R̃1W , G̃ := R̃0W , Q2 = W ∗Q̃2W , and

Y :=

[
Y1 Y2

Y3 Y4

]
,

to obtain

Y ∗NY =

[
−Q1 λF̃ + G̃

−λF̃ ∗ + G̃∗ Q2

]
, (4.4)

with

Y4 = Ỹ4W = U

[
I 0
0 0

]
U∗ = Y ∗

4

being a Hermitian matrix. Using Lemma 3.5 we find

B+(N ) =

[
Ỹ2

Ỹ4

]
B+

([
λR̃1 + R̃0

Q̃2

])
=

[
Y2

Y4

]
B+

([
λF̃ + G̃

Q2

])
and also that

Z (N ) ∩ C− = Z

([
λR̃1 + R̃0

Q̃2

])
= Z

([
λF̃ + G̃

Q2

])
.

In the case that N has index less or equal to 1 and no purely imaginary zeros, let
ŷ ∈ Cq. Then x̂ := Wŷ ∈ Cq and thus we obtain the existence of an x0 such that (4.3)
holds. Defining y0 := W−1x0 then shows that

y0 = W−1x0 ∈ W−1R+

([
λR̃1 + R̃0

Q̃2

])
= R+

([
λR̃1 + R̃0

Q̃2

]
W

)
= R+

([
λF̃ + G̃

Q2

])
,

while F̃ y0 = F̃W−1x0 = R̃1x0 = R̃1x̂ = R̃1Wŷ = F̃ ŷ.
Finally, to show that Y4 is invertible, letM ∈ Cq,ℓ be an orthonormal basis of kernel (Y4),

i.e., let kernel (Y4) = image (M) with M∗M = I. We will show that ℓ = 0. To do so, note
that from (4.4) we obtain that[

λF̃ + G̃
Q2

]
M = Y ∗

[
0 λF +G

−λF ∗ +G∗ H

] [
Y2

Y4

]
M

=

[
Y ∗
1 Y ∗

3

Y ∗
2 Y ∗

4

] [
0

(−λF ∗ +G∗)Y2M

]
(4.5)

=

[
Y ∗
3

Y ∗
4

]
(−λF ∗ +G∗)Y2M

and from this we obtain

M∗Q2M = M∗Y ∗
4 (−λF ∗ +G∗)Y2M = (Y4M)∗(−λF ∗ +G∗)Y2M = 0.
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Since Q2 is positive semi-definite, there exists an C ∈ Cs,q such that Q2 = C∗C, which implies
that for every y ∈ Cℓ we have

0 = y∗M∗Q2My = y∗M∗C∗CMy = ∥CMy∥22,

and thus 0 = LMy and also 0 = C∗CMy = Q2My. From this we conclude that

Q2M = 0,

and thus (4.5) implies that

0 = Y ∗
4 (−λF ∗ +G∗)Y2M = Y4(−λF ∗ +G∗)Y2M,

from which we conclude that image (−F ∗Y2M) ⊂ image (M) and, on the other hand, also
that image (G∗Y2M) ⊂ image (M). This ensures the existence of matrices Ẽ, Ã ∈ Cℓ,ℓ such
that

(−λF ∗ +G∗)Y2M = M(λẼ + Ã).

Furthermore, we find that the matrix[
Y2

Y4

]
M =

[
Y2M
0

]
,

has full column rank ℓ and thus also the matrix Y2M . Since by assumption the matrix F ∗

and for all µ ∈ C the matrices −µF ∗ + G∗ have full column rank we obtain that also the
matrices F ∗Y2M and (−µF ∗ + G∗)Y2M have full column rank ℓ, for all µ ∈ C. Using the
following Lemma 4.2 with E = −F ∗Y2 and A = G∗Y2, this proves that ℓ = 0, and the proof
is finished.

Lemma 4.2. Let λE + A ∈ C[λ]q,q, λẼ + Ã ∈ C[λ]ℓ,ℓ, and M ∈ Cq,ℓ be such that
M∗M = I,

(λE +A)M = M(λẼ + Ã),

and rank (EM) = ℓ and rank ((µE +A)M) = ℓ for all µ ∈ C. Then ℓ = 0.
Proof. Assume to the contrary that ℓ > 0. Then, from the assumptions we see that Ẽ

is invertible. Thus, there exists a µ̃ ∈ C and a ṽ ∈ Cℓ \ {0} such that (µ̃Ẽ + Ã)ṽ = 0 which
implies that

0 = M(µ̃Ẽ + Ã)ṽ = (µ̃E +A)Mṽ,

in contrast to the assumption that rank ((µE +A)M) = ℓ for all µ ∈ C. This proves the
assertion.

The following Lemma corresponds to the main result (cf. Theorem 6.2), in the case of
controllable and trim systems.

Lemma 4.3. Let λF + G ∈ C[λ]p,q be a first-order matrix polynomial and let H =
H∗ ∈ C[λ]q,q be Hermitian. Assume that (λF +G,H) is dissipative and that B(λF +G) is
controllable and trim. Then there exists a solution Z ∈ Cp,q of the Lur’e equation.

Furthermore, if the pencil N from (1.9) has index less or equal to 1 and no purely
imaginary zeros, then there exists a strong solution of the Lur’e equation.

Proof. Using Lemma 4.1 we verify the existence of invertible matrices Y ∈ Cp+q,p+q

and Y4 = Y ∗
4 ∈ Cq,q such that

Y =

[
Y1 Y2

Y3 Y4

]
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and

Y ∗
[

0 λF +G
−λF ∗ +G∗ H

]
Y =

[
−Q1 λF̃ + G̃

−λF̃ ∗ + G̃∗ Q2

]
. (4.6)

Transforming this equation further we can bring Y into block-upper-triangular form with
identity matrices in the two block-diagonal positions. To be more specific, define Z := Y2Y

−1
4

and observe that [
I −Z
0 I

] [
Y1 Y2

Y3 Y4

]
=

[
Y1 − ZY3 0

Y3 Y4

]
=: Ŷ

and thus that (Y1 − ZY3) is invertible. Define

U :=

[
(Y1 − ZY3)

−1 0
−Y −1

4 Y3(Y1 − ZY3)
−1 Y −1

4

]
= Ŷ −1.

Then, using (4.6), we have

U∗Y ∗
[

0 λF +G
−λF ∗ +G∗ H

]
Y U =

[
∗ ∗
∗ Y −∗

4 Q2Y
−1
4

]
, (4.7)

and

Y U =

[
I Z
0 I

]
.

This means that Q̃ := Y −∗
4 Q2Y

−1
4 still is Hermitian, positive semi-definite, and has rank

rankC(λ) (N )− 2 · rankC(λ) (λF +G) and that[
I 0
Z∗ I

] [
0 λF +G

−λF ∗ +G∗ H

] [
I Z
0 I

]
=

[
I 0
Z∗ I

] [
0 λF +G

−λF ∗ +G∗ H +G∗Z − λF ∗Z

]
=

[
0 λF +G

−λF ∗ +G∗ H +G∗Z + Z∗G+ λZ∗F − λF ∗Z

]
, (4.8)

which together with (4.7) shows that H + G∗Z + Z∗G = Q̃ ≥ 0 and F ∗Z = Z∗F . The
identities (1.11) and (1.10) hold, again, with Lemma 4.1, since

B+(N ) =

[
Y2

Y4

]
B+

([
λF̃ + G̃

Q2

])
=

[
Z
I

]
B+

([
λF̃ + G̃

Q2

]
Y −1
4

)
=

[
Z
I

]
B+

(
U∗

[
λF̃ + G̃

Q2

]
Y −1
4

)
=

[
Z
I

]
B+

([
λF +G

Q̃

])
and

Z (N ) ∩ C− = Z

([
λF̃ + G̃

Q2

])
= Z

(
U∗

[
λF̃ + G̃

Q2

]
Y −1
4

)
= Z

([
λF +G

Q̃

])
.

Finally, assume that N has index less or equal to 1 and no purely imaginary zeros. Let
ẑ ∈ R+(λF + G) = Cq. Then Lemma 4.1 shows that for ŷ := Y −1

4 ẑ ∈ Cq there exists a

y0 ∈ R+

([
λF̃ + G̃

Q2

])
with F̃ ŷ = F̃ y0. Define z0 := Y4y0. Lemma 4.1 shows that Q1 = 0
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and, thus, from (4.8) and (4.6) we obtain[
λF +G

Q̃

]
=

[
0 λF +G

−λF ∗ +G∗ Q̃

] [
0
I

]
= U∗Y ∗

[
0 λF +G

−λF ∗ +G∗ H

]
Y U

[
0
I

]
= U∗

[
0 λF̃ + G̃

−λF̃ ∗ + G̃∗ Q2

]
U

[
0
I

]
= U∗

[
λF̃ + G̃

Q2

]
Y −1
4 , (4.9)

which implies that

z0 = Y4y0 ∈ Y4R+

([
λF̃ + G̃

Q2

])
= R+

(
U∗

[
λF̃ + G̃

Q2

]
Y −1
4

)
= R+

([
λF +G

Q̃

])
.

Since from (4.9) we obtain that[
F
0

]
= U∗

[
F̃
0

]
Y −1
4 =

[
(Y1 − ZY3)

−∗F̃ Y −1
4

0

]
and we also have (Y1 − ZY3)

−∗F̃ ŷ = (Y1 − ZY3)
−∗F̃ y0, we find that

F ẑ = (Y1 − ZY3)
−∗F̃ Y −1

4 Y4ŷ = (Y1 − ZY3)
−∗F̃ Y −1

4 Y4y0 = Fz0,

which proves the claim.

The following example shows that there exist situations where a solution of the Lur’e
equation exists, but no strong solution.

Example 4.4. Consider the system λF+G :=
[
λ 1

]
∈ C[λ]1,2 together with the supply

H :=

[
1 0
0 0

]
.

Since λF +G is already in Kronecker canonical form (2.1) we can use Lemma 2.7 to obtain
that B(λF + G) is controllable and trim. Thus, Lemma 4.3 guarantees the existence of a
solution of the Lur’e equation. Setting

N (λ) :=

[
0 λF +G

−λF ∗ +G∗ H

]
=

 0 λ 1
−λ 1 0
1 0 0


∼

1 0 0
0 −ı 0
0 0 1

 0 λ 1
−λ 1 0
1 0 0

1 0 0
0 ı 0
0 0 1

 =

 0 ıλ 1
ıλ 1 0
1 0 0

 ,

shows that N does not have index less or equal 1. Let Z =
[
z1 z2

]
be a solution of the

Lur’e equation. Then [
z1 z2
0 0

]
= F ∗Z = Z∗F =

[
z1 0
z2 0

]
,

which means that z1 ∈ R and z2 = 0. Furthermore, we have

0 ≤ H +G∗Z + Z∗G =

[
1 0
0 0

]
+

[
0
1

] [
z1 0

]
+

[
z1
0

] [
0 1

]
=

[
1 z1
z1 0

]
,
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which implies that z1 = 0 and thus Z = 0. Thus, there is only one full rank Cholesky
factor C of H + G∗Z + Z∗G = H, namely, C =

[
1 0

]
. However, since R+(λF + G) =

R+(
[
λ 1

]
) = C2 and

R+

([
λF +G

C

])
= R+

([
λ 1
1 0

])
= {0},

we find that, e.g., for ẑ =
[
1 0

]T ∈ R+(λF + G) there exists no z0 ∈ R+

([
λF +G

C

])
with Fz0 = F ẑ.

In this section we have seen that for controllable and trim systems the solvability of the
Lur’e equation is equivalent to dissipativity. Also, we have seen an example of a system for
which a solution of the Lur’e equation exists but no strong solution of the Lur’e equation
exists.

5. Feasibility of the supply function. In this section we will introduce the notion
of feasibility in Definition 5.1. This property will be needed as an assumption in the main
result, Theorem 6.2. However, in this section we will show that every supply function can
be made feasible without changing how power is measured, see Theorem 5.3. Also, we will
see that a wide class of problems is already feasible by itself, cf. Theorem 5.4.

Definition 5.1. Let λF+G ∈ C[λ]p,q and let H = H∗ ∈ Cq,q. Then we call (λF+G,H)
feasible, if there exist invertible matrices T ∈ Cq,q and S ∈ Cp,p and a matrix Z̃ ∈ Cp,q such
that

S (λF +G)T =: λF̃ + G̃ =

[
λF1 +G1 0

0 λF2 +G2

]
, (5.1)

where λF1+G1 ∈ C[λ]p1,q1 , λF2+G2 ∈ C[λ]p2,q2 , B(λF1+G1) is trim, R(λF2+G2) = {0},
F̃ ∗Z̃ = Z̃∗F̃ , and (

T ∗HT + G̃∗Z̃ + Z̃∗G̃
)[

0
Iq2

]
= 0.

The following example shows that not all supply functions are feasible.
Example 5.2. Consider the system which consists of one block of type (K3), i.e., define

λF +G :=

[
1 λ
0 1

]
,

and

H :=

[
−1 0
0 0

]
.

Since R(λF +G) = {0}, it is sufficient to show that there exists no Z = Z̃ ∈ C2,2 such that
F ∗Z = Z∗F and 0 = H +G∗Z + Z∗G. Denote the entries of Z as

Z =:

[
z11 z12
z21 z22

]
,

and observe that then F ∗Z = Z∗F reads[
0 0
z11 z12

]
=

[
0 z11
0 z12

]
,
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which means that Z is supposed to have the form

Z =:

[
0 r
z21 z22

]
,

where r ∈ R is a real number. This implies the equation

0 = H +G∗Z + Z∗G =

[
−1 r + z21

r + z21 z22 + z22

]
,

which is a contradiction.
The following theorem shows that every problem can be made feasible by changing the

supply function, without changing how power is measured.
Theorem 5.3. Let λF + G ∈ C[λ]p,q and let Ĥ = Ĥ∗ ∈ Cq,q. Then there exists

H = H∗ ∈ Cq,q such that

z∗(t)Hz(t) = z∗(t)Ĥz(t),

for all z ∈ B(λF +G) and all t ∈ R and such that (λF +G,H) is feasible.
Proof. Consider the Kronecker canonical form of λF +G given by (2.1) and assume that

the blocks Kj are ordered such that on the diagonal first all blocks of type (K1) and (K2)
appear and then all blocks of type (K3) and (K4). This means that

S(λF +G)T =

[
λF1 +G1 0

0 λF2 +G2

]
. (5.2)

Since λF1+G1 only consists of blocks of type (K1) and (K2) we see thatB(λF1+G1) is trim.
Since λF2+G2 only consists of blocks of type (K3) and (K4) we see that B(λF2+G2) = {0}.
Partition

T ∗ĤT =:

[
H11 H12

H∗
12 H22

]
,

according to the block structure in (5.2) and define Z̃ := 0 and

H := T−∗
[
H11 0
0 0

]
T−1.

Then obviously we have F̃ ∗Z̃ = 0 = Z̃∗F̃ and(
T ∗HT + G̃∗Z̃ + Z̃∗G̃

)[
0
Iq2

]
=

[
H11 0
0 0

] [
0
Iq2

]
= 0,

which means that (λF +G,H) is feasible.
Let z ∈ B(λF +G). Then we have that[

y1
y2

]
:= y := T−1z ∈ B

([
λF1 +G1 0

0 λF2 +G2

])
,

which implies that y2 ∈ B(λF2 +G2) and thus y2 = 0. From this we conclude that

z∗(t)Hz(t) = y∗(t)T ∗HTy(t) =

[
y1(t)
0

]∗ [
H11 0
0 0

] [
y1(t)
0

]
=

[
y1(t)
0

]∗ [
H11 H12

H∗
12 H22

] [
y1(t)
0

]
= z∗(t)T−∗

[
H11 H12

H∗
12 H22

]
T−1z(t) = z∗(t)Ĥz(t),
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and thus the claim follows.
The following Theorem shows that a wide class of problems is already feasible by itself.
Theorem 5.4. Let λF +G ∈ C[λ]p,q and let (2.1) be its Kronecker canonical form. Let

H = H∗ ∈ Cq,q. Assume that B(λF + G) is controllable, that all blocks of type (K3) have
size kj ≤ 2 and all blocks of type (K4) have size kj ≤ 2. Then (λF +G,H) is feasible.

Proof. The proof can be found in the appendix.

6. Non-trim systems. In this section we generalize Lemma 4.3 to non-trim systems
to obtain the main result. In this course the definition of feasibility, which was introduced
in the previous section, is essential. We begin with the following Lemma.

Lemma 6.1. Let λF+G ∈ C[λ]p,q and H = H∗ ∈ Cq,q. Let Z ∈ Cp,q fulfill F ∗Z = Z∗F .
Then (λF +G,H) is dissipative if and only if (λF +G,H +G∗Z + Z∗G) is dissipative.

Proof. It is sufficient to show that dissipativity of (λF + G,H) implies dissipativity of
(λF +G,H +G∗Z + Z∗G), since then the other direction follows by replacing Z with −Z.
Thus, assume that (λF +G,H) is dissipative, i.e., let Θ : Cq → R be a continuous function
which fulfills

Θ(z(t1))−Θ(z(t0)) ≤
∫ t1

t0

z∗(t)Hz(t)dt.

Then we have ∫ t1

t0

z∗(t) (H +G∗Z + Z∗G) z(t)dt

=

∫ t1

t0

z∗(t)Hz(t)− ż∗(t)F ∗Zz(t)− z∗(t)Z∗F ż(t)dt

=

∫ t1

t0

z∗(t)Hz(t)− d

dt
(z∗(t)F ∗Zz(t)) dt

=

∫ t1

t0

z∗(t)Hz(t)dt− z∗(t1)F
∗Zz(t1)− z∗(t0)F

∗Zz(t0)

≥ Θ(z(t1))−Θ(z(t0))− z∗(t1)F
∗Zz(t1) + z∗(t0)F

∗Zz(t0),

which implies that Θ̃(ẑ) := Θ(ẑ)−ẑ∗F ∗Zẑ is a storage function for (λF+G,H+G∗Z+Z∗G).

The following Theorem can be considered as a strengthening of the Kalman-Yakubovich-
Popov Lemma, cf. [25], and it constitutes the main result of this paper.

Theorem 6.2. Let λF + G ∈ C[λ]p,q be a first-order matrix polynomial and let H =
H∗ ∈ C[λ]q,q be Hermitian. Assume that B(λF + G) is controllable and that (λF + G,H)
is dissipative and feasible. Then there exists a solution Z ∈ Cp,q of the Lur’e equation.

Furthermore, if the pencil N from (1.9) has index less or equal to 1 and no purely
imaginary zeros, then there exists a strong solution of the Lur’e equation.

Proof. Let T ∈ Cq,q, S ∈ Cp,p, and Z̃ ∈ Cp,q be according to Definition 5.1. Partition

Z̃ =:

[
Z̃11 Z̃12

Z̃21 Z̃22

]
and T ∗HT =:

[
H11 H12

H∗
12 H22

]
,

according to the block structure in (5.1). Then from F̃ ∗Z̃ = Z̃∗F̃ we obtain that[
F ∗
1 Z̃11 F ∗

1 Z̃12

F ∗
2 Z̃21 F ∗

2 Z̃22

]
=

[
Z̃∗
11F1 Z̃∗

21F2

Z̃∗
12F1 Z̃∗

22F2

]
,
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and from
(
T ∗HT + G̃∗Z̃ + Z̃∗G̃

) [
0 Iq2

]∗
= 0 we obtain that[

H12 +G∗
1Z̃12 + Z̃∗

21G2

H22 +G∗
2Z̃22 + Z̃∗

22G2

]
= 0. (6.1)

Since λF + G is controllable we see from Definition 5.1 that also λF1 + G1 is controllable
and trim. Define

N11 :=

[
0 λF1 +G1

−λF ∗
1 +G∗

1 H11 +G∗
1Z̃11 + Z̃∗

11G1

]
∈ Cp1+q1,p1+q1 .

With Lemma 6.1 we obtain that (λF1+G1,H11+G∗
1Z̃11+Z̃∗

11G1) is dissipative. Thus, using
Lemma 4.3, we obtain the existence of a Z11, which solves the Lur’e equation associated
with (λF1+G1,H11+G∗

1Z̃11+ Z̃∗
11G1), i.e., such that F ∗

1Z11 = Z∗
11F1, 0 ≤ G∗

1(Z11+ Z̃11)+
(Z11 + Z̃11)

∗G1 +H11, and

rank
(
G∗

1(Z11 + Z̃11) + (Z11 + Z̃11)
∗G1 +H11

)
= rankC(λ) (N11)− 2p1 =: s1,

and for every Cholesky factor C1 ∈ Cs1,q1 of

G̃∗
(
Z11 + Z̃11

)
+
(
Z11 + Z̃11

)∗
G̃+H11 = C∗

1C1

we have that

B+(N11) =

[
Z11

I

]
B+

([
λF1 +G1

C1

])
and Z

([
λF1 +G1

C1

])
= Z (N11) ∩ C−. (6.2)

We now show that Z ∈ Cp,q defined via

Z := S∗
[
Z11 + Z̃11 Z̃12

Z̃21 Z̃22

]
T−1

is a solution of the Lur’e equation. Therefore, note that we have

F ∗Z = T−∗
[
F ∗
1

F ∗
2

]
S−∗S∗

[
Z11 + Z̃11 Z̃12

Z̃21 Z̃22

]
T−1

= T−∗
[
F ∗
1Z11 + F ∗

1 Z̃11 F ∗
1 Z̃12

F ∗
2 Z̃21 F ∗

2 Z̃22

]
T−1 = T−∗

[
Z∗
11F1 + Z̃∗

11F1 Z̃∗
21F2

Z̃∗
12F1 Z̃∗

22F2

]
T−1

= T−∗
[
Z∗
11 + Z̃∗

11 Z̃∗
21

Z̃∗
12 Z̃∗

22

]
SS−1

[
F1

F2

]
T−1 = Z∗F

and similarly we obtain with (6.1) that

0 ≤
[
H11 +G∗

1(Z11 + Z̃11) + (Z11 + Z̃11)
∗G1 0

0 0

]
=

[
H11 +G∗

1(Z11 + Z̃11) + (Z11 + Z̃11)
∗G1 H12 +G∗

1Z̃12 + Z̃∗
21G2

H∗
12 + Z̃∗

12G1 +G∗
2Z̃21 H22 +G∗

2Z̃22 + Z̃∗
22G2

]
=

[
H11 H12

H21 H22

]
+

[
G∗

1 0
0 G∗

2

] [
Z11 + Z̃11 Z̃12

Z̃21 Z̃22

]
+

[
Z∗
11 + Z̃∗

11 Z̃∗
21

Z̃∗
12 Z̃∗

22

] [
G1 0
0 G2

]
(6.3)
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has rank s1. Multiplying this inequality from the left with T−∗ and from the right with T−1

shows that also

0 ≤ T−∗
([

H11 H12

H21 H22

]
+

[
G∗

1 0
0 G∗

2

] [
Z11 + Z̃11 Z̃12

Z̃21 Z̃22

]
+

[
Z∗
11 + Z̃∗

11 Z̃∗
21

Z̃∗
12 Z̃∗

22

] [
G1 0
0 G2

])
T−1

= H + T−∗
[
G∗

1 0
0 G∗

2

]
S−∗S∗

[
Z11 + Z̃11 Z̃12

Z̃21 Z̃22

]
T−1

+T−∗
[
Z∗
11 + Z̃∗

11 Z̃∗
21

Z̃∗
12 Z̃∗

22

]
SS−1

[
G1 0
0 G2

]
T−1

= H +G∗Z + Z∗G

has rank

s1 = rankC(λ) (N11)− 2p1 = rankC(λ) (N11) + 2q2 − 2(p1 + q2).

Since λF2 +G2 has full column rank over C(λ) and λF1 +G1 has full row rank over C(λ),
this shows that the rank is given by

s1 = rankC(λ)




0 λF1 +G1 0 0

−λF ∗
1 +G∗

1 H11 +G∗
1Z̃11 + Z̃∗

11G1 0 0
0 0 0 λF2 +G2

0 0 −λF ∗
2 +G∗

2 0




−2 · rankC(λ)

([
λF1 +G1 0

0 λF2 +G2

])

= rankC(λ)




0 0 λF1 +G1 0
0 0 λF2 +G2

−λF ∗
1 +G∗

1 0 H11 +G∗
1Z̃11 + Z̃∗

11G1 0
0 −λF ∗

2 +G∗
2 0 0




−2 · rankC(λ)

(
S−1

[
λF1 +G1 0

0 λF2 +G2

]
T−1

)

= rankC(λ)




0 0 λF1 +G1 0
0 0 λF2 +G2

−λF ∗
1 +G∗

1 0 H11 +G∗
1Z̃11 + Z̃∗

11G1 H12 +G∗
1Z̃12 + Z̃∗

21G2

0 −λF ∗
2 +G∗

2 H21 +G∗
2Z̃21 + Z̃∗

12G1 H22 +G∗
2Z̃22 + Z̃∗

22G2




−2 · rankC(λ) (λF +G)

= rankC(λ)

[
I 0

Z̃∗ I

]
0 0 λF1 +G1 0
0 0 λF2 +G2

−λF ∗
1 +G∗

1 0 H11 H12

0 −λF ∗
2 +G∗

2 H21 H22

[
I Z̃
0 I

]
−2 · rankC(λ) (λF +G)

= rankC(λ) (N )− 2 · rankC(λ) (λF +G) =: s.

Let C ∈ Cs,q be a Cholesky factor of H + G∗Z + Z∗G. Using the formulas at (6.3) we see
that in this case with

[
C1 C2

]
:= CT we have[

H11 +G∗
1(Z11 + Z̃11) + (Z11 + Z̃11)

∗G1 0
0 0

]
=

[
C∗
1

C∗
2

] [
C1 C2

]
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Since
[
C1 C2

]
has full row rank and C∗

2

[
C1 C2

]
= 0, this implies that C2 = 0. Thus we

obtain that

B+(N )

=

[
S∗ 0
0 T

]
B+




0 0 λF1 +G1 0
0 0 0 λF2 +G2

−λF ∗
1 +G∗

1 0 H11 H12

0 −λF ∗
2 +G∗

2 H∗
12 H22


 (6.4)

=

[
S∗ S∗Z̃
0 T

]
B+




0 0 λF1 +G1 0
0 0 0 λF2 +G2

−λF ∗
1 +G∗

1 0 H11 +G∗
1Z̃11 + Z̃∗

11G1 0
0 −λF ∗

2 +G∗
2 0 0




=

[
S∗ 0
0 T

] [
I Z̃
0 I

]

µ1

y
z1
0

 ∣∣∣(µ1, z1) ∈ B+(N11), y ∈ B+(−λF ∗
2 +G∗

2)

 ,

which together with (6.2) implies that

B+(N ) =

[
S∗ S∗Z̃
0 T

]


Z11z1
0
z1
0

 ∣∣∣z1 ∈ B+

([
λF1 +G1

C1

])
⊕



0
y
0
0

 ∣∣∣y ∈ B+(−λF ∗
2 +G∗

2)




since B+(λF2 +G2) = {0} and also B+(−λF ∗
1 +G∗

2) = {0}. We conclude that

B+(N )

=

[
S∗ S∗Z̃
0 T

][Z11 0
0 0

]
I

B+

λF1 +G1 0
0 λF2 +G2

C1 0

⊕

[
I
0

]
B+

([
−λF ∗

1 +G∗
1 0

0 −λF ∗
2 +G∗

2

]))

=

[
S∗ S∗Z̃
0 T

][Z11 0
0 0

]
I

T−1B+

[
S−1 0
0 I

]λF1 +G1 0
0 λF2 +G2

C1 0

T−1

⊕

[
I
0

]
S−∗B+

(
T−∗

[
−λF ∗

1 +G∗
1 0

0 −λF ∗
2 +G∗

2

]
S−∗

))

=

S∗
(
Z̃ +

[
Z11 0
0 0

])
T−1

I

B+

([
λF +G

C

])
⊕
[
I
0

]
B+ (−λF ∗ +G)

=

[
Z
I

]
B+

([
λF +G

C

])
⊕

[
I
0

]
B+ (−λF ∗ +G)
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Also, observe that with the transformation used already in (6.4) we have

Z (N ) ∩ C−

= Z




0 0 λF1 +G1 0
0 0 0 λF2 +G2

−λF ∗
1 +G∗

2 0 H11 +G∗
1Z̃11 + Z̃∗

11G1 0
0 −λF ∗

2 +G∗
2 0 0


 ∩ C−

= Z (N11) ∩ C−,

since λF2 +G2 has no zeros. Together with (6.2) this implies that

Z (N ) ∩ C− = Z

([
λF1 +G1

C1

])

= Z

λF1 +G1 0
0 λF2 +G2

C1 0


= Z

([
λF +G

C

])
.

Finally, assume that N has index less or equal to 1 and no purely imaginary zeros. We have

N =

[
0 λF +G

−λF ∗ +G∗ H

]
∼

[
S 0
0 T ∗

] [
0 λF +G

−λF ∗ +G∗ H

] [
S∗ 0
0 T

]

=


0 0 λF1 +G1 0
0 0 0 λF2 +G2

−λF ∗
1 +G∗

1 0 H11 H12

0 −λF ∗
2 +G∗

2 H∗
12 H22



∼
[
I 0

Z̃∗ I

]
0 0 λF1 +G1 0
0 0 0 λF2 +G2

−λF ∗
1 +G∗

1 0 H11 H12

0 −λF ∗
2 +G∗

2 H∗
12 H22

[
I Z̃
0 I

]

=


0 0 λF1 +G1 0
0 0 0 λF2 +G2

−λF ∗
1 +G∗

1 0 H11 +G∗
1Z̃11 + Z̃∗

11G1 0
0 −λF ∗

2 +G∗
2 0 0



∼


0 λF1 +G1 0 0

−λF ∗
1 +G∗

1 H11 +G∗
1Z̃11 + Z̃∗

11G1 0 0
0 0 0 λF2 +G2

0 0 −λF ∗
2 +G∗

2 0


=

N11 0 0
0 0 λF2 +G2

0 −λF ∗
2 +G∗

2 0

 ,

which means that if the Thompson canonical form (2.8) of N has no blocks of a certain
type, so does the Thompson canonical form of N11. This means that also N11 has index
less or equal to 1 and no purely imaginary zeros. With Lemma 4.3 this implies that we can
assume that Z11 is a strong solution of the Lur’e equation associated with (λF1+G1,H11+
G∗

1Z̃11 + Z̃∗
11G1). Let ẑ ∈ R+(λF + G). Set ŷ := T−1ẑ. Then from Definition 5.1 and the
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assumption of controllability we obtain that

ŷ = T−1ẑ ∈ T−1R+(λF +G) = T−1R(λF +G) = R (S(λF +G)T )

= R

([
λF1 +G1 0

0 λF2 +G2

])
= image

([
I
0

])
,

which means that there exists a x̂ ∈ Cq1 = R+(λF1 +G1) such that ŷ = (x̂, 0). Using that
Z11 is a strong solution of the Lur’e equation associated with (λF1+G1,H11+G∗

1Z̃11+Z̃∗
11G1)

we deduce that there exists an

x0 ∈ R+

([
λF1 +G1

C1

])
,

such that F1x0 = F1x̂. Set z0 := T
[
xT
0 0

]T
. Then we have

Fz0 = FTT−1z0 = S−1

[
F1 0
0 F2

] [
x0

0

]
= S−1

[
F1 0
0 F2

] [
x̂
0

]
FT ŷ = F ẑ,

and, since R+ (λF2 +G2) = {0}, we have

z0 = T

[
x0

0

]
∈ TR+

λF1 +G1 0
0 λF2 +G2

C1 C2


= R+

[
S−1 0
0 I

]λF1 +G1 0
0 λF2 +G2

C1 C2

T−1

 = R+

([
λF +G

C

])

which proves that in this case Z is also a strong solution.

7. Connection to the Popov function. In this section we will introduce the Popov
function, cf. Definition 7.2. The relevance of the Popov function for systems theory is well
understood, see [12]. We will show in Lemma 7.3 that the quantity s in Definition 1.6 is
nothing else that the rank (over C(λ)) of the Popov function. Also note that in [1] it was
shown that for controllable systems the zeros of the matrix N from (1.9) are the zeros of
the Popov function.

Definition 7.1. Let λF +G ∈ C[λ]p,q and let r := rankC(λ) (λF +G) denote its rank.
Let U ∈ C(λ)q,q−r and V ∈ C(λ)q,r be such that

• (λF +G)U(λ) = 0,
• rankC(λ) ((λF +G)V (λ)) = r, and

•
[
U V

]
is invertible (over C(λ)).

Then we call U and V a kernel-spanning matrix and a co-kernel-spanning matrix of λF+G.
With this we can define the notion of the Popov function as follows.
Definition 7.2. Let λF +G ∈ C[λ]p,q with r := rankC(λ) (λF +G) and let H = H∗ ∈

Cq,q. Let U ∈ C(λ)q,q−r be a kernel-spanning matrix of λF +G. Then we call

Π := U∼HU,

a Popov function of (λF +G,H) or the Popov function associated with the kernel-spanning
matrix U .
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It is well-known that a controllable system is dissipative, if and only if one of its Popov
functions is positive semi-definite along the imaginary axis, see [34]. In this paper we,
however, only want to concentrate on the following fact.

Lemma 7.3. Let λF + G ∈ C[λ]p,q be a first-order matrix polynomial and let H =
H∗ ∈ C[λ]q,q be Hermitian. As in Definition 1.6, form the para-Hermitian polynomial
N = N∼ ∈ C[λ]p+q,p+q via

N (λ) :=

[
0 λF +G

−λF ∗ +G∗ H

]
,

and let the quantity s be given by

s := rankC(λ) (N )− 2 · rankC(λ) (λF +G) .

Let Π be a Popov function of (λF +G,H). Then we have

s = rankC(λ) (Π) .

Proof. We have

rankC(λ) (N ) = rankC(λ)

([
I 0
0

[
U V

]]∼ [
0 P
P∼ H

] [
I 0
0

[
U V

]])

= rankC(λ)

 0 0 PV
0 Π U∼HV

V ∼P∼ V ∼HU V ∼HV

 ,

and thus, since PV has full column rank also

rankC(λ) (N ) = rankC(λ)

 0 0 PV
0 Π 0

V ∼P∼ 0 0

 = rankC(λ) (Π) + 2 · rankC(λ) (PV ) ,

which proves the claim.
In this section we have shown that the quantity s from Definition 1.6 is the rank of the

Popov function. We will use this property in the next section to obtain the uniqueness of
the solution of the algebraic Riccati equation in the case were the Popov function does not
have any zeros one the imaginary axis.

8. Specialization to standard state-space systems. In this section we will deduce
the well-known results about the solvability of the algebraic Riccati equation, see [26], from
the results which we have obtained above. Consider the state-space system

ẋ(t) = Ax(t) +Bu(t), (8.1)

where A ∈ Rn,n, B ∈ Rn,m, x ∈ Cn
∞ is called the state, and u ∈ Cm

∞ is called the input. With
this, build the matrix polynomial

λF +G := λ
[
I 0

]
+
[
−A −B

]
. (8.2)

We call system (8.1) controllable, if with (8.2) we have that B (λF +G) is controllable in
the sense of Definition 2.6.
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In the literature, e.g., [16], for systems of the form (8.1) the supply is frequently measured
by a quadratic function s : Rn × Rm → R of the form

s(u, x) :=

[
x
u

]T [
Q S
ST R

] [
x
u

]
, (8.3)

where Q = QT ∈ Rn,n, S ∈ Rn,m, and R = RT ∈ Rm,m. Under these circumstances system
(8.1) is called dissipative with respect to s, if there exists a storage function Θ : Cn → R,
which fulfills

Θ(x(t1))−Θ(x(t0)) ≤
∫ ∞

−∞
s(u(t), x(t))dt, (8.4)

for all trajectories (u, x) ∈ Cm
c × Cn

c which satisfy (8.1) for all t0 ≤ t1. Note the following
difference to Definition 1.3. In Definition 1.3 the storage function may depend on z (and
its derivatives up to some degree) just as the term on the right hand side of the dissipation
inequality in Definition 1.3 may depend on all components of z. In (8.4), however, the right
hand side still depends on all components of u and x, while the storage function Θ only
depends on the state x. Nevertheless, one can show that Definition 1.3 and inequality (8.4)
are equivalent. This can be done in the following way. In [24] it was shown that every
storage function Θ is a function of a so-called state-map. Furthermore, in [20] it was shown,
that for systems of the form (8.1) a state-map is given by (x, u) 7→ x.

Consider the rational matrices U ∈ C(λ)n+m,m and V ∈ C(λ)n+m,n given by

U(λ) :=

[
(λI −A)−1B

I

]
and V (λ) :=

[
I
0

]
.

Then we immediately see that U and V are kernel-spanning and co-kernel-spanning matrices
of λF +G given by (8.2), in the sense of Definition 7.1. Thus, with

H :=

[
Q S
ST R

]
(8.5)

we have that a Popov function of (λF +G,H) is given by

U∼(λ)HU(λ)

=

[
(λI −A)−1B

I

]∼ [
Q S
ST R

] [
(λI −A)−1B

I

]
(8.6)

= B∗(−λI∗ −A∗)−1Q(λI −A)B +B∗(−λI∗ −A∗)−1S + S∗(λI −A)B +R.

Corollary 8.1. Assume that system (8.1) is controllable and that in (8.3) the matrix
R is invertible. Then (8.1) is dissipative with respect to the supply function (8.3) if and
only if there exists a Hermitian matrix X = X∗ ∈ Cn,n which solves the algebraic Riccati
equation

Q−A∗X −X∗A− (S −X∗B)R−1(S∗ −B∗X) = 0 (8.7)

and all eigenvalues of the matrix

A−BR−1 (S∗ −B∗X)

are in the closed left half plane.
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Furthermore, if A has no eigenvalues on the imaginary axis and the Popov function
(8.6) has no zeros on the imaginary axis, then X is unique.

Proof. To show that dissipativity implies the existence of a solution of the algebraic
Riccati equation, let λF + G be defined through (8.2) and let H be defined through (8.5).
Then the assumption implies that (λF +G,H) is dissipative, controllable, and (because of
Corollary 2.8) trim. Thus, using Lemma 4.3, we obtain the existence of a Z ∈ Cn,n+m which
solves the Lur’e equation. Partition

Z =:
[
X Y

]
,

with X ∈ Cn,n and Y ∈ Cn,m. Then we obtain from Definition 1.6 that[
X Y
0 0

]
=

[
I
0

] [
X Y

]
= F ∗Z = Z∗F =

[
X∗

Y ∗

] [
I 0

]
=

[
X∗ 0
Y ∗ 0

]
,

which implies that X = X∗ and Y = 0. Since R is assumed to be invertible we see that the
Popov function in (8.6) has rank m over C(λ). Thus, from Definition 1.6 and Lemma 7.3
we obtain that

0 ≤ H +G∗Z + Z∗G =

[
Q S
S∗ R

]
+

[
−A∗

−B∗

] [
X 0

]
+

[
X∗

0

] [
−A −B

]
=

[
Q−A∗X −X∗A S −X∗B

S∗ −B∗X R

]
,

has rank m and we see that R is positive definite. Building the Schur complement we find
that also

0 ≤
[
I −(S −X∗B)R−1

0 I

] [
Q−A∗X −X∗A S −X∗B

S∗ −B∗X R

] [
I 0

−R−1(S∗ −B∗X) I

]
=

[
I −(S −X∗B)R−1

0 I

] [
Q−A∗X −X∗A− (S −X∗B)R−1(S∗ −B∗X) S −X∗B

0 R

]
=

[
Q−A∗X −X∗A− (S −X∗B)R−1(S∗ −B∗X) 0

0 R

]
,

has rank m, which implies that

Q−A∗X −X∗A− (S −X∗B)R−1(S∗ −B∗X) = 0.

Let R = T ∗T be a Cholesky factorization of R. Then we can factor

0 ≤
[
Q−A∗X −X∗A S −X∗B

S∗ −B∗X R

]
=

[
(S −X∗B)R−1(S∗ −B∗X) S −X∗B

S∗ −B∗X R

]
=

[
(S −X∗B)T−1

T ∗

] [
T−∗ (S∗ −B∗X) T

]
,

which implies that

Z

([
λI −A −B

T−∗ (S∗ −B∗X) T

])
= Z

([
λI −A −B

T−∗ (S∗ −B∗X) T

] [
I 0

−R−1 (S∗ −B∗X) I

])
= Z

([
I BT−1

0 I

] [
λI −A+BR−1 (S∗ −B∗X) −B

0 T

])
= Z

([
λI −A+BR−1 (S∗ −B∗X) 0

0 T

])
= Z

(
λI −

(
A−BR−1 (S∗ −B∗X)

))
.

34



Finally, assume that A is stable and that the Popov function (8.6) has no purely imaginary
zeros. Define

N (λ) :=

[
0 λF +G

−λF ∗ +G∗ H

]
=

 0 λI −A −B
−λI −A∗ Q S

−B∗ S∗ R

 .

Since R is invertible, we see that N is regular (i.e., in the Thompson canonical form (2.8)
there are no blocks of type (T6)) and has index 1. Define

X(λ) :=

I 0 (λI −A)−∼(Q(λI −A)−1B + S)
0 I (λI −A)−1B
0 0 I

 .

Since A has no purely imaginary eigenvalues we conclude that X has no poles on the imag-
inary axis. Thus, using (1.4), we find that the purely imaginary zeros of N coincide with
those of

X∼NX =

 0 λI −A 0
−λI −A∗ Q 0

0 0 Π

 ,

where Π denotes the Popov function from (8.6). Since we assume that Π has no purely
imaginary zeros, we conclude that also N has no purely imaginary zeros. Thus, Lemma 4.3
implies that Z is a strong solution. Using Lemma 2.4 and the fact that with (8.2) we have
R+(λF +G) = Cn+m, we conclude the uniqueness of X.

In this section we have derived from the material in the previous sections that for
controllable standard systems with regular R the solvability of the algebraic Riccati equation
(8.7) is equivalent to dissipativity, a well-known result [26]. Also we proved that the solution
is unique, if A is stable and the Popov function (8.6) has no zeros on the imaginary axis.

9. Conclusion. In this paper we have proven that, under the assumptions thatB(λF+
G) is controllable and (λF +G,H) is feasible, dissipativity is equivalent to the solvability of
the Lur’e equation (Theorem 6.2). Furthermore, we saw that every problem (λF+G, H̃) can
be reformulated into an equivalent problem (λF + G,H) which is feasible (Theorem 5.3).
This means that we essentially assume controllability of the system. It remains unclear,
if the assumption of controllability is really necessary, and we conjecture that it can be
weakened to stabilizability or that it can be dropped entirely. It is possible to derive the
standard results about the algebraic Riccati equation from our results (Corollary 8.1).

All results have been formulated on the positive time-axis, although it would be no
problem to formulate them analogously on the negative time-axis, i.e., one can show that
for controllable systems with feasible supply there exists a Z ∈ Cp,q such that 1.)-3.) of
Definition 1.6 are fulfilled, while for every Cholesky factor C ∈ Cs,q of the matrix G∗Z +
Z∗G+ Ĥ = C∗C, we have that

B− (N ) =

[
Z
I

]
B−

([
λF +G

C

])
⊕
[
I
0

]
B− (−λF ∗ +G∗) ,

(with B− defined analogously to Definition 1.2 in the obvious way) and we have

Z

([
λF +G

C

])
= Z (N ) ∩ C+.
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Finally, the question arises, how the matrices Z and C from Definition 1.6 can be com-
puted in a numerical reliable and efficient way. The results, especially Lemma 3.5 and
the proof of Theorem 5.3, give a first hint at how this might be possible. However, the
Thompson canonical form (2.8) cannot be used for actual computations, since it involves
transformations with arbitrary invertible matrices X. From a numerical point-of-view it
is desirable to only use unitary transformations. The characteristics of the singular blocks
(T6) and the blocks of index higher than 1 (i.e., the blocks of type (T4) and (T5) with

k̂j > 1) can be obtained from a so-called staircase form, which can be computed via unitary
transformations only [4, 5]. This staircase form could be a helpful tool for the computation
of solutions of the Lur’e equation.

It is well-known that Hamiltonian eigenvalue problems can be used to compute the
stabilizing solution of the algebraic Riccati equation, compare [15]. Thus, we conjecture that
this approach can be generalized to the setting employed in this paper via para-Hermitian
eigenvalue problems. Methods for para-Hermitian eigenvalue problems are an active topic
of research, compare [13, 17, 19].
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[4] T. Brüll and V. Mehrmann, STCSSP: A FORTRAN 77 routine to compute a structured stair-
case form for a (skew-)symmetric/(skew-)symmetric matrix pencil, Preprint 31–2007, Institut für
Mathematik, TU Berlin, 2007.
http://www.math.tu-berlin.de/preprints/.

[5] R. Byers, V. Mehrmann, and H. Xu, A structured staircase algorithm for skew-symmetric/ sym-
metric pencils, Electr. Trans. Num. Anal., 26 (2007), pp. 1–33.

[6] D. J. Clements, B. Anderson, A. Laub, and J. Matson, Spectral factorization with imaginary-axis
zeros, Linear Algebra Appl., 250 (1997), pp. 225–252.

[7] D. J. Clements and K. Glover, Spectral factorization via Hermitian pencils, Linear Algebra Appl.,
122-124 (1989), pp. 797–846.

[8] L. Dai, Singular Control Systems, Springer-Verlag, Berlin, Germany, 1989.
[9] F. Gantmacher, The Theory of Matrices I, Chelsea Publishing Company, New York, NY, 1959.

[10] , The Theory of Matrices II, Chelsea Publishing Company, New York, NY, 1959.
[11] G. H. Golub and C. F. van Loan, Matrix computations, The Johns Hopkins University Press, Bal-

timore and London, 1996.
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Appendix A. Proof of Theorem 5.4.
In this section we give the proof of Theorem 5.4. The basic idea is to use the Kronecker

canonical form (2.1) to transform the equations of Definition 5.1 into a set of equations, which
can be solved in a purely algebraic fashion. To do so, we have to consider the corresponding
equations, which occur by looking at individual blocks of the Kronecker canonical form.
This is done in the following Lemmata, which are needed for the proof of Theorem 5.4. The
whole construction is very similar to the one in [2, Appendix A.5].

Lemma A.1. Consider a single block of type (K4) in the Kronecker canonical form,
i.e., let F,G ∈ Cη+1,η be defined as

F =


1

0
. . .

. . . 1
0

 , G =


0

1
. . .

. . . 0
1

 ,

and consider the pencil λF + G ∈ C[λ]η+1,η. Let H = H∗ ∈ Cη,η be a Hermitian matrix.
Then there exists a X = X∗ ∈ Cη+1,η+1 such that 0 = G∗XF + F ∗XG+H.

Proof. Denote the entries of the Hermitian matrix X in the form

X =

 x1,1 . . . x1,η+1

...
...

xη+1,1 . . . xη+1,η+1

 =
[
xi,j

]
i,j=1,...,η+1

=
[
xj,i

]
i,j=1,...,η+1

and the Hermitian matrix H in the form

H =

h1,1 . . . h1,η

...
...

hη,1 . . . hη,η

 =
[
hi,j

]
i,j=1,...,η

=
[
hj,i

]
i,j=1,...,η

.
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Then we see that we are looking for an Hermitian X such that

0 = F ∗XG+G∗XF +H

=

1 0
. . .

. . .

1 0


 x1,1 . . . x1,η+1

...
...

xη+1,1 . . . xη+1,η+1



0

1
. . .

. . . 0
1

+ (F ∗XG)∗ +H

=

x1,2 . . . x1,η+1

...
...

xη,2 . . . xη,η+1

+

 x1,2 . . . xη,2

...
...

x1,η+1 . . . xη,η+1

+

h1,1 . . . h1,η

...
...

hη,1 . . . hη,η


=

[
xi,j+1

]
i,j=1,...,η

+
[
xj,i+1

]
i,j=1,...,η

+
[
hi,j

]
i,j=1,...,η

=
[
xi,j+1 + xj,i+1 + hi,j

]
i,j=1,...,η

=
[
xi,j+1 + xi+1,j + hi,j

]
i,j=1,...,η

. (A.1)

We construct such an X in the following recursive way. First, choose all xi,i = 0 for

i = 1, . . . , η + 1 and choose xi,i+1 := xi+1,i := −hi,i

2 ∈ R for all i = 1, . . . , η. With this
choice all xi,j with |i−j| ≤ 1 are fixed and all equations in (A.1) with |i−j| ≤ 0 are fulfilled.

As induction hypothesis, assume that for some k ∈ {1, . . . , η − 1} we have that all xi,j

with |i− j| ≤ k are fixed and all equations in (A.1) with |i− j| ≤ k − 1 are fulfilled.
For the inductive step, note that all equations in (A.1) with |i− j| = k are given by

0 = xj+k,j+1 + xj+k+1,j + hj+k,j

for j = 0, . . . , η − k and their complex conjugate equations, which are not really additional
equations. Since |(j + k)− (j +1)| = k− 1 ≤ k, we know that all xj+k,j+1 are already fixed
but not the xj+k+1,j , since |(j + k + 1)− j| = k + 1 > k. Thus we define

xj,j+k+1 := xj+k+1,j := −xj+k,j+1 − hj+k,j ,

for j = 0, . . . , η − k and thus have fixed all xi,j with |i− j| ≤ k + 1 while at the same time
all equations in (A.1) with |i− j| ≤ k are fulfilled. Thus the inductive argument is finished
and the claim is proved.

Lemma A.2. Let the pencils λF1 + G1 ∈ C[λ]η1+1,η
1 and λF2 + G2 ∈ C[λ]η2+1,η2

1 both
be of the form (K4), as defined in the Kronecker canonical form (2.1). Let H12 ∈ Cη1,η2 .
Then there exists a matrix X12 ∈ Cη1+1,η2+1 such that

0 = F ∗
1X12G2 +G∗

1X12F2 +H12.

Proof. For the matrix X12 we introduce the notation

X12 =

 x1,1 . . . x1,η2+1

...
...

xη1+1,1 . . . xη1+1,η2+1

 =
[
xi,j

]
i=1,...,η1+1
j=1,...,η2+1

∈ Cη1+1,η2+1,

and for the matrix H12 analogously

H12 =

 h1,1 . . . h1,η2

...
...

hη1,1 . . . hη1,η2

 =
[
hi,j

]
i=1,...,η1
j=1,...,η2

∈ Cη1,η2 .
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Then we see that we are looking for an X12 such that

0 = F ∗
1X12G2 +G∗

1X12F2 +H12

=

1 0
. . .

. . .

1 0


 x1,1 . . . x1,η2+1

...
...

xη1+1,1 . . . xη1+1,η2+1



0

1
. . .

. . . 0
1



+

0 1
. . .

. . .

0 1


 x1,1 . . . x1,η2+1

...
...

xη1+1,1 . . . xη1+1,η2+1



1

0
. . .

. . . 1
0

+H12

=

 x1,2 . . . x1,η2+1

...
...

xη1,2 . . . xη1,η2+1

+

 x2,1 . . . x2,η2

...
...

xη1+1,1 . . . xη1+1,η2

+

 h1,1 . . . h1,η2

...
...

hη1,1 . . . hη1,η2


=

[
xi,j+1

]
i=1,...,η1
j=1,...,η2

+
[
xi+1,j

]
i=1,...,η1
j=1,...,η2

+
[
hi,j

]
i=1,...,η1
j=1,...,η2

=
[
xi,j+1 + xi+1,j + hi,j

]
i=1,...,η1
j=1,...,η2

. (A.2)

We construct such an X12 in the following recursive way. First, choose xi,1 = 0 for i =
1, . . . , η1+1, choose xi,2 := hi,1 for i = 1, . . . , η1, and choose xη1+1,2 arbitrary. Then all xi,j

with j ≤ 2 are fixed and all equations in (A.2) with j ≤ 1 are fulfilled.
As induction hypothesis, assume that for some k ∈ {2, . . . , η2} we have that all xi,j with

j ≤ k are fixed and all equations in (A.2) with j ≤ k − 1 are fulfilled.
For the inductive step, note that all equations in (A.2) with j = k are given by

xi,k+1 + xi+1,k + hi,k = 0,

with i = 1, . . . , η1. Because of the induction hypothesis all xi+1,k are already fixed but not
the xi,k+1. Thus we define

xi,k+1 := −xi+1,k − hi,k,

for i = 1, . . . , η1 and choose xη1+1,k+1 arbitrary. Then all xi,j with j ≤ k + 1 are fixed and
all equations in (A.2) with j ≤ k are fulfilled. Thus the inductive argument is finished and
the claim is proved.

Lemma A.3. Let w ∈ N and consider the pencil

λF +G = λ · diag (F1, . . . , Fw) + diag (G1, . . . , Gw) ,

where the pencils on the block diagonal λFi + Gi ∈ Cηi+1,ηi are of the form (K4) for i =
1, . . . , w. Set η := η1+ . . .+ηw and observe that F,G ∈ Cη+w,η. Let an arbitrary H = H∗ ∈
Cη,η be given. Then there exists a matrix Z ∈ Cη+w,η such that

F ∗Z = Z∗F,

0 = G∗Z + Z∗G+H.
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Proof. We construct an X = X∗ ∈ Cη+w,η+w such that F ∗XG + G∗XF + H = 0.
Then we obtain the assertion by setting Z := XF . Partition the matrix X according to the
partition of F and G as

X =

X11 · · · X1w

...
...

Xw1 · · · Xww

 η1 + 1
...

ηw + 1
η1 + 1 ηw + 1

and observe that from X = X∗ we obtain that Xij = X∗
ji for all i, j = 1, . . . , w. We see that

we are looking for an X such that

0 = F ∗XG+G∗XF +H

=

F
∗
1

. . .

F ∗
w


X11 · · · X1w

...
...

X∗
1w · · · Xww


G1

. . .

Gw

+ (F ∗XG)∗ +H

=

F ∗
1X11G1 · · · F ∗

1X1wGw

...
...

F ∗
wX

∗
1wG1 · · · F ∗

wXwwGw

+

G∗
1X11F1 · · · G∗

1X1wFw

...
...

G∗
wX

∗
1wF1 · · · G∗

wXwwFw


+

H11 · · · H1w

...
...

H∗
1w · · · Hww


=

 F ∗
1X11G1 +G∗

1X11F1 +H11 · · · F ∗
1X1wGw +G∗

1X1wFw +H1w

...
...

F ∗
wX

∗
1wG1 +G∗

wX
∗
1wF1 +H∗

1w · · · F ∗
wXwwGw +G∗

wXwwFw +Hww

 . (A.3)

Using Lemma A.1 we obtain Xii = X∗
ii ∈ Cηi+1,ηi+1 such that F ∗

i XiiGi+G∗
iXiiFi+Hii = 0

for all i = 1, . . . , w. Using Lemma A.2 we obtain Xij ∈ Cηi+1,ηj+1 such that F ∗
i XijGj +

G∗
iXijFj + Hij = 0 for all i, j = 1, . . . , w with i < j. Since the equations in the strict

block-lower-left part of (A.3) are the conjugate transpose of the equations in the strict
block-upper-right part, they are also fulfilled.

Lemma A.4. Let λF1+G1 ∈ C[λ]ϵ,ϵ+1
1 be in the form (K1) and λF4+G4 ∈ Ckj+1,kj be

in the form (K4) with kj ≤ 2. Let H14 ∈ Cϵ+1,η be arbitrary. Then there exist Z14 ∈ Cϵ,η

and Z41 ∈ Cη+1,ϵ+1 such that

F ∗
1Z14 = Z∗

41F4

0 = G∗
1Z14 + Z∗

41G4 +H14.

Proof. Denote the entries of H by [hi,j ]. If η = 1 then the matrices Z14 and Z41 take
the form

Z14 =

z1...
zϵ

 , Z41 =

[
z̃1,1 . . . z̃1,ϵ+1

z̃2,1 . . . z̃2,ϵ+1

]
.
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With this we obtain 
z1
...
zϵ
0

 = F ∗
1Z14 = Z∗

41F4 =

 z̃1,1
...

z̃1,ϵ+1

 ,

which implies

Z41 =

[
z1 · · · zϵ 0
z̃2,1 . . . z̃2,ϵ z̃2,ϵ+1

]
.

With this notation at hand we can verify that

G∗
1Z14 + Z∗

41G4 = −


0

1
. . .

. . . 0
1

Z14 +


z1 z̃2,1
...

...
zϵ z̃2,ϵ
0 z̃2,ϵ+1


[
0
1

]
= −


0
z1
...
zϵ

+


z̃2,1
...

z̃2,ϵ
z̃2,ϵ+1

 ,

which proves that one can choose Z14 = 0 and z̃2,i := −hi,1 for i = 1, . . . , ϵ+ 1.
If η = 2 then the matrices Z14 and Z41 take the form

Z14 =

z1,1 z1,2
...

...
zϵ,1 zϵ,2

 , Z41 =

z̃1,1 . . . z̃1,ϵ+1

z̃2,1 . . . z̃2,ϵ+1

z̃3,1 . . . z̃3,ϵ+1

 .

With this we obtain
z1,1 z1,2
...

...
zϵ,1 zϵ,2
0 0

 = F ∗
1Z14 = Z∗

41F4 =

 z̃1,1 z̃2,1
...

...
z̃1,ϵ+1 z̃2,ϵ+1


which implies

Z41 =

z1,1 · · · zϵ,1 0
z̃1,2 . . . z̃ϵ,2 0
z̃3,1 . . . z̃3,ϵ z̃3,ϵ+1

 .

With this notation at hand we can verify that

G∗
1Z14 + Z∗

41G4

= −


0

1
. . .

. . . 0
1

Z14 +


z1,1 z1,2 z̃3,1
...

...
...

zϵ,1 zϵ,2 z̃3,ϵ
0 0 z̃3,ϵ+1


0 0
1 0
0 1

 = −


0 0

z1,1 z1,2
...

...
zϵ,1 zϵ,2

+


z1,2 z̃3,1
...

...
zϵ,2 z̃3,ϵ
0 z̃3,ϵ+1

 .

Thus, choosing zi,1 := hi+1,1 for i = 1, . . . , ϵ, z1,2 := −h1,1, zi,2 := 0 for i = 2, . . . , ϵ,
z̃3,1 := −h1,2, z̃3,2 := z1,2 − h2,2, and z̃3,i := −hi,2 for i = 3, . . . , ϵ + 1 we obtain the
assertion.
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With this we can prove Theorem 5.4, the statement of which is repeated here for clarity.
Theorem A.5. Let λF + G ∈ C[λ]p,q and let (2.1) be its Kronecker canonical form.

Let H = H∗ ∈ Cq,q. Assume that B(λF + G) is controllable, that all blocks of type (K3)
have size kj ≤ 1 and all blocks of type (K4) have size kj ≤ 2. Then (λF +G,H) is feasible.

Proof. Let the Kronecker canonical form of λF + G be given by (2.1). Using the
assumption of controllability and Lemma 2.7 we find that there are no blocks of type (K2).
W.l.o.g. we can assume that the blocks Kj are ordered such that first all blocks of type (K1)
appear, then all blocks of type (K3), and then all blocks of type (K4). This means that

S(λF +G)T =

λF1 +G1

λF̂3 + Ĝ3

λF̂4 + Ĝ4

 . (A.4)

Since λF1 +G1 only consists of blocks of type (K1) we see that B(λF1 +G1) is trim. Since

λF2 +G2 :=

[
λF̂3 + Ĝ3

λF̂4 + Ĝ4

]
only consists of blocks of type (K3) and (K4) we see that B(λF2+G2) = {0}. Partition the
matrix

T ∗HT =:

H11 Ĥ13 Ĥ14

Ĥ∗
13 Ĥ33 Ĥ34

Ĥ∗
14 Ĥ∗

34 Ĥ44

 ,

according to the block structure of (A.4). Also partition the matrix

Z̃ =

Z11 Ẑ13 Ẑ14

Ẑ31 Ẑ33 Ẑ34

Ẑ41 Ẑ43 Ẑ44

 , (A.5)

which still has to be determined, according to (A.4). From Definition 5.1 we conclude that
the equationsF ∗

1Z11 F ∗
1 Ẑ13 F ∗

1 Ẑ14

F̂ ∗
3 Ẑ31 F̂ ∗

3 Ẑ33 F̂ ∗
3 Ẑ34

F̂ ∗
4 Ẑ41 F̂ ∗

4 Ẑ43 F̂ ∗
4 Ẑ44

 = F̃ ∗Z̃ = Z̃∗F̃ =

Z∗
11F1 Ẑ∗

31F̂3 Ẑ∗
41F̂4

Ẑ∗
13F1 Ẑ∗

33F̂3 Ẑ∗
43F̂4

Ẑ∗
14F1 Ẑ∗

34F̂3 Ẑ∗
44F̂4


and

0 =
(
T ∗HT + G̃∗Z̃ + Z̃∗G̃

)[
0
Iq2

]
=

Ĥ13 +G∗
1Ẑ13 + Ẑ∗

31Ĝ3 Ĥ14 +G∗
1Ẑ14 + Ẑ∗

41Ĝ4

Ĥ33 + Ĝ∗
3Ẑ33 + Ẑ∗

33Ĝ3 Ĥ34 + Ĝ∗
3Ẑ34 + Ẑ∗

43Ĝ4

Ĥ∗
34 + Ĝ∗

4Ẑ43 + Ẑ∗
34Ĝ3 Ĥ44 + Ĝ∗

4Ẑ44 + Ẑ∗
44Ĝ4


have to be fulfilled. Since we assume that all blocks of type (K3) have size kj ≤ 1 we

conclude that λF̂3 + Ĝ3 = λ0 + I. Choosing Z11 = 0, Ẑ43 := 0, and Ẑ13 := 0 we find that it
would be sufficient to determine Z̃ as in (A.5) such that 0 0 F ∗

1 Ẑ14

0 0 0

F̂ ∗
4 Ẑ41 0 F̂ ∗

4 Ẑ44

 =

 0 0 Ẑ∗
41F̂4

0 0 0

Ẑ∗
14F1 0 Ẑ∗

44F̂4


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and

0 =

 Ĥ13 + Ẑ∗
31 Ĥ14 +G∗

1Ẑ14 + Ẑ∗
41Ĝ4

Ĥ33 + Ẑ33 + Ẑ∗
33 Ĥ34 + Ẑ34

Ĥ∗
34 + Ẑ∗

34 Ĥ44 + Ĝ∗
4Ẑ44 + Ẑ∗

44Ĝ4

 ,

which can be achieved in the following way. Set Ẑ33 := − 1
2Ĥ33, Ẑ34 := −Ĥ34, and Ẑ31 :=

−Ĥ∗
13. We use Lemma A.3 to construct a matrix Ẑ44 such that Ẑ∗

44F̂4 = F̂ ∗
4 Ẑ44 and 0 =

Ĥ44 + Ẑ∗
44Ĝ4 + Ĝ∗

4Ẑ44. We use Lemma A.4 to construct matrices Ẑ14 and Ẑ41 such that
F ∗
1 Ẑ14 = Ẑ∗

41F̂4 and 0 = Ĥ14 +G∗
1Ẑ14 + Ẑ∗

41Ĝ4.
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