LINEAR BOUNDARY VALUE PROBLEMS FOR DIFFERENTIAL
ALGEBRAIC EQUATIONS

KATALIN BALLA AND ROSWITHA MARZ

ABSTRACT. By the use of the corresponding shift matrix, the paper gives a
criterion for the unique solvability of linear boundary value problems posed for
linear differential algebraic equations up to index 2 with well-matched leading
coefficients. The solution is constructed by a proper Green function. Another
characterization of the solutions is based upon the description of arbitrary
affine linear subspaces of solutions to linear differential algebraic equations in
terms of solutions to the adjoint equation. When applied to boundary value
problems, the result provides a constructive criterion for unique solvability
and allows reducing the problem to initial value problems and linear algebraic
equations.

INTRODUCTION

For the linear differential algebraic equations (DAEs) of the form
(1) A1) (DW= (t))' + B(t)2(t) = q(t)

with continuous, quadratic matrix-valued functions A, D and B with complex en-
tries, the index-1 and index-2 notion was introduced in [3]. A theorem on unique
solvability of the properly formulated initial value problems (IVPs) for (1) equipped
with these indices was proven. It was shown that under the same conditions, the
adjoint equation

2 =D (1) (4" (Oy(®)' + B (Oy(t) = p(t)

is of the same index and the proper IVP for (2) is solvable simultaneously. Mean-
while, some properties of the inherent ordinary differential equation (ODE) of (1)
were investigated. The fundamental matrices for (1) and a specific one called nor-
malized fundamental matrix were introduced, too.

The main goal of this paper is studying boundary value problems (BVPs) for (1)
up to index 2. The assertion on simultaneous solvability of (1) and (2) turns to be
the keystone in the analysis of BVPs.

The paper is organized as follows. In Section 1 we recall the basic definitions
and some propositions concerning equation (1). For completeness, we define the
index-0 equations, too. The results of [3] can be extended to index-0 equations in
a trivial way. The solvability theorem for IVPs posed for the pair (1) and (2) is
cited in this section. Existence results for two-point BVPs in terms of the Green
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function and shift matrix will be stated in Section 2. In Section 3 we describe affine
linear subspaces of solutions to (1) by the help of solutions to (2). The transfer of
boundary conditions (BCs) for BVPs both with separated and non-separated BCs
and the related constructive existence theorem will be the topic of Section 4. The
paper is accomplished with some remarks on numerical implementation in the final
Section 5.

1. PRELIMINARIES

We consider equations of the form (1) where A, D and B are continuous m X m
matrix functions with complex entries on closed interval 7 = [a, b], ¢ is a continuous
vector-valued function with complex components on Z. In parallel to (1), equation
(2) is involved into our study, p also is a continuous vector-valued function with
complex components on Z. The pair of leading terms in (1) is assumed to be well
matched in the following sense:

Condition C1 [3]: For each t € Z,

(3) ker A(t) @ im D(t) = C™,

and there exist continuously differentiable functions ai,...,am, » and dy,... ,d,
such that

(4)

ker A(t) = span {ai(t),... ,am—r(t)}, im D(t) = {di(t),...,d.(t)}, te.
We proved

Lemma 1.1. (Lemma 2.1 [3]) Equation (1) has well matched leading coefficients
A and D if and only if the leading coefficients A* and D* of equation (2) are so.

If R is the continuously differentiable projector function realizing the decompo-
sition (3), i.e. ker R(t) = ker A(t) and im R(¢) = im D(t), t € Z, then R* is the
projector function corresponding to the decomposition induced by A* and D*.

Remark 1.1. Our main interest is in considering singular well matched leading
pairs A(t) and D(t). Assumption (3), however, includes the case when both matrices
A(t) and D(t) are nonsingular over the whole interval Z. Then, r = m and R(t) = I
where I is the m xm identity matrix. Considerations in [3] trivially can be extended
to nonsingular well matched leading terms. Equation (1) turns into a standard
explicit ODE if A(t) = D(t) = I.

Definition 1.1. (Definition 2.1 [3]) A vector function x : T — C™ is called solution
of (1) if z € CL(Z) :={z € C(Z): Dz € CY(T)} and (1) is satisfied pointwise.

A solution of (2) is defined similarly. A kind of Lagrange identity was stated.

Lemma 1.2. Let the matriz functions A and D be well matched. Then, for each
pair of solutions x € C},, y € CY. of the homogeneous equations (1) and (2),
respectively, the identity

(5) y*()A@)D(t)xz(t) = const t € L.
holds.
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A key tool in the investigations of problems in [3] was a chain of matrix— and
subspace—valued functions associated with (1):

Go = AD, By:=B;
for i =0,1, Q;, P;,W; are projector functions: Q? = Q;, W? =W,,
(6) Ni = kerGizim Qi; PZ'ZI—Qi,
ker W; = im G,
Giy1:=Gi+ B;Q;, Biy1 = BiF;,
S; = {Z € C" : B;z € im Gz} = ker W; B;.

Further on, D~ denotes the reflexive generalized inverse (RGI) function of D such
that DD~ = Rand D~ D = Py; A~ is an RGI function of A such that A~ A = R and
AA™ =1 —Wpy; Gy stands for the RGI function of G; such that G1G; =1 —-W;
and G{ Gy = P;. We recall [5] ] that a matrix 7~ € L(C¥,C!) is an RGI of a
matrix T € L(C',C*) if it satisfies the equalities T-T7T~ =T~ and TT T =T.
The products Pgrgr := TT~ and Pgrgre := T T are projectors. If Prgri, Prare
are given projectors such that im Prgr; = im T and ker Prgra = ker T', then they
define an RGI T~ uniquely.

Due to condition C1, dimim Gy (t) = r. Let dimim G4 (t) = r1(¢). Based on the
properties of terms in the chain, an index may be assigned to some equations of
the form (1) if, in addition to condition C1, another requirement also is fulfilled.

Condition C2 [3];

(7 dim D(¢)S1(t) = const =:p and dim D(t)Ny(t) = const =: v,
and there exist continuously differentiable functions sP,... 75/? and nP ... n
such that for all t € 7,

D(t)S1(t) = span {sP(t),... ,sf(t)} and D(t)N;(t) = span {nP(t),... ,n2(t)}.

7 v

D
v

Here we extend the Definition 2.2 from [3] as follows:

Definition 1.2. Let conditions C1 and C2 be valid. Equation (1) is said to be
(0) an index-0 tractable DAE if

(8) No(t) ={0},  tel,

(1) an index-1 tractable DAE if

(9) No(t) # {0},

(10) No(t) N So(t) = {0}, tez,
(2) an index-2 tractable DAE if

(11) dim Ny (t) N Se(t) =  const > 0,
(12) Ni(t)nSi(t) = {0}, tel.

When r < m, the chain associated with an equation is not uniquely defined due
to the freedom in the choices of the projectors. The index, however, does not depend
on these choices. Thus, the index value, if exists, is an inherent property of the
equation. One may choose a specific projector Q1 so that ker Q1 (t) = Si(t). The
related terms in the chain will be marked by “*” (hat), too. For equations equipped
with an index the assumptions ensure 71 (t) = const =: r; and p = r + r4 — m,
v = m —ry. In the index-0 and index-1 cases, 1 = m. Function DplD_ is a
continuously differentiable projector function: for each ¢ it projects onto D.S; along
DN; & ker A.
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Setting A, = —D*, D, = A*, B, = B* one may form the chain similar to (6)
beginning with A,, D., B, i.e. for the equation (2). The terms derived in this
chain will be marked by an additional first subscript “ . 7 (star).

With the inclusion of the index-0 equations, Theorem 5.1 of [3] reads as follows:

Theorem 1.1. Equation (1) is of index p, p = 0,1,2, if and only if equation (2)
18 S0.

The main point in the proof was showing that

(13)

DSy = R(A*N,)* = (A*N.; @ ker D*)*, A*S,; = R*(DN,)* = (DN, @ ker A)*
The so called inherent regular ODE for DAE (1) is

(14) u' + DGy 'BD 'u= A4

in the index-0 case while

(15) u' — R'u+ DGT'BD~u = DGy ¢

in the index-1 case. If the DAE is of index 2, then the inherent ODE is
(16) u' — (DP,D")u+ DP,G;*BD u = Nyq.

where

Nog := DPiGy'q+ (DPD™)'DQ1Gy'q, Nog = DPLD™Nog.
For the inherent ODEs derived from an index-1 DAE it was shown that if u(f) €
im D(#) for some t € Z, then u(t) € im D(t) for all t € Z. Similarly, in the index-2
case u(f) € im D(§)Py(f) involves u(t) € im D(¢)P,(t). Equations (15) and (16) are
independent of the choice of Py and Py, Py, respectively.

Let z be a solution of the equation (1). If (1) is a DAE of index 0, then Dz is a
solution of (14). In the index-1 case, Dz is a solution of (15). In the index-2 case,
function DPyz is a solution of (16).

Finally, we recall the solvability statement for IVPs.

Theorem 1.2. (Theorem 3.1, 3.2 [3]) Let to € Z. When
1. (1) is an index-0 or indez-1 DAE, q € C(I) holds and the initial condition is

D(to)l’(to) =do with dp €im D(to),

or, when

2. (1) is an index-2 DAE, q € C}DQIG_l(I) holds and the initial condition is
2

(17) D(to)pl (to).’E(to) =dy with dy € im D(to)pl (t()),

then there exists a unique solution x of the IVP.

Now, the assertion on simultaneous solvability of DAEs (1) and (2) with proper
right hand sides and initial conditions appears to be a direct consequence of Theo-
rems 1.1 and 1.2.

Note that for the index-0 equations the initial condition is equivalent simply to
condition £y € C™ and the equation may be considered formally as a particular case
of index—1 equations with Q¢ = Wy = 0, r = m. In turn, an index—1 DAE may be
considered formally as a particular case of the index—2 equations with @1 = W; = 0;
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then p=r, DPD~ = R, D(t)Ny(t) = {0}, Go = G;. Thus, in the next sections it
is sufficient to prove the statements only for the index-2 DAEs.
2. GREEN FUNCTION APPROACH

Let equation (1) be tractable with index p, p € {0,1,2}. Denote the maximal
fundamental solution matrix normalized at to € Z by X (¢,t0), i.e. X(¢t,t0) € L(C™)
and X (.,to) is the matrix—valued solution of the IVP

(18) A(DX) +BX =0, D(to)Pi(to)(X (to) — I) = 0.
We recall from [3] the properties of the maximal fundamental solutions:
im X (t,t0) = im Hegp ,(t)  ker X(t,t0) = ker gy 4 (t0), te’,

where Il..y, , is a projector function onto the geometric solution space of the ho-
mogeneous DAE (1.1) (g = 0), Sing x(t) = im ey ,(2),

(19)  Meun,:=KPP, K:=I-QoPGy'BPy—QuQ:D~(DQ:D)'D,

U is nonsingular.
Let the RGI X (¢,t0)~ € L(C™) of X (¢,t0) be defined by

X(t7t0)X(t7t0)_ = Hcan [L(t)7
X(tatO)_X(tatO) = Hcan p(tO)-

(See Section 1 for the definition of RGI). The usual group properties
X(t1,t2) X (t2,t3) = X (t1,13), X(t1,t2)” = X(ta,11)-

hold. From Theorem 1.2 it follows that for each ¢ € C'pg, o-1(Z) and 7% € C™, the
VP

(20) A(Dz)' + Bz =q, D(to)Pi(to)((to) — 2°) =0,

is uniquely solvable. Due to linearity, the solution can be split into two terms
(21) z(t) = X(t,t0)2° + %(t), teT.

where Z denotes the solution of the IVP

(22) A(Dz) + Bz =q,  D(to)Py(to)z(to) = 0.

In [3] it was stated that each solution of (1) can be represented in the form z =
Hean w2 + N1g where

Nig = (PoQ1 + QoP1)Gy ' g + QoQ:1 D™ (D@1 Gy 'g)'.

Thus, we can derive

¢

(23) B(t) = [ X(t,5)(Nog)(s)ds + (Nig)(t), teL.
to

Now we turn to the BVP for (1) with the boundary condition

(24) K,z(a) + Kyz(b) = d,

d € Lpc, where Lpc :=im (K, |Kp ) C C™ is the linear subspace associated with
the boundary condition. The values 2z° € C™ in (21) that yield solutions of the
BVP (1), (24) must satisfy the linear system

(25) Mz =d — K,i#(a) — K3#(b)
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with the “shift matrix” M
(26) M = K, X(a,ty) + Kp X (b, to)-

Theorem 2.1. Let the DAE (1.1) be tractable with index p,p € {0,1,2}. Then,
for each d € Lgc and q € C* (Z), the BVP (1), (24) is uniquely solvable if

DQ@:1G3*
and only if the shift matriz M satisfies the conditions
(27) ker M = kerIcq, 4(to),
(28) im M = Lgc.

Proof. Due to the construction, the relations ker IL.qn ,(to) C ker M, im M C Lpc
are valid.

Let the BVP (1), (24) be uniquely solvable for all d € Lg¢ and q € C})ng_l ).
2

Put ¢ = 0. For each d € Lpc there is an 2° € C™ such that M2® = d. Hence
Lpc Cim M, i.e., (28) holds.
Moreover, since the homogeneous BVP (1), (24) with d = 0 and ¢ = 0 has only
the trivial solution, the IVP
A(Dz)' + Bz =0, D(to) Py (to)(z(to) — 2°) =0, 2° € ker M
may have only the identically vanishing solution. This means that
ker M C ker D(to) Py (to) = ker Teqn . (to)

must be true, and consequently, (27) holds.
Conversely, let (27) and (28) be valid. Then for each d € Lpc and ¢ €

C;ng_l(l) a solution of the BVP is determined by (21) and (25). d = 0 and

g =0imply # = 0 and Mz° = 0. Thus z° € ker M = ker X (t,t9). Now (21) leads
to an identically vanishing solution z. O

Remark 2.1. The conditions (27), (28) ensure that rank M = p=7r+r; —m.

When (27) and (28) are valid we can introduce an RGI M~ € L(C™) of M such
that M~ M = Iqp 4 (to) holds.

Theorem 2.2. Let the DAE (1) have tractability index p,pu € {0,1,2} and let the
conditions (27) and (28) be valid. Then the solution of the BVP (1), (24) with

1
de Lpc, q€ CDQngl(I) is

z(t) = X(t,to)M_dJr/bg(t,S)(/V'oq)(S)ds
(29) + Mg)(t) = X(t, to) M {Ka(N1g)(a) + Kp(N1g) (D)},

where the Green function is defined as

g(t ) — X(t7 tO)M_KaX(aatO)X(SatO)_7 S S t7
SIE =X (4 o) MK X (b, )X (s,t0)~, s> t.

Proof. ;From (25), Iean u(to)2® = M~ (d — K,%(a) — KpE(b)) and from (21) one
obtains (29) by standard calculations. Note that (29) is defined uniquely while
there is a freedom in the choice of M~. O

Remark 2.2. The map £ : C}(Z) — C(Z) x Lpc defined by
Lz = (A(Dz)' + Bz, K,2(a) + Kyz(b)), = € Cp(T)
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is linear and bounded. It acts bijectively between C}(Z) and Ct

DQlG;(Z) X LBC-
Recall that, in case of u = 2, the set C’}) o G_l(I) is a proper, non-closed dense
2

subset in C(Z). Hence, when p = 2, £ has a densely defined unbounded inverse
L. However, if we equip C'}, o o-1(Z) with a natural norm and consider L :
2

CL(T) = C!

_1(Z) x Lpc, in this setting £ has a bounded inverse.
DQ1G;

3. AFFINE LINEAR SUBSPACES OF SOLUTIONS

In [1] for a subclass of homogeneous index-1 DAEs (1) with D = Py and con-
tinuously differentiable coefficients A, Py and B we described the linear subspaces
of solutions in terms of the adjoint equation. In this section we formulate and
prove an analogous theorem for the affine linear subspaces of the solutions for DAE
(1) with arbitrary function D well matched with A. The DAE is assumed to be
of index—p, p € {0,1,2} and it is not necessarily homogeneous. The smoothness
conditions on the coefficients A, D and B are exactly as in Section 1, i.e. they must
allow for assignment of an index, only. The function ¢ is assumed to be of the class
required by Theorem 1.2; in the index—0 and index-1 case ¢ is only continuous, in

: 1
the index—2 case q € CDQlG;1 D).

A set of functions M C C}L(Z) is called an affine linear subspace of functions
z € CH(Z) if M = & + L, where 7 € CL(Z) and Ly C CH(Z) is a linear
subspace. Denote M(t) = {v € C" : v =1(t), x € M} and Ly (t) = {w e C™ :
w=2(t), 2 € Ly} If dim Lps(t) = const =: [ then dim M := dim £ :=1.

The set Mipq, of all solutions of the DAE (1) is an affine linear subspace of
dimension ¢ = r +7r; —m in C},(Z). This follows immediately from the representa-
tion (21). The linear subspace Lyy,,, ,(t) € C™ corresponding to the affine linear
subspace Minq ,(t) describes the geometric constraint to which each solution of the
homogeneous equation is subjected to. It reads

Ly, (t) = Sing p(t) = im Teap i (2).

Lemma 3.1. The set M;nq . has an equivalent description

(30) {z € Cp(T) : WoBx = Woq, Hx = H(q)}
where the matriz function H is defined by
(31) H=D@QD [A"B— (D@D )'D]

; .l
and the linear map H : CDQngl

(32) H(q) = DQ1D"[A"q — (DQ:G5q)"].

Proof. Denote the set (30) by M. If equation (1) is multiplied by W then we get
the first relation while the second one, Hx = H(q) is the so-called hidden constraint
derived in [3]. Thus, M;nq, C M. Now it is enough to check the kernels of Wy B
and H (argument ¢ is omitted). Instead of showing that dim(ker WoBNker H) = p,
we check the intersection of kernels of WyBK and HK with invertible matrix
function K from (19), noting that the identities WoBK = WoGy and HK =
DQlD*A*C%(I - 151P0) can be checked by direct computations (for brevity we
omit the details). If WoGaz = 0, then there exist y: y=Fy, = G’;lADy =
PPy = Py, ie. Quz = 0. If, additionaly, 0 = HKz = DQ, D~ A= G2(I- P Py)z,

(T) - C(T) is
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then 0 = DQlPoy, Le. égy = ADy. Therefore, égy = égﬁj’, ie. z=y. Finally, z =
y = PRy = Fx = FPyPiz. It yields ker H Nker Wy B =im KPP, =im Il 4, ,. O

Remark 3.1. Observe that M;,qo(t) coincides with C™ since Wy = 0 and Q1 =0.
For u = 1, Wy is non-trivial while )1 is vanishing. For p = 2, both Wy and @), are
non-trivial, and the hidden constraint H(t)z = H(q)(t) is active.

For the purposes of the next assertions, we decompose equation (1) using the iden-
tity

(33) I=Ql+ Qi Pl + PP,

We obtain

(34) :OBJU = Q:OCI;

(35) QuA(D2) + QL PlBr = QL Pl

(36) Py A(Dx)' + P} P4yBx = P;Phq
Equations (35) and (36) are equivalent to

(37) A Q1 A(Dz) + A" Q4L PLBr = AT*QL Pl
(38) A" UPLA(DD) + A" CPLPLBa = A" Ph P
Since QIIQIOB = Q*,AD, a consequence of (34) is

(39) A Q4 ADz = A" Q4 Qod-

Condition C2 and Theorem 1.1 yield that the projectors A*Q*lA** and A* Py A*~
are differentiable functions, therefore so are functions A**Q*; A and A*—*PX A.
It immediately gives that A*_*QIIQ:Oq € C! is a necessary condition for a function
z to be a solution. One can check, however, that

(40) DGy = A" Q5 Q-
Further, due to AD = GyP Py and AD = —P’PxG%,, the identities DP, =
DGFYAD = —DGZf AD = A* *P* AD hold. Thus, in Theorem 1.2 we could use
matrix functions connected with the equation (2), i.e. we could suppose
A" QLQLe €C
and replace (17) by
P} (to)A(to)D(to)x(to) =d, d€im P} (to)A(to)D(to).
If z € C},, then the first term in (37) rewrites as
A Q1 A[(A* Q1 ADx)' — (A" Q% A) Dal.
Thus, combined with (39), i.e. with (34), equation (37) rewrites as
(41)  A*TQLA[(ATQ1Q509) — (A" Q1 A) Da] = A*~*Q}, Ply(q — Ba).

This is exactly the so-called hidden constraint Hz = H(q) in a different form. In-
deed, since ker Wy = ker Q%, and (34) hold, the multiplier I — Wy may be inserted
before the term ¢g— Bz in (41). On the other hand, the relation ker Wy = ker Q%, in-
volves that (34) and WyBx = Wyq are equivalent. In fact, we checked the following
statement:

Lemma 3.2. A function z € C}, satisfies (34) and (35) if and only if x € Mina -
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Exploiting (34) and (41), we can rewrite (38) as a regular ODE
w — (A**PrA)'u— (A**PXA)A**BG L Au

= [(A"PLA)D - AP P4y BIG 5 Qh0q + A" Pl Py
for u = A*_*I:’:lA(D:c). Equation (42) is nothing else but the inherent ODE
(16) in terms connected with (2)! Indeed, the term by term coincidence can be
verified by direct computation. The forms (41) and (42) show that both the hidden

constraint and the inherent ODE are independent of the chosen projectors Py, Py
since so are Py, Pi1; this assertion was proven in [3] in a different way.

(42)

Remark 3.2. Since Q%,Gr, = QipB, (34) defines the projection of the function
onto im G5 Q5Gy:

(43) G5 QuGhr = G5 Q54

This is an equivalent of the first equation in formula (30) of Lemma 3.1. A combina-

tion of (43) with the second equation Hx = H(q) in (30) defines another projection
of the function xz. Namely, we can derive

(44) G V*Ghr =G QN (Pl — Ql)d — @ AA* *Q21Q%9)'],
V =[P+ A* (A Pa A ) A*)Qu, V2=V, VQ. = QuV =0,

and, the system of equations in (30) becomes equivalent to system (43)-(44) that
defines two projections of function z. This observation will be used in Section 4.

Theorem 3.1. Let (1.1) be tractable with index i, pu € {0,1,2} and q € ClDQla—l(I)'
2

Then, a set K C C}(Z) is a k-dimensional affine linear subspace of solutions of the
DAE (1) if and only if, for all t € Z,

(45) Kit)={weC":y*t)At)D(t)w +v*(t) =0, w € Minq,(t)}
where y : T — L(C*,C™), dimimy(t)=s, v:ZT > C*, s=p—k, and
(46) —D*(A*y)'+ B’y = 0,
(47) v'+q¢'y = 0.

Theorem 3.1 states that any affine linear subspace within the whole solution set
can be segregated by the help of functions that are solutions of the homogeneous
adjoint DAE and solutions of an explicit ODE.

Proof. We denote the set on the right hand side of (45) by K(t) and provide the
proof for p = 2.

Let K € CL(Z) be a k—dimensional affine linear subspace of solutions of the
DAE (1) of index 2 and choose an arbitrary z, € K. Let Lx = {¢ € CHL(Z) :
{ =z —x,, x € K} be the linear subspace of functions corresponding to K and
Lg(t) e C™, t € Z, t € T, be the corresponding subspaces. Note that for each ¢,
D(#)Q1(t) Lk (t) = {0} and dim D(¢) Lk (t) = dim Lx(t). Fix to € Z. Let

L (to) := (D(to)Lx(to) ® DN (to) @ ker A(to))™.

One has dimL§(ty) = m —[k+v + (m —7)] = r — k —v = s. Thus, there

exist s linearly independent vectors 29, ..., 20 spanning L% (tp). Since L% (t9) C

(DN (to) @ ker A(t)) " = A*(tO)S*l(t()), the IVPs for the homogeneous equation

(2) (p=0) with initial conditions A*(to)Ps1(to)y(to) = 2i, i = 1,... , s have uniquely
defined solutions y;.
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The above solutions yi,. .. ,ys of the homogeneous equation (2) are linearly in-
dependent. Indeed, assume the contrary, that is for the solution &(t) = >°7_; ¢iyi(t)
with at least one non-zero c;, £(f) = 0 holds for some . The IVP for homogeneous
equation (2) with initial condition A* (%) *1(t)y(f) = 0 has the unique solution
y = 0. This is in contradiction with A*(to)Pu (to)&(te) = Soi_, cizi # 0.

Set 19 = —29*D(to)z4(to) and let v; : Z — C be the solution of the IVP for ODE
v} + q*y; = 0 satisfying v;(to) = v?.

Let z € K. Then

(y; W A()D(8)2(t) +v; (1)) =
[l () A()' D(t)] = (t)+y t) [A@)(D(6)=(t))'] -y (t)g(t) =
v ()BO)(0) + i (1)]a(t) - B(t)a(t)] — i (Halt) = 0

Thus,
(48) yi (A D(8)z(t) + vi (t) = y; (to) A(to) D(to)z(to) + v; (to)-

(t
Note that A*(to)Q.1 (to)yi(to) = 0. Thus, the right hand side expression in (48)
equals to

y; (to) Py (to) Alto) D(to)x(to) — 22" D(to)xa(to) = 27 D(to)[z(to) — Ta(to)].

Since z(to) — x4 (to) € Li(to), the latter expression vanishes by construction.

Let y : Z — L(C°,C™) be defined “columnwise” by vector-valued functions y;,
i=1,...,s,as y(t) :== (y1(t),--. ,ys(t)). Clearly, y is a solution of the DAE (4.3).
Similarly, v: Z — C°, v(t) := (v1(t),... ,vs(t)) satisfies the ODE (4.4).

Thus, we checked that for € KX C M4, and each fixed t € Z, w := z(t)
belongs to the set K (t).

For the second part, for each ¢ let the set K (t) be given. On one hand, y*AD =

y*II; AD = y*ADIl oy, 2 = y*ADPl. On the other hand, by construction

*can 2

s =dimim y = dimim A*y holds. Thus,
dim(kery*ANDS))=(m—s)—v—(m—-r)=r—s—v=r—(p—k)—v=E~%,

ie dimK(t) = k.
Fix a t € Z. Due to above considerations, there exists wo € C™ such that
wo € K(t) and there exist k linearly indepent vectors wy, ..., w € C™ such that

y*(f)A(E)D(E)wz =0, and w; = Icon 2w;.

Let us consider the solution z¢ of (1) with initial value zo(f) = wo and solutions
T1,...,2; of homogeneous equations (1) with initial values z;(f) = w;, i = 1,...,k,
respectively. For each t, 2o(t) + span {z1(t),...,2;} C K(t). A similar reasoning
that we applied when showing the linear independence of the solutions of the ho-
mogeneous adjoint equation with linearly independent initial values yields that for
each t, the affine linear set xo(t) + span {z1(¢),...,z,(t)} is of dimension k. Thus,
K(t) = 2o(t) +span {z,(t),...,zx(t)}. On the other hand, o + span {z1,...,zx}
is an affine linear solution set as it was claimed.

[l

4. TRANSFER OF BOUNDARY CONDITIONS

4.1. Separated boundary conditions. First let us consider the BVP for (1) with
separated boundary condition (24), i.e. K} = (K};|0), K; = (0|K},), d* = (df|d3),
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where K, € L(C™,C™=), Ky € L(C™,C™), dy € C™=, dy € C™, 0-s stand for
zero matrices of proper dimensions.
Both sets of solutions defined by one and the other boundary conditions, i.e.

(49) Ko :={z € Ming2 : Kq1z(a) = dy }
and
(50) Kb = {x € Minaa : Kpax(b) = da}

are affine linear solution sets and so is K := K, [ Ks, the solution set of the BVP.
Due to Remark 3.2, K, and K, have the equivalent representation

(51) Ko = {.’I? € Mina2 : f(alzv(a) = (il},
(52) Ky = {:E € Mings : me(b) = Jg},
where
Ka = KuG(a)I - Ql(a) — V*(a)Giy(a),
Ky = szG y (0)(I — ( )— *(0)G:2(b),
d = d *(a)[(P;H( )Q%0(a) + Q1 (a) Py (a))g(a)
i _Q*l(a)A( J(A Q% 1Qioq)'( )],
dy = dp— G5 (D[P (0)Q%(b) + Q% ()P (b))a(d)
—Q:L (D) AD) (A" e 1Q*oq) (b )]

Note that
(I = Qi) = V*(1))GL(t) = =[I + A(t) (A" QL A) (A ()] P () A(t) D(2).

We always may assume that the boundary conditions are given in their modified
form and the matrices K,1, K,1 are of full rank. Set

Yoo = Ku(@A™(0)D* (@)K,
= K@MV@NWW%,
where K, is the counterpart of K from (19), i
K* =1 — Q*Op*lG lB* *0 - Q*OQ*IA ( Q )
Trivially, conditions K,;2(a) = d; and y*,A(a)D(a)z(a) = d; are identical and the
same is valid for the pair Kjz(b) = dp and ypA(a)D(a)z(a)z(b) = do.

Let y, and y, be the solutions of (46) with initial values y,(a) = yq, and
yp(a) = yp- In parallel, let v, and v, the solutions of (47) constructed with the
corresponding y, and y, and initial values v(a) = di and v(b) = d», respectively.
Due to Theorem 3.1 a function z € C}, is a solution of the BVP (1) if and only if
for each t x(t) satisfies the system

(53) viABD®z(t) = —vi(t)
(54) v ABD®z(t) = —vi(t),

V(1)GLMzt) = QhL®)(PhH(t) — QL (t)a()
(55) — QLA (A Q%) (1),
(56) Qi®)BMz(t) = Qit)a(t).

Due to the construction, the first couple of equations is linearly independent of the
second couple. Let 7 := dimim (y,|ys). Also by construction,

dimim D*A*(y,|ys) = dimim (y,|ys) = dimim (yaa|yss)
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holds. Formerly we stated dim M (t) = r + r1 — m. Now, Fredholm alternative for

(53)-(56) ensures the following statement:

Theorem 4.1. For any q € ClDQla—l and dy € im Koy, dy € im Ky, a unique
2

solution x exists if and only if r +1r1 —m — 7 =0.

4.2. Non-separated boundary conditions. By the help of Moszynski’s trick
[4], we transform the problem into an equivalent one with separated boundary

conditions. For t € [a, (a + b)/2], set
8 (t) — (t)
x(t)'_<m(bf-a—t)>’ (t)'_(q(b%q—a—t)>’

A(t) := diag (A(t), A(b+a —1t)), D(t):=diag (D(t),D(b+a—1t)),

L1

B(t) := diag (B(t),—B(b+a — t)),

_ (K, K (0 0 - (d
() me=(n ) =(0)

where I,,, is the m x m identity matrix. Trivially, the original boundary value
problem is equivalent to the BVP of doubled size on the halfed interval [a, (a+b)/2]
with the above data. This latter problem for Z is a BVP with separated boundary
conditions and all considerations of the previous subsection apply.

5. FINAL REMARKS

Remark 5.1. The homogeneous IVPs for (2) with our initial data y(a) = y,, and
y(b) = ypp in Section 4 are always solvable. Thus, by integration of (2) system
from both interval ends up to an arbitrary common point ¢ one obtains y,(tg) and
yp(to). In parallel, the IVPs for equation (47) are to be solved. One should compute
(preserve) the values only at points ¢ where the solution x are needed. At these
points the other two matrices, G2 (£)V (£) and B*(#)Q.o() should be calculated,
too. If the linear system (53)-(56) is nonsingular at an arbitrary # = tq, then so is
it for all £ and one can state solvability and uniqueness of the solution and get the
solution at all £.

Remark 5.2. To go in line with this program, a reliable integrator for (2) is needed
and all of the other coefficients occurring in (53)-(56) must be available. It is
worth noticing that in this system we need only A*(t)y(t) = A*(t)P,1y(t), i.e. the
solution of the inherent ODE of the adjoint equation. One may prefer solving this
homogenous inherent ODE instead of the homogeneous DAE (2). Practically, there
is no difference in computational complexity. A reliable integrator for any DAE
would use its inherent ODE to keep the numerical solution in the corresponding

subspace at least implicitly [2].

Remark 5.3. Theoretically, a properly discretized version of the transfer method
would yield an algorithm for numerical solution of the BVPs for (1). However, the
resulting procedure may be very sensitive to accumulation of numerical errors. This
phenomenon may appear even when the BVP is well conditioned and the relevant
subspaces vary slowly. Therefore, a modification of the transfer algorithm seems
reasonable. That modification would rely on the orthonormalization of basis vectors
of the subspaces in question at the meshpoints or it would build a smoothly varying
basis on the whole interval. These issues will be reported in an other publication.
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Remark 5.4. There is no gain in the complexity if one avoids using the adjoint
equation and the method relies upon any kind of shooting. In that case the compu-
tational effort is spent for keeping either a fundamental matrix (not necessarily the
maximal normalized fundamental matrix) of the homogeneous DAE (1) in the cor-
responding subspace or some solutions of the DAE (1) in the corresponding affine
subspace. To achieve this aim, one must use projectors not simpler than those in
our analysis.
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