FUNCTIONAL PERTURBATION RESULTS AND THE BALANCED
AFEM ALGORITHM FOR SELF-ADJOINT PDE EIGENVALUE
PROBLEMS
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Abstract. We introduce functional perturbation results for PDE eigenvalue problems including
the functional backward error and the functional condition number. These results are used to es-
tablish a combined a posteriori error estimator embodying the discretization and the approximation
error for the simple eigenpair. Based on known perturbation results in H'(Q2) and H~!(Q2) norms
and a standard residual a posteriori error estimator, a balancing AFEM algorithm is proposed. The
stopping criterion for the eigensolver is based on the equilibrating strategy, i.e., iterations proceed
as long as the discrete part of the error estimator dominates the continuous part. All our statements
are illustrated with several numerical examples.
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1. Introduction. Although, the need of designing the adaptive finite element
methods concerning the iterative errors was already noticed in [20] not much atten-
tion was dedicated to this issue. In [15] fully computable a posteriori error estimates
which take into account an inexact solution of the linear algebraic system are de-
rived together with efficient stopping criteria for iterative solvers in the context of a
second-order elliptic pure diffusion model boundary value problem discretized in the
lowest-order Raviart-Thomas-Nédélec space [5]. The convergence of inexact adaptive
finite element solvers for elliptic self-adjoint boundary value problems was recently
proved in [1] using the quasi-optimality result introduced in [9]. Moreover, a practical
stopping criterion for the Conjugate Gradient method with the Hestenes-Stiefel and
the Golub-Meurant error estimates is proposed there.

Most of the existing convergence results for AFEM (Adaptive Finite Element
Method) both for boundary and eigenvalue problems are based on perturbation ar-
guments assuming that the a posteriori error estimator evaluated at an approximate
solution does not differ much from the estimator evaluated at the exact solution for
which the convergence was proved. Moreover, very few results in the literature analyze
the impact of the algebraic eigenvalue solver on the total computational cost of the
AFEM algorithm or design an appropriate eigensolver stopping criterion. An AFEM
algorithm without Galerkin orthogonality is introduced in [13]. The residual type
estimator is constructed directly with the inexact solution of the boundary problem
and controls an algebraic error in terms of the BPX preconditioner [4].

Research for PDE eigenvalue problems have increased during the last few years,
however there are still many challenges. A combined adaptive finite element method
with an iterative algebraic eigenvalue of quasi-optimal computational complexity
(AFEMES) was introduced in [7]. In [21] the convergence and a quasi-optimality
of the inexact inverse iteration coupled with adaptive finite element methods exploit-
ing the well-known results from boundary value problems are studied. In general
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the non-linear nature of eigenvalue problems does not allow to simply extend results
from boundary value problems. Also defining the right norms to measure the corre-
sponding errors is more complicated than in the boundary value problem case, where
the Conjugate Gradient method naturally minimizes the energy norm of the error.
Efficient and reliable adaptive algorithms should take into consideration not only the
discretization errors, but also iteration errors and especially for the non-symmetric
problems the conditioning of the eigenvalues.

In [2], Arioli et al. introduce functional backward error and condition number
and the so-called Compatibility Theorem for boundary value problems. Functional
backward errors and condition numbers are used to analyze the continuous dependence
of the inexact solution on the data, in particular to analyze the approximation error
and the backward stability of the algebraic eigenvalue problem.

Here, we are interested in applying this theoretical framework to analyze the
influence of the accuracy of the algebraic eigenvalue approximation on the adaptivity
process.

In [8] the authors proved that the eigenfunction error in the H'({2)-norm is equiv-
alent to the H 1(Q)-norm of the corresponding residual. However, this result uses
the assumption that the corresponding algebraic eigenvalue problem is solved exactly.
Using the theoretical framework of [2] we show the relation between the functional
backward error and the dual norm of the residual. Our proofs do not require any
special assumptions on the inexact eigenpair (A, u), but we are particularly interested
in the eigenpair approximation resulting from an iterative eigensolver applied to the
self-adjoint PDE eigenvalue problem discretized with linear finite elements.

Moreover, with the shift-invert Lanczos method and the discrete equivalence of
the H'(Q)- and H *(Q2)-norm introduced in [14] we derive a combined residual a
posteriori error estimator which allows to incorporate the approximation error into
the adaptation process. With this new a posteriori error estimator we present and
analyze a new balanced AFEM algorithm which significantly reduces the number of
eigensolver iterations.

The paper is organized as follows. We present the theoretical framework of func-
tional perturbation analysis and establish the Figenvalue Functional Compatibility
Theorem and functional condition numbers in Section 2. In Section 3 we introduce
the combined residual a posteriori error estimator which we use to derive the balanced
AFEM algorithm in Section 4. Section 5 presents some numerical results obtained
with our algorithm on a model Laplace eigenvalue problem and comparisons with
some well established estimators.

2. Functional backward error and condition number.
We follow the notation of [2]. Let H be a Hilbert space and V' a closed subspace, i.e.,
V C H. Let BL(V), BL(H) define the space of continuous bilinear forms V' xV — R
and H x H — R, respectively. We first describe the functional backward error analysis
and the functional condition number for self-adjoint PDE eigenvalue problems in
variational formulation:

Fora(-,-) € BL(V) and b(+,-) € BL(H) find A\ € R such that there exist u € V, u #0
satisfying

a(u,v) = \b(u,v), for allveV. (2.1)

For the sake of simplicity, since V' C H and b(-,-) is also a bilinear form on V', we
restrict ourself to the space V. We assume that a(-,-), b(-,-) are both continuous
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(bounded) on V and af(-,-) is coercive (V-elliptic), namely

a(u,v) < Cillully||v]lv, for all u,v € V, with some constant C; > 0,
b(u,v) < Collullv||v|ly, forall u,v € V, with some constant Cy > 0,
a(v,v) > Cs||v||%, forall ve V,  with some constant C3 > 0. (2.2)

The space of bounded linear functionals ¢ : V' — R on V is the dual space and
denoted by V' . V' is itself a normed vector space with a dual norm defined by

1)y = sup 1<
veEV ||U||V

v #0. (2.3)

We can also define a norm of the bilinear form a(u,v) € BL(V) via

|a(u, v)|

lla(u, v)l|Bc(v) == sup u,v # 0. (2.4)

wwev [lullv]lvllv’
The underlying theoretical framework of the backward error analysis [11] in functional
spaces has the following form.

DEFINITION 2.1 (The functional condition number and backward error). Let a,
b e BL(V) be bilinear forms on V. Consider a simple eigenpair (\,u) (i.e., an eigen-
value of algebraic multiplicity one and its corresponding eigenvector) of the problem
(2.1) and let ¢ be the mapping

p: (a,0) = (Au).

Furthermore, let (X,ﬂ) € RxV be an approximation of the eigenpair (\,u). Then the
functional condition number of  is

IR E) - (A wllv
C = limsu ,
a0 11000, 00) [2(v)

and the normwise functional backward error associated with (X,ﬁ) is

n = min{e > 0; [|0al|scvy < ellallsevy, 16bllsevy) < ellbllsev)

such that  (a + 6a)(i,v) = A(b + 0b) (U, v)},

where da,db € BL(V) are perturbations of the bilinear form a and b, respectively, and
g€ RT.

The mapping ¢ describes how the eigenpair (A, u) is determined by the bilinear
forms a,b € BL(V). Similarly, as in the algebraic eigenvalue problem, the condition
number is the smallest upper bound for the ratio between the error in the output,
i.e., eigenpair, and the error in the input, i.e., perturbations in both bilinear forms
[11]. The normwise functional backward error determines the size of the smallest
perturbation in the bilinear forms, such that the approximate eigenpair is the exact
eigenpair of the perturbed variational equation. However, here the situation is much
more complicated. Since, usually, the approximate eigenpair (A, @) is a finite element
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solution obtained after discretizing the PDE ¢g;s. and applying the iterative eigen-
solver ;e to the finite dimensional problem, the mapping ¢ in fact is a composite
of two maps, i.e.,

‘p((aa b)) = Piter © ‘Pdisc((a: b)) = (/\7 u)'

Applying the perturbation arguments leads to

o((a+6a,b+ 6b)) = Piter © Paisc((a + da, b+ 6b)) = (X, 7).

Therefore, the error between the exact continuous eigenpair (A, u) and its finite ele-
ment approximation (A, @) can be written as

1N, @) — (A w)llv = CiterPiter (Cdisc%’disc((a +da,b+ 6b)) + 6)-

In the ideal situation, when the mapping ¢ is linear, obtaining the condition num-
ber and the backward error which combine information from the discretization and
the iteration process would be relatively easy. However, eigenvalue problems are
nonlinear, i.e., ¢ is a nonlinear mapping and the condition number of the problem
does not depend linearly on the two easily determined condition numbers Cg;s. and
Citer- Therefore, it seems natural to analyze the variational formulation without any
assumptions about the exactness of the finite element solution.

As a starting point let us determine the normwise functional backward error as a
generalization of [3, Theorem 3.1].

THEOREM 2.2. Let a, b be bilinear forms on 'V, i.e., a,b € BL(V). Furthermore,
let da € BL(V) and 6b € BL(V) be perturbations of the bilinear forms a,b € BL(V),
respectively, such that

6allsevy < ellallsevy,  116bllsevy < ellbllsey),

with e € RT. Then, the normwise functional backward error associated with the
approzimate eigenpair (A, u) of (2.1) is

IRy
(NIlellsccv + llallseor) v

n= (2.5)

with the residual R(v) = a(@,v) — Ab(u,v) € V.

Proof. From the backward error analysis we have the following identity

(a + da)(T@,v) = (b + 6b) (T, v),
which corresponds to

R(v) = —da(, v) + Ab(i, v).
Moreover, for all v € V', the following relation holds

|[R()| = | = ba(i,v) + X6b(@, 0)| < [I8allse) [llv ol + N8Bz @l o]l
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Hence, we have

|B(v)] ~ N ~
< l10allsev)llally + [All6bl seovy llallv,
llvllv
forallveV.
Therefore, it is obvious that

| E(v)|

vev\{oy I[vllv

< N18allsee llally + N80l s |l v-

We note that from the definition of the dual norm (2.3), it follows that
I1B@)|lv: < ll9allseev) llallv + [AI10bllsev) llallv-
With the assumptions on ||dal|zz(vy, [[0b][sc(v) we have that
I1E()|lv: < ellallsev) llullv + elAllbllv) llallv,

and therefore,

IRy
(Nlellsccv + llallse) Il ~

Since this inequality holds for an arbitrarily chosen ¢, it holds also for 7, i.e.,

[|22(v)][v
(INbllvy + lallseon)llally ~
Let da, db be defined as follows (see, e.g., [2, 3])

a
50{(“71}) _ ~|| ||B£(V) — ||U||VR('U)
llallseo llallv + 1ol Allally

and

b
) — Ibllscc)

llallseolf@llv + 1Bl Al

[[ullv R(v).

Since for the smallest eigenvalue 2> 0, we have from the definition of the norm of
the bilinear form (2.4) and the dual norm (2.3) that

l0allscvy = sup Pa(u, o)l _ ~||“||B£(V) _ |R(v)|
woev lullvilollv lallgeonllllyv + 11bllseon Ml vev llvllv
= llocey g,
lallseonll@llv + llallseon Al
and
b
16b]ls2(v) = sup [0b(u, )| _ _ 16ll52(v) . IR(v)]
woev lellvilvllv - lallsconlfally + 1Bl My vev [ollv
lollseov) ROl

llallseo v + 1bllseo) Al
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Therefore, the following inequalities hold

lallzcovy <ellallseovy  and  [|0bllgevy < ellbllsevy,
with

_ R ()| _
(IAIBlB2vy + llallseovy) lallv

Moreover,

(a + da)(u,v) = a(u,v) + da(u,v)

@) - B LTS — T
llallzeovyllallv + Mbllsco llally
= R(v) + Ab(@,v) — lallseqy) (v)

lallseovyll + Albllsev)

T R R(v)Al|b -R
= /\b(’lj,’l)) + (U)HGIHB['(V)H + (U) || ||B,C(V)|| (U)HG’HB[,(V)

lallseonll + Albllsev)
R()A[bllscv)
lallzeon Il + Xbllsev)
= \b(T, v) + A6b(T, v).

= \b(@,v) +

Thus,
(a + 0a)(@,v) = A(b + 0b) (T, v)

and

IRy |
(Xllbllsccr) + llallsen) Il

n<e=

O
Following [2], with the functional backward error analysis, we prove the existence of
perturbations da and b such that the approximate eigenpair (X, @) of (2.1) is the
exact solution of the same variational equation perturbed with da and 6b. This result
can be stated as the Eigenvalue Functional Compatibility Theorem.

TueorEM 2.3 (Eigenvalue Functional Compatibility Theorem). Let (X,a) be
an approximate eigenpair of the variational formulation (2.1) and let R(v) the corre-
sponding residual, i.e., R(v) = a(u,v) — Xb(ﬂ,v). Then the following are equivalent:

(i) There exist da € BL(V) and db € BL(V) such that

(a4 6a)(@,v) = N(b + 6b) (@, v), for allv eV,
with

ll6allsevy <, [|0bllsevy < B,
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(i)
[1B@)llv: < allally + BAll[allv, (2.6)

with a, 3 € RT.
Proof. Following the proof of Theorem 2.2 we get

IR@)llv < 18allseov)llallv + ISblseo v,

which together with the assumptions on ||dal|zc(vy, [|0b]|sc(v) vields (2.6).
Set

a

2ol ) == il + gy )
and
b(u,0) = b ullvR(v).
alf@lly + BXlalv
Then we have
~ Ing ~ @ ~
—da(w,v) + Aob(u,v) = il 1 ﬁX||ﬂ||V |||y R(v)
7 @l R(v)

alldlly + X[y
S R — Y B

allully + BAlully — allully + BAllully

and therefore
—da(it,v) + A0b(@,v) = R(v).

Assuming ||R(v)|ly: < «alally + B|X|||1~L||v and employing the definition of the norm
of the bilinear form (2.4) and of the dual norm (2.3) we get
|9a(u, v)| a | R(v)]

l6allcvy = sup > — ~i~
W v Tullviivllv = al@lly + Sl vev ollv
(0%
- IRy

allullv + BIAlllallv
0%

< =
allullv + BIA[l[allv

(ali@lly + BNl )

and
0b(u,v R(v
l0bllscvy = sup 196(u, )] < — P — ()
woev ullvilollv = aljally + BIAll[al|y vev vllv
B
= — ~——||R(v)||v
alldlly + BNl
4

< — ~——— (allillv + B[l ).-
alllly + BIAlllallv
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Therefore,

lldallpevy <a  and  ||6bllpe(vy < B,
which completes the proof. O

The normwise functional backward error determines the size of the smallest per-
turbation such that the approximate eigenpair is an exact solution of the perturbed
variational equation. It provides a posteriori information which is dependent on the
approximate solution and thus on the choice of the solution method. On the other
hand, the condition number allows to analyze the sensitivity of the eigenpairs to the
particular perturbations in the input data [11]. Together, they provide a possibility
to estimate the total error, i.e., the forward error of the problem. In the context
of finite element methods, the crucial element is to reduce the number of controlled
parameters. Since, the discretization process and the iteration process interact, we
would like to eliminate their influence whenever it is possible. The condition number
can be viewed as a priori information about the problem which describes a property
of the problem and we would like it to be independent of the applied solution method
and in particular independent of the discretization parameters as for boundary value
problems [2].

DEFINITION 2.4 (Condition number of the elliptic eigenvalue problem). Let da €
BL(V), 0b € BL(V) be perturbations of bilinear forms a,b € BL(V) defined as in the
variational formulation (2.1), respectively, such that

oallcvy < ea, 6bllseovy < eB,  with €,a,8 € RT.

The relative functional eigenvalue and eigenfunction condition number, C(EVP)),
C(EVPy), for the variational problem (2.1), are the smallest constants Cy, C,, for
which the inequalities

A= X| < ey,

lu —ully: < eCullullv,
are satisfied. Moreover,
siny Z(a,u) < eCy.
THEOREM 2.5 (The functional eigenvalue condition number C(EVP))). Let da €

BL(V), 0b € BL(V) be perturbations of bilinear forms a,b € BL(V) defined as in the
variational formulation (2.1), respectively, such that

l6allscvy < ea, 16b]|5(v) < €8,
with e, c, 8 € RY. Then,

A=A <e(AB+a)+ hot.,
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where by h.o.t we denote the higher order terms, which here are given by O((ef8)?) +
O(£(u,u)?).
Moreover, the functional eigenvalue condition number C(EVP)) satisfies the bound

I\ +

<
C(EVPy) < i

+ h.o.t..

Proof. The main idea of the proof is to estimate the eigenvalue error without
assuming that the approximate eigenpair (A, @) fulfills the weak formulation (2.1).
First, we assume that the approximate eigenpair (\, %) satisfy the equation

(a + da)(T@,v) = (b + 6b) (T, v),
which means that it fulfills the modified variational equation
(i, v) = Ab(@, v).
Now, due to the linearity of both bilinear forms we get
a(@,v) + da(t,v) = Ab(G, v) + Ab(T, v).

The essential observation is that v can be chosen arbitrarily in V', so let v = u then

a(@, u) + da(@, u) = Ab(T@, u) + A6b(T, u).
With a(@,u) = Ab(@, u) and writing A as (A — (A — X)) we obtain that
(A= Nb(@,u) = (A — (A = X)db(@, u) — da(T, )
and
IA = Al|b(@, u)| = [(A = (A = X)ob(@, u) — a(@, u)]-
After applying the triangle inequality we get
IN=XI[b(@, w)| < [N18bllse v Nalv lully + A= X168l s v v lullv +16all e @yl
As, ||dallpcivy < e and [|0b][pe(v) < €, we have
I = (@, u)| < eBINlly ully +BIX = N[y llullv + calflly[|u]lv.
Since |b(@,w)| # 0, the last inequality yields

[[allv[[ulv

A=Al < (eB|A] +eBIA = A +ea) b, 0]

Following the definition of the angle between functions, it is straightforward that

—Al < - S —
A=Al < (eBIA] + B[ A|+8a)cos£(ﬂ,u)

We are now in the position to apply Wilkinson’s first order perturbation result [19],
namely
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X=X < (JAeB + |A — A|eB + ) + O(L(T@, u)?).

If e84 < 1 then

X=X < el —e8) " (A8 +a) + O(L(T, u)?).

After neglecting higher order terms in the Taylor expansion of (1 —e3)~!, we finally
get
X=X < (A8 + ) + O((8)*) + O(L (T, u)?).

REMARK 2.6. We note that if §b =0 then

||5a||BL(V)||a”V||u”V _ ||5a||Bc(V)
|b(w, u) cos Z(u,u)

A=Al <

and the relative eigenvalue error is given by

A=Al 10allz(v) l0allzz(v) _ oallzcovy U
< < / = ——— 7 Z
NS PleosZ@ma) = eestiw) =T F ol
1) .
< llallzz v 10allscov) L oL,
|/\| ||a||Bc(V)

relative eigenvalue backward error
condition number

The essential observation is that the last inequality is a direct infinite dimensional
analogue of the well-known result [3, Section 3.4] or [10].

THEOREM 2.7 (The functional eigenfunction condition number C(EVP,)). Let

(A, u) be an ezact eigenpair of the variational formulation (2.1) and let (\, @) be its
approzimation. Let bilinear forms a, b € BL(V') satisfy (2.2) and let da,0b € BL(V)
be perturbations of a,b, respectively, such that

l6allscvy < ea, 16b]|5(v) < €8,

with e,a,6 € RY. Let Cy,C3 be the continuity and the coercivity constant as in (2.2)
and C = (|8 + a)(Co +ef + 1). If C3 > eC + Cz|A| then

_ eC + |/\|Cz

—a <(1
fu-aly <=(1- =2k

) & Cllully.

The functional eigenfunction condition number C(EVP,,) satisfies the bound

< C _(AB+a)(Cr+ef+1)

C(EVP.) s s
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Proof. Let (X,ﬂ) be the approximate solution of the variational equation (2.1).
The inexact eigenpair satisfies a perturbed variational equation

(a + 6a) (@, v) = (b + 6b)(T@,v),

which can be written as

a(@,v) + da(t,v) = Ab(G, v) + Ab(T, v).
Setting @ = u — (u — ) implies that
a(u — (u—@),0) + da(u — (u— @),v) = Ab(u — (u — @), v) + Adb(u — (u — @), v).
Then
a(u, v)—a(u—7i, v)+da(u, v)—da(u—i,v) = Ab(u, v)—Ab(u—ii, v)+Adb(u, v)—A6b(u—ii, v).
Since a(u,v) = Ab(u,v), we have
Ab(u, v) —a(u—a, v)+da(u, v)—da(u—i, v) = Ab(u, v)—Ab(u—a, v)+Adb(u, v) —A6b(u—7, v).

With the choice v = u — u, we get

—a(u—T,u— ) = Ab(u,u — @) — Ab(u,u — @) — Ab(u — @, u — @) + AOb(u, u — Q)

—X0b(u — @, u — U) — dalu,u — @) + dalu — &, u — ).

With the coercivity condition (2.2), we can show that

Csllu =l < A= Albllseo lullvlle = ally + Xy lbllseovylle - all
+ ANl 5o lullv lle = @lly + [X18bllse(v) llw — @l
+allse llullvllu = @lly + [18allsev) v =Gl

The boundness of the bilinear form b (2.2) and the assumptions on the size of pertur-
bations |[allsz(v), 16bllc(v), yield

Csllu =l < 1A = NCollullvllu = ally + [N Callu — @l
+AeBllullvile - ally + [Xebllu —all},
+eallullv|lu—ally + eallu —ally.

Since ||u — ul|y # 0, we get
Cyllu = @lly < X = ACaully + [NCallu — ally
+ MeBllully + [Mebllu —allv + eallully + eallu —afly.
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By setting A = A — (A — \), we obtain

Callu = lly < [X = A|Callullv + A = (A = X)|Callu — |y
+ A=A =Nebllully + A= (A= Nepllu —ally

+ealjully +eallu —allv,

and

Csllu —allv < X = N(Cellullv + Callu — @lly + eBllull + Blu —llv)
+ [ Cellu = ally + [AeBllully + [MeB|lu —allv
+ ea||u|| + ea|lu — @]y -

Using the estimate of the eigenvalue error from Theorem 2.5, we arrive at
Collu =l < (A1 + @) (Callully + Callu = il + Bllully +eBllu — @l )

+ MCflu = ally + |Mepllullv + [Alepllu = ally

+eallully +eallu —allv,
which implies that

Csllu—ally < 5(|/\|B + a) (02 tef+ 1) )y

+e(INB +a)(Cot+ep+1)u—aly + NICallu—alv.  (27)

Let now C = (|/\|ﬁ + a) (C2 +efB + 1), then (2.7) reads
Csllu —ally < eCllully +eCllu —ullv + [A|Cyllu —ullv
and the inequality
llu —ully (Cs —eC = [A[C2) < eCslullv,

holds. If (C3 > eC + |A|C2), then we have that

1
(03 —eC — |/\|Cz)

lu—ully < eCllullv

and readily

_ eC + |\Cy\ 1 C
le—ally <e(1-=—5=")  Flulv.

Therefore, the functional eigenfunction condition number C(EVP,,) satisfies

C  (NB+a)(Cy+eB+1)
CEVPY) < - = c. .
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3. A combined residual a posteriori error estimator for self-adjoint
eigenvalue problems. Let us consider the Laplace eigenvalue problem:

Determine a non-trivial eigenpair (\,u) € R x Hg (),
—Au=Xu in Q, u=0 on 0Q, (3.1)

in its variational form (2.1) with V := H{ ().
Let (An,up) € Rx V), be the exact discrete eigenpair (the Galerkin solution), such
that

a(up,vy) = Apb(up,vp)  forall v, €V C V.

For the case of the Galerkin solution (An,up) € R x V), the equivalence be-
tween the discretization error |lu — upl|g3 (o) and the dual norm of the residual, ie.,
IR z-1(0) = lla(un, v) = Anb(un, v)||z-1(0), up to the higher-order terms, is a well-
known relation [8, 12], which allows to derive the standard residual error estimator
n(An,un), ie.,

N(An, un) S llw—unllm ) S n(Ans un),

with the norm equivalence
cllu = un||lm (o) < llu—unllmr @) < Cllu—unllm @),

for some constants ¢, C > 0. Here x < y means inequality up to constant independent
on the mesh-size h. B

If we consider the inexact finite element solution (Ap,up) € R x V},, the corre-
sponding equivalence relation between the complete error ||u — || 71 (o) and the dual
norm of the residual, i.e., ||R(’U)||H—1(Q) = ||a(ﬂh,v) — th(ﬂh,v)HHq(Q) holds by
choosing € = n in Theorem 2.7. However, the equivalence between the dual norm
of the residual, i.e., ||R(U)||H—1(Q) = ||a(up,v) — /\hb(ﬂh,v)||H—1(Q) and the standard
residual error estimator evaluated at the inexact eigenpair (Xh, up), i.e., n(xh, uy) does
not follow and is hard to prove.

Nevertheless, it is still possible to control the adaptive finite element method
with the standard residual error estimator calculated with a non-Galerkin solution
(An, @p) if the influence of the approximation error [|up —n|| g1 (@) can be analyzed and
combined into the error bounds. In [13] a combined a posteriori error estimator for a
non-Galerkin solution of the boundary value problem was designed where the H~1(Q)-
norm of the residual is split directly into the discrete part, the BPX preconditioner [4]
of the algebraic residual and the continuous part, i.e., the standard residual error
estimator (A, @y). The first part of the estimator controls the iteration error and
reflects the influence of the quality of the approximate solution on the estimator,
where the latter term measures the size of the discretization error.

Let us consider the following bound on the global eigenfunction error

lu = @nllmae) < llu—unllup@) + lun — @nll g1 (),

where |lu — un||g1(q) is the discretization error and [|up — Unl|f1 () the error in the
solution of the algebraic eigenvalue problem. We now exploit the idea of the combined
a posteriori error estimator introduced in [13] and bound each term independently.
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In order to control the discretization error, we can use the standard residual error
estimator n(A\p, up), i-€.,

N(Ansun) S llw = unllgi @) S 1A, un)-

Let uy, uy be the representation vector for uy, and uy, calculated as an approximate
solution of the generalized eigenvalue problem

Apup = A\ Bruy,

with the matrices, 4, and Bj being symmetric and symmetric positive definite, re-
spectively, and || - ||z be a discrete H¢(€2)-norm. Then

llur — Gnllmz @) = llan — nlla,

and the following upper bound holds

lu = Gnllr (@) < llu—unllmr@) + llun — Gnllar @) S Ak, un) + [Jan — plla. (3.2)

The correspondence between this upper bound and the upper bound derived in [13]
is straightforward. The discretization error is controlled by the standard residual a
posteriori error estimator, while the approximation error is controlled by the difference
between underlying representation vectors measured in the discrete H}(€Q)-norm. In
contrast to [13], where all the bounds are derived directly with the inexact eigenpair
(Xh,ﬁh), here we first use the residual a posteriori error estimator derived with the
Galerkin solution uy, i.e., n(Ap, up) and afterwards apply the perturbation argument
where we assume that the difference between (A, up) and (s, @) can be measured
by |lup — up|/m, which makes this result slightly weaker, i.e., the lack of the lower
bound prevents to prove the efficiency of the estimator.

The major questions are now: How are the discrete H}(2)-norm and its dual
norm defined, how can we estimate the size of the approximation error in the discrete
H}(Q)-norm and how is the dual norm H ~1(Q) of the discrete residual taken into
account.

In [14] a shift-invert Lanczos method with a specially defined inner product was
introduced. It was shown that applying the H := (A + B)-inner product in the
shift-invert Lanczos method for the matrix pencil (A4, B) enables to measure the size
of the residual vector in the discrete H !(2)-norm and that the H-norm itself can
be identified as a discrete H}(Q)-norm. Let us recall the crucial perturbation result
stated in [14].

PROPOSITION 3.1. [14, Proposition 3.2]

Let (A, B) be a symmetric definite pencil, H = A+ B a symmetric positive definite
matriz, and o _a real number such that A, := A—oB is invertible. Let T be a nonzero
vector in R™, X a real number such that X\ # o and the residual vector

r = A% — \BZ.

If

— = = min
A_O' A_O' Ai

g ?

1 1 . ‘ 1 1
Ai—0 N—¢
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and Az = ABx, where ||z|lg = 1, then

/\—X‘ Irll gz 2az
A—o IZ| 1

- A — Tl 4-1 —1
0 < | sing £(5.2) S‘ N O"H ||Ai HAZ
P VB BN | %t
where

= = min
AM—0 X—gl XN#X

1 1 ‘ 1 1
Ai—o  X—gl

Proof. See [14]. O

Following Proposition 3.1, the H-norm can be identified as a discrete H} (€)-norm,
whereas the AZ'HAS!-norm can be identified as a discrete H ~!({)-norm.

Our next task is to approximate the eigenvector error in a discrete Hg (£2)-norm.
With the appropriate normalization, ||usl/f1 @) = 1, the difference between the rep-
resentation vectors is given by

||11h — l~lh||H = SiIlH A(Uh, l~lh)
Let us now apply Proposition 3.1 to the pencil (A, By). With H = Aj, + By, we have

rll ,— _
|| ||Aa.1HAa-1 (33)

SiIlH L(uh,ﬁh) 5 ||ﬁh||H

which together with (3.2) gives a final upper bound

Hr”A;lHA;l

||1~lh||H = nnew(/\hauh)- (34)

lu — dnllgr o) S (A, un) +

This theoretical upper bound has to be slightly modified to be used in practice.
At first we are not able to compute 7(Ap,up). However, since we know that the
second term in (3.4) measures the approximation error, we can use 1(, @iy ) instead.
On the other hand, we want to get the right hand side of (3.3) as a by product of the
shift-invert Lanczos method. Therefore, as shown in [14], performing m iterations of
the shift-inverse Lanczos algorithm with the pencil (4, By) and H = Ay, + By, inner

product, gives an approximate eigenpair (Xh, uy,) such that

el g eay _ Bulems
([eTLeS o

where (6, s) is an approximate eigenpair of the tridiagonal Lanczos matrix H,, from
the Lanczos factorization V,,,H,, + ﬁmvmﬂe%. For the complete analysis we refer
to [14].

Consequently, after m iterations of the shift-invert Lanczos method we have the
following global upper bound for the eigenfunction error

~ v~ CTS v~
o=l @y S 0 i) + 220y B
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4. The balanced AFEM algorithm. With an appropriate norm and the new
combined a posteriori error estimator, we can reduce the number of Lanczos itera-
tions preformed during the AFEM algorithm for solving self-adjoint eigenvalue prob-
lems, e.g., the Laplace eigenvalue problem. We consider stopping criteria for the
iterative eigensolver and the adaptive mesh refinement based on the new estimator
Tnew (An, Up)- As we have mentioned before, the upper bound (3.4) is a global upper
bound. The only part of the new estimator which can be used to control the error
locally, is a standard residual type error estimator, i.e., 5(Ap, ) or precisely ele-
mentwise refinement indicators nT(Xh,ﬂh) extracted from it. Although, the discrete
H=1(Q)-norm of the algebraic residual contains the global information about the dis-
crete problem, we can still define an appropriate stopping criterion and perform the
adaptive mesh refinement.

Let us for a moment consider the ideal situation when after each Lanczos iter-
ation step we check if the H~1(Q)-norm of the algebraic residual, i.e., W, is
smaller than a certain fraction w of the corresponding continuous part of the error,
ie., n(Ap,up). Obviously, we can stop the iteration if this condition is satisfied or
continue if not. This balancing strategy ensures that the iteration stops when the ap-
proximation error is of order of the discretization error. Therefore, the set of marked
elements, determined by selecting only those elements for which local refinement in-
dicators nr (A, @) are satisfying a certain marking criterion, will guarantee a certain
accuracy of the solution. Of course calculating all refinement indicators nT(Xh,ﬂh)
at every iteration of the eigensolver is not optimal. Therefore, the number m of the
Lanczos iterations performed before calculating nr (A, ;) and a proper parameter
w for equilibration have to be analyzed. In order to have an efficient estimator it is
necessary to obtain also a lower bound, i.e.,

Mew(Ans Un) S llu — nl| g ()-

Unfortunately, the proof for the efficiency of this new estimator is still under inves-
tigation. Instead, we will analyze the behavior of the estimator numerically. The
pseudo-code of the balanced AFEM algorithm described in this section is presented
below (Algorithm 1). In [14] the shift-invert Lanczos method is discussed, however,
since we are interested is the smallest eigenvalue, we analyze the simplest version
of the algorithm, i.e., with shift o = 0. Of course calculating the error estimator
7(An, Un) at each iteration step is expensive and not possible in practice, neverthe-
less, in order to formulate some hypothesis about the minimal number of required
iterations we will make this effort here.

5. Numerical experiments. Throughout this section we investigate several
aspects of our new balanced AFEM algorithm. As a model example, we consider the
Laplace eigenvalue problem (3.1) on the L-shape domain, i.e., & = [-1,1] x [0,1] U
[-1,0] x [-1,0]. We dedicate all numerical experiments to approximating only the
smallest eigenvalue which we compare with a reference value obtained in [18], i.e.,

A1 & 9.639723844.

At first we analyze the complexity and the accuracy dependence of our new algorithm
on the choice of the balancing parameter w. Next we give some empirical informa-
tion about the minimal number of Lanczos iterations required at each step of the
balanced AFEM algorithm to determine an accurate final approximation. Since our
combined error estimator 1, (An, Uy ), contains a residual type a posteriori error es-
timator n(Xh,ﬂh), the last part of this section is dedicated to compare the behavior



Functional perturbation results and the balanced AFEM algorithm 17

Algorithm 1 The balanced AFEM algorithm for computing the smallest eigenvalue
of the Laplace eigenvalue problem (3.1)

Input: An initial regular triangulation 7;5, a balancing parameter w, a maximal num-
ber of degrees of freedom maxDOF

Output: Approximation A, to the smallest eigenvalue A of (3.1) together with the
corresponding approximate eigenfunction y,.

Solve: Discretize problem (3.1) on 7;¢ and obtain the matrix pencil (A, By)
Select shift o = 0

el =1y -1 ~
—a 28 > wn (X, Up) do

h
[lan]le

Perform one iteration of the H-Lanczos method with (A, By)

while

Compute the approximate eigenpair (Xh,ﬂh), the continuous and the discrete
el 1,1
h h

error estimators n(Ap, up) and [

end while
Estimate: Calculate the combined error estimator 7,4 (Xh, uy) and the standard
error estimator 1(\p,, Up,)
Mark: Mark the elements based on n(xh, @) using the bulk criterion
Refine: Refine the coarse mesh 7;' using the green, blue or red refinement to get
T
if #DOF < maxDOF then
return (Ag,up)
else

Start the algorithm with 72”1
end if

of the combined error estimator 7, (Xh, @) where n(xh, @y,) is chosen to be a stan-

dard residual type estimator nppr(Ap,Ur) [12] or an edge residual error estimator
nea(An, tn) (8]

All the experiments were realized with the OPENFFW [6] finite element frame-
work, which contains implementations of both nppr(An,un) and nea(An, up) error
estimators introduced in [12] and [8], respectively. For our new balanced AFEM al-
gorithm we use our own implementation of the Lanczos method with the H-inner
product, while the standard MATLAB eigs function is used for comparison.

5.1. Balancing with different values of parameter w. Let us first examine
the behavior of our new balanced AFEM algorithm with respect to the choice of the
parameter w. We consider here the ideal situation that after each Lanczos iteration

T
step we can check whether the H !(Q)-norm of the algebraic residual, i.e., M,

is smaller than a certain fraction w of the corresponding n(xh, up). Here we restrict
ourselves to n(xh,ﬁh) = nDpR(Xh,ﬁh) and we assume that the minimal number of
required Lanczos iterations is set to 2k + 1, where k is the number of eigenvalues of
interest, here k£ = 1.

Tables 1 — 3 present the numerical results for w = 0.5,0.1, 0.9, respectively. Except
for the eigenvalue approximation and the number of degrees of freedom, information

\lrllA;;lHAt;l
[lan|[a

about the size of the continuous n(xh,ﬁh) and the discrete part of the
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O~ Mnew_
——  |A— Ap

10 10

#DOF

Fic. 1. The final mesh with 6737 degrees of freedom and the convergence history for the smallest
eigenvalue for (3.1) on the L-shape domain with w = 0.5.

estimator is presented. We notice that for w = 0.5 three Lanczos iterations are enough
to obtain a good error estimator to steer the adaptive mesh refinement.

Reducing w to w = 0.1 forces the discrete residual to be smaller which leads to
slightly more Lanczos iterations, however, the final accuracy is reached with a smaller
amount of degrees of freedom. Obviously choosing w = 0.9 leads to meshes with
more degrees of freedom but reduces the number of Lanczos iterations performed on
each step of the adaptive algorithm. The corresponding final meshes and convergence
history plots are depicted in Figures 1 — 3.

These few examples show that determining the approximate solution of the same
accuracy with a different balancing parameter is possible. Particularly chosen values
of w may lead to more Lanczos iterations or more degrees of freedom. Of course,
performing one more Lanczos iteration on the coarse mesh is cheaper than dealing
with finer problems, therefore, this decision has to be made by the user, depending
on existing limitations.

TABLE 1
Approzimations of the smallest eigenvalue for (3.1) on the L-shape domain with w = 0.5.

10

r — —
ref. level || #DOF | # iterations | X A=l | nGa,in) Hﬁ&% tnew (h n)
T 33 3 T0.6008 | 0.9610 | 2.2454 0.0401 2.2853
p B 3 10.2025 | 0.5628 1.0976 0.0349 11325
3 166 3 9.8854 | 02457 | 0.5476 0.0430 0.5906
7} 341 3 9.7941 | 0.1544 | 0.2890 0.0373 0.3262
5 622 3 97234 | 0.0837 | 0.1540 0.0384 0.1924
6 1203 1 9.6805 | 0.0407 | 0.0866 0.0085 0.0950
7 2096 1 9.6606 | 0.0208 | 0.0472 0.0091 0.0562
8 3946 1 9.6518 | 0.0121 0.0273 0.0088 0.0361
9 6737 5 9.6464 | 0.0066 | 0.0154 0.0012 0.0167
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TABLE 2
Approzimations of the smallest eigenvalue for (3.1) on the L-shape domain with w = 0.1.

r — —
ref. level || #DOF | # iteration | X A=l | nGa,in) !J%%%%ﬁfzi— tnew (M @h)
T 33 3 105862 | 0.9465 | 22422 0.0284 2.2706
p B 3 10.1076 | 0.5578 1.0008 0.0370 11278
3 168 3 9.8006 | 0.2500 | 0.5550 0.0448 0.5098
1 330 1 9.7850 | 0.1452 | 0.2964 0.0080 0.3044
5 601 1 9.7043 | 0.0646 | 0.1588 0.0075 0.1663
5 1174 1 9.6814 | 0.0416 | 0.08%6 0.0087 0.0973
7 2048 5 9.6601 | 0.0204 | 0.0489 0.0013 0.0502
8 3339 5 9.6510 | 0.0113 | 0.0280 0.0012 0.0292
9 6585 5 9.6465 | 0.0068 | 0.0158 0.0013 0.0171

#DOF

F1c. 2. The final mesh with 6585 degrees of freedom and the convergence history for the smallest
eigenvalue for (3.1) on the L-shape domain with w = 0.1.

5.2. Balancing with w = 0.5 and different minimal number of required
Lanczos iteration. Although, in [16] the minimal number of required Arnoldi/Lanczos
iterations, as the well-known rule of thumb, is set to 2k + 1, where k is the number of
eigenvalues of interest, here we analyze the actual restrictions in this respect. Table 4
contains numerical results for the case where no restrictions are given. In first re-
finement steps we see that only one iteration was enough to assure that the iteration
error is smaller than the discretization error, however, this one iteration was of course
not enough to obtain a good approximation of the eigenvalue. Surprisingly, after few
adaptive steps, the approximate solution has the same accuracy as the corresponding
approximation (approximation at the same adaptive step) obtained by the AFEM
algorithm starting with a much better approximation, see, e.g., ref. level 5 in Table 1
and 4. Of course the corresponding grid is much finer in the latter case. The resulting
final mesh and the convergence history are presented in Figure 4.

We have already noticed, that performing only one Lanczos iteration may not
be enough to assure the accuracy and the optimal complexity of our new balanced
AFEM algorithm. Nevertheless, our next example shows that performing at least two
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TABLE 3
Approzimations of the smallest eigenvalue for (3.1) on the L-shape domain with w = 0.9.

r — —
ref. level || #DOF | # iteration | X A=l | nGa,in) !J%%%%%fzi— tnew (M @h)
T 33 3 10.5838 | 0.9441 99443 0.0244 2.2688
p B 3 10.2022 | 0.5625 1.0801 0.0308 T.1289
3 169 3 9.8820 | 0.2431 0.5535 0.0385 0.5920
7} 342 3 98110 | 0.1713 | 0.2888 0.0507 0.3395
5 638 3 9.7320 | 0.0032 | 0.1552 0.0469 0.2021
5 1209 3 9.7104 | 0.0707 | 0.0874 0.0457 0.1331
7 7200 1 9.6507 | 0.0200 | 0.0462 0.0088 0.0550
8 1028 1 9.6518 | 0.0121 0.0266 0.0088 0.0355
9 6916 1 9.6473 | 0.0075 | 0.0151 0.0088 0.0239

—S— Tnew.
—— A —Ap

X

LAV
5

K2

10 10 10

#DOF

F1G. 3. The final mesh with 6916 degrees of freedom and the convergence history for the smallest
eigenvalue for (3.1) on the L-shape domain with w = 0.9.

Lanczos iterations at every step of our AFEM algorithm seems to be enough. The
corresponding numerical results and the convergence history are given in Table 5 and
Figure 5.

For comparison Table 6 and Figure 6 present results obtained on the uniformly
refined grid. The information about the size of the continuous n(An,%p) and the
el 102

lanl[u
criterion used for the Arnoldi/Lanczos process. None of this information is used

during the grid generation process. To conclude, we point out that obtaining the
solution with an accuracy of 1073 for our balanced AFEM algorithm requires two
times fewer degrees of freedom than determining the similar solution on the uniformly
refined grid, with the same number of Arnoldi/Lanczos iterations.

discrete part of the estimator is given only to illustrate the stopping

5.3. Comparison with different error estimators. As we mentioned at the
beginning of this section, our new combined error estimator consists of two parts: the

el y 1,2

continuous part n(xh, @) and the discrete part Tt e

. So far we have analyzed

10
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TABLE 4
Approzimations of the smallest eigenvalue for (3.1) on the L-shape domain with w = 0.5 and
no restriction on the minimal number of iterations.

21

~ —~ —~ r —_ — —_
ref. level || #DOF | # iteration X A=l | 1, an) %% Tnew (h @n)
1 33 1 37.0405 | 283008 | 9.3925 1.4206 10.8131
2 103 1 71.6865 | 62.0467 | 8.0268 2.1554 11.0823
3 730 1 122.0862 | 114.4465 | 8.9370 2.8001 117371
1 533 1 753.2587 | 243.6100 | 9.1481 1.0423 13.1004
5 1193 3 9.7568 | 0.1171 | 0.1237 0.0508 0.1745
6 1533 1 9.6856 | 0.0459 | 0.0769 0.0095 0.0865
7 2310 7} 9.6642 | 0.0245 | 0.0450 0.0089 0.0539
8 1102 1 9.6536 | 0.0138 | 0.0257 0.0088 0.0346
9 7313 5 9.6466 | 0.0060 | 0.0145 0.0013 0.0157

#DOF

FiG. 4. The final mesh with 7313 degrees of freedom and the convergence history for the smallest
eigenvalue for (3.1) on the L-shape domain with w = 0.5 and no restriction on the minimal number
of iterations.

the behavior of our new balanced AFEM algorithm where the continuous estimator
was chosen as nppr(An,up) [12]. Let us now first compare the performance of our
new balanced AFEM algorithm with the standard AFEM algorithm based on the
Nppr(An, Up) estimator, where the underlying algebraic eigenvalue problem will be
solved with MATLAB function eigs up to final accuracy. The resulting meshes are pre-
sented in Figure 7, while Figure 8 shows the convergence history. Both algorithms re-
sult in the optimal convergence with respect to the number of degrees of freedom. The
new combined error estimator, due to the right choice of the discrete norm, estimates
the real error much better than the standard residual type estimator nppr(An,ap).
Furthermore, we compare our balancing algorithm with the standard AFEM algo-
rithm where n(Ap, ) is chosen as the edge residual error estimator nog(An,an) [8].
We observe that the original ncg(xh,ﬂh) guarantees the optimal convergence rate
with respect to the number of degrees of freedom. Although, our balanced AFEM
algorithm deviate slightly from the optimal convergence, it almost perfectly captures
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TABLE 5
Approzimations of the smallest eigenvalue for (3.1) on the L-shape domain with w = 0.5 and
the minimal number of required iterations equal 2.

~ ~ —~ r — — —_~
ref. level || #DOF | # iteration | X A=l | nGa,in) !J%%igﬁfzi— tnew (N @n)
1 33 5 108075 | L1678 | 23114 0.1185 3.4299
2 86 2 10.5196 | 0.8799 11524 0.1641 1.3165
3 157 2 102019 | 0.6522 | 0.6536 0.1726 0.8262
1 339 3 9.7900 | 0.1512 | 0.2915 0.0415 0.3330
5 610 3 9.7367 | 0.0070 | 0.1552 0.0498 0.2049
6 1159 1 9.6802 | 0.0404 | 0.0852 0.0089 0.0941
7 2103 1 9.6592 | 0.0195 | 0.0466 0.0085 0.0550
8 3856 1 9.6517 | 0.0110 | 0.0265 0.0086 0.0351
9 6736 5 9.6450 | 0.0062 | 0.0150 0.0013 0.0163

—— Nnew. |
—— [ A=Ay

KX

VIXRAS
peores

o KRS

0 0.5 10" 10

#DOF

Fic. 5. The final mesh with 6736 degrees of freedom and the convergence history for the
smallest eigenvalue for (3.1) on the L-shape domain with w = 0.5 and the minimal number of
required iterations equal 2.

the behavior of the real error, see Figures 9 — 10.

6. Conclusions. We have formulated functional perturbation results for PDE
eigenvalue problems including the functional backward error and the functional con-
dition number. These results are used to relate the eigenvalue and the eigenvector
error to the residual in the H 1 (€2)-norm and furthermore to establish a combined a
posteriori error estimator embodying the discretization and the approximation error.

We have analyzed the behavior of the balanced AFEM algorithm which signifi-
cantly reduces the number of eigensolver iteration by incorporating the discrete resid-
ual into the adaptation process. The eigensolver stopping criterion is based on an
equilibration strategy. Several numerical examples confirm the reliability of our es-
timator. A formal proof for the efficiency of the combined error estimator and the
convergence of the balancing algorithm is still an open question. Also there are sev-
eral other choices of the eigensolver stopping criterion which are an interesting subject
for further research. The convergence of the inexact adaptive algorithm based on a

10
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TABLE 6
Approzimations of the smallest eigenvalue for (3.1) on the L-shape domain refined uniformly
with w = 0.5 and the minimal number of required iterations equal 2.

23

— — —~ Mell, -1, ,—1 ~
ref. level || #DOF | # iteration A1 A1 = X1l | n(Xn,@p) W Nnew (M, Up)
1 33 2 11.2225 1.5828 2.4189 0.1851 2.6040
2 161 2 10.4686 0.8289 0.6589 0.1867 0.8455
3 705 3 9.7616 0.1219 0.1711 0.0476 0.2186
4 2945 4 9.6710 0.0312 0.0520 0.0092 0.0612
5 12033 5 9.6504 0.0107 0.0162 0.0012 0.0174

10" ¢
——  Nnew
—— A= Xpl |
10° |
107
107
10° i i i
10" 10° 10° 10*

#DOF

F1G. 6. The convergence history for the smallest eigenvalue for (3.1) on the uniformly refined L-
shape domain with 12033 degrees of freedom, w = 0.5 and the minimal number of required iterations
equal 2.

slightly different combined a posteriori error estimator is a subject of ongoing work.
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