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Abstract

The index of DAE systems arising from linear quadratic optimal control problems is
considered. Necessary and sufficient conditions ensuring regularity with tractability
index one are proved. For problems with regular index zero or index one DAEs to be
controlled, the DAE of the control problem is shown to be regular with tractability
index one or three, depending on whether the control coefficient R is singular.
Moreover, it is shown that, if the control problem DAE is regular with index one,
and if the leading term of the DAE to be controlled is given by one full-column-rank-
and one full-row-rank matrix, then it has a Hamiltonian inherent explicit ODE.
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1 Introduction

This paper deals with systems of differential algebraic equations (DAEs)

A (B@)z(t) = Ct)z(t) + D()u(?), (1.1)
—B(1)"(A@)"Y (1) = W(t)z(t) + Ct)" () + St)u(t), (1.2)

0 = S(&)z@)+ D)) + R()u(?), t €[0,T],  (1.3)

which arise in optimal control problems given by a quadratic cost functional J(u,z)

subject to the constraint

A@)(Bt)z(t)) = C(t)z(t) + D(t)u(t),t € [0,T], (1.4)
A(0)B(0)z(0) = z.

If A(t) = I,B(t) = I, then equation (1.4) is an explicit ordinary differential equation
(ODE) and the resulting system (1.1)-(1.3) is well known to be a semi-explicit DAE
that has index one, supposed that the coefficient R(t) remains nonsingular. However, if
R(t) = 0,5(t) = 0, but D(¢)*W(t)D(t) remains nonsingular, then the DAE (1.1)-(1.3)
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has index three (e.g. [BrCaPe]).

If the equation (1.4) to be controlled is a DAE itself, the situation will be more com-
plicated. The investigation of control problems with DAEs or descriptor systems to be
controlled began in parallel with the development of the DAE theory. First, systems (1.4)
with constant coefficients (e.g. [BeLa], [Jo]|, [Me]) and systems (1.4) with constant A, B
but time-varying C, D ([Ku]) were studied , later also systems with variable coefficients
(e.g. [KuMe2], [KuM4]). While the investigations of DAEs (1.4) in [KuMe2] are based on
special coefficients B(t) = I, the paper [KuM4| deals with DAEs (1.4) for which A(t) =1
holds true. In both cases, one does not obtain a system of the form (1.1)-(1.3) for the
control problem, instead, equation (1.2) contains additional, distinct terms with deriva-
tives of coefficients and projectors, respectively. Both papers provide sufficient conditions
for the (modified) DAE (1.1)-(1.3) to be of index one.

According to the proposal of [BaMi| to formulate the leading coefficient of a DAE (1.4)
by means of two well-matched coefficients A and B, in [M#l] the system (1.1)-(1.3) for
control problems with variable coefficient was derived, starting from (1.4) with a properly
stated leading term.

In the present paper the concept of the tractability index from [M&2] is applied to the
DAE (1.1)-(1.3) in order to characterize its index.

In Section 3 we succeed in formulating conditions in terms of the problem data that are
necessary and sufficient for the DAE (1.1)-(1.3) to be regular with tractability index one
and, hence, to be accessible for numerical standard methods. Here, the DAE (1.4) to be
controlled is not assumed to be regular or to have an index.

In Section 4 we introduce self-adjoint DAEs. We show them to have a Hamiltonian in-
herent regular ODE, provided that they are regular with index one and their leading
terms are given by full-column-rank and full-row-rank matrices. As a consequence, also
the regular DAEs (1.1)-(1.3) have a Hamiltonian inherent regular ODE under reasonable
conditions.

In Section 5 the controlled DAE (1.4) itself is assumed to be regular with index zero or one
and only the differentiable solution components, i.e., the state variables, are controlled.
Generalizing the above statements for the case of A = I, B = I, we show that the result-
ing DAE (1.1)-(1.3) is regular with tractability index one if and only if R is nonsingular.
In case of singular R, the DAE (1.1)-(1.3) cannot be regular with index two, not even in
the general case. Reasonable conditions yield regularity with index three.

Finally, in Section 6 we show that an analogous generalization of the statements of Section
5 does not apply to regular DAEs (1.4) with index two.

2 Fundamentals

We consider the quadratic cost functional

e o2 [1((26). (560 3 () e

with fixed time 7" > 0, to be minimized on solutions of the linear differential algebraic
equation (DAE)

AW)(B®)z() = C(t)z(t) + Dt)u(t), t € T := [0, ), (2.2)



subject to the initial condition
A(0)B(0)z(0) = 2. (2.3)

The coefficients in (2.1), (2.2) are matrices W(t) € L(IR™),R(t) € L

L(R',IR™), A(t) € L(R", IR¥), B(t) € L(IR™,IR"),C(t) € L(IR™, IR*), D(t) € L(IR', IR¥),

Z, which depend continuously on ¢, and V € L(R™).

The matrix V' is symmetric and positive semidefinite.

For allt € Z, W (t) and R(t) are symmetric, and (W(t) 5(t)
’ ’ S@)" R(t)

Here, * denotes the transposition, < .,. > stands for standard scalar products both in

L(IR™) and L(IR™).

> is positive semidefinite.

The leading term of the DAE (2.2) is supposed to be properly stated in the sense that
(cf. [BaM4]) the decomposition

kerA(t) ® imB(t) = R", t € T, (2.4)

holds true, and both subspaces forming this direct sum are spanned by basis functions
that are continuously differentiable on Z.
A solution of the DAE (2.2) is a function x : Z — IR™ that belongs to the function space

Cy(Z,R™) :={x € C(Z,R™): Bx € C*(Z, R")}

and satisfies (2.2) pointwise on Z.

An admissible control is a continuous function u : Z — IR’ such that the corresponding
initial value problem (IVP) (2.2), (2.3) has a solution.

The number k£ of equations in (2.2) does not necessarily coincide with the number m of
components of x. When k& = m, we say for short that the DAE is quadratic.

Below, for an optimality criterion the following boundary value problem (BVP) will be
used:

A)(Bt)x(t)) = Ct)z(t) + D(t)u(t), (2.5)
—B(t)"(A(t)"(1)) = W(t)z(t) + C(t)"(t) + S(t)u(d), (2.6)
0 = S@)"z(t) + D) ¥(t) + R(t)u(t),t € T, (2.7)
A(0)B(0)xz(0) = =z, (2.8)
B(T)*A(T)*(T) Va(T). (2.9)

In turn, system (2.5)-(2.7) forms a quadratic homogeneous DAE
A@)(B)z(t) = C(t)z(t), t € T, (2.10)

with properly stated leading term. Namely, we have

~ z(?) ACt) . Bt) 0 0
0= (0] dw={ 0" sy, so= (% - o).



c@)=[wW@) Cc@)* Sit)|, teZ,
S(#) D) R()
hence, m =k =m + k + 1,7 = 2n, kerA(t) = kerA(t) x (imB(t))*,imB(t) = imB(t) x
(kerA( )t

Theorem 2.1 If the triple z, € Cx(Z, R™), ¢, € C}.(Z, R*),u, € C(Z,IR") solves the
BVP (2.5)-(2.9), then u, is an optimal control of the problem (2.1)-(2.3) and x, is the
corresponding optimal trajectory.

Proof: Let u € C(Z,R') be an arbitrarily admissible control and x € CL(Z, IR™) a
corresponding solution of the IVP (2.2), (2.3). The bilinearity of the scalar products
allows to compute the variation

J(u, ) = J(us, 2.) = 1(»”L‘(T) 2.(T), V(z(T) — 2.(T)))

7 30 Gl e
thus, due to positive semidefiniteness, J(u, z) — J(uy, 2.) > 0. o

By means of the Hamiltonian function
H(z,¢,u,t) = (¢,C(t)x+ D(t)u)
o (0 + 2SO 7) + {u, RO},
reR™ ye R ue R teT,

system (2.5)-(2.7) may be rewritten as

ADBODY = Hy(a(0), v(0), (), 1), (2.11)
—B(1)"(A@)")(1) = Ho(a(t),¥(t),u(t), ), (2.12)
0 = Hy(z(t),v(t),u(t),t)”, t € T. (2.13)
Remark 2.2 In [KuMe2] and [KuM4], DAEs of the forms
A(t)z'(t) = C(t)z(t) + D(t)u(t),t € T (2.14)
resp.
(B(t)z(t))' = C(t)x(t) + D(t)u(t),t € T (2.15)

are considered instead of (2.2). In both cases, the resulting optimality BVPs contain
invisible terms with derivatives of coeffcients and projectors, respectively. The nicer form
(2.5)-(2.7), which is well-known in case of constant coefficients, appears as a benefit from
stating the leading term of a DAE by means of two well-matched matrix functions.

In [M&l], BVP (2.5)-(2.9) as well as system (2.11)-(2.13) are formulated for the optimal
control problem (2.1)-(2.3) with m = k.



3 Index one criteria for the DAE (2.10)

In this section we give necessary and sufficient conditions for the DAE (2.10) to be regular
with tractability index one in terms of the coefficients in the given problem (2.1)-(2.3).
Here we do not suppose that an index is defined for the DAE (2.2).

Put Go(t) := A(t)B(t),t € Z. Since the DAE (2.2) has a properly stated leading term,
Gy(t) has constant rank ro, and Ny(t) := kerGy(t) has constant dimension m — 7.

For t € T let Qo(t) € L(IR™) and Q.o(t) € L(IR*) denote the orthoprojections onto Ny(t)
and N,o(t) := kerGy(t)* = (1mGy(t))*, respectively. Both, Qy(t) and Q.o(t) depend
continuously on t. Put Py(t) := I — Qo(t), Pw(t) := I — Q.o(t). Introduce further

G1(t) = Go(t) — C(t)Qo(t), t € L.

By Definition A.1 and Lemma A.2, the DAE (2.10) is regular with tractability index one
if the subspaces Ny(t) := kerGo(t) and So(t) := {&# € R™*+ . C(t) € imGy(t)} with
Go(t) :== A(t)B(t) for all t € T intersect transversally. This is why we take a closer look
at the elements of Ny(t) N Sy(t).

T = 132 € No(t) N Sy(t) means in detail
C(t)x + D(t)u = Go(t)wy, (3.2)
W(t)x + C(t)*y + S(t)u = Go(t)*ws, (3.3)
S(t)*z+ D(t)*y + R(t)u = 0, (3.4)

with some w;, € IR™, wy € IR'.
Observe that, due to (3.1), the relations

(Go(t)wr, ) = (w1, Go(t)*Y)

07
<G0(t)*’w2, .T> = <’U}2, Go(t)x) 0

are valid. Therefore, taking the inner products of (3.2), (3.3), (3.4) with —, z and u,
respectively, and adding the results, we obtain

(W(t)z,z) + (S{H)u,z) + (S(t)*z,u) + (R(t)u,u) =0,

(s ain) (2)- ()= 55

For a symmetric, positive semidefinite matrix G, the relation (Gz,z) = 0 is equivalent to
Gz = 0. We find that (3.5) is equivalent to system

that is,

Wtz +S{tu=0, SE)z+R(t)u=0. (3.6)



Taking (3.6) into account, we derive condition

Go(t)*
(Qo(t)C(t)*> v=0 (3.7)
D(t)*

x

from (3.1), (3.3), (3.4). It turns out that, for all Z = (z/)) € Noy(t) N Sy(t), condition
u

(3.7) is valid. Derive

Go(t)*
MTQ%®g®ﬂ = (im(Go(t), C(t)Qo(t), D(t)))
D(t)*
= (im(Go(t) — C(t)Qo(t), D(t)))" = (im(G1(t), D(t)))™
Lemma 3.1 The condition
im(G1(t) D(t)) = R*, t € T, (3.8)
is necessary for the DAE (2.10) to be regular with tractability index one.

Proof: If there is at € 7 such that (3.8) is not true at this point, then there is a nontrivial

) € IR,
Go(t)* 0
Y€ ker | QB)C®)* |, and |1 | € R™HH
D(1)* 0
is a nontrivial element of Ny(f) N Sy(%). o
x ~ ~
Next, if (3.8) is valid, | ¥ | € Ny(t) N Sp(t) implies, by (3.7), that ¢» = 0, while z and u
u
satisfy
Go(t) 0
QoW ()  Qo(t)S(?) u
S(t)” R(t)
. x
If this equation has a nontrivial solution (u) € IR™! then | 0 | € IR™"*+!is anontrivial
u

element of the intersection Ny(t) N So(t).

Lemma 3.2 The condition

o (G = COQualt) W) SO _ pom o
i (O pton ) S Ap) = ELET @10

is necessary for the DAFE (2.10) to be regular with tractability indez one.
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we have

Proof: With N (t) := ker Q*OE

L _ 0
N+t =im ( 0 D'Ou SO R)’ and
Gywy + C*Quowy = (G§ — C*Quo)(Prowr — Quows),
D*Q*OU)Q = _D*Q*O(P*Owl - Q*OTUQ),

hence, N+ = im <G0_ _D*?Qg*o ?:82 ]S% ) Consequently, condition (3.10) means that

N =0 is valid. o

If both conditions (3.8) and (3.10) hold, then (3.1) - (3.4) yield ¢ = 0,u = 0,z = 0, that
is, No(t) N So(t) = 0. This proves the following theorem.

Theorem 3.3 The DAE (2.10) is regular with tractability index one if and only if the
conditions (3.8) and (3.10) are satisfied.

If the DAE (2.2) has the semi-explicit form

Az (t) = Cu(t)zi(t) + Cra(t)za(t) + Di(t)u(t),
0 = Coul(t)z1(t) + Coa(t)z2(t) + Do(t)u(t),

A
0
transparent. Then, (3.8) resp. (3.10) mean nothing else but

where A;(t) € L(IR") is nonsingular, A = ., B = (I 0), things become more

im(Caa(t) Do(t)) = R*™ and

i (022(1:)* Woa(t) Sa(t)

Do(t)* Sa(t)" R(t)) =R"" xR,

or, equivalently,

. Caa(t) Dsy(t)

Cos(1)

ker .| =0, ker | Way(t) Si(t) | =0.
(5 S0 RO

Both conditions together imply the matrix

) 0 Cwn(t) Dyt
R(t) = ng(t)* Wzg(t) Sg(t)
Dy(t)* Sa(t)* R(t)

to be invertible, and vice versa.

Note that this sort of conditions plays an important role in [BeLa], where constant coeffi-
cient problems are considered. The full-row-rank condition for (Cy3D3) means in [BeLa]
the controllability at oo, and it is shown that the full-row-rank condition for (CoyDs) and

7



Wa 5o
S; R
[BeLa| the matrix pencil A\AB — C' is assumed to be regular and R is positive definite, we
realize now that we can do without those assumptions, our result is valid in the case of
variable coefficients, too, and we have precise invertibility conditions for R(t)

the invertibility of ( ) together are sufficient for R to be invertible. While in

Remark 3.4 In [KuMil, in a slightly different context, the conditions (3.8) and (3.10)
are realized as sufficient index one conditions.

In [KuMe2], for problem (2.1), (2.14), (2.3), with R(¢) nonsingular, the corresponding nec-
essary and sufficient index one condition is formulated somewhat implicitly via symplectic
transformations into a semi-explicit form.

Corollary 3.5 Let (3.8) be valid, and let (?f(gz }S%((g) be positive definite on Ny(t) x

Ut),U(t) == {u € R : D(t)u € imG,(t)}, t € . Then the DAE (2.10) is reqular with

tractability index one.

Proof: We show that condition (3.10) is fulfilled. Let z € IR™,u € IR' be a solution of
the homogeneous system (3.9), i.e.,

Go()z = 0, Quo(t)C()7 + Quo(t)D(t)u = 0, (3.11)
Qo)W (t) Qo(t)S(t x
(@5 @) (2) =0 1)

From (3.11) we know that z = Qo (t)z, C(t)x + D(t)u = Go(t)w, with a certain w € IR™,
hence D(t)u = Go(t)w—C(t)Qo(t)x = (Go(t)—C(t)Qo(t)) (Po(t)w+z) = G1(t)(Po(t)w+z)
are valid, i.e., u € U(t).

Moreover, due to (3.12) we obtain

(58030 6)-() - (o 245 (2. ()-»

and consequently z = 0,u = 0. o

Corollary 3.6 Ifl =k, and if, for allt € T, (Igzgz 15%%2) is positive definite and D(t)

is nonsingular, then both conditions (3.8) and (3.10) are satisfied.

It should be stressed that Theorem 3.3 and the Corollaries 3.5 and 3.6 do not suppose
regularity or special index properties of the DAE (2.2) that is to be controlled. They
apply independently of those properties.

On the other hand, if the DAE (2.2) is regular with tractability index one or zero, then
k = m holds, and the matrix G (¢) remains nonsingular on Z. Therefore, condition (3.8)
is valid a priori for those DAEs.

If (2.2) is a higher index regular DAE, then rankG:(t) < k, and some extra assumptions
on D(t) are needed for meeting (3.8) (cf. Section 6 below).

If (2.2) is no longer a regular DAE in the sense of Definition A.1, but if it has tractability
index one, then, to satisfy the conditions (3.8) and (3.10), additional properties have to
be given for the coeflicients.



Example 3.7 In [KuMel], [KuMe2|, quite general controlled linear DAEs are trans-
formed into the form (cf. Example A.4)

.’Ell = 013.%3 + Dlu
0 = T2 + DQU . (313)
0 = D3u

The DAE (3.13) has strangeness index zero ([KuMel]) and, provided that imCi3 is con-
stant, tractability index one in the sense of Definition A.3. Put S = 0, and let R be
nonsingular. In this special case, we have

I 0 —013 D1

(GiD)=[0 =T 0 D],
0 0 0 Ds

I 0 0 0 Wiy Wy 0

Gy—C*Qu WQo 0\ |0 —I 0 0 Wy Wy 0
< —D*Q. O R>_ 0 0 0 0 Wy Wy 0]

0 -D; -D; 0 0 0 R

and (3.8) is equivalent to imD3; = kerDj = 0, while (3.10) means im(WaWa3)+ =
% 4%
ker 32 ) = ker 23) =0. o
() oo (i
We finish this section with a corollary that reflects a simple fact well-known for explicit
ODEs (2.2) with A(t) =1,B(t) = 1.

Corollary 3.8 Ifthe DAFE (2.2) is reqular with index zero, then the DAFE (2.10) is reqular
with index one if and only if R(t) is positive definite for all t € T.

4 Adjoint and self-adjoint DAEs

In this section we introduce self-adjoint DAEs and show that the explicit inherent ODE of
a selfadjoint index one DAE is a Hamiltonian one. Then the system (2.10) is transformed
into a self-adjoint DAE by simply exchanging = and .

For the DAE with properly stated leading term
A)(B(t)z(t) = C@)xz(t), teZ, (4.1)
the adjoint equation is (cf. [BaMa])
—B() (AW)'y(1)) = Ot y(t), teT. (4.2)

This is discussed in [BaM4] for £ = m, but it keeps its value for k£ # m, too. If z €
CL(Z,IR™) and y € CL.(Z, R*) are solutions of (4.1) resp. (4.2), then the derivative
(y(t)*A(t)B(t)z(t))" vanishes identically, i.e., the generalized Lagrange identity

y* () A(t)B(t)z(t) = (A(t)*y(t), B(t)z(t)) = const (4.3)



takes place.
The maps £ : C5(Z, R™) — C(Z, IR*), L£*:CL(Z,IRF) — C(Z,IR™) defined by

Lxr := A(Bz)' —Cuz, z € Ox(T, R™),
Ly = —B*(A%) —C*y, y € C4.(Z, R

are linear and bounded 1f the 1nvolved function spaces are equipped with natural norms.
With the product (u,v) := fo ))dt it holds that (Lz,y) = (z,L*y) for all z €
C3(Z,R™), B(0)z(0) = 0, B(T)z (T) = O and all y € CL.(Z, IR¥).

Definition 4.1 The DAE (4.1) is said to be self-adjoint if m = k, CL(Z, R™) = CL.(Z, IR¥),
and L = L*.

Remark 4.2 Self-adjoint DAEs of the form
iB(t)"(B(t)z(t)) — C(t)=(t) =0,
with C(t) = C(t)*, C(t) and B(t) with complex entries, are first discussed in [Ab. et. all.]

Theorem 4.3 If m = k,J € L(IR") is such that J* = —J,J> = —I and A(t) =
B(t)*J,C(t) = C(t)*, t € Z, then the DAE (4.1) is self-adjoint.

Proof: Because of m = k,A* = —JB,B = JA*, the function spaces CL(Z, R™) and
CL.(Z, IRF) coincide. For x € CL(Z, IR™), we derive

Lz = A(Ba) —Cz=B'J(JAT) - C'z = —B"(A'z) — C"
= [*z.

<

For an index one DAE (4.1), the so-called inherent regular explicit ODE is uniquely
determined as (cf. [BaMi))

u' = K'u+ BGT'CB ™ u, (4.4)

where K (t) € L(IR™) denotes the continuously differentiable projector onto imB(t) along
ker A(t) that realizes the decomposition (2.4), and the generalized inverse B(t)~ is deter-
mined by B(t)B(t)” = K(t), B(t)"B(t) = Py(t), Py(t):=1—Q(t), t €.

Theorem 4.4 Let m = k,J € L(R"),J* = —J,J* = —I,A(t) = B(t)*J,C(t) =
C(t)*, kerA(t) = 0,t € Z, and let the DAE (4.1) be regular with tractability indez one.
Then, the inherent ODE (4.4) is of the form

u' = JFE, with E = E*. (4.5)

Proof: Since kerA(t) = 0, due to the properties of the leading term, it holds that
K(t) =1,t € I. Hence, (4.4) simplifies to

u' = BGT'CBu.

10



The index one property yields imQyCQo = imQo = Ny, kerQoCQo = kerQo = Ny-. Qo

is the orthoprojector onto Ny, thus

(QuCQ0) T (QuCQo) = Qu, (QuCR0)(QuCQo)™ = Qu,

where ”+” indicates the Moore-Penrose inverse.
Because of

Gy = AB=AJA* = —(AJA")"
= -G

it holds that Ny = N,g, hence QQy = Q0.
Additionally, since

1mAJA* imA = imP, = Ng Ng,
kerAJA* = kerA* = imQ., = N, = N,

it holds that
(AJAY) (AJAY) = By, (AJAT)(AJA")" = Py,
Compute Gl = GO — CQO = GO — Q()CQ() — POCQO = gl(I — GE)’—CQ()) with

g1 = Go— QuCQy=AJA" — QyCQy,
g;l = (AJA*)+ — (QOCQO)+-

(4.6)

(4.7)

We also have B~B = Fy, BB~ = I, and since P, is the orthoprojector, B~ is the Moore-
Penrose inverse, i.e., B~ = BT. With B = JA*, J* = J !, we find Bt = A*"J ! =

AT = [(A*A) LAY T = A(A*A) L.
Now we derive
M = BG{'CB' = JA*GT'CA(A*A)~J*
JA (I + G{CQo)G ' CA(A*A)~H T
= (JA* + JA'GFCQo)GT ' CA(A*A)~ ¥,

and, with JA*GY = JA*(AJA*)* = (A*A) LA* AJA*(AJA*)* = (A*A) 1A%, it follows

that
M = (JA*+ (A*A)TA*CQy)G ' CA(A* AL T
= (A*A)TTAY(AJA* + CQy)G'CA(A*A) LT
—J{J(A*A)TLA (AT A" + CQo)G I CA(A*A) LT}
—J{J(A*A) AN A(AA) LT,

where (cf. (4.7))

N = Py(AJA* + CQo)G CPy = Py(AJA* + CQo)((AJA*)T — (QoCQo))C Py

(P — PyCQo(QuCQ0)")CP,
= PBCP)— PCQy(QuCQ0)*CH

= PCPy— PyCQu(QuCQ0) " QuCH,
N* = N.

11



Consequently, it holds that

M=JFE, E=JA AT ANAA AT

is symmetric. o
0 I 0\
Now we return to DAE (2.10). Transforming 2= | I 0 0 | z, we arrive at the DAE
0 0 1
A 0 ' 0 C D
0 B ((_?4* v 8) ;?) (e w 5% (4.8)
0 0 D* S* R

which obviously satisfies the assumptions of Theorem 4.3, since

A 0 0 —-A
o o) =[5 ) (D)
0 0 0 0

Hence, the DAE (4.8) is self-adjoint.

Theorem 4.5 Let the DAE (2.2) have a leading term with kerA(t) =0, t € Z, and let
the conditions (3.8) and (3.10) be satisfied.
Then, the composed DAE (2.10) is regular with tractability index one, and its inherent

reqular explicit ODE applies to the component u := (_ii» , and it 1s of the form

() = <? " ) E(t)a(t), t e, (4.9)
where E(t) = E(t)*.

Proof: From (2.4) it follows that kerB(t)* = imB(t)~ = 0, hence ker A(t) = 0. We just
have to remark that the DAEs (4.8) and (2.10) have a common inherent ODE (cf. [Ma2]).
o

Remark 4.6 The condition ker A(t) = 0 can be realized by an appropriate refactorization
of the leading term (cf. [M&2]).

The use of a full-column-rank matrix A(t) in (2.2) corresponds to a full-column-rank A(t)
in (2.10). With r denoting the rank of A(t), we have then n = r,7 = 2n = 2r, and under
the conditions (3.8), (3.10), the inherent regular explicit ODE of the DAE (2.10) is given
in minimal coordinates, i.e., in IR?". If one uses formulations of (2.2) with n > r, and, in
particular, those with an r—dimensional time varying subspace imB(t) of IR", one may
lose the Hamiltonian property, as the following example shows. Then the inherent regular
explicit ODE of (2.10) is given in IR?", but it is just relevant on its time-varying invariant
subspace imB(t) x imA(t)* C IR*.
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- o ) Th 00 1 ) 01 ]
( ) D(t) () S(t) = 0, W(t) ( ) R(t) = 1. We have K(t)

Example 4.7 Put m = k=n =2, r = 1, A(f) = (0 0) . B(t) = (O t) o) =

01 0 0 2)’

0 )0 o= (0 ) o -0 2) = (). -

(8 2) . The conditions (3.8),(3.10) are easily checked to be satisfied.

Compute
0000 0+ 0 0 0 00 0 O
. 0100 . 010 0 0 . 01 0 O
At)=10 0 0 0|, B() = , Bt)"=10 0 0 0 [,
000 0 O
00 ¢t 1 000 -1 0 00 —t —1
0000 00 0 O
(0 00 0 O 00001 100 00
3 010 0 O 5 01000 5 000O0O
Go(t)=10 0 0 0 Of,CtH)=1]1 00 0 O}, Qu(t)=(0 0 1 0 0],
000 —-10 02010 000O0O
\0 00 0 O 001 01 00001
(0 0 0 0 -1 0 0 -1 0 O
. 0 1.0 0 O 3 0 1.0 0 O
Git)=1-10 0 0 O|,G&)y'=(1 0 0 0 -1],
0 0 0 -1 0 0 0 0 -1 0
\0 0 -1 0 -1 100 0 0
0t 00 0t 0 O
~~_ 10100 A A - 010 0
00 ¢t 1 0 2 —t —1

The inherent regular ODE @' = K'ii + Béflég_ﬂ is given in JR*, it has the special form

0 t+1 0 0
Lo o 1 0 0.
0o 2 —t+1 -1

which is not a Hamiltonian one.
If we turn back to this special DAE (2.2)

(6 9 (6 1)) = 2w (5)wo

and refactorize the leading term (cf. [M&2]) by means of H(t) = (2) , H(t)~ = (0,1),

we obtain the equivalent formulation of (2.2) A(Bz) = Cxz + Du with the coefficients
At) = A(t)H(t) = ((1)) , B(t) := H(t)"B(t) = (0,1), C(t) :== C(t), D(t) := D(t).

13



For the corresponding new DAE (2.10), it results that

00 0 O
10 1 0
~ ~ 010 0 0\ =, . ~ 10
Ao = ool Bo=(g 5o % 1) Bor=o o | Ko=(g ]).
01 0 -1
00 0 O

~

B(t)Gi(t) P C(t) Bty =B(t) G, (t) 'C(t) B(t) = @ _01) )

and the inherent regular ODE that applies now to the components U (t) = (

(—161222))’ is given in IR? as W (t)= (; _01> u(t), i.e., it is Hamiltonian.

Consequently, in order to appropriately utilize the Hamiltonian properties it is advisable
to arrange for A(t) to have full-column-rank.

5 The DAE to be controlled is regular with index
ZEero or one

If the DAE (2.2) is actually a regular explicit ODE, that is, forn=m =k, A=1,B =1,
the resulting system (2.5)-(2.7) is well understood. In particular, for S = 0, it reads

' = Cz+ Du
- = Wz +C* . (5.1)
0 = D*+ Ru

Obviously, (5.1) represents a semi-explicit DAE that has index one if and only if R is
nonsingular. However, if R = 0, then (5.1) is a Hessenberg size three DAE, supposed that
D*W D is a nonsingular block (e.g. [BrCaPe]).

In this section a similar situation will be shown to hold true if the controlled DAE (2.2)
is a general regular index zero DAE, that is, for n = m = k, A and B nonsingular, or a
general regular DAE with tractability index one, supposed the control is directed only to
the inherent regular explicit ODE.

In this section we put m = k. Recall that the coefficients of the DAE (2.10) under
consideration are

2 O N B~ 0 ~(C 0 D
A=[o0 B ,B:(O iy O),B—z 0 —Aa—|, C=|w ¢ s
0 0 0 0 S* D* R

The generalized inverses B~, A*~ are chosen so that B~ B =: Py, AA~ = P,y are symmet-
ricc BB- = K, A~ A = K, where K realizes the decomposition (2.4) and A* = A™* (cf.
[BaM3)).

We use the matrix function sequence provided in the appendix as a tool for investigating
the index. Put



In the first case, if (2.2) is regular with tractability index zero, we have n = m, and A, B
are nonsingular. Then, we continue the matrix function sequence with

i oooy Go 0 -D
QO = 000 5 G1 = G() - C()Q() = 0 —GS ) 5 (52)
0 0 I 0 0 -R

where Gy := AB. It is evident that G, is nonsingular if R is so, and vice versa. If R is
actually invertible, equation (2.7) provides u = —R™*(D*¢ + S*z), and then (2.5), (2.6)
determine the explicit ODE for the components Bx and —A*y

Bz \' [ A™Y(C - DR™'S*)B! AT'DR'D* A*! Bz (5.3)
—A*p) T\ BYW — SRS )B~! —B*1(C* — SRID" AL ) \—A*y )\

This is the so-called inherent regular explicit ODE of this special DAE (2.10), and it is
obviously a Hamiltonian one (cf. Theorem 4.5).

In the second case we are dealing with in this section, in (2.2), n and m may be different,
A and B are singular, Gy := AB is also singular but of constant rank, and the subspaces
Ny := kerGy and Sy := {z € R™ : Cz € imG,} intersect transversally (cf. Appendix).
We use the orthoprojectors Qg := I — Py, Q. := I — P,g onto Ny = kerG, resp.
N, := kerGy = imGp, and continue the matrix function sequence by

o (Q 0 0\ (G —CQ 0 D
Qo=[0 Qu 0], Gi=Go—CoQo=| -WQy -Gi—C"Qo —S|. (54)
0 0 I -5*Qy  -D'Qu  —R

Theorem 5.1 Let the DAE (2.2) be regular with index zero or with index one, let
imD CimAB, 1mS C im(AB)". (5.5)

Then, the control problem DAE (2.10) is reqular with tractability index one if R is invert-
ible and vice versa.

Proof: The conditions (5.5) imply Q.oD = 0, Q¢S = 0, thus D*Q., = 0, S*Qy = 0.
G1 = Gy — CQp and G := —Gj — C*Q.o are nonsingular in both the index zero and

the index one case. Consequently, G; is nonsingular exactly if R is so. o

Note that the conditions (5.5) are trivially satisfied for nonsingular AB. However, if
Gy = AB is singular (i.e., in the index one case of (2.2)), the choice of D is restricted to
the control of the inherent state component.

Example 5.2 Consider the special DAE (2.2)

xy = Du
0 = $2+D2U '
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Here we have Gy = é 8 , C = 8 g , and condition (5.5) means that D, =
0, S* = (S7 0). The resulting DAE (2.10) is
) = Du,

0 = To,

-] = Wiz + Wigzs + Siu,
0 = Wozy + Waxs + 1o,
0 = ST.’El +D>1kw1 +R’LL,

which obviously has index one if R is invertible.

Remark 5.3 Theorem 5.1 confirms the corresponding special result provided by Theorem
3.3. Since G, is nonsingular, condition (3.8) is valid a priori. Condition (3.10) simplifies
here to

. GS_C*Q*O WQO S _ m l
zm( 0 0 R)—R x IR,

and it is equivalent to imR = IR'.

Now we turn to optimal control problems (2.1)-(2.3) with a singular coefficient R. Equa-
tion (2.2) is supposed to be regular with index zero or one.

We make use of the possibility to combine both cases by choosing @y := 0, Q4 := 0 for
nonsingular Gy in the index one formulation.

The general assumption made on (gi ;) to be positive semidefinite leads to the in-
equality

1
(Su,x) < 5(Wx,x>, for all =z € R™, u € kerR.

Hence, the condition
kerR C kerS (5.6)

has to be satisfied at the very beginning. Recall further that R is symmetric, and the
orthogonal decomposition IR = ker R @ imR is given. Let Qg denote the orthoprojector
that realizes the latter decomposition, i.e., imQg = kerR, kerQQr = imR. Observe that
SQr =0, QrS* =0 is valid then due to condition (5.6).

By condition (5.5), we will show that the resulting DAE (2.10) with singular R fails to
be regular with tractability index two. After that, we will show reasonable conditions to
lead to a regular index three DAE as it is well known for the very special case (5.1) we
discussed in the beginning of this section.

As mentioned in the proof of Theorem 5.1, condition (5.5) leads to the simpler matrix

) Go— CQq 0 -D
G1 = —WQ() —GS - C*Q*O -5 . (57)
0 0 —R
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The corresponding null-space Nl := kerG reads

z
N, = Y| € R*™ :u= Qru, (G + C*Qu)Y = —WQuz,Goz — CQox = Du
u

Because of (5.5), Gor — CQor = Du implies Qoz € Ny N Sp, hence Qoz = 0. In the
consequence, N; can be represented as follows

x
N, = v | € R™ :u=Qgru,Qozr =0,1 =0,Gox = DQru
U
o x
Next we compute Ny NNy = Y| € RP% 2 =0, =0,u=Qgru, Du=0 p, and we
u

observe that the necessary regularity condition Ny NNy = 0 (cf. Appendix) means nothing
else but the relation

kerDQgr = kerQgr = imR. (5.8)
On the other hand, condition (5.8) yields
(DQr)*DQr = Qr, (DQr)" =Qr(DQr)",
where ” + 7 indicates the Moore-Penrose inverse. With
H:=(DQr)"Gy, H™:=GyDQr (5.9)
we have

H HH =H , HH H=H, HH =Qp, H H =G{DQr(DQr)*G,,

and by
. H"H 0 0
Q= 0 00 (5.10)
H 00

we define a projector onto N; that has the property Q1Q = 0 such that we may continue
the corresponding matrix function sequence. Moreover, since the blocks Go — C'Qy and
G§ + C*Q.o in Gy (cf. (5.7)) are invertible,

) 00 0
Wi:=[0 0 0 (5.11)
00 Qg

is the orthoprojector onto zméf along imG.

Theorem 5.4 Let the DAE (2.2) be regqular with tractability index zero or one. Let R
be singular and (5.6) be valid. Then, under condition (5.5), the DAE (2.10) fails to be a
reqular index two DAFE at all.
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Proof: If the regularity condition (5.8) is no longer valid, the DAE (2.10) fails to be a
regular one at all.

Now let (5.8) be satisfied. Compute W;C;Q; = 0, which leads to Ny C Sy := kerW:Cy,
hence Nl N 5’1 = Nl # 0. Because of this nontrivial intersection, by Lemma A.2, index
two can never be reached. o

The next question to deal with is whether (2.10) may be regular with tractability index
three. To answer this question, we continue constructing the matrix function sequence by
G2 and G3, and check the regularity conditions NQ N No =0, N2 N N1 = ( as well as the
corresponding (cf. Appendix) smoothness. Finally, we check the index three condition
N2 N SQ =0.

Theorem 5.5 Let the DAE (2.2) be regular with tractability index zero or one, and let
condition (5.5) be satisfied.

Let R be singular and condition (5.6) hold, further let R have constant rank.

Let the projector functions BPyPyB~, BPyP,P,B~ defined below be continuously differ-
entiable, and let the reqularity condztwns (5.8) and

ker <Ei> Nim(AB)"DQgr =0 (5.12)
be valid. Then, if the conditions
w S w
kerW N Ny =0 and ker (S* R) = ker (S*) X kerR (5.13)

hold true additionally, the DAE (2.10) is regular with tractability index three.

Before we verify Theorem 5.5, we formulate consequences showing the close relation to
the well known results for (5.1) mentioned above.

Corollary 5.6 Let (2.2) be regular with index zero or one, imD C imAB, S =0, R =
0, kerW N Ny = 0, D*G{*WG{ D nonsingular. Then, if the relevant smoothness condi-
tions are also satisfied, the DAE (2.10) is regqular with tractability index three.

Proof: Here, (5.5) and (5.6) are trivially satisfied. The relations kerW N imG§D =
0, kerD = 0 are valid since D*G{*W G{ D is nonsingular, hence (5.12) and (5.8) are also
true. The second condition in (5.13) holds trivially. o

Remark 5.7 If the DAE (2.2) is regular with index zero, S = 0, R = 0 and D*G WGy D
is nonsingular, then, with the corresponding smoothness, the DAE (2.10) is regular with
index three. If Gy = I, which happens for A = I, B = I, but also for A = B7!, it
results that D*G§™'WG;'D = D*WD. In this way we have confirmed the well known
conditions we started this section with.

Ijrgof of Theorem 5.5: We have to form Gy := Gy — C’lél, Cy =
CoPy+ G1B~(BPyP,B~)'BP, (cf. Appendix). First we compute (cf. (5.9), (5.10))

. (B(I—}(I)H)B 12)
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where K is the continuously differentiable basic projector realizing (2.4), K = BB~
The block B(I — H-H)B~ is again a projector. It decomposes imB = imK into two
further subspaces. Assuming BPOEB_ to be smooth means that these two further sub-
spaces are spanned by C! base functions, too.

Now, with

G1 = G() — CQ(), G*l = —G; — C*Q*O, B .= (B(I - Hiﬂ)Bi)lB
we obtain (cf. (5.7)) that

3 G, 0 -D CH"H+ABHH 0 0
Gy = —WQO Ga -S| — WH-H 0 0]. (514)
0 0 —-R S*H-H 00
Note that HQy = 0 follows immediately from (5.9).
x
Consider Ny Ny and NoNN; to check the regularity conditions. First, [ ¥ | € Nyn Ny is
u

characterized by x = Qoz, ¥ = Q.¥, Gix—Du =0, - WQox+ G —Su =0, Ru=0.
This implies —Cox — Du = 0, hence x € Ny N Sy = 0, further G,1¢ = 0, thus ¥ = 0, and
finally, u = Qgru, DQgru = 0, thus u = 0 by (5.8). Therefore, we have N, N N, = 0.
x
Next, [ ¢ | € Ny N Ny is true by the equations u = Qru, ¥ =0, Qoz = 0, Gox — Du =
U
0, (C+AB)H Hx =0, WH Hx =0, S*H Hz = 0. Now, condition (5.12) implies
H~-Hz = 0. From Gox — DQgru = 0 we derive (cf. (5.9)) u = Hx = HH Hz = 0 and
finally, Pyx = 0. It turns out that ]\72 N ]\71 =0.
Now we are able to construct an appropriate projector Qs onto N, such that Ny & N; C
keer However, actually we do not compute Qg since Lemma A.2 allows us to check the
index three property without explicitly using Q- and Gs.

Recall that G; has constant rank due to the constant rank property of R. Because of
W100Q1 =0, we find sz2 imGy & W1CyQ; = imG1, hence G5 has the same rank as
Gl Moreover, W2 = Wl is the orthoprojector onto szL along szg This yields

512 = k@TWQGQ = ]f@rwléo = 51,
T
S, = ¥ | € R : QrD*y) =0

u

By Lemma A.2, instead of proving the invertibility of G directly, it suffices to show that
the subspaces S; and N, intersect transversally.

x
Consider an arbitrary element [ 1 | € Ny NSy, i.e.,
u
QrD*Y =0, (5.15)
Giz — Du—{C+ AB}H Hz =0, (5.16)
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—WQ().T —WH Hx — Su+ G*ﬂ/J = 0, (517)

S*H Hz + Ru = 0. (5.18)
From (5.16) we derive by multiplying by Q.o that
R«0CoQox + QuCoH Hz = 0. (5.19)

Next we show that the relation

L < (g{/ g) (Qox +UH‘Hx> | <Q0x +uH‘Ha:> > 4 (5.20)

is true, and hence

(Z,V fz) (QO‘” +UH_H””> —0. (5.21)

Compute
e=(WQor+WH Hzx + Su,Qor + H Hz)+ (S*Qor + S*H Hz + Ru,u).
Taking into account that S*Qo = 0, by (5.17), (5.18) we obtain
e = (G, Qor + H Hz) = (G, Qoz) + (G, H Hz).
Using (5.19) we obtain that

<G*1wa Q().’L') = <Q0G*1wa .CE> = <_QOC())I(Q*0¢, .’II)
= (=9, QuCoQor) = (Y, QuCoH ™ Hz)
= (C;Q¥, H Hz),

and, hence, by (5.15)

e = (CiQu¥+ Gy, H Hx) = —(Gyy, H Hz)
= —(Gy, Gy DQrHz) = —(v, PyDQrHz)
= —(¢,DQrHz) = —(QrD*, Hz) = 0.

Since (5.20) is verified, we may use (5.21). Applying the conditions (5.12), (5.13) we
derive from (5.21) that

u=Qgru, Qoxr=0, H Hx=0. (5.22)
Now (5.17) reads G,1¥ = 0, which implies ¢ = 0. Finally, (5.16) simplifies to Gox —

DQgru = 0, but this leads to u = Hx = HH™Hz = 0, and Goz = 0, hence z = 0. So the
intersection Ny, N Sy contains the trivial element only. o
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6 A remark on controlling index two DAEs

One could conjecture analogous results for regular higher index DAEs (2.2) as discussed in
the previous section for the index zero and index one cases. Unfortunately, those results
do not hold any longer. For instance, Theorem 5.1 fails just for index two DAEs (2.2).
We make this clear for Hessenberg size two systems

(6.1)

x’l = 011.’1?1+012$2 —+ D1U
0 = 021.’1?1 -+ DQU ’

with nonsingular Cy; C9, which represent a very special case of regular index two DAEs.
Let S =0, R be nonsingular. The resulting DAE (2.10) has the coefficients

I 0 0 0 0 011 012 0 0 Dl
00 0 00 Cor 0 0 0 D
G’O: 0 0 -0 0], é(): Wiu Wi C G5 0|,
00 0 00O Wa We Cfy 0 0
00 0 00O 0 0 DY D5 R

and the elements of Ny, N S, are characterized by the equations
Ir = 0, ’(ﬁl = 0, DQ’U, = 0, WQQ.’EQ = 0, D;Qﬁz + Ru = 0. (62)

Obviously condition (5.5) means now that Dy = 0.

However, if Dy = 0, then 1 = 0, xo € kerWayy, 1y = 0,1, arbitrary, u = 0 form nontriv-
ial elements of Ny N Sy, that is, (2.10) fails to be regular with index one. Furthermore,
additionally assuming Wyy to be nonsingular or controlling just the inherent regular ex-
plicit ODE of (6.1) by supposing that Dy = 0, C12(C1C12) " Cy Dy = 0 does not change
the situation essentially.

Considering (6.2) again, we observe that NoNSy = 0 can be obtained by letting kerWay =
0, kerD; = 0, i.e., kerD;R™'D} = 0. A comparison with Theorem 3.3 above shows that
these conditions coincide with the general index one condition (3.8), (3.10) specified for
(6.1) and S =0, ker R = 0. Namely, now it holds in detail that

_ I —012 D1
(61 D) = (0 0 DQ) ’
I —C3 0 Wi 0
(GS_C*Q*O W@ 0): 0 0 0 WZ 0
Qo 0 A 0 D 0 0 R

and kerD} = 0, kerWy, = 0 are nothing else but the full rank conditions (3.8) resp.
(3.10) for these matrices.

For interesting special results concerning the case of controlled regular index two DAEs
we refer to [Ba].
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A Appendix: Tractability index
For the DAE
A)(B(t)z(t)) - C(t)=(t) = q(t), t € I, (A1)
with continuous matrix coefficients
A(t) € L(IR", IR¥), B(t) € L(IR™, R"), CO(t) € L(IR™, IR"),

we form a sequence of matrix functions and subspaces as it was done in [M&2] in order to
define the tractability index. The leading term in (A.1) is supposed to be properly stated,
i.e., the decomposition

kerA(t) ® imB(t) = R", t € T, (A.2)

is valid, and both subspaces forming this direct sum are spanned by continuously differ-
entiable bases.

K(t) € L(IR™) denotes the projector that realizes the decomposition (A.2), kerA(t) =
kerK(t), imK(t) = imB(t), t € Z. Since these subspaces have continuously differen-
tiable bases, the projector K (t) is continuously differentiable in ¢. Below, we drop the
argument ¢, all relations are meant pointwise for t € 7.

Put Gy := AB, N, := kerGy, Cy := C and introduce functions Qo, Py : Z — L(IR™) such
that

QS = Qo, 1mQo = Ny, Fy:=1- Q.

By this definition, @)y is a projector function onto Ny. Due to (A.2), it holds that Ny =
ker B, and GGy has constant rank ry on Z. Therefore, we can choose (g to be continuous
on Z. Next, we determine the generalized inverse B~ of B by means of the conditions

B BB =B", BBB=B, BB =K, B B=DP,.

B~ is continuous on Z, too.

For i > 1, let
Gi = Gi1—Ci Qi (A.3)
N; = kerGi, Q7 =Qi, imQ; = Ny, P;:=1-Q;,
CZ = Ciflf)ifl —+ GZB_(BPO s P,L‘B_)IBPO st Pifl- (A4)

The matrix functions G;, C; have k rows and m columns. In [M#2] this matrix function
sequence is used for the case of k¥ = m only. When constructing the matrix function C;
one has to take care of the existence of the derivative involved in (A.4).

By construction, the rank of the G; cannot decrease if the index ¢ increases.

If one arrives at a certain index p such that

N, C kerC,
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is satisfied, then it follows immediately that C,Q, = 0, Gy1 = G Ny = Ny,
Ny+1 C kerCy1, and, consequently,

N; CkerC;, Gj =G, forall j>pu, (A.5)

i.e., the sequence (A.3) becomes stationary for j > p.
If we have (A.5) with m = k, N, = 0, then all matrix functions G, j > p, are nonsingular.
Since the relations

N,' N kerC’i = NZ N Ni+1 Q Ni+1 N keTCi+1, 1 Z 0,

are given by construction, for obtaining a certain nonsingular G, it is necessary that all
intersections N; N kerC; are trivial, i.e.,

Ni N kerC,- = 0, i.e., Nz N Ni—|—1 = 0, 1 2 0.

The concept of regular DAEs from [M&2] is formally related to sequences (A.3) becoming
stationary as well as nonsingular.

Definition A.1 The DAE (A.1) is said to be a regular DAE with tractability index zero
ifm==k and rg = m.

The DAE (A.1) is said to be a reqular DAE with tractability index yu € IN if m = k and
there is a sequence (A.3), (A.4) such that for all j > 1

(i) G; has constant rank r; on T,

(ii) No@ - @ N;_1 C kerQ;,
(iii) Q; € C(Z,L(IR™)), BP,y---P;B~ € CY(Z, L(IR"))
and ry—1 < T, =m.

The DAE (A.1) is said to be regular if it is a regqular DAE with tractability index
u e INU{0}.

A regular index zero DAE may also be called a regular implicit ODE. For A =1, B =1
we have just an explicit ODE.
In addition to the subspaces N;, the accompanying subspaces

Si={z€ R":Cz € imG;} = kerW,C,

with W; :== I — G;Gf, G; the Moore-Penrose inverse of G;, may be quite useful when
checking properties of the DAE. Furthermore, the matrices

Giv1 = G —WiGiQi = G, — WiCQ;,
Gi—|—1 = Gi - Cz'—1Pi—1Qi

may be applied to simplify calculations.
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Lemma A.2

(i) Giy1 is injective <= N; N S; =0,
(ii) Git1 is surjective <= ker(W;CQ;)* = imG;,
(iii) Gy is bijective <= m = k, and W;CQ; : N; — (imG;)* is a bijection,
(iv) imGiyq = z'méz-ﬂ = imG;y1 = imG; & imW;CQ;.
Proof: By construction we have W,C = W,CFy--- Py = WiC;1 Py = W;Cj and Gy =
Giv1Eir1, Giy1 = Gip1F;11 with nonsingular factors (cf. [M&2])
Eiyy = I—-G;Ci\Pi,Qi— PB~(BP,---P,B™)BPy--- P,_1Q;,
E+1 = I — PZBi(BP() tee PZ'Bi),BP() e -Pi—lQi-

It holds that kerG;.1 = N; N S;, imG; 11 = imG; & imW;CQ;, Nip1 = Eijrll(Ni NS;), thus
(iv) and (i) are verified.

If imW;CQ; = imW;, then Gy, is surjective, and vice versa. With (imG;)t = imW; =
imW;CQ; = (ker(W;CQ;)*)* we obtain assertion (ii). Assertion (iii) follows from the
fact that GG;;1 and G;,; are bijective simultaneously.

As mentioned above, if certain N; NkerC; are nontrivial, then the DAE (A.1) is no longer
regular and, in particular, Condition (ii) in Definition A.1 cannot be satisfied. Considering
non-regular DAEs we have to modify this condition.

Definition A.3 The DAE (A.1) is said to be a non-reqular one with tractability indezx p
if there is a sequence (A.3), (A.4) such that for j > 1

(i) G; has constant rank on Z,

(it) (No+ -+ N;_1) 8 ((No+ -+ Nj_1) N N;) C ker@,,
(iii) Q; € C(Z, L(IR™)), BP,---P;B~ € CY(Z, L(IR™)),
and Gy_1 # Gy, Gy = Gup1, Gy singular.
Example A.4 The special DAE

33'1 —Cizzz = @
—T2 = (2 (AG)
0 = g3

which is used in [KuMel] as a canonical form, is obviously not a regular one. Supposed
1m(C13 does not vary with time, it has tractability index one. Namely, we can com-

1 1 I 00 0 0 Cis
pute A= (0|, B=(100), B =[0]|, Go=]000]|, co=[01 o],
0 0 0 00 00 O
000 I 0 —Cis Ci3C5 0 0
Q = |0 T 0], G, = |0 - 0 , Q1 = 0 0 0 ,
001 0 0 0 Cy 0 I—C5Chs
N() N N1 = {Z 21 = O,ZQ = 0,01323 = 0} y N() ) (No N N1) = {Z 21 = 0,23 =

01_301323}, BP,PPB- =1 — 01301_3, Ci=0 and, ﬁnally, Gy =Gy
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