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Abstract. We consider anisotropic Allen–Cahn equations with interfacial en-

ergy induced by an anisotropic surface energy density γ. Assuming that γ is

positive, positively homogeneous of degree one, strictly convex in tangential

directions to the unit sphere, and sufficiently smooth, we show stability of

various time discretizations. In particular, we consider a fully implicit and

a linearized time discretization of the interfacial energy combined with im-

plicit and semi-implicit time discretizations of the double-well potential. In

the semi-implicit variant, concave terms are taken explicitly. The arising dis-

crete spatial problems are solved by globally convergent truncated nonsmooth

Newton multigrid methods. Numerical experiments show the accuracy of the

different discretizations. We also illustrate that pinch-off under anisotropic

mean curvature flow is no longer frame invariant, but depends on the orienta-

tion of the initial configuration.

1. Introduction

Anisotropic mean curvature flow of a surface Γ with normal n is characterized
by the steepest descent of the anisotropic surface energy

∫

Γ

γ(n) dΓ

with respect to the Finsler metric associated with the anisotropy function γ [4].
Note that classical mean curvature flow is recovered for the Euclidean distance
γ = | · |. Driven by a wide range of practical applications in, e.g., metallurgy,
crystal growth, or geometry processing, many numerical schemes for the resulting
geometric evolution equations have been analyzed, implemented and tested. These
schemes cover, e.g., the case of graphs [9, 10], curve shortening flow [12], curves
with triple junctions [2], manifolds in higher dimensions [3], or even two dimensional
surfaces in higher codimension [24].

In their pioneering paper, Bellettini and Paolini [4] used formal asymptotics to
show that anisotropic mean curvature flow can be approximated by anisotropic ver-
sions of the Allen–Cahn equation, as obtained by L2 gradient flow of the anisotropic
Ginzburg–Landau energy

E(u) =

∫

Ω

ε

2
γ(∇u)2 +

1

ε
Ψ(u) dx.

Here, u is an order parameter taking values in some interval, say [−1, 1], and Ψ is
a double-well potential that gives rise to phase separation. The surface Γ is then
approximated by a diffuse interface of width ε > 0 along the zero level set of u. For
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existence, uniqueness, and rigorous convergence proofs, we refer, e.g., to [1, 14, 15]
and the literature cited therein.

While the analysis of anisotropic Allen–Cahn equations has reached a certain
degree of maturity, anisotropic phase-field computations still seem to be in their
infancy. For example, in spite of the parabolic nature of Allen–Cahn equations, fully
explicit schemes are frequently used to avoid strongly nonlinear spatial problems
to be solved in each time step [5, 6, 17, 23]. Deckelnick et al. [11] suggested a
semi-implicit variant where the gradient term is taken implicitly, but no numerical
computations or comparisons are included.

In this paper, we analyze, implement, and compare two implicit time discretiza-
tion schemes. In the nonlinear time discretization the anisotropic gradient terms
are taken fully implicitly, while in the linearized version they are replaced by an
isotropic bilinear form weighted by a certain positive factor λ. Further variants are
obtained by discretizing the double-well potential ψ either fully implicitly or semi-
implicitly. Here, semi-implicit discretization means that only the convex part of ψ
is taken implicitly and the concave part is not. Imposing suitable conditions on the
anisotropy γ, we prove stability of all variants. It turns out that stability involving
a fully implicit discretization of ψ only holds on suitable time step constraints while
semi-implicit versions are unconditionally stable.

On one hand the nonlinear semi-implicit scheme is unconditionally stable and
involves no further parameters, while stability of the linearized version requires a
careful selection of the weighting factor λ. On the other hand both the nonlinear
and the linearized schemes require the solution of large-scale, (possibly nonsmooth)
nonlinear algebraic systems in each time step. To this end, we use truncated non-
smooth Newton methods (TNNMG) as developed and analyzed in [18, 19, 20].

In our numerical experiments, we first compare the accuracy of all time dis-
cretization schemes, using a simple 2D model problem with known extinction time.
We observe that for a Kobayashi anisotropy the linearized time discretization is
comparable with the nonlinear version, if the weighting factor λ is suitably cho-
sen. For a regularized ℓ1-norm, however, the linearized scheme fails to produce any
useful results. It also turns out that, once the stability constraints on the time
step are met, fully implicit discretizations of ψ are typically much more accurate
than semi-implicit versions. Comparing the complexity of our time discretizations,
it seems that, using our TNNMG solvers, the gain in cpu time by the linearized
version is less than expected. It was less than a factor of 3 for the considered
model problem. In a final 3D example, we illustrate that occurrence of pinch-off
for anisotropic Allen-Cahn flow strongly depends on the orientation of the initial
configuration.

2. Continuous problem

2.1. Anisotropic Ginzburg–Landau free energy. Let Ω ⊂ R
d, d = 1, 2, 3, be

a domain with Lipschitz boundary. We consider the Ginzburg–Landau free energy

(2.1) E(u) =

∫

Ω

ε

2
γ(∇u)2 +

1

ε
Ψ(u) dx

with given interface parameter ε > 0, anisotropy function γ, and double-well po-
tential Ψ. The potential Ψ takes the form

(2.2) Ψ(u) = Φ(u) + 1
2 (1 − u2)
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with a lower semicontinuous and proper convex function Φ : R → R ∪ {+∞} such
that φ : H1(Ω) → R ∪ {+∞} defined by

(2.3) φ(v) =

∫

Ω

Φ(v(x)) dx, v ∈ H1(Ω),

is lower semicontinuous and proper convex on H1(Ω). Furthermore Φ and thus φ
is bounded from below by a constant. For simplicity we assume Φ(u) ≥ 0. The
logarithmic potential Φ = Φθ,

(2.4) Φθ(v) = χ[−1,1](v) +
θ

2

(

(1 + v) log(1 + v) + (1 − v) log(1 − v)
)

,

and the obstacle potential

(2.5) Φ0(v) = χ[−1,1](v)

are typical examples. Here χ[−1,1] denotes the characteristic function of [−1, 1] and
θ ∈ [0, 1) is the normalized temperature. For a proof of the lower semicontinuity
of the logarithmic potential we refer to [19]. Regarding the anisotropy function
γ : R

d → R we make the following assumptions.

(A1) The function γ : R
d → R is continuous on R

d, twice continuously differen-
tiable on R

d \ {0}, positively homogeneous of degree one, i.e.

γ(αx) = αγ(x) ∀α > 0, x ∈ R
d \ {0},

and satisfies γ(x) > 0 for x ∈ R
d \ {0}.

(A2) There exists a constant γ0 > 0, such that

〈γ′′(x)y, y〉 ≥ γ0|y|2 ∀y, x ∈ R
d with 〈y, x〉 = 0 and |x| = 1.

Here and in the following 〈·, ·〉 denotes the Euclidean scalar product 〈x, y〉 =
∑d

j=1 xjyj in R
d with associated norm | · |, and we use the notation

γ′(x)j =
∂γ

∂xj

(x), γ′′(x)ij =
∂2γ

∂xi∂xj

(x), i, j = 1, . . . , d,

for the gradient and the Hessian matrix of γ. We note some immediate conse-
quences.

Lemma 2.1. For x ∈ R
d \ {0} and α > 0 there holds

γ′(αx) = γ′(x), γ′′(αx) =
1

α
γ′′(x),

〈γ′(x), x〉 = γ(x), γ′′(x) x = 0.

Together with (A2) this implies

〈γ′′(x)y, y〉 ≥ 0 ∀y ∈ R
d, x ∈ R

d \ {0}

and thus convexity of γ. For the stability estimates we will not need these properties
directly but their implications for γ2.

Lemma 2.2. The functional γ2 : R
d → R is continuously differentiable on R

d and
twice continuously differentiable on R

d \ {0}.
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Proof. By the differentiability assumption on γ and the chain rule, γ2 is twice
continuously differentiable on R

d \ {0}. By

γ2(hx) − γ2(0)

h
= hγ2(x) −−−→

hց0
0 ∀x ∈ R

d \ {0}

we get (γ2)′(0) = 0 while continuity of (γ2)′ in 0 follows from |(γ2)′(x)| ≤ C|x| with
suitable C > 0. �

Lemma 2.3. The Hessian (γ2)′′(x) of γ2 is positive definite for x ∈ R
d \ {0}.

Proof. For x 6= 0 the Hessian (γ2)′′ of γ2 is given by

(γ2)′′(x) = 2γ′(x)T γ′(x) + 2γ(x)γ′′(x).

Now let y 6= 0 with y = αx + x⊥ for some α ∈ R and
〈

x, x⊥
〉

= 0. If x⊥ = 0 we
have

〈

(γ2)′′(x)y, y
〉

= 2α2| 〈γ′(x), x〉 |2 + 2α2γ(x) 〈γ′′(x)x, x〉 = 2α2γ(x)2 > 0.

Otherwise we have
〈

(γ2)′′(x)y, y
〉

= 2| 〈γ′(x), y〉 |2 + 2γ(x)
〈

γ′′(x)x⊥, x⊥
〉

≥ 2γ0γ(x)|x⊥|2 > 0.

Hence (γ2)′′(x) is symmetric and positive definite for all x 6= 0. �

It was shown in [16, Remark 1.7.5] that positive definiteness of (γ2)′′ is even
equivalent to Assumption (A2) provided that γ satisfies Assumption (A1).

As an immediate consequence of Lemma 2.3, the Hessian of γ2 induces a uni-
formly equivalent norm on R

d.

Lemma 2.4. There are constants µ,L > 0 such that the Hessian of γ2 satisfies

µ|y|2 ≤
〈

(γ2)′′(x)y, y
〉

≤ L|y|2 ∀x ∈ R
d \ {0}, y ∈ R

d.

Proof. Using the continuity of (x, y) 7→
〈

(γ2)′′(x)y, y
〉

∈ R on the compact set

Sd−1 × Sd−1 we find that the constants

L = sup
x,y∈Sd−1

〈

(γ2)′′(x)y, y
〉

, µ = inf
x,y∈Sd−1

〈

(γ2)′′(x)y, y
〉

> 0(2.6)

provide the assertion. �

Lemma 2.5. The gradient (γ2)′ : R
d → R

d is Lipschitz continuous with Lipschitz
constant L.

Proof. Let x, y ∈ R
d. If 0 is not contained in the line segment [x, y] = co{x, y} then

γ2 is twice continuously differentiable on [x, y] and we can use the fundamental
theorem of calculus and boundedness of the Hessian from above to obtain

|(γ2)′(x) − (γ2)′(y)| ≤ L|x− y|.
Utilizing this estimate on the line segment [δx, y] for δ > 0 and the continuity of
(γ2)′ we let δ → 0 to establish Lipschitz continuity on [0, y] . If 0 ∈ [x, y] we have
y = αx for some α ≤ 0 and thus

|(γ2)′(y) − (γ2)′(x)| ≤ |(γ2)′(y) − (γ2)′(0) + (γ2)′(0) − (γ2)′(x)|

≤ L
(

|y − 0| + |0 − x|
)

= L|y − x|

by |x| + |y| = (1 − α)|x| = |x− y|. �
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Note that we had to take special care about the case 0 ∈ [x, y] since (γ2)′ is
not differentiable in 0 and we do not know a priori if the fundamental theorem of
calculus can be applied in this case.

Lemma 2.6. The gradient (γ2)′ : R
d → R

d is strongly monotone. More precisely
we have

〈

(γ2)′(y) − (γ2)′(x), y − x
〉

≥ µ|y − x|2 ∀x, y ∈ R
d.

Proof. Let x, y ∈ R
d. If 0 is not contained in the line segment [x, y] we can again use

the fundamental theorem of calculus and boundedness of the Hessian from below
to obtain

〈

(γ2)′(y) − (γ2)′(x), y − x
〉

≥ µ|y − x|2.

Again, a continuity argument can be used to extend estimate to the case x = 0 or
y = 0. If 0 ∈ [x, y] we have y = αx for some α ≤ 0 and thus

〈

(γ2)′(y) − (γ2)′(x), y − x
〉

=
〈

(γ2)′(y) − (γ2)′(0) + (γ2)′(0) − (γ2)′(x), y − x
〉

=
α− 1

α

〈

(γ2)′(y) − (γ2)′(0), y − 0
〉

+ (1 − α)
〈

(γ2)′(0) − (γ2)′(x), 0 − x
〉

≥ µ
(α− 1

α
|y|2 + (1 − α)|x|2

)

= µ
(

|y − x||y| + |y − x||x|
)

= µ|y − x|2.

�

Here we used similar techniques as in Lemma 2.5 to deal with the case 0 ∈ [x, y].
As an alternative we could have also applied the fundamental theorem of calculus
directly, because it is already clear that (γ2)′ is Lipschitz continuous and thus
absolutely continuous.

As a direct consequence we get the strong convexity of γ2.

Corollary 2.1. The functional γ2 : R
d → R is strongly convex. More precisely we

have

γ2(x) − γ2(y) ≥
〈

(γ2)′(y), x− y
〉

+
µ

2
|x− y|2 ∀x, y ∈ R

d.

Strong convexity and Lipschitz continuity of the derivative of γ2 are both directly
inherited by the smooth part J0 : H1(Ω) → R of the Ginzburg–Landau free energy
given by

J0(u) :=
ε

2

∫

Ω

γ2(∇u) dx.(2.7)

The derivative ∇J0(u) ∈ H1(Ω)′ at u ∈ H1(Ω) reads (see, e.g., [19])

〈∇J0(u), v〉 =
ε

2

∫

Ω

〈

(γ2)′(∇u),∇v
〉

dx = ε(γ(∇u)γ′(∇u),∇v).

Here and in the following, the brackets 〈·, ·〉 are also used for he dual pairing of
H1(Ω) and H1(Ω)′ while (·, ·) stands for the usual scalar product in L2(Ω) gener-
ating the L2-norm ‖ · ‖0.
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Corollary 2.2. The functional J0 : H1(Ω) → R is strongly convex with respect to
the semi-norm ‖∇ · ‖0, i.e.,

J0(u) − J0(v) ≥ 〈∇J0(v), u − v〉 +
εµ

4
‖∇u−∇v‖2

0 ∀u, v ∈ H1(Ω).

Corollary 2.3. The gradient of the functional J0 : H1(Ω) → R is Lipschitz con-
tinuous with respect to the semi-norm induced by the semi-norm ‖∇ · ‖0, i.e.,

sup
w∈H1(Ω)
‖∇w‖0=1

| 〈∇J0(u) −∇J0(v), w〉 | ≤
εL

2
‖∇u−∇v‖0 ∀u, v ∈ H1(Ω).

Due to homogeneity, anisotropy functions are characterized by their Frank dia-
gram Fγ = {x ∈ R

d | γ(x) ≤ 1}. While Fγ illustrates deviations from the isotropic
case in the energy, the Wulff shape Wγ = {x ∈ R

d | γ∗(x) ≤ 1} involving the po-
lar functional γ∗(y) = supx∈Rd\{0} 〈x, y〉 /γ(x) gives the energetically favored phase

shape (Wulff’s Theorem) [8, 25]. We refer to [4, 11, 24] for further information
and conclude this section by two examples of anisotropy functions γ satisfying our
assumptions (A1) and (A2).

Example 2.1 (Kobayashi). In his pioneering paper Kobayashi [22] introduces the
anisotropy

(2.8) γk,ā : R
2 → R, γk,ā(x) =

{

(1 + ā cos(kβ(x))) |x| , x 6= 0

0 , x = 0

where k ∈ N, ā > 0 and β(x) ∈ [0, 2π] is the angle between x and the (positive)
horizontal axis. Assumption (A1) is obviously satisfied. Moreover, (γ2

k,ā)′′ is pos-

itive definite for ā < āc := 1
k2−1 (see [7]) so that (A2) again follows from [16,

Remark 1.7.5]. Figure 2.1 illustrates the Frank diagram and the Wulff shape of
γ3,0.124.

Example 2.2 (Regularized ℓ1-norm). Another example is a smooth approximation
of the ℓ1-norm given by

(2.9) γE(x) =
∑

i

√

x2
i + E|x|2

for E > 0. Verification of (A1) and (A2) is straightforward. Figure 2.1 illustrates
the Frank diagram and the Wulff shape of γE for E = 10−3.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 2.1. Frank diagram (thick dashed), Wulff shape (thick)
and Euclidean 1-sphere (thin dashed) for γk,ā with k = 3, ā =
0.124 (left) and γE with E = 10−3 (right)
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2.2. Anisotropic Allen–Cahn equation. Denoting

(2.10) E(u) = J0(u)+
1

ε
ψ(u), ψ(u) =

∫

Ω

Ψ(u(x)) dx = φ(u)+
1

2

(

|Ω| − ‖u‖2
0

)

,

according to (2.1), (2.2), and (2.3), the anisotropic Allen–Cahn equation

(2.11) ε(ut, v − u) + 〈∇J0(u), v − u〉 +
1

ε

(

φ(v) − φ(u)
)

− 1

ε
(u, v − u) ≥ 0

is obtained as L2-gradient flow of the scaled Ginzburg–Landau free energy E/ε. For
the logarithmic potential (2.4), the variational inequality (2.11) can be rewritten
as a semilinear parabolic differential equation which degenerates to a differential
inclusion for the obstacle potential as θ → 0. Of course, (2.11) has to be completed
by an initial condition u0 ∈ L∞(Ω) with |u0(x)| < 1 almost everywhere. In the
case of a smooth function Φ, existence and uniqueness of a weak solution u ∈
L2(0, T ;H1(Ω)) ∩ L∞(Ω × (0, T )) is stated by Alfaro et al. [1].

3. Nonlinear time discretization

3.1. Fully implicit nonlinear Euler method. Let T > 0 and let τ = T/M with
fixed M ∈ N be a uniform time step. Starting from the given initial condition u0,
we determine approximations um ∈ H1(Ω) at tm = mτ , m = 1, . . . ,M , from the
spatial problems

(3.1) um ∈ H1(Ω) :
ε

τ
(um − um−1, v − um) + 〈∇J0(u

m), v − um〉

+
1

ε

(

φ(v)−φ(um)
)

−1

ε
(um, v−um) ≥ 0 ∀v ∈ H1(Ω).

We emphasize that (3.1) can be equivalently rewritten as the minimization problem

um ∈ H1(Ω) : J (u) ≤ J (v) ∀v ∈ H1(Ω)

for the energy functional

J (v) = J0(v) +
1

ε
φ(v) +

( ε

2τ
− 1

2ε

)

‖v‖2
0 −

ε

τ
(um−1, v)

= E(v) +
ε

2τ
‖v‖2

0 −
|Ω|
2ε

− ε

τ
(um−1, v)

if τ ≤ ε2. Note that J is convex in this case and strictly convex for τ < ε2. This
immediately leads to the following existence result.

Proposition 3.1. Let τ < ε2. Then the spatial problem (3.1) has a unique solution
um for all m = 1, . . . ,M .

Proof. As J is strictly convex, lower semicontinuous, and, by

J (v) ≥
(

inf
|x|=1

γ(x)
)2 ε

2
‖∇v‖2

0 +
( ε

2τ
− 1

2ε

)

‖v‖2
0 −

ε

τ
(um−1, v),

coercive for τ < ε2, existence and uniqueness follows from Proposition 1.2 in [13,
Chapter II]). �

We now concentrate on stability.
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Proposition 3.2. Let τ < ε2. Then the Ginzburg–Landau free energy E defined in
(2.1) is a Lyapunov functional for (3.1) satisfying

(3.2)
ε

2τ
‖um − um−1‖2

0 +
εµ

4
‖∇um −∇um−1‖2

0 + E(um) ≤ E(um−1).

Proof. Inserting v = um−1 into (3.1) and exploiting (2.10) we get

ε

τ
‖um − um−1‖2

0 ≤
〈

∇J0(u
m), um−1 − um

〉

+
1

ε
ψ(um−1) − 1

ε
ψ(um)

+
1

ε

(

1

2
‖um−1‖2

0 −
1

2
‖um‖2

0 − (um, um−1 − um)

)

.

The binomial formula −2a(b− a) = a2 + (b− a)2 − b2 yields

−(um, um−1 − um) =
1

2
‖um‖2

0 +
1

2
‖um − um−1‖2

0 −
1

2
‖um−1‖2

0.

Together with the strong convexity of J0 as stated in Corollary 2.2 this implies

(

ε

τ
− 1

2ε

)

‖um − um−1‖2
0 ≤

〈

∇J0(u
m), um−1 − um

〉

+
1

ε
ψ(um−1) − 1

ε
ψ(um)

≤ E(um−1) − E(um) − εµ

4
‖∇(um − um−1)‖2

0.

Now the equivalence of τ < ε2 and ε
τ
− 1

2ε
> ε

2τ
provides the assertion. �

Now we are ready to state the main result of this section.

Theorem 3.1. The fully implicit Euler method (3.1) is conditionally stable in the
sense that

ε

2τ

M
∑

m=1

‖um − um−1‖2
0 +

εµ

4

M
∑

m=1

‖∇um −∇um−1‖2
0 ≤ E(u0).(3.3)

holds for all τ < ε2.

Proof. Using the estimate in Proposition 3.2 with m = 1, . . . ,M and E(v) ≥ 0
yields the assertion. �

As a by-product of Proposition 3.2 we get

J0(u
m) ≤ E(um) ≤ E(um−1) ≤ · · · ≤ E(u0)

providing the following variant of (3.3)

ε

2τ

M
∑

m=1

‖um − um−1‖2
0 +

εµ

4

M
∑

m=1

‖∇um −∇um−1‖2
0

+ max
m=0,...,M

J0(u
m) ≤ 2E(u0)

which also holds for τ < ε2.
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3.2. Semi-implicit nonlinear Euler method. According (2.10) the double–well
potential ψ consists of the convex part φ, the concave part −‖ · ‖2

0, and a constant.
Explicit discretization of the concave part leads to the semi-implicit Euler method

(3.4) um ∈ H1(Ω) :
ε

τ
(um − um−1, v − um) + 〈∇J0(u

m), v − um〉

+
1

ε

(

φ(v)−φ(um)
)

≥ 1

ε
(um−1, v−um) ∀v ∈ H1(Ω).

We first state existence and uniqueness.

Proposition 3.3. For all τ > 0 the spatial problem (3.4) has a unique solution um

for all m = 1, . . . ,M .

Proof. The variational inequality (3.4) is equivalent to a minimization problem for
the energy

J (v) = J0(v) +
1

ε
φ(v) +

ε

2τ
‖v‖2

0 −
( ε

τ
+

1

ε

)

(um−1, v).

As J is strictly convex, lower semicontinuous and coercive for all τ > 0 the assertion
follows from Proposition 1.2 in [13, Chapter II]). �

We now show that semi-implicit Euler method (3.4) is unconditionally stable.

Theorem 3.2. For all τ > 0 the Ginzburg–Landau free energy E defined in (2.1)
is a Lyapunov functional for (3.4) satisfying

(

ε

τ
+

1

2ε

)

‖um − um−1‖2
0 +

εµ

4
‖∇um −∇um−1‖2

0 + E(um) ≤ E(um−1).(3.5)

The semi-implicit Euler method (3.4) is unconditionally stable in the sense that

(

ε

τ
+

1

2ε

) M
∑

m=1

‖um − um−1‖2
0 +

εµ

4

M
∑

m=1

‖∇um −∇um−1‖2
0 ≤ E(u0)(3.6)

holds for all τ > 0.

Proof. To show (3.5) we can almost literally repeat the proof of (3.2). However,
the mixed term now takes the form

−(um−1, um−1 − um) =
1

2
‖um‖2

0 −
1

2
‖um − um−1‖2

0 −
1

2
‖um−1‖2

0.

The stability estimate (3.6) then follows as in the proof of Theorem 3.1. �

4. Linearized time discretization

4.1. Fully implicit linearized Euler method. In order to avoid the nonlinear
term (γ2)′(∇um) in ∇J0(u

m) occurring in the spatial problems (3.1) and (3.4),
respectively, we use, inspired by Taylor expansion, the linear approximation

〈∇J0(u
m), v〉 ≈

〈

∇J0(u
m−1), v

〉

+ ελ
(

∇(um − um−1),∇v
)

(4.1)

with suitable λ > 0. Here ελ(∇·,∇·) plays the role of the derivative of ∇J0(u
m−1)

which is in general does not exist, because (γ2)′′(x) is not defined in x = 0. Inserting
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the approximation (4.1) into (3.1), we obtain the fully implicit linearized Euler
method

(4.2) um ∈ H1(Ω) :

ε

τ
(um − um−1, v− um) + ελ(∇um,∇(v− um)) +

1

ε
(φ(v)− φ(um))− 1

ε
(um, v− um)

≥ ελ(∇um−1,∇(v−um))−
〈

∇J0(u
m−1), v − um

〉

∀v ∈ H1(Ω).

Existence follows by the same arguments as in Proposition 3.1.

Proposition 4.1. Let τ < ε2, λ > 0, and u0 ∈ H1(Ω). Then the spatial problem
(4.2) has a unique solution um for all m = 1, . . . ,M .

We now investigate stability.

Theorem 4.1. Let τ < ε2 and choose λ ≥ L/2. Then the Ginzburg–Landau free
energy E defined in (2.1) is a Lyapunov functional for (4.2) satisfying

ε

2τ
‖um − um−1‖2

0 +
εµ

4
‖∇um −∇um−1‖2

0 + E(um) ≤ E(um−1).(4.3)

The linearized fully implicit Euler method (4.2) is conditionally stable in the sense
that

ε

2τ

M
∑

m=1

‖um − um−1‖2
0 +

εµ

4

M
∑

m=1

‖∇um −∇um−1‖2
0 ≤ E(u0)(4.4)

holds under the above assumptions.

Proof. By the same arguments as used in Proposition 3.2 we find
(

ε

τ
− 1

2ε

)

‖um − um−1‖2
0 + ελ‖∇um −∇um−1‖2

0

≤ 1

ε
ψ(um−1) − 1

ε
ψ(um) +

〈

∇J0(u
m−1), um−1 − um

〉

.

By monotonicity and Lipschitz continuity of ∇J0 (cf. Corollary 2.2 and 2.3), the
last term can be bounded according to

〈

∇J0(u
m−1), um−1 − um

〉

≤ εL

2
‖∇um−1 −∇um‖2

0 +
〈

∇J0(u
m), um−1 − um

〉

.

Using again the strong convexity of ∇J0 (cf. Corollary 2.2) we get

ε

2τ
‖um − um−1‖2

0 + ε

(

µ

4
+ λ− L

2

)

‖∇um −∇um−1‖2
0 + E(um) ≤ E(um−1).

This proves (4.3). Now the stability estimate (4.4) follows as in the proof of Theo-
rem 3.1. �

4.2. Semi-implicit linearized Euler method. Taking the concave term −‖ · ‖2
0

occurring in (4.2) explicitly, we obtain the semi-implicit linearized Euler method

(4.5) um ∈ H1(Ω) :

ε

τ
(um − um−1, v − um) + ελ(∇um,∇(v − um)) +

1

ε
(φ(v) − φ(um))

≥ ελ(∇um−1,∇(v − um)) −
〈

∇J0(u
m−1), v − um

〉

+
1

ε
(um−1, v − um)

∀v ∈ H1(Ω).
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Existence follows by the same arguments as in Proposition 3.3.

Proposition 4.2. Let τ > 0, λ > 0, and u0 ∈ H1(Ω). Then the spatial problem
(4.5) has a unique solution um for all m = 1, . . . ,M .

Again, the semi-implicit variant is stable without any constraints on the time
step.

Theorem 4.2. Choose λ ≥ L/2. Then for all τ > 0 the Ginzburg–Landau free
energy E defined in (2.1) is a Lyapunov functional for (3.4) satisfying

(

ε

τ
+

1

2ε

)

‖um − um−1‖2
0 +

εµ

4
‖∇um −∇um−1‖2

0 + E(um) ≤ E(um−1).(4.6)

The semi-implicit Euler method (3.4) is unconditionally stable in the sense that

(

ε

τ
+

1

2ε

) M
∑

m=1

‖um − um−1‖2
0 +

εµ

4

M
∑

m=1

‖∇um −∇um−1‖2
0 ≤ E(u0)(4.7)

holds for all τ > 0.

Proof. The assertions follow by the arguments used in the proof of Theorem 4.1
with the mixed term handled as in the proof of Theorem 3.2. �

5. Finite element discretization of the spatial problems

For all time discretizations presented above, a stationary convex minimization
problem

u ∈ H1(Ω) : J (u) ≤ J (v) ∀v ∈ H1(Ω)(5.1)

has to be solved in each time step. The convex energy always takes the form

J (v) := J0(v) + c‖v‖2
0 − 〈f, v〉 +

1

ε
φ(v)

where J0 given in (2.7) involves a functional γ satisfying Assumptions (A1) and

(A2), c > 0 is some constant, f ∈ (H1(Ω))′ is a functional . Note that γ =
√
λ| · |

is isotropic for the linearized time discretizations as introduced in Section 4 and
coincides with the original anisotropy function γ in the nonlinear case (cf. Section 3).

The spatial problem (5.1) is discretized in space by piecewise linear conforming
finite elements

S(T ) = {v ∈ C(Ω) : v|e is affine ∀e ∈ T }
on a simplicial partition T of Ω. We assume that T = Tj and an underlying hierar-
chy T0, . . . , Tj are obtained by successive refinement of a conforming intentionally
coarse partition T0. Note that T0 and thus T might involve so-called “hanging
nodes” on edge mid points. The conforming nodal basis of S(T ) is denoted by
λp, p ∈ N (T ), where N (T ) is the set of non-hanging nodes in T . For a precise
definition of hanging nodes and the conforming nodal basis we refer to [19]. The
approximate nonsmooth nonlinear functional φT ,

φT (v) =
∑

p∈N (T )

Φ(v(p))

∫

Ω

λp(x) dx,

is obtained by replacing exact integration by a quadrature rule based on nodal
interpolation in S(T ).
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This leads to the discrete minimization problem

uT ∈ S(T ) : JT (uT ) ≤ JT (v) ∀v ∈ S(T )(5.2)

for the discretized energy

JT (v) := J0(v) + c‖v‖2
0 − 〈f, v〉 +

1

ε
φT (v).

Note that (5.2) can be equivalently rewritten in terms of coefficient vectors U, V ∈
R

n of u, v ∈ S(T ) with respect to the nodal basis. Then the discretized spatial
problems take the form problems

U ∈ R
n : J(U) ≤ J(V ) ∀V ∈ R

n(5.3)

with

J(V ) = JT

(

n
∑

i=1

Viλpi

)

= J0(V ) +
n

∑

i=1

ϕi(Vi).

Here we used

J0(V ) =
(

J0 + c‖ · ‖2
0 + 〈f, ·〉

)(

n
∑

i=1

Viλpi

)

, ϕi(z) =
1

ε
Φ(z)

∫

Ω

λpi
(x) dx

and a fixed enumeration N (T ) = {p1, . . . , pn}. For the iterative solution of large-
scale highly nonlinear algebraic problems of the form (5.3) by truncated nonsmooth
Newton methods (TNNMG) we refer to [18, 19, 20].

6. Numerical experiments

6.1. A 2D model problem. In this section, we investigate the accuracy and
numerical complexity of nonlinear time discretizations NONLIN and NONLIN-
SEMI introduced in Sections 3.1 and 3.2 and the linearized variants LIN(λ) and
LINSEMI(λ) introduced in Sections 4.1 and 4.2, respectively. To this end, we con-
sider the anisotropic mean curvature flow of Γ(0) = {x ∈ R

2 | γ∗(x) = r}. In this
case, the solution

Γ(t) = {x ∈ R
2 | γ∗(x) =

√

r2 − 2t}, 0 ≤ t ≤ r2/2,

is explicitly known [16, Theorem 1.7.3].

6.1.1. Accuracy. Assuming that the deviation from the exact solution is dominated
by the discretization error and not by the modeling error due to phase field approx-
imation, the exact radius r(t) =

√
r2 − 2t of Γ(t) is compared with the approxi-

mations provided by our time discretizations. In our first experiment, we select
the Kobayashi anisotropy γk,ā with k = 3 and ā = 0.124 (cf. Example 2.1) and
r ≈ 0.7958. Note that L/2 ≈ 1.745 (cf. (2.6)) in this case. The corresponding Wulff
shape Γ(0) ⊂ Ω = (−1, 1)2 is depicted in the left picture of Figure 2.1. We consider
the phase field approximation of the form (2.11) with obstacle potential Φ0 given in
(2.5) and ε = 4 · 10−2. The spatial discretization is based on a uniform triangular

grid T with mesh size h =
√

2 · 2−7. Note that ε/h ≈ 3.6. We select the uniform
time step size τ = 10−4 < ε2.
The exact radius r(t) of Γ(t) together with the resulting approximations over time t
is depicted in Figure 6.1. The left picture shows the fully implicit schemes NONLIN
and LIN(λ) for λ = 0.7, 0.9, 2. While NONLIN can hardly be distinguished from the
exact solution, the accuracy of LIN(λ) strongly depends on the selection of λ. For
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Figure 6.1. Radius evolutions over t for γ = γk,ā, k = 3, ā = 0.124.
Left: Fully implicit discretizations NONLIN (—• ), LIN(λ) with λ = 0.7
(dotted), λ = 0.9 (—�) and λ = 2.0 (dashed), and r(t) (thick dashed).
Right: Corresponding semi-implicit versions.

λ = 0.7 < L/4 LIN(λ) produces unstable approximations with too fast dynamics,
the extinction time t∗ = r2/2 is approximated very well for λ = 0.9 ≈ L/4, and is
considerably overestimated for larger λ such as λ = 2. We emphasize that λ = 0.9
seems to provide stable solutions. This indicates that the theoretical threshold L/2
stated in Theorem 4.1 is not sharp. On the right, we illustrate the accuracy of
the semi-implicit counterparts NONLINSEMI and LINSEMI(λ) for λ = 0.7, 0.9, 2.
Though the picture looks similar at first glance, the dynamics is now slowed down
by a common factor of about 0.94. This factor seems to tend to 1.0 as τ tends to
0.

Figure 6.2. Difference of approximations by NONLIN and LIN(0.9)
at time t = 10−3, 2 · 10−2, 10−1, 2.5 · 10−1

Figure 6.2 illustrates the smoothing effect of linearization by showing the dif-
ference of the approximations produced by NONLIN and LIN(λ) with optimal
λ = 0.9, respectively. Initially, large deviations occur at the vertices which are
better resolved by the anisotropic nonlinearity than by the isotropic counterpart
λ(∇·,∇·). It seems that these differences are smeared out but uniformly remain
bounded in course of the evolution.

In the second experiment, we repeat our accuracy test for the regularized ℓ1-
norm (cf. Example 2.2) with E = 10−3. Only the two fully implicit versions are
considered in this case. While, according to the left picture in Figure 6.3, NONLIN
still nicely captures the evolution r(t) of the sharp interface model, the linearized
version LIN(λ) fails to produce any useful results: If λ = 16, 18 seems to be large
enough to produce a stable discretization (though smaller than our theoretical
threshold L/2 ≈ 32.6723), then the dynamics is completely wrong. The dynamics
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can be improved by smaller values λ = 4, 13, but then the discretization becomes
unstable. This is illustrated by a zoom depicted in the right picture of Figure 6.3.

0 0.1 0.2 t* 0.3 0.4 0.5
0

0.1
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0.4
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0.6

 

 

0.038 0.04 0.042 0.044 0.046 0.048 0.05
 

 

Figure 6.3. Radius evolutions over t for γ = γE, E = 10−3. Left:
NOLIN (—• ), LIN(λ) with λ = 4.0 (—♦ ), λ = 13.0 (—⋆ ), λ = 16.0 (—�) and
λ = 18.0 (dashed), and r(t) (thick dashed). Right: Zoom illustrating
instability of LIN(λ) for λ = 4.0 and λ = 13.0.

6.1.2. Complexity. While NONLIN showed high accuracy independent of any tun-
ing parameters, the linearized version LIN(λ) is likely to require less computational
effort, because the resulting spatial problems are linear in the main part of the bilin-
ear form. In order to compare the numerical complexity of NONLIN and LIN(λ), we
report the number of iteration steps and the cpu time as required by recent trun-
cated nonsmooth Newton multigrid methods (TNNMG) [18, 19, 20] with nested
iteration as applied to corresponding spatial problems. Table 1 contains these re-
sults for the first spatial problem arising from the discretization first experiment
described in Section 6.1.1 with a smaller mesh size h =

√
2 · 2−10 and 4 198 401

unknowns. For completeness, we also include the logarithmic potential Ψθ with
temperature θ = 0.1.

scheme potential iteration steps cpu time [s]

obstacle 47 3694
NONLIN

logarithmic 47 3034
obstacle 8 1423

LIN(0.9)
logarithmic 32 2456

Table 1. Computational effort of TNNMG for a spatial problems aris-
ing from NONLIN and LIN(λ), λ = 0.9

Though the number of iteration steps is up to almost 6 times larger for NONLIN
than for LIN, the gain in cpu time is less than a factor of 3, because the leading
iteration steps for LIN need damping and thus are still costly. The gain in cpu time
might be larger for later time steps when a diffuse interface has developed from the
sharp interface in the initial condition.
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Figure 6.4. Evolution of dumbbell shape under anisotropic Allen–
Cahn flow with regularized ℓ1 anisotropy at t = 4 · 10−4, 6 · 10−3, 1.2 ·

10−2, 2 · 10−2

Figure 6.5. Evolution of dumbbell shape under anisotropic Allen–
Cahn flow with regularized ℓ1 anisotropy at t = 4 · 10−4, 6 · 10−3, 9 ·

10−3, 1.6 · 10−2

6.2. Pinch-off in 3D. In our final experiment, we investigate the influence of rigid
body motions of the initial configuration on the occurrence of pinch-off. More pre-
cisely, we consider the dumbbell shape depicted in the left picture of Figure 6.4
and compute their anisotropic Allen–Cahn flow with obstacle potential Φ0 given
in (2.5) and ε = 2 · 10−2 with respect to the regularized ℓ1-norm γE presented in
Example 2.2. The regularization parameter is E = 10−3. Time discretization is
performed by the fully implicit scheme NONLIN (cf. Section 3.1) with the time
step τ = 2 · 10−4 < ε2. The partition T of Ω = (−1, 1)3 is determined adaptively
based on a hierarchical a posteriori error estimator [21]. In this way, small elements

with minimal mesh size h0 =
√

2 · 2−7 are concentrated along the diffuse interface.
The number of unknowns varies between roughly 570 000 and 14 000 during evo-
lution from the initial time t = 0 to the considered final times t = 2 · 10−2 and
t = 1.6 · 10−2. We emphasize that a uniform grid with mesh size h0 would have
almost 17 million unknowns that could hardly be handled on desktop computers.
According to Figure 6.4 no pinch-off occurs, if the dumbbell is oriented along a
coordinate axis. The situation is different, if the dumbbell is oriented along the
diagonal of the coordinate system, as shown in Figure 6.5. In this case, pinch-off
at t = 8.4 · 10−3 is enforced by anisotropy.
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