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1 Introduction

This paper considers infinite horizon discounted stochastic games with compact and convex

action spaces and with norm-continuous transition probabilities. We formulate conditions on

the games which guarantee existence of stationary equilibria in pure strategies that depend

in a Lipschitz continuous manner on the current state.

Discounted stochastic games have been introduced by Shapley (1953) as a general model

of strategic interaction with symmetric information, and have since been intensively analyzed

in both the economic and the mathematical literature. The structure of a stochastic game

is similar to that of stochastic dynamic programming. The major difference is that instead

of one decision maker maximizing his utility over time, stochastic games involve multiple

players controlling the dynamics of some state variable. Since a full characterization of

equilibria in stochastic games is typically intractable, one usually tries to prove existence

of time-homogeneous equilibria in Markovian strategies. In a Markovian equilibrium the

players’ actions in every period depend only on the current position of the state variable, and

so the dynamics of the state sequence can be described by a homogeneous Markov chain.

For countable state spaces a variety of existence theorems for Markov equilibria have been

established by, e.g., Shapley (1953), Fink (1964), and Federgruen (1978). The existence of

homogeneous Markov equilibria has also been proved in special cases with uncountable state

spaces. For instance, Parthasarathy (1982) considers 2-person games in which the state space

is the unit interval and where the agents’ strategy sets are finite. This was extended to n

players, again each having a finite strategy set, in Parthasarathy and Sinha (1989). Nowak

(1985) also worked with an uncountable state space and two players, both of whose action

spaces are compact metric spaces. Under fairly general conditions this author showed that

such games have an ε-equilibrium stationary Markov strategies. Nowak and Raghavan (1992)

proved existence of correlated equilibria in stationary strategies. In a correlated equilibrium

the behavior of the players is coordinated by a signal transmitted by a fictitious mediator.

Under a norm-continuity condition on the transition probabilities Mertens and Parthasarathy

(1987) discussed the existence of subgame-perfect, but not necessarily Markovian equilibria

in games with uncountable state and action spaces. An alternative proof which is based

on selection theorems for measurable correspondences is given in Solan (1998); Chakrabarti

(1999) extended the results of Mertens and Parthasarathy (1987) to Markov strategies.
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However, no general existence result is yet available. Even less is known about existence

of equilibria which display additional continuity properties. The latter issue is of particular

interest for games with norm continuous transition rules. In such games the dynamics of the

equilibrium process can be described by a Markov chain that has the Feller property if the

underlying equilibrium strategy itself depends in a continuous manner on the current state.

If, in addition, the game has a compact state space, then the equilibrium is even ergodic. This

means that the game admits an initial distribution such that the state sequence is stationary

and ergodic. The existence of (correlated) ergodic equilibrium processes has been addressed in

the context of finite-horizon stochastic games with mutually absolutely continuous transition

probabilities by Duffie, Geanakopolos, MasColell, and McLennan (1994). These authors

give a variety of reasons for focussing on ergodic equilibrium processes. For instance, such

equilibria “constitute the simplest sort of equilibria and are thus perhaps focal,” and “there

is (...) the suspicion that other equilibria require implausible (...) coordination.” Guesnerie

and Woodford (1992) point out that “an equilibrium that does not display minimal regularity

through time – maybe stationarity – is unlikely to generate the coordination between agents

that it assumes.” Duffie et al. (1994) conclude that “whatever the additional merits of

ergodic equilibria are, stationarity is the basis of all econometric models.” This calls for

general existence results of continuous equilibria in Markovian strategies.

To the best of our knowledge the existence of continuous equilibria has so far only been

established in the context of a specific capital accumulation game by Amir (1996a) and

for supermodular games by Curtat (1996). The latter approach is based on Topkis’ (1978)

monotonicity theorem. It uses lattice theoretic arguments and relies on complementarity and

monotonicity assumptions. Complementarities occur when the marginal utility to one player

of undertaking an action is increasing in the number of peers undertaking the same action.

This paper provides a different and more unified approach that applies beyond the setting

of supermodular games. Instead of imposing monotonicity conditions on the agents’ utility

functions we consider stochastic games in which the interaction between different players is

weak enough. To this end, we first extend the notion of Moderate Social Influences introduced

by Glaeser and Scheinkman (2000) and enhanced in Horst and Scheinkman (2002) to dynamic

games. In a second step we reduce the dynamic decision problem to a static game through the

introduction of average continuation functions. This reduction allows us to view an agent’s

decision problem as an optimization problem depending on some parameters: the actions
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taken by all the other players and the current position of the state sequence. Montrucchio

(1987) gave sufficient conditions for such optimization problems to have optimal solutions

that are Lipschitz continuous functions of the parameters. Combining these results with our

weak interaction condition, we show that the reduced one shot game has a unique equilibrium

that is Lipschitz continuous in the state variable. The key observation is that the Lipschitz

constant can be chosen independently of the specific average continuation function. In a third

step, we prove existence of Lipschitz continuous equilibria using results from the theory of

dynamic programming.

Stochastic games with weakly interacting players are tailor-made to study dynamic mi-

croeconomic models of non-market interactions. Non-market interactions are interactions

between a large number of agents that are not regulated through a price mechanism. They

represent an important aspect of many socio-economic phenomena. For example, the decision

of a teen to commit a criminal act or to drop out of high school is often importantly influenced

by the related decisions of his friends as documented by Glaeser, Sacerdote and Scheinkman

(1996) and Crane (1991), respectively. Jones (1994) identified smoking habits as another

phenomenon where peer group effects play an important role. But social interactions occur

not only between peers. They also occur between family members, between ethnic group, and

between neighbors in a geographical space. Topa (2001) showed that neighborhood effects

are important determinants of employment search; ethnic group effects can explain segrega-

tion (Benabou (1993)) and income inequalities (Durlauf (1992)) across cities. Cooper and

John (1988) showed that local technological spillover effects are an important determinant

of the variation in aggregate output. If production processes are affected by spillovers, small

changes in economic fundamentals may be transformed into large changes in aggregate out-

put. Such multiplier effects are a characteristic feature of models of non-market interactions.

They provide a possible explanation for the emergence of large fluctuations of aggregate en-

dogenous variables relative to changes in exogenous quantities. But for the multiplier to be

well defined, one has to place a quantitative bound on the strength of interactions. Otherwise

extreme forms of “herding” may emerge, and the multiplier effects become unbounded. This

calls for models of weakly interacting players.

The empirical evidence of peer and neighborhood effects has triggered an increasing the-

oretical literature studying static economies with non-market interactions; see, for instance

Glaeser er at. (1996) or Brock and Durlauf (2001). However, the literature on local inter-
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actions has not yet been fully integrated into the dynamic analysis of equilibrium. When

dynamic economies are studied, the analysis is typically confined to the case of backward

looking myopic dynamics. Either as a simple explicit dynamic process with random se-

quential choices as in Brock and Durlauf (2001), or, under a weak interaction condition, as

an equilibrium selection procedure for static economies as in, e.g., Glaeser and Scheinkman

(2000). One exception is the paper by Bisin, Horst, and Özgür (2002). These authors proved

the existence of rational expectations equilibria of random economies with locally interacting

agents under the assumption that the interaction between different players is not too strong.

At the same time they considered an interaction structure that excludes strategic behavior.

The weak interaction approach suggested in this paper provides a unified framework for

integrating strategic behavior into dynamic models of social interactions. The framework is

flexible enough to allow for both local and global interactions. Local interactions capture

situations where agents interact only with a small set of other agents (friends, family mem-

bers, “neighbors”, ...) in an otherwise large population. Local interactions are best thought

of as being direct. That is, agents’ instantaneous utility functions depend directly on ob-

servable choices of neighbors. Interactions are global if people are affected by the average

behavior in the population. In a large population the actual average behavior is unlikely to

be observable. Instead, it is more natural to assume that agents receive noisy signals about

aggregate quantities. Therefore, global interactions are best modeled as indirect interactions.

This means that the dependence of payoffs on the average behavior is felt only through the

impact of aggregate quantities on the dynamics of the state sequence. Models of local and

global interactions allow for a combination of local externalities like neighborhood effects

with global externalities like fashions on which an individual agent in a large population only

has a small impact. Our framework also allows us to integrate the standard economic anal-

ysis in which interactions are mediated by global quantities like prices, wages or per capita

human capital into the analysis of peer and group effects captured by local interactions. As

an illustration we consider a model of economic growth where local technological spillovers

affect the efficiency of production processes.

The remainder of the paper proceeds as follows. The model and the main results are

presented in Section 2. Section 3 illustrates the range of applications of stochastic games

with weakly interacting players. In Section 4 the dynamic decision problem is reduced to a

static game. Section 5 proves our main results. Section 6 concludes.
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2 Lipschitz continuous Nash equilibria in stochastic games

The stochastic games Σ = (I, M, (Xi
, U i, βi), Q, ξ) that we consider in this paper are defined

in terms of the following objects:

• The set of players is the finite set I = {1, 2, . . . , N}.

• The state space M is a convex subset of a normed space (H, ‖ · ‖M ). The state space

is equipped with its Borel-σ-field M.

• The action space X
i of the player i is a closed, compact and convex subset of some

Hilbert space (H i, ‖ · ‖i). A typical action of player i is denoted xi. The actions

taken by player i’s competitors are denoted x−i ∈ X
−i := {x−i = (xj)j∈I\{i}}, and

X := {x = (xi)i∈I : xi ∈ X
i} is the compact set of all action profiles.

• The utility function of player i is a continuous map U i : M ×X → R.

• The discount factor of player i is βi ∈ (0, 1).

• The law of motion Q is a stochastic kernel from M ×X to M .

• The starting point of the state sequence is ξ ∈ M .

In reaction to the current state ξt ∈ M , the players take their actions xi
t = τ i(ξt) in-

dependently of each other according to a Markov strategy τ i : M → X
i. The restriction

to Markovian strategies does not pose any difficulties because any equilibrium when players

are restricted to Markovian strategies also constitutes an equilibrium in a game where the

players’ actions depend on the entire history of the state sequence.

The selected action profile xt = (xi
t)i∈I along with the present state ξt yields the instan-

taneous payoff U i(ξt, xt) = U i(ξt, x
i
t, x

−i
t ) to the agent i ∈ I. The distribution of the new

state is Q(ξt, xt; ·). An initial distribution ν on M along with a Markov strategy τ = (τ i)i∈I

induces a probability measure Pτ
ν on the canonical path space in the usual way. Under Pτ

ν

the state sequence is a Markov chain, and the expected discounted reward to player i ∈ I is

given by

J i(ξ, τ) := Eτ
ν

[ ∞∑

t=0

(βi)t U i(ξt, xt)

]
. (1)
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Here the expectation is taken with respect to the measure Pτ
ν . As usual, a Markov strategy τ

will be called a Nash equilibrium if no player can increase his payoff by unilateral deviation:

J i(ξ, τ) = J i(ξ, τ i, τ−i) ≥ J i(ξ, σi, τ−i) for all σi : M → X
i and each i ∈ I. (2)

Henceforth, a Nash equilibrium in Markovian strategies τ will simply be called an equilibrium.

We say that τ is Lipschitz continuous, if there exists a finite constant L∗ such that

‖τ i(ξ)− τ i(ξ̂)‖M ≤ L∗‖ξ − ξ̂‖M for each i ∈ I and all ξ, ξ̂ ∈ M .

This paper gives conditions that guarantee existence of Lipschitz continuous equilibria. In a

first step, we impose continuity conditions on the utility functions and the law of motion.

Assumption 2.1 (i) The utility functions are bounded and Lipschitz continuous: There

exists a constant L > 0 such that

|U i(ξ1, x)− U i(ξ2, y)| ≤ L (‖ξ1 − ξ2‖M + ‖x− y‖) for each ξ1, ξ2 ∈ M and x, y ∈ X.

Here ‖x‖ := maxi ‖xi‖i denotes the norm on X.

(ii) For all (ξ, x) ∈ M × X, the probability measure Q(ξ, x; ·) has a density q(ξ, x, ·) with

respect to some measure µ on (M,M), i.e.,

dQ(ξ, x; ·) = q(ξ, x, ·)dµ.

For each ξ1, ξ2 ∈ M and every x, y ∈ X, the densities satisfy the Lipschitz condition

|q(ξ1, x, η)− q(ξ2, y, η)| ≤ L (‖ξ1 − ξ2‖M + ‖x− y‖) . (3)

The Lipschitz continuity condition (3) translates into a norm-continuity condition on the

transition probabilities Q(ξ, x; ·). If ξn → ξ and xn → x, then

sup
B∈M

|Q(ξn, xn;B)−Q(ξ, x; B)| → 0 as n →∞.

Norm-continuity conditions have also been imposed by, e.g., Mertens and Parthasarathy

(1987) and Duffie et al. (1994). Assumption 2.1 is sufficient to prove existence of equilibria

in mixed strategies. In order to prove existence of continuous equilibria we will also assume

strong concavity of an agent’s utility function which respect to his own action. In addition,

we need to place a quantitative bound on the strength of interactions between different

6



players. That is, we will assume that both the agents’ instantaneous utility functions and

the transition densities are only weakly affected by changes in players actions. We formulate

our weak interaction condition in terms of a perturbation of the Moderate Social Influence

assumption introduced in Glaeser and Scheinkman (2000). The following section illustrates

the latter condition in a situation where the utilities and the densities are sufficiently smooth.

2.1 Assumptions and the main results; the differentiable case

In this subsection we consider the special case where M, X
1
, . . . ,X

N ⊂ R are compact in-

tervals, and where the utility functions and the densities are at least twice continuously

differentiable. We use the notation

U i
i,j(ξ, x) :=

∂2

∂xi∂xj
U i(ξ, x) and qi,j(ξ, x, η) :=

∂2

∂xi∂xj
q(ξ, x, η),

In order to introduce a weak interaction condition for stochastic games, we fix an initial

state ξ, an action profile x, and average continuation functions f i : M → R. The map

f i : M → R specifies the rewards the player i expects to receive from time t = 2 on. Thus,

his actual expected payoff is

V i,f (ξ, x) := U i(ξ, x) + βi

∫
f i(η)q(ξ, x, η)µ(dη). (4)

Hence we can define the static one-shot games Σf,ξ =
(
X

1
, . . . ,X

N
, V 1,f (ξ, ·), . . . , V N,f (ξ, ·)

)

with payoff functions V i,f (ξ, ·), and with action sets X
i. Following Glaeser and Scheinkman

(2000), we say that Moderate Social Influence (MSI for short) prevails in Σf,ξ if the marginal

utility of an agent’s own action is less affected by a change in all the other players’ choices

than by a change of his own action. Specifically, MSI prevails if there exists γ < 1 such that

∑

j 6=i

sup
x

|V i,f
i,j (ξ, x)|

|V i,f
i,i (ξ, x)|

≤ γ for all ξ ∈ M , and every i ∈ I. (5)

This weak interaction condition guarantees uniqueness of equilibria in Σf,ξ. It also excludes

“herding behavior” where, for instance, all players copy the behavior of some “leader”. In

particular, the MSI condition guarantees that the multiplier effects in Σf,ξ are well defined.

This means that a small perturbation of the current state cannot have an unbounded effect

on the average behavior throughout the entire set of players; see Glaeser and Scheinkman

(2000) or Horst and Scheinkman (2002) for further details.
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A standard argument in discounted dynamic programming shows that the game Σ has

an equilibrium, if there exist average continuation functions F i : M → R such that, in

equilibrium, the one-shot game ΣF,ξ satisfies

V i,F (ξ, x) = U i(ξ, x) + βi

∫
F i(η)q(ξ, x, η)µ(dη) = F i(ξ) for all ξ ∈ M and i ∈ I. (6)

Under the Moderate Social Influence condition the game ΣF,ξ has a unique equilibrium that

depends continuously on ξ as shown by Horst and Scheinkman (2002). Thus, if there exists an

average continuation function such that (6) holds, and if MSI prevails in the static game ΣF,ξ,

then Σ has a continuous equilibrium. Since the class of average continuation functions can

a-priori not be restricted except for ‖f i‖∞ ≤ ∑∞
t=0(β

i)t‖U i‖∞ = 1
1−βi ‖U i‖∞, it is natural to

assume that (5) holds uniformly in all average continuation functions. That is, independently

of what a player expects to receive in the future, his marginal utility at time t = 1 is always

more affected by changes in his own action than by changes in the other agents’ choices.

In order to make this more precise, we denote by ‖qi,j(ξ, x, ·)‖L1 :=
∫ |qi,j(ξ, x, η)|µ(dη) the

L1(µ)-norm of the random variable qi,j(ξ, x, ·). Since

|V i,f
i,j (ξ1, x1)| ≤ |U i

i,j(ξ1, x1)|+ βi‖f i‖∞‖qi,j(ξ1, x1, ·)‖L1

an extension of the weak interaction condition in Horst and Scheinkman (2002) to dynamic

games can be formulated in terms of the following condition.

Assumption 2.2 Let β := maxi β
i. There exists γ < 1 such that, for all i ∈ I, ξ ∈ M ,

∑

j 6=i

sup
x

|U i
i,j(ξ, x)|

|U i
ii(ξ, x)| +

β

1− β
‖U i‖∞

∑

j∈I

sup
x

‖qi,j(ξ, x, ·)‖L1

|U i
ii(ξ, x)| ≤ γ. (7)

We are now ready to state a first existence result for Lipschitz continuous equilibria of

stochastic games with compact state spaces. The proof is similar to the one of Theorem 2.9

below.

Theorem 2.3 Let Σ be a stochastic game where M, X
1
, . . . ,X

N ⊂ R are convex and com-

pact. If Assumption 2.1 and the Moderate Social Influence Assumption 2.8 hold, then Σ has

a Lipschitz continuous equilibrium.

If {ξt} is an exogenous Markov chain whose dynamics cannot be controlled by the players,

then qi,j ≡ 0. The same holds if the agents share a common convex action set Y , and if the
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law of motion takes the form

Q(ξ, x; ·) = %(x)Q1(ξ; ·) + (1− %(x))Q2(ξ; ·) where %(x) =
1
N

∑

i∈I

xi (8)

denotes the average action of all players. In both cases Assumption 2.2 reduces to the diagonal

dominance condition

∑

j 6=i

sup
x

|U i
i,j(ξ, x)|

|U i
i,i(ξ, x)| ≤ γ < 1 for all ξ ∈ M , and every i ∈ I. (9)

This is the Moderate Social Influence condition in Horst and Scheinkman (2002) for static

games with payoff functions U i. If the law of motion depends in a more general manner

on the average action taken by all the agents, then the MSI condition translates into a

perturbation of the diagonal dominance condition. In situations where the densities take the

form q(ξ, x, η) = ϕ(ξ, %(x), η) for a smooth function ϕ : M × Y ×M → R+ we have

qi,j(ξ, x, η) =
1

N2
ϕ22(ξ, %(x), η).

Thus, there exist constants Ci < ∞ such that the MSI condition holds if

∑

j 6=i

sup
x

|U i
i,j(ξ, x)|

|U i
i,i(ξ, x)| +

Ci

N
≤ γ < 1 for all ξ ∈ M , and for each i ∈ I.

If the constants Ci are uniformly bounded, Assumption 2.8 reduces to the diagonal dominance

condition (9) for N → ∞. If the densities depend on x through a weighted average of the

form
∑

i∈I ζixi, then MSI prevails if the utility functions satisfy (9) and if the constant ζi

are small enough.

Loosely speaking, the result formulated in Theorem 2.3 may be interpreted as saying

that if a game a close to being anonymous (see, e.g., the seminal paper by Jovanovic and

Rosenthal (1988) for a detailed analysis of anonymous games), then an equilibrium exists.

For this reason stochastic games with weakly interacting actions appear to be tailor-made to

analyze dynamics games of non-market interactions. Non-market interactions are interactions

between many players that are not regulated through a price mechanism. Games of non-

market interactions will be studied in Section 3 below. We close this subsection with a first

example where our MSI condition can easily be verified.

Example 2.4 Assume that the agents’ action sets are X
i = [−1, 1]. Assume also that the
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law of motion takes the linear form (8), and that the utility functions are given by

U i(ξ, x) = −J

2


xi − 1

N − 1

∑

j 6=i

xj




2

− 1− J

2
(xi − ξ)2 + θixi

t. (10)

Utility functions of the form (10) are standard in the literature on non-market interactions;

see, e.g., Brock and Durlauf (2001), Glaeser and Scheinkman (1999) or Glaeser er at. (1996).

They capture situations where agents have a desire for conformity. That is, they capture

situations where the agents prefer to take the same actions as their peers. The taste for

conformity is measured by the parameter J ∈ (0, 1). The quantity θi may be viewed as an

individual parameter that specifies the agent’s type. The MSI condition is satisfied since qi,j ≡
0, because U i

i,j = − J
N−1 and because U i

i,i = 1. Thus, the game has a Lipschitz continuous

equilibrium. Since quadratic utility functions are not monotone in neighbors choices, the

game is not supermodular. Therefore, existence of continuous equilibria cannot be deduced

from the results in Curtat (1996).

2.2 Assumptions and the main results; the non-differentiable case

Before we consider games with more general state and action spaces, we recall that a function

f : Y → R defined on a convex subset Y of some Hilbert space H is called α-concave for

α > 0, if the map y 7→ f(y) + 1
2α‖y‖2 is concave on Y . We also recall that f : Y → R is

differentiable at y ∈ Y in the feasible direction h ∈ H, if y + th ∈ Y for some t > 0, and if

the limit f ′(y; h) := limt↓0 1
t (f(y + th)− f(y)) exists and is finite1.

Assumption 2.5 (i) There exist α > 0 and functions αi : M → (α,∞) such that, for all

x−i ∈ X
−i, the map U i(ξ, ·, x−i) is αi(ξ)-concave on X

i.

(ii) The partial derivatives U i
1(ξ, x; hi) of U i in the coordinate xi at (ξ, x) exist in all feasible

directions hi ∈ H i, and the players’ marginal utilities are Lipschitz continuous: There

exist constants Li,j(ξ) such that
∣∣U i

1(ξ, x
i, x−i; hi)− U i

1(ξ, x
i, y−i; hi)

∣∣ ≤ Li,j(ξ)‖xj − yj‖j‖hi‖i

for all actions profiles x−i, y−i ∈ X
−i with xk = yk for k /∈ {i, j}. Moreover, there are

constants Li such that
∣∣U i

1(ξ1, x
i, x−i; hi)− U i

1(ξ2, x
i, x−i;hi)

∣∣ ≤ Li‖ξ1 − ξ2‖M‖hi‖i

1The connection between α-concavity and differentiability is discussed in the appendix.
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for all ξ1, ξ2 ∈ M and each x ∈ X.

The quantity Li,j(ξ) measures the dependence of agent i’s marginal utility on the changes

of the choice of player j if the current state is ξ. By analogy, Li measures the dependence of

his marginal utility on the current position of the state sequence.

Remark 2.6 We assume strict concavity of an agent’s utility function with respect to his own

action. Therefore, our model cannot be used to study games with finitely many actions, by

defining an auxiliary game with compact action sets in which the set of pure actions coincides

with the class of mixed actions in the original game.

We also need to bound the impact of an individual player on the law of motion.

Assumption 2.7 (i) The directional derivative qi(ξ, x, η;hi) of the density q at (ξ, x, η) in

the feasible direction hi ∈ H i exists and |qi(ξ, x, η; hi)| ≤ ϕ(η)‖hi‖i for some ϕ ∈ L1(µ).

(ii) The directional derivatives qi(ξ, x, η; hi) are Lipschitz continuous. Specifically, there are

µ-integrable function L̂i,j(ξ, ·) : M → R which satisfy

∣∣qi(ξ, xi, x−i, η;hi)− qi(ξ, xi, y−i, η;hi)
∣∣ ≤ L̂i,j(ξ, η)‖xj − yj‖j‖hi‖i (11)

for every ξ ∈ M and all action profiles x−i, y−i with xk = yk for all k /∈ {i, j}, and

∣∣qi(ξ, xi, x−i, η;xi − x̂i)− qi(ξ, x̂i, x−i, η; xi − x̂i)
∣∣ ≤ L̂i,i(ξ, η)‖xi − x̂i‖2

i .

Moreover, there are constants L̂i such that

∣∣qi(ξ1, x, η; hi)− qi(ξ2, x, η;hi)
∣∣ ≤ L̂i‖ξ1 − ξ2‖M‖hi‖i

for each ξ1, ξ2 ∈ M and all x = (xi, x−i) ∈ X.

We are now ready to formulate our weak interaction condition in the more general situ-

ation where the utility functions and the densities are not twice continuously differentiable.

As in the preceding section, we assume that an agent’s marginal utility is less affected by a

change in his own action than by changes in the other players’ choices.

Assumption 2.8 Let β := maxi β
i, and L̂i,j(ξ) := ‖L̂i,j(ξ, ·)‖L1. There is γ < 1 such that

∑

j 6=i

Li,j(ξ) +
β

1− β
‖U i‖∞

∑

j∈I

L̂i,j(ξ) ≤ γαi(ξ) (12)

holds for all i ∈ I and each ξ ∈ M .

11



Let us now formulate an extension of Theorem 2.3 that applies to the case of non-smooth

utility functions. Its proof will be given in Section 5 below.

Theorem 2.9 Suppose that the discounted stochastic game Σ has a compact state space M

and that Assumption 2.1 and Assumptions 2.5 - 2.8 are satisfied. Then Σ has a Lipschitz

continuous equilibrium. The Lipschitz constant depends on α > 0.

Following Duffie et al. (1994), we call an equilibrium τ ergodic if there exists an initial

distribution µ∗ such that the state sequence is stationary and ergodic2 under Pτ
µ∗ . If Σ

satisfies the assumptions of Theorem 2.9, then it admits a Lipschitz continuous equilibrium

τ . The transition operator Kτ of the equilibrium process {ξt} acts on bounded measurable

functions f : M → R according to

Kτf(·) :=
∫

M
f(η)Kτ (·; dη) =

∫

M
f(η)Q(·, τ(·); dη).

Since both the densities and the equilibrium strategies are Lipschitz continuous,

lim
n→∞ |K

τf(ξn)−Kτf(ξ)| ≤ lim
n→∞ ‖f‖∞‖q(ξn, τ(ξn), η)− q(ξ, τ(ξ), η)‖∞

≤ lim
n→∞L (‖ξn − ξ‖M + ‖τ(ξn)− τ(ξ)‖) = 0

if limn→∞ ξn = ξ. In particular, the Markov chain {ξt} has the Feller property. This means

that the transition kernel Kτ maps the class of all continuous functions f : M → R into

itself. It is well known (Breiman (1997)) that Feller processes on compact state spaces admit

an ergodic invariant distribution. That is, there exists an initial distribution µ∗ such that the

state sequence is stationary and ergodic under Pτ
µ∗ . If, in addition, the densities are strictly

positive, then the Markov chain has at most one invariant measure. In this case the sequence

{ξt} converges in distribution to µ∗, independently of the initial state. Thus, we have the

following corollary to Theorem 2.9.

Corollary 2.10 Under the assumptions of Theorem 2.9 the game Σ has an ergodic equilib-

rium. If, in addition, q(ξ, x, ·) > 0, then the state sequence converges in distribution to µ∗,

independently of the initial condition.
2A Markov chain {ξt} with state space M is called ergodic under a measure P if limT→∞ 1

T

PT
t=1 f(ξt) =R

fdP holds P-a.s. for every bounded measurable function f : M → R.
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Theorem 2.9 is applicable to stochastic games with compact, and hence bounded state

spaces. An extension to games with unbounded state spaces can be established under a mild

additional assumption on the densities q(ξ, x, ·). To this end, we denote by Mn ↑ M ⊂ H an

increasing sequence of closed, compact convex sets, and by qn : Mn ×X ×Mn :→ R (n ∈ N)

a sequence of densities with respect to µ which converges to q(ξ, x, ·) uniformly on compact

sets:

sup
η∈K

|qn(ξ, x, η)− q(ξ, x, η)| n→∞−→ 0 for all compact sets K ⊂ M . (13)

Remark 2.11 Let Qn be the stochastic kernel from Mn ×X to Mn that is defined in terms

of the densities qn, and consider the stochastic game Σn = (I, Mn, (U i, X
i
, βi), Qn, ξ). Our

condition (13) translates into an assumption on the conditional transition dynamics of the

state sequences {ξn
t } and {ξt} associated to the respective games Σn and Σ. In order to see

this, we fix a state ξ ∈ Mn and an action profile x ∈ X, and introduce the measures µn(ξ, x; ·)
and µ(ξ, x; ·) by

dµn(ξ, x; ·) = qn(ξ, x; ·)dµ and dµ(ξ, x; ·) = q(ξ, x; ·)dµ, (14)

respectively. For any bounded function h : H → R with compact support K ⊂ H we have

lim
n→∞

∣∣∣∣
∫

K
h(η) [µn(ξ, x; dη)− µ(ξ, x; dη)]

∣∣∣∣ ≤ ‖h‖∞ sup
η∈K

|qn(ξ, x, η)− q(ξ, x, η)| = 0.

Thus, under (13) the sequence {µn(ξ, x; ·)} converges weakly to µ(ξ, x; ·).

We are now ready to formulate an extension of Theorem 2.9 to stochastic games with

unbounded state spaces which will be proved in Section 5 below.

Corollary 2.12 Let Σ = (I,M, (Xi
, U i, βi), Q, ξ) be a discounted non-cooperative stochastic

game. Let Mn ↑ M ⊂ H be an increasing sequence of closed compact convex sets, and let

qn : Mn ×X ×Mn → R be densities with respect to some measure µ on (M,M) that satisfy

(13). If there exists γ∗ < 1 such that all the games Σn = (I, Mn, (Xi
, U i, βi), Qn, ξ) satisfy

the MSI condition (12) with γ = γ∗, then Σ has a Lipschitz continuous equilibrium.

3 Applications of stochastic games with weak interactions

We are now going to illustrate the range of applications of stochastic games with weakly

interacting players. Our focus will be on games of non-market interactions, i.e., on strategic

interactions between a large number of agents that are not mediated through markets.
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3.1 Equilibria in dynamic models of non-market interactions

In this section we develop a dynamic extension of the model of non-market interactions in

Glaeser and Scheinkman (2000); see also Horst and Scheinkman (2002). We allow for both

local and global components in the interaction between different players. Social interac-

tions are local if each player interacts only with a small set of other agents in an otherwise

large population. Local interactions typically occur between friends or family members. In-

teractions are global if players are affected by the average behavior throughout the whole

population. We assume that a player’s instantaneous utility function depends on the choices

of others only through his own action and through the observable actions of his neighbors.

This captures the idea that observable choices of, e.g., family members have a direct and

possibly more distinctive impact on agents’ utilities than the average action of all players.

On the other hand, in a game with many players, it is unlikely that the average behavior in

period t is observable, too. It is more natural to assume that the players only observe signals

about %(xt). This idea will be captured by the fact that the impact of the process {%(xt)}
on payoffs is only felt indirectly through its impact on the dynamics of the state sequence.

Let us now be more specific about the structure of the model. Players are infinitely-lived.

To each player i ∈ I we associate his peer or reference group N(i) ⊂ I\{i}. An agent’s peer

group may be viewed as the set of players whose actions the agent can actually observe. In

large populations, reference groups should thus be thought of as being small relative to the

whole set of all players.

In every period t, each player i is subject to a random taste shock θi
t. The random variables

θi
t take values in some compact set Θ ⊂ Rr. In reaction to his current type θi

t, the agent i

takes an action xi
t = τ i(θi

t) from a common compact and convex action set Y . As in Glaeser

and Scheinkman (2000), an agent’s instantaneous utility in period t depends on the choices

of all the other agents only through a weighted average of the actions chosen by the players

in his reference group. To this end, we fix weight factors ζi
j ≥ 0 (i, j ∈ I) that satisfy ζi

j = 0

for j /∈ N(i) and
∑

j∈N(i) ζi
j = 1 for all i ∈ I. Specifically, we assume that preferences at time

t are described by a smooth utility function of the form

U i(θi
t, xt) = u

(
θi
t, x

i
t, %

i(xt)
)

where %i(xt) :=
∑

j∈I

ζi
jx

j
t

denotes the average choice of player i’s peers. The map u is α-concave in its second argu-

ment. In our model all heterogeneity across agents is incorporated into neighborhood effects
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and types. Conditioned on the choices of all agents, the dynamics of the types is described

in terms of N independent Markov chains. More precisely, the law of the random variable

θt+1 = (θi
t+1)i∈I depends on the current action profile xt only through the average behavior

%(xt) = 1
N

∑
i∈I xi. Such an interaction structure captures situations where agents’ prefer-

ences depend on the unobservable average behavior of all the people only through privately

observed signals. Specifically, we assume that the law of motion takes the product form

Q(θ, x; ·) :=
∏

i∈I

π(θi, %(x); ·) where dπ(θi, y; ·) = ϕ(θi, y, ·)dλ. (15)

Here ϕ : Θ × Y × Θ → R+ is smooth, and λ denotes the Lebesgue measure on Θ. An

inspection of the proof to Lemma 4.1 shows that for stochastic kernels of the form (15), the

quantities ‖qi,j(ξ, x, η)‖L1 in Assumption 2.8 can be replaced by
∥∥∥∥

∂2

∂xi∂xj
ϕ(θi, %(x), ·)

∥∥∥∥
L1

=
1

N2

∥∥ϕ22(θi, %(x), ·)
∥∥

L1 .

Observe now that U i
i,j(θ

i, x) = ζi
ju2,3(θi, xi, %i(x)) for i 6= j. Therefore, Moderate Social

Influence prevails if there exists γ < 1 such that, for all θi ∈ Θ, and each i ∈ I,

sup
x,i

|u2,3(θi, xi, %i(x))|
|u2,2(θi, xi, %i(x))| +

β

1− β
sup
x,i

‖u‖∞
|uii(θi, xi, %i(x))|

‖ϕ2,2‖∞
N

≤ γ

Thus, if the utility function u satisfies a diagonal dominance condition, the game has a

Lipschitz continuous equilibrium if the population is large enough. We further illustrate this

by means of the following example where preferences are subject to both peer group effects

and fashions.

Example 3.1 There are two consumption goods, say good A and good B. A-priori, the goods

are close substitutes. In each period the agents have to decide which fraction xi
t ∈ [0, 1] of

their budget for these goods to spend for good A. Personal preferences for good A are described

by random variables θi
t ∈ [0, 1]. But the players also have a taste for conformity. They

derive utility from consuming the same good as their peers. Such a behavior can frequently

be observed among teenagers. For teenagers, brand-name articles often play an important

role in identifying themselves as members of certain youth groups. Specifically, let N(i) :=

{i− 1, i+1} where we apply modulo-N-arithmetic, and assume that preferences are described

by the quadratic utility functions

U i(θi, x) = −J1

2

(
xi − xi−1 + xi+1

2

)2

− J2

2
(xi − ηi)2 + θi

tx
i
t.
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The constants 0 < J1 < J2 satisfy J1 + J2 ≤ 1. They measure the taste for conformity. The

quantity ηi
t ∈ [0, 1] specifies agent i’s subjective perception of the average behavior of other

players. This reflects the idea that preferences do not only depend on the tastes of peers,

but also on fashions. Fashions, in turn, reflect the aggregate behavior through the entire

population. For simplicity, we assume that

(θi
t+1, η

i
t+1) ∼ π

(
θi
t, η

i
t, %(xt); ·

)
:= Q1(θi

t; ·)⊗Q2(%(xt), ·)

where Q1 and Q2 are suitable stochastic kernels. That is, individual types evolve independently

of each other in a Markovian manner, and each agent receives a private signal about mean

actions. In particular, the law of motion takes the product form (15). The maps U i are

Lipschitz continuous and α-concave with α = J1+J2. Moreover, ‖U i
i,i−1‖∞ = ‖U i

i,i−1‖∞ = J1,

and ‖U i‖∞ = 1. Thus, our weak interaction condition holds if

J1 +
β

1− β

‖ϕ2,2‖∞
N

< J2.

Thus, the game has a Lipschitz continuous equilibrium if the number of players is large enough

and/or if the relative impact of a neighbor’s action is weak enough, i.e., if J2 is big enough.

3.2 A model of economic growth with local technological spillover effects

This section develops a model of economic growth where local technological spillover-effects

influence production processes. We consider an economy with a finite set I = {1, 2, . . . , N}
of infinitely-lived industries. Each industry i ∈ I consists of many small, identical firms. Ag-

gregate behavior is thus proportional to the behavior of a representative company. Following

Durlauf (1993), we assume that all industries produce an identical output good. Its price is

normalized to one. Industries are distinguished by their respective production technologies

θi
t ∈ [0, 1]. Once a production technology is chosen, labor is the only input. Labor supply

is totally inelastic, and wt ∈ [0, 1] denotes the economy wide wage level in period t. Each

industry i chooses a sequence {θi
t, l

i
t} of production technologies and labor demands in order

to maximize expected profits:

max
{θi

t,l
i
t}
E

∞∑

t=1

βt(Y i
t − wtl

i
t),

where Y i
t denotes the industry’s output in period t. Labor can be hired in continuous quan-

tities, lit ∈ [0, 1], and local technological spillovers affect the production processes. The set of
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companies whose production technologies affect the output of firm i is denoted by N(i) ⊂ I.

Specifically, production occurs instantaneously, and the firm produces the output

Y i
t = F (lit, θ

i
t, {θj

t}j∈N(i)).

The players act non-cooperatively in that they do not take account of their influence on the

production of others. No markets exist that allow industries to coordinate; firms cannot

be compensated for choosing production technologies that expand the output of the entire

economy.

Wages for the period t are fixed at the end of date t−1. Wage claims depend on the average

labor demand in the preceding period, and on random external conditions like inflation or

growth rates. More precisely, we assume that

wt ∼ Q

(
wt−1,

1
N

N∑

i=1

lit; ·
)

for some stochastic kernel Q from [0, 1]2 to [0, 1]. Thus, in a large economy the impact of

an individual industry on the level of wages is weak. Managers observe wt before deciding

how many workers to hire and which production technology to implement in period t: given

wt, company i ∈ I takes the action (lit, θ
i
t) = τ i(wt). Such an assumption is justified if we

think of θi as a measure for labor intensity. The higher the wages, the more profitable it is

to implement a less labor intensive production technology.

The game has a Lipschitz continuous equilibrium if the technological spillover effects are

weak enough and if the impact of an individual industry on the wage level is not too strong,

i.e., if, for instance, N is large enough. If, in addition, the laws Q(w, l; ·) have strictly positive

densities with respect to λ on [0, 1], then the Markov chain {wt} converges in distribution

to a unique limiting measure. However, in the presence of positive technological spillovers,

significant multiplier effects may arise both in the unemployment rates and in aggregate

output: due to the interactive structure of the economy, the per capita response in labor

demand to an economic shock leading to high wages may considerably exceed individual

responses in models without local interactions. Thus, even if the overall behavior of process

{wt} and hence the overall behavior of labor demand is ergodic, we may still observe large

fluctuations in unemployment rates.
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3.3 Dynamic production games

Our last application of discounted stochastic games with weakly interacting agents deals with

dynamic extensions of the input game discussed in Cooper and John (1988); see also Diamond

(1982). There is a set I = {1, 2, . . . , N} of infinitely lived agents sharing a production process.

In each period t ∈ N, the player i ∈ I bears an effort xi
t ∈ [0, 1] in the production of a public

good at a cost c(xi). Here c : [0, 1] → R is a strictly convex cost function. The resulting

output is f(xi
t, x

−i
t , ξt) where ξt ∈ [0, 2] is a parameter that determines the productivity of the

agents’ choices. The case where ξt is an observable quantity and where the players take their

actions in reaction to ξt is analyzed in Subsection 3.3.1. In such a situation the game’s state

space is M = [0, 2]. Thus, under suitable smoothness conditions the existence of equilibria

can be established by means of Theorem 2.3. If the productivity parameter is unobservable,

the analysis becomes more involved. In Subsection 3.3.2 we consider a game where the agents

can only estimate the distribution µt of ξt before making their choices. In this case the game’s

state space is the set P of all probability measures on [0, 2] equipped with the total variation

norm ‖ · ‖V . The total variation distance between two probability measures ν, ν̂ on [0, 2] is

given by ‖ν − ν̂‖V := supA∈B |ν(A)− ν̂(A)|, where B denotes the Borel-σ-field on [0, 2].

3.3.1 Games with observable productivity parameters

Let us first assume that the agents are able to observe the actual productivity parameter. In

this case we describe the players’ preferences by a utility function of the form

U i(x, ξ) = u(f(xi, x−i, ξ), c(xi)).

We assume that the conditional distribution of the productivity parameter depends on the

average effort:

Q(ξ, x; ·) = h

(
ξ + x1 + · · ·+ xN

2 + N

)
Q1(·) +

[
1− h

(
ξ + x1 + · · ·+ xN

2 + N

)]
Q2(·).

Here h : [0, 1] → [0, 1] is a twice continuously differentiable function that satisfies h′′ ∈ [0, 1],

and Qk has a bounded density qk with respect to λ on [0, 2]. We have

‖qi,j(ξ, x, ·)‖L1 ≤ ‖h′′‖∞
(2 + N)2

∫
(q1(η) + q2(η))µ(dη) ≤ 2

(2 + N)2
.

Under differentiability conditions on the utility, on the cost and on the production function, it

is straightforward to show that the game has an equilibrium if the cost function is sufficiently
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convex. As an illustration we consider the specific case

U i(ξt, xt) = ξtxt

∑

j 6=i

xj − c(xi), where c(xi) = 4(1 + xi)3

and where the law of motion depends in a linear manner on the agents’ efforts:

Q(ξ, x; ·) =
ξ + x1 + · · ·+ xN

2 + N
Q1(·) +

(
1− ξ + x1 + · · ·+ xN

2 + N

)
Q2(·).

Thus, high efforts and a high productivity parameter make it more likely that the new

productivity parameter is chosen according to the probability distribution Q1. Since

qi,j(ξ, x, η) = 0,
∂2

∂(xi)2
U i(ξ, x) = −24(1 + xi) ≤ −24,

∂2

∂xi∂xj
U i(ξ, x) = ξ ≤ 2,

the MSI condition holds if 2(N − 1) < 24, i.e., if N ≤ 12. Thus, the game has a Lipschitz

continuous equilibrium if at most 12 players participate in the game. Under the additional

assumption that Q1 stochastically dominates Q2 the game is supermodular. In this case our

result can also be derived from Theorem 4.6 in Curtat (1996). Our method allows us to

derive existence results without imposing monotonicity conditions on the law of motion.

Glaeser and Scheinkman (2000) discuss the case where an agent’s utility depends on the

average action taken by all the other agents. In our current setup, this means that

U i(ξ, x) = ξxi

∑
j 6=i x

j

N − 1
− 4(1 + xi)3.

Let βi = 0.9 for all i ∈ I, and consider the more general case where h is not the identity. Since

‖U i‖∞ ≤ 32 and because β
1−β = 9, the weak interaction condition (7) holds if 2+ 9∗32

(2+N) < 24.

This inequality is satisfied for all N ≥ 12. Thus, the game has a Lipschitz continuous Nash

equilibrium if at least 12 players participate in the game.

3.3.2 Games with unobservable productivity parameters

Let us now consider the case where the actual productivity parameter ξt is unobservable.

The players only know its distribution µt. Preferences are described by utility functions

U i : X × P → R of the form

U i(xt, µt) = xi
t [Eµtξ − σVµtξ]

∑

j∈I

xj
t − 4

(
1 + xi

)3
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where Eµtξ and Vµtξ denote the mean and the variance of the random variable ξ under the

law µt, respectively. The parameter σ specifies the agents’ common degree of risk aversion.

Thus, in a static model the players would be mean-variance maximizers.

We assume that the agents can control the dynamics of the sequence of distributions {µt}.
More precisely, we fix stochastic kernels Q1 and Q2 on P. Given a probability measure µ ∈ P,

the law Q1(µ; ·) is concentrated on a set of probability measures under which ξ has a high

mean, but also a high variance. The law Q2(µ; ·) is concentrated on a set of measures under

which the productivity parameter has both a lower mean and a lower variance. Specifically,

Q(µt, xt; ·) =
x1

t + . . . + xN
t

N
Q1(µt; ·) +

(
1− x1

t + . . . + xN
t

N

)
Q2(µt; ·).

Thus, a high effort increases the expected productivity, but also its variance. If the agents

do not observe the actual productivity parameter, but only its distribution, the game’s state

is P which is not a Euclidean space. In order to derive sufficient conditions for the existence

of Lipschitz continuous Nash equilibria, we apply (12). Due to the linear structure of the

transition kernel Q we may choose L̂i,j(µ, η) = 0 for all i, j ∈ I. The utility functions are

α-concave with α = 24 and

Li,j(µ) = |Eµξ − σVµξ|.

Hence the weak interaction condition (12) holds if (N−1) supµ∈P |Eµξ−σVµξ| < 24. Typically,

|Eµξ− σVµξ| < 2. Therefore, the game may have an equilibrium for N > 12. The additional

uncertainty about the true productivity parameter reduces the impact of an individual agent

on the utility of others. Hence we can possibly allow for more players to participate in the

game and still guarantee the existence of equilibria.

4 Lipschitz continuous equilibria in a static one-shot game

This section prepares the proofs of our main results by proving the existence of Lipschitz

continuous Nash equilibria in a certain class of one-shot games.

Since the agents’ instantaneous utility functions are bounded, we may with no loss of

generality assume that U i ≥ 0 for all i ∈ I. We introduce the vector u = (ui)i∈I with

components ui := ‖U i‖∞ and denote by (Bu(M,RN ), ‖ · ‖∞) the Banach space of all non-

negative measurable functions f : M → RN
+ satisfying ‖f i‖∞ ≤ ui. To each such average

continuation function we associate the reduced one-shot game Σf :=
(
I, (Xi

, U i,f ), ξ
)

with
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payoff functions

U i,f (ξ, x) = (1− βi)U i(ξ, x) + βi

∫

M
f i(η)q(ξ, x, η)µ(dη). (16)

The following lemma shows that the reduced game Σf has a unique Nash equilibrium

gf (ξ), due to the weak interaction condition. Moreover, the equilibrium map gf : M → X is

Lipschitz continuous with a constant that can be chosen independently of the specific average

continuation function. This property turns out to be the key to the proof of Theorem 2.9.

Lemma 4.1 Under the Assumptions of Theorem 2.9 the following holds for every f ∈
Bu(M,RN ):

(i) For each ξ ∈ M and x−i ∈ X
−i, the map xi 7→ U i,f (ξ, xi, x−i) is

α̂i(ξ) = (1− βi)αi(ξ)− uiβiL̂i,i(ξ)

concave on X
i, and infξ α̂i(ξ) > 0.

(ii) The conditional best reply gi
f (ξ, x−i) of player i ∈ I depends in a Lipschitz continuous

manner on the actions of his competitors. More precisely, we have

‖gi
f (ξ, x−i)− gi

f (ξ, y−i)‖i ≤ (1− βi)Li,j(ξ) + uiβiL̂i,j(ξ)
α̂i(ξ)

‖xj − yj‖j (17)

if xk = yk for all k 6= j. Moreover, there exists L̃ < ∞ such that

‖gi
f (ξ1, x

−i)− gi
f (ξ2, x

−i)‖i ≤ L̃‖ξ1 − ξ2‖M (18)

for all ξ1, ξ2 ∈ M and each x−i ∈ X
−i.

(iii) The reduced game Σf has a unique equilibrium gf (ξ) = {gi
f (ξ)}i∈I ∈ X.

(iv) The mapping ξ 7→ gi
f (ξ) is Lipschitz continuous uniformly in f ∈ Bu(M,RN ). That is,

there exists Lg < ∞ such that

‖gi
f (ξ1)− gi

f (ξ2)‖M ≤ Lg‖ξ1 − ξ2‖M

for all average continuation functions f ∈ Bu(M,RN ).

(v) The map f 7→ gi
f (·) from Bu(M,RN

+ ) to B(M, X) is continuous.
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Proof:

(i) Let us fix an average continuation function f , an action profile x−i ∈ X
−i and a state

ξ ∈ M . Because U i is Lipschitz continuous and because of (23), it is enough to show

that

U i,f
1 (ξ, xi, x−i;xi − x̂i)− U i,f

1 (ξ, x̂i, x−i; xi − x̂i) ≤ −α̂i(ξ)‖xi − x̂i‖2
i (19)

for all xi, x̂i ∈ X
i. In order to prove (19), we put

F i(ξ, xi, x−i) :=
∫

M
f i(η)q(ξ, xi, x−i, η)µ(dη).

By Assumption 2.7 (iii), the directional derivative F i
1(ξ, x

i, x−i;xi − x̂i) of the map

xi 7→ F i(ξ, xi, x−i) at (ξ, x) in the direction xi − x̂i exists and satisfies

∣∣F i
1(ξ, x

i, x−i; xi − x̂i)− F i
1(ξ, x̂

i, x−i; xi − x̂i)
∣∣ ≤ uiL̂i,i(ξ)‖xi − x̂i‖2

i .

Since U i(ξ, ·, x−i) is αi(ξ)-concave on X
i we have

U i
1(ξ, x

i, x−i; xi − x̂i)− U i
1(ξ, x̂

i; x−i; xi − x̂i) ≤ −αi(ξ)‖xi − x̂i‖2
i .

Thus, the concavity condition (19) is satisfied if (1 − βi)αi(ξ) > βiuiL̂i,i(ξ). This,

however, as well as infξ∈M α̂i(ξ) > 0 follows from the MSI condition.

(ii) Since an agent’s utility function is strongly concave with respect to his own action, his

conditional best reply given the choices of his competitors is uniquely determined. To

establish the quantitative bound (17) on the dependence of player i’s best reply on the

behavior of all the other agents, we fix a player j 6= i and action profiles x−i and y−i

which differ only at the j-th coordinate. Under the assumptions of Theorem 2.9 the

directional derivative U i,f
1 (ξ, xi, x−i; hi) of the map xi 7→ U i,f (ξ, xi, x−i) at (ξ, x) in the

direction hi ∈ H i satisfies

∣∣∣U i,f
1 (ξ, xi, x−i; hi)− U i,f

1 (ξ, xi, y−i; hi)
∣∣∣

≤
{

(1− βi)Li,j(ξ) + βiuiL̂i,j(ξ)
}
‖xj − yj‖j‖hi‖i.

Thus, (17) follows from Theorem A.1. Our estimate (18) follows from similar consider-

ations.
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(iii) The existence of an equilibrium in pure strategies for the static game Σf follows from

strict concavity of the utility functions U i,f with respect to the player’s own actions

along with compactness of the action spaces using standard fixed point arguments.

Uniqueness can be seen as follows: in view of the MSI condition,

L̂ := sup
i,ξ

∑

j 6=i

(1− βi)Li,j(ξ) + βiuiL̂i,j(ξ)
α̂i(ξ)

< 1.

Thus, given the action profiles x−i and y−i of player i’s competitors, (17) yields

‖gi
f (ξ, x−i)− gi

f (ξ, y−i)‖i ≤ L̂max
j
‖xj − yj‖j .

For x 6= y, we therefore obtain

max
i
‖gi

f (ξ, x−i)− gi
f (ξ, y−i)‖i < max

i
‖xi − yi‖i.

Thus, the map x 7→ (gi
f (ξ, x−i))N

1 has at most one fixed point. This proves uniqueness

of equilibria in Σf .

(iv) Let gf (ξ) be an equilibrium. Then gi
f (ξ) = gi

f (ξ, {gj
f (ξ)}j 6=i), and so

‖gi
f (ξ1)− gi

f (ξ2)‖i ≤ ‖gi
f (ξ1, {gj

f (ξ1)}j 6=i)− gi
f (ξ1, {gj

f (ξ2)}j 6=i)‖i

+‖gi
f (ξ1, {gj

f (ξ2)}j 6=i)− gi
f (ξ2, {gj

f (ξ2)}j 6=i)‖i

≤ L̂max
j
‖gj

f (ξ1)− gj
f (ξ2)‖j + L̃‖ξ1 − ξ2‖M .

This yields

‖gi
f (ξ1)− gi

f (ξ2)‖i ≤ L̃

1− L̂
‖ξ1 − ξ2‖M ,

and so the equilibrium mapping gf : M → X is Lipschitz continuous which a constant

that does not depend on the average continuation function f .

(v) In order to prove the last assertion we fix ξ ∈ M and x−i ∈ X
−i and apply Theorem

A.1 to the map

(xi, f) 7→ U i,f (ξ, xi, x−i).

Due to Assumption 2.7 (i) we have for all f, g ∈ Bu(M,RN ) that

∣∣∣U i,f1
1 (ξ, xi, x−i; hi)− U i,f2

1 (ξ, xi, x−i;hi)
∣∣∣ ≤ βi‖f1 − f2‖∞‖hi‖i,

23



and so Theorem A.1 shows that

‖gi
f1

(ξ, x−i)− gi
f2

(ξ, x−i)‖i ≤ βi

infξ α̂i(ξ)
‖f1 − f2‖∞.

Thus, similar arguments as in the proof of (iii) yield the assertion.

2

The previous lemma allows us to discuss the connection between our Moderate Social

Influence assumption and the monotonicity conditions in Curtat (1996) in greater detail.

Basically, Curtat (1996) assumes that X
i and M are compact intervals, and that the transition

law Q(ξ, x; ·) has “doubly stochastically increasing differences in x and ξ”. Inter alias this

means that, for any increasing function f : M → R, the map

x 7→
∫

f(η)q(ξ, x, η)ν(dη) (20)

has doubly increasing differences in x and ξ. Thus, there is a Lipschitz continuous function

φ : R→ R such that the map

x 7→
∫

f(η)q(ξ, φ(ξ)1− x; dη)ν(dη) (21)

has increasing differences in x and ξ. Here 1 denotes the vector (1, 1, · · · , 1) in RN . For

the proof of Theorem 4.2 in Curtat (1996) it is now essential that the Lipschitz continuous

“change of variables” φ can be chosen independently of f . In his Theorem 2.4, this author

essentially shows that a sufficiently smooth function F : X × R → R has doubly increasing

differences, if and only if it has increasing differences in x and ξ and if it satisfies the diagonal

dominance condition

f i
x :=

∂2F

∂2xi
+

∑

j 6=i

∂2F

∂xi∂xj
≤ 0.

Applied to the map defined by (20), such a diagonal dominance condition holds uniformly in

f , if the densities depend linearly on the players’ actions as in (8) above. However, we are

unaware of any general method that allows us to verify Curtat’s condition in more general

settings without explicitly specifying the law of motion. This motivated our MSI condition.

5 Proofs of the main results

This section proves Theorem 2.9 and Corollary 2.12. In a first step we establish the existence

of a Lipschitz continuous Nash equilibrium for Σ under the additional assumption that M ⊂
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H is compact. For the average continuation function f ∈ Bu(M,RN ), we denote by gf (ξ) the

unique equilibrium in the one-shot game Σf , and introduce an operator T on Bu(M,RN ) by

(Tf)i(ξ) = (1− βi)U i(ξ, gf (ξ)) + βi

∫

M
f i(η)q(ξ, gf (ξ), η)µ(dη). (22)

Assume that T has a fixed point, F . A standard argument in discounted dynamic program-

ming shows that the action profile gF (ξ) is an equilibrium in the non-zero sum stochastic

game Σ. The equilibrium payoff to player i ∈ I is given by F i(ξ)
1−βi , and the map gF : M → X

is Lipschitz continuous, due to Lemma 4.1.

In order to prove Theorem 2.9 it is therefore enough to establish the existence of a fixed

point of the operator T . To this end, we will need the following basic properties of T .

Lemma 5.1 Under the assumptions of Theorem 2.9 the following holds:

(i) For all f ∈ Bu(M,RN ), the mapping ξ 7→ (Tf)(ξ) is Lipschitz continuous.

(ii) The operator T is continuous in the sense that limn→∞ ‖Tf − Tfn‖∞ = 0 whenever

limn→∞ ‖f − fn‖∞ = 0.

Proof:

(i) It follows from Lipschitz continuity of the utility functions and the densities that

|(Tf)i(ξ1)− (Tf)i(ξ2)| ≤
[
(1− βi)L + βiLui

]
(‖ξ1 − ξ2‖M + ‖gf (ξ1)− gf (ξ2)‖M ) .

Thus, Lipschitz continuity of the mapping ξ 7→ gf (ξ) yields Lipschitz continuity of

(Tf)i.

(ii) In order to prove continuity of T in the topology of uniform convergence, we fix functions

fn ∈ Bu(M,RN ) that converge uniformly to f . Lemma 4.1 (v) yields limn→∞ ‖gfn −
gf‖∞ = 0. Thus, Lipschitz continuity of the reward functions and the densities gives

us

∣∣(Tfn)i(ξ)− (Tf)i(ξ)
∣∣ ≤ (1− βi)L‖gfn − gf‖∞ + βi

{‖f i
n − f i‖∞ + uiL‖gfn − gf‖∞

}
,

and so

lim
n→∞ ‖Tfn − Tf‖∞ = 0.
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This finishes the proof. 2

Let Lg be the common Lipschitz constant of the maps gf : M → X and define

L∗ := max
{[

(1− βi)L + βiLui
]
(1 + Lg) : i ∈ I

}
.

We introduce the class L(L∗, u) of all functions f ∈ Bu(M,RN ) which are Lipschitz continuous

with constant L∗. For f ∈ L(L∗, u) we obtain from Lemma 5.1 (i) that

|Tfi(ξ1)− Tfi(ξ2)| ≤ L∗‖ξ1 − ξ2‖M .

Thus, T maps the set L(L∗, u) continuously into itself. We are now ready to prove the main

result of this section.

Proof of Theorem 2.9: Due to the theorem of Arzela and Ascoli, the convex set L(L∗, u)

is compact with respect to the topology of uniform convergence. Since the operator T maps

to set L(L∗, u) continuously into itself, it has a fixed point F ∗ by Schauder’s theorem, and

gF ∗ is a Lipschitz continuous equilibrium of the non-cooperative stochastic game Σ. 2

Before we prove the existence result for Lipschitz continuous equilibria in non-cooperative

stochastic games with unbounded state spaces, we recall the following:

Lemma 5.2 Let {Fn} be a sequence of real-valued continuous functions on M that converges

to F : M → R uniformly on bounded sets. Let {µn} be a sequence of probability measures

that converges weakly to µ. If supn ‖Fn‖∞ < ∞, then

lim
n→∞

∫
Fndµn =

∫
Fdµ.

Proof: Since µn → µ weakly, we have
∫

Fdµn →
∫

Fdµ as n →∞. Moreover, by Prohorov’s

theorem (Breiman (1997)) there exists, for each ε > 0, a compact set K such that µn(K) ≥
1− ε. Thus, for all sufficiently large n ∈ N we obtain

∣∣∣∣
∫

Fndµn −
∫

Fdµ

∣∣∣∣ ≤
∣∣∣∣
∫

(F − Fn)dµn

∣∣∣∣ +
∣∣∣∣
∫

F (dµn − dµ)
∣∣∣∣

≤ 2 sup
n
‖Fn‖∞µn(Kc) +

∣∣∣∣
∫

K
(F − Fn)dµn

∣∣∣∣ +
∣∣∣∣
∫

F (dµn − dµ)
∣∣∣∣

≤ 2 sup
n
‖Fn‖∞ε + sup

x∈K
|Fn(x)− F (x)|+ ε

≤ 2ε(sup
n
‖Fn‖∞ + 1).
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This proves the assertion because supn ‖Fn‖∞ < ∞ and because ε > 0 is arbitrary. 2

We are now ready to prove Corollary 2.12.

Proof of Corollary 2.12: Let Tn : Bu(Mn,RN
+ ) → Bu(Mn,RN

+ ) be defined by

(Tnfn)i(ξ) = (1− βi)U i(ξ, gfn(ξ)) + βi

∫

Mn

f i
n(η)qn(ξ, gfn(ξ), η)µ(dη).

Here, gfn(ξ) denotes the unique equilibrium in the one-shot game Σfn with average contin-

uation function fn ∈ Bu(Mn,RN ) and densities qn. Let Fn be a fixed point of Tn. Due to

our Lemmas 4.1 and 5.1, the mappings gFn : Mn → X and Fn : Mn → RN (n ∈ N) are Lip-

schitz continuous with common Lipschitz constants. In particular, the sequence {(gFn , Fn)}
is equicontinuous, and so the theorem by Arzela and Ascoli yields a subsequence (nk) and

Lipschitz continuous functions F : M → R and g : M → X such that

lim
k→∞

|Fnk
(ξ)− F (ξ)| = 0 and lim

k→∞
|gFnk

(ξ)− g(ξ)| = 0 uniformly on compact sets.

Since the utility functions are uniformly bounded, weak convergence of the sequence of prob-

ability measures {µnk
(ξ, x; ·)} defined in (14) to µ(ξ, x; ·) yields

lim
k→∞

∫

H
F i

nk
(η)qnk

(ξ, gFnk
(ξ), η)µ(dη) =

∫

H
F i(η)q(ξ, g(ξ), η)µ(dη),

due to Lemma 5.2. We deduce that

F i(ξ) = (1− βi)U i(ξ, g(ξ)) + βi

∫

H
F i(η)q(ξ, g(ξ), η)µ(dη).

It is easily seen that g(ξ) is an equilibrium in the one-shot game ΣF with densities q. Thus,

g is a Lipschitz continuous Nash equilibrium of the stochastic game Σ with unbounded state

space. 2

6 Conclusion

We established the existence of Lipschitz continuous equilibria in stationary strategies for

a class of stochastic games with weakly interacting players. Unlike the method in Curtat

(1996), our proof did not need Topkis’ (1978) monotonicity theorem. This allowed us to

go beyond the class of supermodular games analyzed in Amir (1996a) and Curtat (1996).

Instead, our approach was based on an extension of the Moderate Social Influence condition
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in Glaeser and Scheinkman (2000) to dynamic games. We reduced the dynamic decision

problem to a static game through the introduction of average continuation functions in order

to view an agent’s decision problem as a parameter dependent optimization problem. Using

a result by Montrucchio (1987), we proved that the optimization problems have optimal

solutions that are Lipschitz continuous functions of the parameters. Combining these results

with our weak interaction condition, we showed that the reduced one shot game has a unique

equilibrium that is Lipschitz continuous in the state variable. Since the Lipschitz constant

could be chosen independently of the specific average continuation function, the existence of

Lipschitz continuous equilibria could be established using standard results from the theory

of dynamic programming. For the case of compact state spaces we also proved existence of

ergodic equilibria. Our results provide a general framework for analyzing dynamic models of

non-market interactions.

Several avenues are open for future research. Firstly, our goal was to provide a general

and flexible mathematical framework within which existence of continuous equilibria can be

shown. But it is clearly desirable to weaken our Moderate Social Influence condition by

analyzing special classes of stochastic games where the set of average continuation functions

can a-priori be restricted to a proper subset of Bu(M,RN ). In such a situation, much weaker

conditions may actually apply. Secondly, there is no reason to expect uniqueness of equilibria.

For the dynamic growth model studied in Section 3.2 this means that the economy may well

get stuck in an inefficient equilibrium. In general it would be interesting to study welfare

properties of different equilibria in the context of specific models. Thirdly, the class of local

interaction games analyzed in Section 3.1 should be generalized to games where an agent’s

utility does not only depend on his current action, but also on past choices as in Bisin, Horst

and Özgür (2002). Such a situation cannot be analyzed by our method.

A α-concavity and parameterized optimization problems

In this appendix we recall the notion of α-concave functions and a characterization of

α-concavity in terms of partial derivatives. We also recall a result on Lipschitz continuous

dependence of solutions to parameterized optimization problems, due to Montrucchio (1987).

Throughout, Y denotes a convex subset of a Hilbert space H, and α > 0.

A function f : Y → R is called α-concave if the map y 7→ f(y) + 1
2α‖y‖2 is concave on
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Y . In the differentiable case, there are simple criteria to verify α-concavity. For example,

if f is concave and twice differentiable on an open set Y1 containing Y , then f is α-concave

whenever

|ytD2f(y1)y| ≥ α‖y‖2 for all y1 ∈ Y1 and y ∈ Y.

A twice differentiable function f : [a, b] → R is α-concave if f ′′ ≤ −α. More generally,

α-concavity can be characterized in terms of directional derivatives.

To this end, recall that a finite function f : Y → R is called differentiable at y ∈ Y in the

feasible direction h ∈ H if y + th ∈ Y for some t > 0 and if the limit

f ′(y; h) := lim
t↓0

1
t
(f(y + th)− f(y))

exists and is finite. The map is called differentiable if f is differentiable at all y ∈ Y in

all feasible directions h ∈ H. By Propositions 4.8 and 4.12 in Vival (1983), a finite and

differentiable function f is α-concave if and only if

f is Lipschitz continuous and f ′(y1; y1 − y2)− f ′(y2; y1 − y2) ≤ −α‖y1 − y2‖2. (23)

The proof of our main theorem uses the following results which appears as Theorem 3.1

in Montrucchio (1987).

Theorem A.1 Let X be a closed and convex subset of some Hilbert space (H1, ‖ · ‖1) and let

Y be a convex subset of a normed space (H2, ‖ · ‖2). Let F : X × Y → R be a finite function

which satisfies the following conditions:3

(i) For all y ∈ Y , the map x 7→ F (x, y) is α-concave and upper-semicontinuous on X.

(ii) For all feasible h ∈ H, the directional derivative F1(x, y; h) of F at (x, y) in the direction

h satisfies the Lipschitz continuity condition

|F1(x, y1; h)− F1(x, y2;h)| ≤ L‖y1 − y2‖2‖h‖1

for all y1, y2 ∈ Y and all x ∈ X.

Under the above assumptions there exists a unique map θ : Y → X that satisfies supx∈X =

F (x, y) = F (θ(y), y). Moreover, θ is Lipschitz continuous and

|θ(y1)− θ(y2)| ≤ L

α
‖y1 − y2‖2

for all y1, y2 ∈ Y .
3Montrucchio (1987) formulated this theorem under the additional assumption of Y being a closed and

convex subset of a Hilbert space H2. His proof, however, shows that this assumption is redundant.
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