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Abstract

The derivation of multiplier-based optimality conditions for elliptic mathematical programs
with equilibrium constraints (MPEC) is essential for the characterization of solutions and de-
velopment of numerical methods. Though much can be said for broad classes of elliptic MPECs
in both polyhedric and non-polyhedric settings, the calculation becomes significantly more com-
plicated when additional constraints are imposed on the control. In this paper we develop three
derivation methods for constrained MPEC problems: via concepts from variational analysis, via
penalization of the control constraints, and via penalization of the lower-level problem with the
subsequent regularization of the resulting nonsmoothness. The developed methods and obtained
results are then compared and contrasted.

1 Introduction

In a previous work [9], the first and third authors applied and further developed certain techniques
from convex and nonsmooth analysis to derive first-order optimality conditions for a class of bilevel
optimization problems known as mathematical programs with equilibrium constraints, or simply
MPECs, in function spaces. Such models are known to arise in many application areas such as
mathematical elasticity, finance, economics, etc. Nevertheless, the techniques were only applicable
to a certain class of MPECs in which the so-called upper-level variables or controls are not subject to
any constraints. In fact, the literature on the derivation of explicit (i.e., multiplier-based) necessary
optimality conditions for MPECs in function spaces with upper-level constraints is rather scarce;
though there are some results available in [17, 18] and [8].

We thus aim to present several techniques for the derivation of multiplier-based first-order
optimality conditions. Throughout the text we compare and contrast their applicability to the
development of numerical methods based on the amount of information they require from the user
as well as their theoretical strength, in terms of their selectivity.

In the literature on optimization problems governed by partial differential equations, regular-
ization/penalization techniques employed for the derivation of necessary optimality conditions are
relatively widespread. Conversely, techniques from set-valued and variational analysis provide pow-
erful tools for the direct derivation of multiplier-based optimality conditions. Currently it is unclear
as to how these techniques compare from both the analytical perspective, e.g., the selectivity of
the derived conditions and the generality of their applicability, as well as in terms of numerics, e.g.,
the development of mesh-independent solvers.
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In this paper we mainly concern ourselves with the following class of MPECs:

min 1
2 ||y − yd||

2
L2(Ω) +

α
2 ||u||

2
L2(Ω) over (u, y) ∈ L2(Ω)×H1

0 (Ω)

s.t. a ≤ u ≤ b almost everywhere (a.e.) in Ω,

Ay +NM (y) ∋ Bu.

(1)

Here α > 0, Ω ⊂ R
n with 1 ≤ n ≤ 3 is open and bounded, and there exists β ∈ R such that

b − a ≥ β > 0 a.e.Ω, where a, b ∈ L∞(Ω). The notation L2(Ω) is used to represent the standard
Lebesgue space of square integrable functions, while H1

0 (Ω) stands for the Sobolev space of L2(Ω)-
functions y with y|∂Ω = 0 whose distributional derivatives ∇y belong to L2(Ω). We use the symbol
H−1(Ω) to represent the dual of H1

0 (Ω) throughout the entirety of this paper. The bounded linear
operator A ∈ L(H1

0 (Ω),H
−1(Ω)) is assumed to be coercive, i.e., we assume that there exists a

constant ξ > 0 such that

〈Ay, y〉H−1,H1
0
≥ ξ‖y‖2

H1
0

for all y ∈ H1
0 (Ω)

whereas, unless otherwise stated, B ∈ L(L2(Ω),H−1(Ω)). Finally, we define the closed and convex
subset M ⊂ H1

0 (Ω) by
M :=

{
y ∈ H1

0 (Ω) | y ≥ ψ a.e.Ω
}
, (2)

where ψ ∈ H1(Ω) with ψ|∂Ω ≤ 0. The operator NM (y) for y ∈ M signifies the classical normal
cone of convex analysis defined by

NM (y) :=
{
y∗ ∈ H−1(Ω)

∣∣∣〈y∗, y − y′〉H−1,H1
0
≤ 0, ∀y′ ∈M

}
.

Accordingly, we could rewrite the generalized equation in (1) as the variational inequality

〈Ay − u, y − y′〉H−1,H1
0
≥ 0, ∀y′ ∈M.

The remaining notational assumptions are fairly standard, however, for completeness we provide
them here for quick reference. We use 〈·, ·〉X∗ ,X to represent the duality pairing between a topo-
logical vector space X and its dual X∗ and (·, ·)X for the inner product on X when X is a Hilbert
space. The arrows →X and ⇀X are used to represent, respectively, strong and weak convergence
of sequences in topology on X. All the subscripts are omitted when it is clear in context.

Recall that the contingent cone (also known as the Bouligand-Severi tangent cone) to a closed
set C ⊂ X of a Banach space X at a point x ∈ C is defined by

TC(x) :=
{
h ∈ X

∣∣ ∃tk → 0+,∃hk →X h : x+ tkhk ∈ C, ∀k
}
.

In the event that the set C is convex and the space X is reflexive, the aforementioned normal
cone of convex analysis can be defined as the polar cone to TC(x), i.e.,

NC(x) := [TC(x)]
−
X := {x∗ ∈ X∗ | 〈x∗, h〉X∗,X ≤ 0, ∀h ∈ TC(x)} .

As they play a central role in our paper, we define in what follows various stationarity concepts
for MPECs in the current context that are studied in the subsequent sections. We mainly base our
notation and definitions on [7] and [8]. In keeping with the terminology of the finite-dimensional
literature, we occasionally refer to the variational inequality in (1) as the lower-level problem and
the remaining constraints, i.e., those on the control, as being in the upper-level part of the MPEC.
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Definition 1.1 (C- and S-Stationarity). A point (ū, ȳ) ∈ L2(Ω)×H1
0 (Ω) feasible to the MPEC

(1) is called a C-stationary point of the MPEC if there exist multipliers s̄ ∈ L2(Ω), v̄ ∈ H−1(Ω),
p̄ ∈ H1

0 (Ω), and r̄ ∈ H−1(Ω) for which

0 = αū+B∗p̄+ s̄, (3)

0 = ȳ − yd −A∗p̄+ r̄, (4)

0 = Aȳ −Bū+ v̄, (5)

where the multipliers satisfy the following conditions:

0 ≤ s̄, a.e.Aa(ū) s̄ = 0, a.e.J (ū), s̄ ≥ 0 a.e.Ab(ū), (6)

0 ≥ 〈v̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e.A(ȳ), (7)

0 = 〈v̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0 a.e.A(ȳ), (8)

0 = 〈Bū−Aȳ, p̄〉H−1,H1
0
, (9)

0 = 〈r̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0 a.e.A(ȳ), (10)

0 ≥ 〈r̄, p̄〉H−1,H1
0
. (11)

Here, we use the notation

A(ȳ) := {x ∈ Ω | y(x) = ψ(x)} and I(ȳ) := Ω \ A(ȳ)

to represent the active and inactive sets for the lower-level problem, respectively, and

Aa(ū) := {x ∈ Ω |u(x) = a(x)} ,

Ab(ū) := {x ∈ Ω |u(x) = b(x)} ,

J (ū) := Ω \ (Aa(ū) ∪ Ab(ū))

for the lower active, upper active, and inactive sets for the upper-level constraints, respectively.
If in addition to the above conditions we have v̄ ∈ L2(Ω) and

0 ≤ p̄ a.e. B, (12)

0 ≤ 〈r̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0, a.e.B and ϕ = 0, a.e.A(ȳ) \ B, (13)

then (ū, ȳ) is said to be a S(trong)-stationary point, where the notation

B := {x ∈ A(ȳ) | v̄(x) = 0} ,

is used to denote the so-called bi-active set.

We note that (13) could also be defined when v ∈ H−1(Ω). In this case, one has

0 ≤ 〈r̄, ϕ〉, ∀ϕ ∈ H1
0 (Ω) : 〈ū−Aȳ, ϕ〉 = 0 and ϕ ≥ 0, a.e.A(ȳ).

An additional stationarity concept, introduced in [7] and [8] and unique to function space
settings, also appears later in the paper. For convenience we define it here.

Definition 1.2 (ε-Almost C-Stationarity). A point (ū, ȳ) ∈ L2(Ω) ×H1
0 (Ω) feasible to MPEC

(1) is called an ε-almost C-stationary point if there exist multipliers s̄ ∈ L2(Ω), v̄ ∈ H−1(Ω),
p̄ ∈ H1

0 (Ω), and r̄ ∈ H−1(Ω) for which the relationships (3)–(5), (6)–(9), and (11) are satisfied
and, instead of (10), the following condition holds: for every ε > 0 there exists a subset Eε ⊂ I(ȳ)
with meas(I(ȳ) \Eε) ≤ ε such that

0 = 〈r̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0, Ω \ Eε.
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The terms C-stationarity and S-stationarity are originally attributed to Scheel and Scholtes
[19], where the “C” reflects the fact that the notions from Clarke’s nonsmooth calculus were used
in the derivation process. In the sense that only the product of the multipliers r̄ and p̄ has a
sign, C-stationarity conditions are not “true” KKT conditions for the MPEC (1). Nevertheless,
it has been argued in a finite-dimensional context in the recent papers by Jongen, Rückmann
and Shikhman (see, e.g., [11] and the references therein) that C-stationarity is the fundamental
stationarity concept needed for the global study of critical points in mathematical programs with
complementarity constraints (MPCCs), an important subclass of MPECs.

There are, however, other concepts in the finite-dimensional literature, namely, B(ouligand)-
stationarity, a primal optimality concept similar to the result found in Theorem 2.1 below, as
well as M(ordukhovich)-stationarity and W(eak)-stationarity. In a function space context, Outrata,
Jarušek and Starà in [17] and [18] successfully applied elements of the limiting variational calculus
by Mordukhovich to problems similar to ours. Unfortunately, these results are only applicable in
the case of control constraints when Ω ⊂ R and the controls u belong to H−1(Ω).

Following Outrata et al., a point (ū, ȳ) is M-stationary if conditions (3)–(11) hold and, instead
of (12) and (13), we have

〈r̄, ϕ〉H−1,H1
0
= 0,∀ϕ ∈ H1

0 (Ω) : ϕ < 0 a.e.B, (14)

〈r̄, ϕ〉H−1,H1
0
≤ 0,∀ϕ ∈ H1

0 (Ω) : ϕ > 0 a.e.B. (15)

Since (14) and (15) imply further restrictions on r̄, we see that M-stationarity is indeed a more
stringent concept than C-stationarity albeit weaker than S-stationarity. The “M” in M-stationarity
refers to the fact that multiplier conditions arose in the context of finite-dimensional MPECs as part
of optimality conditions through the usage of Mordukhovich’s generalized differential constructions
and calculus. Due to the low regularity of r̄, we see in the subsequent sections that deriving
conditions (14) and (15) in our context seems to be problematic in general.

The rest of the paper is structured as follows. In Section 2 we recall some well-known results
concerning the existence of solutions to the MPECs under consideration and regularity properties
of solution maps to variational inequalities. Following this, we derive primal first-order optimality
conditions similar to the B-stationarity conditions mentioned above. In Section 3 we define certain
notions from the limiting variational calculus and then apply these concepts to our class of MPECs.
We demonstrate that the standard data assumptions made above suffice for the fulfillment of
the qualification conditions needed for the application of the limiting variational constructions.
Afterwards we characterize the so-called Mordukhovich limiting coderivative (see Section 3 for
definition) of the solution mapping to the variational inequality. These results lead us to the
derivation of new limiting stationarity conditions surprisingly weaker than C-stationarity. Section 4
is devoted to a hybrid derivation method utilizing the results from [9] for MPECs without upper-
level constraints by penalizing the control constraints with a smooth penalty function. In Section 5
we recall a penalization-regularization method extended to elliptic MPECs by Hintermüller and
Kopacka in [8] and establish its important consequences. The concluding Section 6 compares both
the quality of the results as well as the similarities of the methods and their usefulness for the
development of numerical techniques.

2 Preliminaries and B-Stationarity

Throughout the paper we denote by S the solution mapping from H−1(Ω) into H1
0 (Ω) defined by

S(w) :=
{
y ∈ H1

0 (Ω) | Ay +NM (y) ∋ w
}

(16)
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and referred to as the solution mapping associated with the lower-level problem in our original
MPEC (1). This mapping can be easily shown to be single-valued and Lipschitz continuous by
utilizing the coercivity of A and the variational form of the generalized equation in (16); see, e.g.,
[12] or [3] as well as [9]. Moreover, it is well-known that S is in fact (Hadamard) directionally
differentiable at every w ∈ domS, i.e., the limits

S′(w, ·) := lim
t→0+

h′→
H−1h

S(w + th′)− S(w)

t

exist for all h ∈ H−1(Ω). The graph of S′ is directly characterized by

gphS′(w, ·) =
{
(h, d) ∈ H−1(Ω)×H1

0 (Ω)
∣∣Ad+NK(y,v)(d) ∋ h

}
. (17)

Here, we let (w, y) ∈ gphS and use v ∈ NM (y) such that w −Ay = v define

K(y, v) := TM (y) ∩ {v}⊥ , (18)

i.e., the classical critical cone from optimization theory. This differentiability result is essentially
due to Mignot [13], but it was rederived for a broader class of problems in [9]. Furthermore, since
the operator B is linear and bounded from L2(Ω) into H−1(Ω), we know that

d = (S ◦B)′(u;h) = S′(Bu;Bh) ⇐⇒ Ad+NK(y,v)(d) ∋ Bh.

The reader is referred to [4, Chapter 2.2] for more details on these concepts.
Concerning existence of solutions, we mention that the MPEC (1) admits a solution in this

setting, see e.g., [14]. This follows from the Lipschitz continuity of S ◦B, the weak lower semiconti-
nuity of the objective functional, and the closedness and convexity of the set of admissible controls
Uad defined by

Uad :=
{
u ∈ L2(Ω) | a ≤ u ≤ b a.e.Ω

}
,

see e.g., [14] or [3] for more details and discussions.

We are now ready to establish our first result. The choice of terminology below is based on the
similarity to the corresponding finite-dimensional concept. It can be observed from the proof of this,
as well as many of the subsequent results, that it is certainly possible to work with more general
objective functionals J than the tracking-type functional chosen for our setting. Nevertheless, we
decide to use the tracking-type functional as it often appears in applications and since it helps to
better illustrate essential features of our methods and results.

Theorem 2.1 (B-Stationarity of an Optimal Solution). Let (ū, ȳ) be a locally optimal solution
to the original MPEC (1). Then the following optimality condition holds

α(ū, h)L2 + (ȳ − yd, d)L2 ≥ 0,∀(h, d) ∈
[
TUad

(ū)×H1
0 (Ω)

]
∩ gphS′(Bū;B·). (19)

Equivalently, if (ū, ȳ) is a locally optimal solution to the MPEC (1), then the origin in L2(Ω)×H1
0 (Ω)

is a solution to the following MPEC

min α(ū, h)L2 + (ȳ − yd, d)L2 over (h, d) ∈ L2(Ω)×H1
0 (Ω)

s.t. h ∈ TUad
(ū), Ad+NK(ȳ,v̄)(d) ∋ Bh.

(20)
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Proof. Given the properties of the solution mapping S to the variational inequality described above,
we can reformulate the MPEC (1) as the following nonsmooth optimization problem:

minV (u) := 1
2 ||S(Bu)− yd||

2
L2 +

α
2 ||u||

2
L2 over u ∈ L2(Ω)

s.t. u ∈ Uad.
(21)

Clearly the mapping V : L2(Ω) → R is directionally differentiable and Lipschitz continuous. Next
we modify the nonsmooth problem (21) one step further to

minV (u) + IUad
(u) over u ∈ L2(Ω). (22)

Given an arbitrary locally optimal solution ū to problem (22), observe that the corresponding pair
(ū, ȳ) is a locally optimal solution to the original MPEC (1), and vice versa. Moreover, it can be
argued (see e.g. [2] Chapter 6.1.3) that the following condition must hold

lim inf
t→0+

h′→
L2h

V (ū+ th′)− V (ū) + IUad
(ū+ th′)− IUad

(ū)

t
≥ 0, ∀h ∈ L2(Ω). (23)

To proceed, we first note that if h ∈ L2(Ω) but h /∈ TUad
(ū), then there either exist no sequences

tk → 0+ or hk →L2 h such that ū+ tkhk ∈ Uad. Thus, for such h the limit inferior in (23) is equal
to +∞. Suppose now that h ∈ TUad

(ū). Then by definition there exist sequences tk → 0+ and
hk →L2 h such that ū+ tkhk ∈ Uad. For such sequences, the difference quotients in (23) reduce to

V (ū+ tkhk)− V (ū)

tk
.

Then by using the directional differentiability and the fact that V is Lipschitz continuous (and
therefore V ′(ū; ·) as well), we further reduce the difference quotients to

V (ū+ tkhk)− V (ū)

tk
=
V (ū) + tkV

′(ū;hk) + o(tk)− V (ū)

tk
= V ′(ū;hk) +

o(tk)

tk
,

which implies in turn that
V ′(ū;h) ≥ 0,∀h ∈ TUad

(ū).

The final step of the proof requires us to compute the derivative V ′(ū, h). By definition, we need
to calculate the following limit:

lim
t→0+

1
2 ||S(B(ū+ th))− yd||

2
L2 +

α
2 ||ū+ th||2

L2 −
1
2 ||S(Bū)− yd||

2
L2 −

α
2 ||ū||

2
L2

t
.

We observe first that

α
2 ||ū+ th||2

L2 −
α
2 ||ū||

2
L2

t
= α(ū, h)L2 +

αt

2
||h||2L2 .

Similarly, we reduce the remaining terms (using the directional differentiability of S) to

1
2 ||S(Bū+ th))− yd||

2
L2 −

1
2 ||S(Bū)− yd||

2
L2

t
=

(S(Bū)− yd, S
′(Bū;Bh) +

o(t)

t
)L2 + t||S′(Bū;Bh) +

o(t)

t
||2L2 .
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Then by adding the reduced terms and passing to the limit, we obtain the equality

lim
t→0+

1
2 ||S(B(ū+ th)) − yd||

2
L2 +

α
2 ||ū+ th||2

L2 −
1
2 ||S(Bū)− yd||

2
L2 −

α
2 ||ū||

2
L2

t
=

α(ū, h)L2 + (S(Bū)− yd, S
′(Bū;Bh))L2 ,

which completes the proof of the theorem via substitution.

In comparison with the dual stationarity concepts (e.g., S- or C-stationarity), B-stationarity
translates more directly into function space settings provided, of course, that the needed regularity
properties of the solution map S are available. In fact, since K(ȳ, v̄) is a closed convex cone in
H1

0 (Ω), we can equivalently rewrite MPEC (20) as

min α(ū, h)L2 + (ȳ − yd, d)L2 over (h, d) ∈ L2(Ω)×H1
0 (Ω)

s.t. h ∈ TUad
(ū),

Bh−Ad ∈ [K(ȳ, v̄)]− , d ∈ K(ȳ, v̄), 〈Bh−Ad, d〉H−1,H1
0
= 0.

Continuing, we note that Theorem 2.1 also shows that if ū ∈ Uad such that TUad
(ū) = L2(Ω),

then the so-called strong stationarity conditions as seen in [9] can be rederived without major
difficulties provided that the operator B satisfies certain requirements; in particular, if B is the
identity of L2(Ω). By directly adapting the proof of Lemma 6.34 in [4], we obtain the following
description:

TUad
=

{
h ∈ L2(Ω)

∣∣∣∣
h ≥ 0, a.e. on {x ∈ Ω |u(x) = a(x)}
h ≤ 0, a.e. on {x ∈ Ω |u(x) = b(x)}

}
.

Therefore, it can be argued that if the Lebesgue measure of the active set Aa(ū) ∪ Ab(ū) equals
zero, then TUad

(ū) = L2(Ω). Thus, even though Uad has an empty interior in L2(Ω), there exist
admissible points such that the tangent cone is equal to the entire space.

Under a fairly restrictive assumption, it is easy to derive the following corollary from Theorem
2.1, which yields a dual form of the B-stationarity conditions.

Corollary 2.2 (Dual Form of B-Stationarity). Let (ū, ȳ) be a locally optimal solution to the
MPEC (1), where ū ∈ Uad such that S′(Bū;B·) =: Σū(·) is a bounded linear operator from L2(Ω)
into H1

0 (Ω). Then the following optimality condition holds

α(ū, h)L2 + (B∗Σ∗
ū(ȳ − yd), h)L2 ≥ 0,∀h ∈ TUad

(ū),

which in dual form is equivalent to the inclusion

0 ∈ αū+B∗Σ∗
ū(ȳ − yd) +NUad

(ū)

or equivalently the variational inequality

(αū+B∗Σ∗
ū(ȳ − yd), ū− u′)L2 ≥ 0, ∀u′ ∈ Uad.

In order to obtain workable KKT-type optimality conditions in the case where S′(Bū;B·) is
not a bounded linear operator, we would need to calculate the following polar cone:

[(
TUad

(ū)×H1
0 (Ω)

)
∩ gphS′(Bū;B·)

]−
L2×H1

0

.

Unfortunately, it appears to be a difficult, if not impossible, task. Thus the need for a different set of
more constructive tools for the derivation of dual conditions (in both finite and infinite dimensions)
is evident. In the next section we proceed in this direction by using advanced tools of variational
analysis and generalized differentiation.
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3 Dual Optimality Conditions via Limiting Variational Calculus

In order to develop our technique, we first recall several definitions and concepts from variational
analysis and generalized differentiation. Our main source is the two-volume monograph [15, 16]
Throughout the following section, unless otherwise noted, all spaces we will be assumed to be
Hilbert spaces. Nevertheless, we stress that these objects along with the accompanying results can
be defined/proved in much more general settings than Hilbert spaces, see e.g., [15, 16].

Definition 3.1 (The Regular/Fréchet Normal Cone). Let C ⊂ X and assume that X and its
dual X∗ possess compatible topologies. Then the multifunction (set-valued mapping) N̂C : X ⇉ X∗

defined by

N̂C(x) :=




x∗ ∈ X∗

∣∣∣∣∣∣∣
lim sup
x′→Xx
x′∈C

〈x∗, x′ − x〉X∗,X

||x′ − x||X
≤ 0




, x ∈ C, (24)

and N̂C(x) := ∅ for x /∈ C is called the regular/Fréchet normal cone to C.

Unfortunately, it is know that N̂C , which is convex for each x ∈ C, does not admit a satisfactory
calculus. This restricts the scope of applications of (24)—in particular, to deriving workable,
multiplier-based optimality conditions for the class of MPECs under consideration. The situation
changes significantly when we apply an appropriate limiting procedure to the mapping N̂C(·).

Definition 3.2 (The Limiting/Mordukhovich Normal Cone). Let C ⊂ X and assume that
X and its dual X∗ possess compatible topologies. The multifunction NC : X ⇉ X∗ defined by

NC(x) :=
{
x∗ ∈ X∗

∣∣∣ ∃xk →X x̄, ∃x∗k ⇀X∗ x∗ : x∗k ∈ N̂C(xk), ∀k ∈ N

}
(25)

is called the limiting/Mordukhovich normal cone to C.

If the set C is convex, both cones (24) and (25) agree with the normal cone of convex analysis.
However, for general sets C the limiting normal cone (25) and the corresponding coderivative and
subdifferential constructions admit a full set of calculus rules often needed for various applications.

Next we define the notions of coderivatives for set-valued (in particular, single-valued) mappings
generated by the corresponding normal cones (24) and (25).

Definition 3.3 (Coderivatives). Let Φ : X ⇉ Y be a set-valued mapping between (paired) spaces
X and Y , and let (x, y) ∈ gphΦ. The regular/Fréchet coderivative of Φ at (x, y) is the
multifunction D̂∗Φ(x, y) : Y ∗

⇉ X∗ defined by

h∗ ∈ D̂∗Φ(x, y)(d∗) ⇐⇒ (h∗,−d∗) ∈ N̂gphΦ(x, y). (26)

The limiting/Mordukhovich coderivative D∗Φ(x, y) of Φ at (x, y) ∈ gphΦ is similarly de-
fined by

h∗ ∈ D∗Φ(x, y)(d∗) ⇐⇒ (h∗,−d∗) ∈ NgphΦ(x, y). (27)

We observe from (24)–(27) that the limiting coderivative (27) admits the following representa-
tion:

h∗ ∈ D∗Φ(x, y)(d∗) ⇐⇒

xk →X x
yk →Y y
d∗k ⇀Y ∗ d∗

h∗k ⇀X∗ h∗





: h∗k ∈ D̂∗Φ(xk, yk)(d
∗
k). (28)
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Note that if the condition “d∗k →Y ∗ d∗” is replaced by the weaker condition “d∗k ⇀Y ∗ d̄∗” in
(28), then the corresponding construction D∗

MΦ(x, y) is known as the mixed coderivative of Φ at
(x, y) ∈ gphΦ.

In the case of Φ: X → Y strictly differentiable at x (in particular, C1 around this point) with
the derivative ∇Φ(x), all the three coderivatives above reduce to the adjoint derivative operator

D̂∗Φ(x)(y∗) = D∗Φ(x)(y∗) = D∗
MΦ(x)(y∗) =

{
∇Φ(x)∗y∗

}
, y∗ ∈ Y ∗,

where y = Φ(x) is omitted due to single-valuedness. In general these coderivative mappings are
positively homogeneous in y∗ with full calculi for D∗Φ and D∗

MΦ and a rather restrictive one for

D̂∗Φ. For mappings between infinite-dimensional spaces the aforementioned calculus rules require
appropriate “normal compactness” conditions, which are automatic in finite dimensions. The
weakest ones among such conditions are given in the next definition.

Definition 3.4 (Sequential Normal Compactness). Let Φ : X ⇉ Y be a set-valued mapping
between (paired) spaces X and Y , and let (x, y) ∈ gphΦ. We say that Φ : X ⇉ Y is sequentially
normally compact (SNC) at (x, y) ∈ gphΦ if for any collection of sequences {xk} ⊂ X, {yk} ⊂
Y , {x∗k} ⊂ X∗, and {y∗k} ⊂ Y ∗ satisfying

xk →X x̄
yk →Y ȳ
x∗k ⇀X∗ 0
y∗k ⇀Y ∗ 0





with y∗k ∈ D̂∗Φ(xk, yk)(x
∗
k)

it follows that ||x∗k||X∗ → 0 and ||y∗k||Y ∗ → 0. If the requirement that y∗k ⇀X∗ 0 above is replaced by
||y∗k||Y ∗ → 0, then Φ is said to be partially sequentially compact (PSNC) at (x, y).

Observe that, besides finite-dimensional settings, the SNC and PSNC properties automatically
hold under appropriate Lipschitzian conditions imposed on set-valued and single-valued mappings
and are preserved under various compositions; see [15] for such SNC and PSNC calculi. In par-
ticular, Φ is SNC at (x, y) if its graph is compactly epi-Lipschitzian around this point in the sense
of Borwein-Strojwás; see [15, Theorem 1.26]. The weaker PSNC property always holds for locally
Lipschitzian and Lipschitz-like mappings from the next definition. Unfortunately, in the context of
Lebesgue spaces Lp(Ω) and Sobolev spaces Wm,p(Ω) with 1 ≤ p < +∞, the aforementioned com-
pactly epi-Lipschitzian property cannot hold in general for the important class of subsets defined
by pointwise constraints.

Definition 3.5 (The Aubin Property). Let Φ : X ⇉ Y be a set-valued mapping between (paired)
spaces X and Y , and let (x, y) ∈ gphΦ. We say that Φ has the Aubin property or is Lipschitz-
like/Pseudo-Lipschitz at (x, y) if there are neighborhoods U of x and V of y together with a
constant L > 0 such that

‖y − y′‖Y ≤ L‖u− u′‖X , ∀(x, y), (x
′, y′) ∈ [U × V] ∩ gphΦ. (29)

It immediately follows from (29) that for single-valued mappings Φ: X → Y , the Aubin property
reduces to the classical local Lipschitz continuity. Moreover, the coderivative criterion from [15,
Theorem 4.0] asserts that a closed-graph mapping Φ : X ⇉ Y has the Aubin property around
(x, y) ∈ gphΦ if and only if it is PSNC at this point and the injectivity condition “D∗

MΦ(x, y)(0) =
{0}” holds.
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Now we apply the facts above together with coderivative calculus and related results from
[15, 16] to derive necessary optimality conditions for the original MPEC (1), which we restate in
compact form for convenience as follows:

min 1
2 ||y − yd||

2
L2(Ω) +

α
2 ||u||

2
L2(Ω) over (u, y) ∈ L2(Ω)×H1

0 (Ω)

s.t. u ∈ Uad, y = S(Bu).
(30)

Our first result provides a necessary optimality condition for the MPEC (1) in terms of the limiting
coderivative of S and the convex normal cone to the control set Uad.

Proposition 3.6 (Limiting Optimality Conditions for the MPEC). Let (ū, ȳ) be a locally
optimal solution to the MPEC (1). Then we have

0 ∈ αū+B∗D∗S(Bū, y)(ȳ − yd) +NUad
(ū). (31)

Proof. As follows from our discussions in Section 2, the solution map S is single-valued and Lipschitz
continuous under the standing assumptions. Since the operator B is linear and bounded, the
composition S ◦B is Lipschitz continuous as well. Thus, by the previously mentioned coderivative
criterion from [15, Theorem 4.10], we get the equivalent description of local Lipschitz continuity:

• S ◦B is partially sequentially normally compact (PSNC) at (ū, ȳ), and

• D∗
M (S ◦B)(ū, ȳ)(0) = {0} (injectivity via the mixed coderivative).

Applying now the necessary optimality conditions for abstract MPECs established in [16, Theo-
rems 5.33 and 5.34] to the case of our MPEC (1), considered in form (30), and taking into account
that the cost functional therein is smooth, we conclude that the PSNC and qualification assump-
tions required by [16, Theorems 5.33 and 5.34] are satisfied. It follows that

0 ∈ αū+D∗(S ◦B)(ū, ȳ)(ȳ − yd) +NUad
(ū).

Finally, it follows from the calculus result of [15, Corollary 3.16] that

D∗(S ◦B)(ū, ȳ)(ȳ − yd) ⊂ B∗D∗S(Bū, ȳ)(ȳ − yd),

and therefore, the asserted optimality condition (31) holds.

Remark 3.7 (Regularity of the Optimal Control). We mention that if Uad = L2(Ω), then
NUad

(ū) = {0}. Moreover, if B acts as the identity on L2(Ω), then B∗y∗ ∈ H1
0 (Ω) for all y∗ ∈

D∗S(Bū, y)(ȳ − yd). Thus it follows from Proposition 3.6 that the optimal solution ū enjoys an
increased regularity in this case. Observe that the above arguments can be easily extended to more
general situations.

The remaining part of this section is dedicated to the explicit characterization of the coderivative
in the necessary optimality condition of Proposition 3.6. Developing this derivation technique, we
arrive at multiplier-based optimality conditions for the original MPEC.

We start by first observing the following description of the coderivative in (31) in light of [15,
Corollary 2.36]:

D∗S(Bū, ȳ)(ȳ − yd) =
{
p̄∗ ∈ H1

0 (Ω) |

∃y∗k →H−1 Bū,∃yk →H1
0
ȳ,∃q∗k ⇀H−1 ȳ − yd,∃p

∗
k ⇀H1

0
p̄∗ : p∗k ∈ D̂∗S(y∗k, yk)(q

∗
k),∀k

}
.
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By simply referring to the definition of the regular coderivative (26), we know that the previous
equation can be understood as

D∗S(Bū, ȳ)(ȳ − yd) =
{
p̄∗ ∈ H1

0 (Ω) |

∃y∗k →H−1 Bū,∃yk →H1
0
ȳ,∃q∗k ⇀H−1 ȳ − yd,∃p

∗
k ⇀H1

0
p̄∗ : (p∗k,−q

∗
k) ∈ N̂gphS(y

∗
k, yk),∀k

}
.

Using [15, Theorem 1.10], we approximate the limiting coderivative of S by replacing N̂gphS(y
∗
k, yk)

with the larger polar contingent cone [TgphS(y
∗
k, yk)]

−. Note that the contingent cone to the graph
of S coincides with the graph of the so-called contingent derivative of S; see [2]. In the current
setting with S being single-valued, Lipschitz continuous and Hadamard directionally differentiable,
the contingent derivative coincides with the Hadamard directional derivative. It was shown in the
proof of [9, Theorem 4.6] that

(p∗k,−q
∗
k) ∈ [TgphS(y

∗
k, yk)]

− ⇐⇒ p∗k ∈ K(yk, vk), A
∗p∗k − q∗k ∈ [K(yk, vk)]

− ,

where vk ∈ NM (yk) such that vk = y∗k−Ayk, and where K(ȳ, v̄) is the critical cone (18). This leads
to the following characterization of the coderivative.

Proposition 3.8 (Characterizing the Coderivative via the Critical Cone). Let vk := y∗k −
Ayk. Then elements of the limiting coderivative of the solution map (16) are described by

p̄ ∈ D∗S(Bū, ȳ)(ȳ − yd) =⇒

∃y∗k →H−1 Bū
∃yk →H1

0
ȳ

∃qk ⇀H−1 ȳ − yd
∃pk ⇀H1

0
p̄





: pk ∈ K(yk, vk) and A
∗pk − qk ∈ [K(yk, vk)]

− .

In order to provide our preliminary set of optimality conditions. We will need a few auxiliary
results. In the following we make use of a constraint qualification due to Jeyakumar and Wolkowicz
(see Lemma 2.2 b in [10]).

Lemma 3.9 (Closedness of Conic Sums). Let C,D be two closed and convex cones in a Hilbert
space X. Assume that the angle between C and −D is positive, i.e.,

inf {(c, d)X | 1 = ||c||X = ||d||X , c ∈ C, d ∈ D} < 1.

Then the conic sum C + D is closed in X.

Using Lemma 3.9, we can easily draw the following conclusion.

Corollary 3.10 (Conic Summation with Straight Lines). Suppose that X is a Hilbert space
and C is a (nonempty) closed convex cone. Then for any c ∈ C, the sum C + Rc is closed in X.

Proof. Let b ∈ Rc such that b = −1
||c||X

c. Since C is a cone and c ∈ C, it follows that a = 1
||c||X

c ∈ C.

But then ||a||X = ||b||X = 1 and (a, b)X = −1 < 1. Therefore,

inf {(c, d)X |||c||X = ||d||X = 1, c ∈ C, d ∈ D} ≤ −1 < 1.

It follows that the angle between C and Rc is positive. Thus, by Lemma 3.9, the assertion holds.

Returning now to a setting closer to our MPEC, we employ the above lemmas to derive a useful
representation result.
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Corollary 3.11 (The Polar Critical Cone). Let M be a closed and convex subset of a Hilbert
space Y , and let v ∈ NM (y). Then the following hold:

(i) NM (y) + Rv is closed in Y ∗,

(ii) [K(y, v)]− = NM (y) + Rv.

Proof. Since Y ∗ is a Hilbert space and the normal cone NM (y) ⊂ Y ∗ is closed and convex, (i)
follows from Corollary 3.10. For the proof of (ii), we observe that both cones TM (y) and {v}⊥ are
closed and convex in Y . Thus it follows from convex analysis and (i) that

[K(y, v)]− =
[
TM (y) ∩ {v}⊥

]−
= cl {NM (y) + Rv}Y ∗ = NM (y) + Rv.

Corollary 3.11 helps us to explicitly characterize the sequences from the polar critical cones
[K(yk, vk)]

− in Proposition 3.8 that weakly converge in H−1(Ω). Before establishing this result,
we point out a simple fact concerning the convergence of normal cone mappings to closed convex
sets. Suppose that X is a Banach space and C ⊂ X is a closed convex subset. Let xk ∈ C be such
that xk → x in X and let zk ∈ NC(xk) be such that zk ⇀ z in X∗. Then by the definition of the
normal cone we have 〈zk, xk − x′〉 ≤ 0 for all x′ ∈ C. For an arbitrary element x′ ∈ C, it follows
that 〈zk, xk − x′〉 → 〈z, x − x′〉 and thus z ∈ NC(x). We make use of this property in the proof of
the following proposition.

Proposition 3.12 (Limits of the Polar Critical Cones). LetM :=
{
y ∈ H1

0 (Ω) | y ≥ ψ a.e.Ω
}
,

where ψ ∈ H1(Ω) with ψ|∂Ω ≤ 0, and where Ω ⊂ R
n with 1 ≤ n ≤ 3 is open and bounded. Let

rk ∈ [K(yk, vk)]
− from the polar critical cones be such that

rk ⇀H−1 r̄, yk →H1
0
ȳ, vk →H−1 v̄

with vk ∈ NM (yk), where the convex set M is defined in (2). Then we have the condition

0 = 〈r̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0 a.e.A(ȳ) (32)

and either
0 ≤ 〈r̄, ϕ〉H−1,H1

0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e.A(ȳ), (33)

or
0 ≤ 〈r̄, ϕ〉H−1,H1

0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≤ 0 a.e.A(ȳ). (34)

Proof. Corollary 3.11 yields rk ∈ NM (yk) + Rvk for all k. Then arguing similarly to the proof of
[4, Theorem 6.57], for each k we find elements wk ∈ NM (yk) and αk ∈ R such that rk = wk +αkvk
and the conditions

0 ≥ 〈wk, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e.A(yk),

0 = 〈wk, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0 a.e.A(yk)

are satisfied. The same conditions also hold for vk and v̄ (with yk replaced by ȳ) since vk ∈ NM (yk)
and v̄ ∈ NM (ȳ).
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Consider now that vk = (rk − wk)/αk and assume first, without loss of generality, that αk > 0
for all k; otherwise, take a subsequence. By the definition of the normal cone, we infer

0 ≥ 〈(rk − wk)/αk, yk − y′〉H−1,H1
0
, ∀y′ ∈M

=⇒ 〈rk, yk − y′〉H−1,H1
0
≤ 〈wk, yk − y′〉H−1,H1

0
, ∀y′ ∈M

=⇒ 〈rk, yk − y′〉H−1,H1
0
≤ 0, ∀y′ ∈M.

As argued in the paragraph preceding the statement of the proposition, we get r̄ ∈ NM (ȳ), which
implies (32) and (33) by the structure of the normal cone to the convex set M .

Suppose now that αk < 0 taking a subsequence if necessary. Arguing as above, we get from the
definition of the normal cone that

0 ≥ 〈(rk − wk)/αk, yk − y′〉H−1,H1
0
, ∀y′ ∈M

=⇒ 〈rk, yk − y′〉H−1,H1
0
≥ 〈wk, yk − y′〉H−1,H1

0
, ∀y′ ∈M

=⇒ 〈−rk, yk − y′〉H−1,H1
0
≤ 〈wk, y

′ − yk〉H−1,H1
0
, ∀y′ ∈M.

Since yk = ψ a.e.A(yk) and the inclusion y′ ∈ M implies that y′ ≥ ψ a.e.Ω, it follows that
y′ − yk = y′ − ψ ≥ 0 a.e.A(yk). Then using the characterization of wk, we have that

〈−rk, yk − y′〉H−1,H1
0
≤ 0,∀y′ ∈M.

Arguments similar to those above yield (32) and (34). This completes the proof of the proposition.

Now we are ready to establish the main result of this section, which provides necessary opti-
mality conditions for the MPEC setting under consideration in terms of the initial data of problem
(1). Note that these conditions are close to M -stationarity while somewhat different from it; see
the corresponding discussion in Section 1.

Theorem 3.13 (Limiting Stationarity Conditions). Let (ū, ȳ) be a locally optimal solution to
MPEC (1). Then there exist p̄ ∈ H1

0 (Ω), r̄ ∈ H−1(Ω), v̄ ∈ NM (ȳ), and s̄ ∈ NUad
(ū) along with

sequences {pk} ⊂ H1
0 (Ω) and {rk} ⊂ H−1(Ω) such that

pk ⇀H1
0
(Ω) p̄, rk ⇀H−1(Ω) r̄, (35)

and the following limiting conditions

0 = αū+B∗p̄+ s̄, (36)

0 = ȳ − yd −A∗p̄+ r̄, (37)

0 = Aȳ −Bū+ v̄, (38)

0 = 〈v̄, p̄〉H−1,H1
0
, (39)

0 ≥ lim sup
k→∞

〈rk, pk〉H−1,H1
0
, (40)

0 = 〈r̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0 a.e.A(ȳ) (41)

are satisfied together with one of the alternative conditions: either

0 ≤ 〈r̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e.A(ȳ) (42)

or
0 ≤ 〈r̄, ϕ〉H−1,H1

0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≤ 0 a.e.A(ȳ). (43)
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Proof. Equations (36) and (37) follow directly from Proposition 3.6, whereas equation (38) is due
to the feasibility of an optimal solution.

According to Proposition 3.8, we have pk ∈ TM (yk)∩{y∗k −Ayk}
⊥. Hence, 〈pk, y

∗
k−Ayk〉H1

0
,H−1

= 0 for all k. Since pk ⇀ p̄ in H1
0 and y∗k − Ayk → Bū − Aȳ in H−1(Ω), it follows that 〈p̄, Bū −

Aȳ〉H1
0
,H−1 = 0. Thus, we get (39). Further, the existence of the sequence pk claimed above follows

from Proposition 3.8, whereas rk is defined by

rk := A∗pk − qk ∈ [K(yk, vk)]
− ,

with qk ⇀ ȳ − yd in H−1(Ω). However, despite the fact that 〈rk, pk〉 ≤ 0 for all k, we are only
provided with weak convergence of the sequences. Therefore, no statement can be made about the
product 〈r̄, p̄〉. This leads to equation (40).

Finally, we see that the relations in (41)-(43) follow directly from Proposition 3.12.

Remark 3.14 (Discussions on the Limiting Stationarity Conditions). The following ob-
servations on the limiting stationarity conditions obtained above are in order:

(i) The reader has most likely noted that we did not use the inclusion p∗k ∈ TM (yk) in the proof
of Theorem 3.13 to further characterize p̄. We elaborate on this here. For each k the inclusion
pk ∈ TM (yk) implies the existence of sequences tkl → 0+ and dkl → pk with yk + tkl d

k
l ∈ M . Then

for each k there exists a natural number lk such that

||pk − dkl ||H1
0
≤ 1/k, ∀l ≥ lk.

Now let {qk} be a sequence of real numbers such that qk → 0+ strictly monotonically. For each
k select another natural number Lk with tkl ≤ qk whenever l ≥ Lk. Using these sequences and
constants, we define two new sequences by letting n(k) := max{lk, Lk} for each k such that

δk := dkn(k) and τk := tkn(k), ∀k.

It follows that ‖pk − δk‖H1
0
→ 0 as k → ∞, which yields δk ⇀ p̄ in H1

0 (Ω), and τk → 0+. In
addition we have yk + τkδk ∈ M for all k. This implies, in particular, that p̄ is an element of the
weak Painlevé-Kuratowski outer limit of the family of sets {t−1(M − y)}t>0, which amounts to the
so-called (weak) paratingent cone; see, e.g., [2].

It is well known that the paratingent cone is too large to provide any meaningful local lin-
earization of the set M . For example, let M := [0, 1] ⊂ R. Here, TM (0) = R+, which is locally a
reasonable approximation of the set. Conversely, for a sequence εk → 0+, TM (εk) = R for all k.
Therefore, the paratingent cone at 0 becomes the entire space. Due to such a property even for the
simplest of convex sets in finite dimensions, we do not attempt to characterize this cone in H1

0 (Ω)
without more knowledge of the involved structures.

(ii) By consulting the literature (see, e.g., [4, Chapter 6]), we can easily calculate the involved
convex normal cones. It follows then that v̄ ∈ NM (ȳ) and s̄ ∈ NUad

(ū) imply the conditions

0 ≤ s̄ a.e.Al(ū) s̄ = 0, a.e.I(ū), s̄ ≥ 0 a.e.Au(ū),

0 ≥ 〈v̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e.A(ȳ),

0 = 〈v̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0 a.e.A(ȳ).

Upon comparison with conditions (3)–(11), we see that those in (36)–(41) satisfy almost all the
conditions for being C-stationary. In addition, (42) and (43) provide more information than is
found in the C-stationarity conditions.

(iii) Unfortunately, nothing can be said about the sign of the product 〈r̄, p̄〉H−1,H1
0
unless it

is known that p̄ has a constant sign on the entire active set A(ȳ); a fact, which would almost be
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tantamount to obtaining strong stationary conditions. Indeed, the very definition of the coderivative
provides the existence of the sequences pk and qk in Theorem 3.13, which are in turn used to define
rk. These sequences only need to converge weakly in their respective spaces despite the fact that qk
converges to an element with higher regularity—a clear disadvantage. In the next two sections we
are not provided with the existence of these sequences; rather we must derive them. The advantage
then becomes evident as we can show that qk → ȳ − yd in L2(Ω), not merely weakly in H−1(Ω).

4 Stationarity Conditions via Penalization of the Control Con-

straints

By using a combination of penalization techniques along with methods from variational analysis,
we are assured to have strong stationarity conditions for each “penalized” MPEC. Moreover, we can
show that the global solutions of the penalized problems converge to a global solution of the original
MPEC (1). This information is used to obtain sequences (p̄k, q̄k, r̄k) ∈ H1

0 (Ω) × L2(Ω) ×H−1(Ω)
similar to those found in Proposition 3.6. The limit points of these sequences are then shown to
satisfy a system of relations stronger than those found in Theorem 3.13.

We begin this section by simplifying the model class through the removal of the constraint
u ≥ a a.e.Ω. It should be clear that the same arguments remain valid so that their application to
bilateral control constraints can also be considered. Our new model problem becomes

min 1
2 ||y − yd||

2
L2(Ω) +

α
2 ||u||

2
L2(Ω) over (u, y) ∈ L2(Ω)×H1

0 (Ω),

s.t. u ≤ b a.e.Ω,
Ay +NM (y) ∋ Bu.

(44)

Thus from now on we denote by Uad the set

Uad :=
{
u ∈ L2(Ω) | u ≤ b a.e.Ω

}
.

Moreover, we assume further that the linear operator B is the identity on L2(Ω) and henceforth
cease to explicitly use it in the results below. All the other data assumptions for (1) remain the
same, unless otherwise stated.

Continuing with the reduced model class (44), we now penalize the constraint on u with an
L2-penalty function derived from the Moreau-Yosida regularization of the indicator function of Uad.
This gives rise to the following class of MPECs:

minJγ(u, y) :=
1
2 ||y − yd||

2
L2(Ω) +

α
2 ||u||

2
L2(Ω) +

γ
2 ||(u− b)+||

2
L2 over (u, y) ∈ L2(Ω)×H1

0 (Ω),

s.t. y = S(u)
(45)

with γ > 0, where (·)+ := max(0, ·) pointwise almost everywhere.

First we justify the required well-posedness of the penalization procedure.

Proposition 4.1 (Well-Posedness of the Penalization). Let γn → ∞ as n → ∞. Then
for each n ∈ N the MPEC problem (45) with γ := γn has a (globally) optimal solution (ūn, ȳn).
Moreover, if (ū, ȳ) ∈ L2(Ω)×H1

0 (Ω) is optimal to (44), then there exists a subsequence of {(ūn, ȳn)},
denoted still by n, such that (ūn, ȳn) → (ū, ȳ) in the weak-strong topology on L2(Ω)×H1

0 (Ω).

Proof. Although the following arguments are rather standard, we present them for completeness.
Upon recognizing that the penalty functional ||(· − b)+||

2
L2 : L2(Ω) → R is weakly lower semicon-

tinuous and bounded from below, we can apply a classical argument (see, e.g., [14]) to show that
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MPEC (45) has an optimal solution (ūn, ȳn) for each γn > 0. It follows from the definition that

1

2
||ȳn − yd||

2
L2 +

α

2
||ūn||

2
L2 +

γn
2
||(ūn − b)+||

2
L2 ≤

1

2
||y − yd||

2
L2 +

α

2
||u||2L2 +

γn
2
||(u− b)+||

2
L2 ,

∀(u, y) ∈ L2(Ω)×H1
0 (Ω) : Ay +NM (y) ∋ u.

Then letting (ū, ȳ) be a globally optimal solution to (44), we obtain the inequality

1

2
||ȳn − yd||

2
L2 +

α

2
||ūn||

2
L2 +

γn
2
||(ūn − b)+||

2
L2 ≤

1

2
||ȳ − yd||

2
L2 +

α

2
||ū||2L2 , (46)

from which the following conclusions are deduced:

(i) {un} is bounded in L2(Ω);

(ii) γn
2 ||(ūn − b)+||

2
L2 → 0 as n→ ∞.

Hence there exists a control u∗ ∈ L2(Ω) and a subsequence {unl
} such that unl

⇀ u∗ in L2(Ω).
Using the Lipschitz continuity of y as a function of u from H−1(Ω) into H1

0 (Ω), we have

||ȳnl
− y∗||H1

0
≤ C||ūnl

− u∗||H−1 ,

where ȳnl
, y∗ are solutions to the variational inequality associated with unl

, u∗ ∈ L2(Ω), respectively,
and where C > 0. Since L2(Ω) is compactly embedded inH−1(Ω), there exists a subsequence {unlk

}

with unlk
→ u∗ in H−1(Ω). This implies that ynlk

→ y∗ in H1
0 (Ω). Furthermore, since

〈Aynlk
− unlk

, ynlk
− y′〉H−1,H1

0
≥ 0, ∀y′ ∈M,

passing to the limit as k → ∞ yields

〈Ay∗ − u∗, y∗ − y′〉H−1,H1
0
≥ 0, ∀y′ ∈M,

and thus y∗ = S(Bu∗). Then it is easy to check that (u∗, y∗) is in fact a feasible point of the
original MPEC (44). Indeed, since the functional F (·) := ||(·− b)+||

2
L2 : L2(Ω) → R is weakly lower

semicontinuous, it follows that

0 = lim
n→∞

F (un) = lim inf
n→∞

F (un) ≥ F (u∗) ⇒ ||(u∗ − b)+||
2
L2 = 0,

and hence, u∗ ≤ b a.e.Ω. Taking now the limit inferior in (46) ensures that (u∗, y∗) = (ū, ȳ).

By applying the same arguments as in the proof of Corollary 3.6, we check that any locally
optimal solution (ū, ȳ) to (45) satisfies the necessary optimality condition

0 ∈ ∇uJγ(ū, ȳ) +B∗D∗S(ū, ȳ)
(
∇yJγ(ū, ȳ

)
). (47)

Since B = B∗ is the identity on L2(Ω) and p̄ ∈ D∗S(ū, ȳ)(∇yJγ(ū, ȳ)) is an element of H1
0 (Ω), we

can argue that ∇uJγ(ū, ȳ) ∈ H1
0 (Ω). This leads us to the following proposition.

Proposition 4.2 (Increased Regularity at a Solution). If (ūγ , ȳγ) is a locally optimal solution
of (45), then

αūγ + γ(ūγ − b)+ ∈ H1
0 (Ω).
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Proof. Since ∇uJγ(ūγ , ȳγ) = αūγ + γ(ūγ − b)+, the result follows from the argument directly
preceeding the statement of this proposition.

Based on the results in [9], we now derive primal and dual optimality conditions for MPECs of
type (45).

Theorem 4.3 (S-Stationarity for Penalized MPECs). Let (ūγ , ȳγ) be a local optimal solution
to MPEC (45). Then we have

(αūγ + γ(ūγ − b)+, h)L2 + (ȳγ − yd, d)L2 ≥ 0,∀(h, d) ∈ gphS′(ūγ , ·). (48)

Moreover, there exist p̄γ ∈ H1
0 (Ω), r̄γ ∈ H−1(Ω), and v̄γ ∈ H−1(Ω) such that

0 = αūγ + γ(ūγ − b)+ + p̄γ , (49)

0 = ȳγ − yd −A∗p̄γ + r̄γ , (50)

0 = Aȳγ − ūγ + v̄γ (51)

with the primal-dual triple (p̄γ , r̄γ , v̄γ) satisfying the inclusions

p̄γ ∈ K(ȳγ , v̄γ), r̄γ ∈ [K(ȳγ , v̄γ)]
− , v̄γ ∈ NM (ȳγ). (52)

Proof. As the penalty functional is Fréchet differentiable from L2(Ω) into R for each γ > 0, the
primal optimality condition (48) can be derived by using the same argument that was applied in
order to prove Theorem 2.1.

By the data assumptions, h ∈ L2(Ω). Therefore, we can rewrite (48) as

(αūγ + γ(ūγ − b)+, h)L2 + (ȳγ − yd, d)L2 ≥ 0,∀(h, d) ∈ gphS′(ūγ , ·).

Using the characterization (17) of gphS′(ūγ , ·) and the result from Proposition 4.2, we may write

〈αūγ + γ(ūγ − b)+, Ad+ w〉H1
0
,H−1 + 〈ȳγ − yd, d〉H−1,H1

0
≥ 0,∀(d,w) ∈ gphNK(ȳγ ,v̄γ).

This is equivalent to defining p̄γ ∈ H1
0 (Ω) such that

〈−A∗p̄γ + ȳγ − yd, d〉H−1,H1
0
+ 〈p̄γ , w〉H1

0
,H−1 ≥ 0,∀(d,w) ∈ gphNK(ȳγ ,v̄γ).

where
0 = αūγ + γ(ūγ − b)+ + p̄γ .

Then since [gphNK(ȳγ ,v̄γ)]
− = [K(ȳγ , v̄γ)]

− × K(ȳ, v̄) in the H−1(Ω) × H1
0 (Ω)-topology (see, e.g.,

the proof of Theorem 4.6 in [9]), we obtain the relation

0 = ȳγ − yd −A∗p̄γ + r̄γ

where
p̄γ ∈ K(ȳγ , v̄γ) and r̄γ ∈ [K(ȳγ , v̄γ)]

− .

From which we obtain the assertion; (51) follows from feasibility.

17



Given the well-known characterizations of the cones involved in the dual conditions of Theorem
4.3, see e.g. Lemmas 2.2 and 3.2 in [18], we have the additional sign conditions:

p̄γ ≥ 0, a.e.A(ȳγ), (53)

0 = 〈ūγ −Aȳγ , p̄γ〉H−1,H1
0
, (54)

0 = 〈r̄γ , ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0, a.e.A(ȳγ), (55)

0 ≥ 〈r̄γ , ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0, a.e.A(ȳγ) and 〈ūγ −Aȳγ , ϕ〉H−1,H1
0
= 0. (56)

Thus, the optimality conditions (49)-(56) amount to S-stationarity conditions for the penalized
MPEC (45). This result is not surprising, as the results in [9] provide S-stationarity conditions
for much more general settings than considered here, provided the objective functional is Fréchet
differentiable and there are no upper-level constraints. We have nevertheless decided to provide
the derivation above in order to partially demonstrate the technique.

Though it was not needed for the proofs of the preceeding results, we can extended the result
of Proposition 4.1. This is needed for the derivation of a limiting stationarity system.

Proposition 4.4 (Strong Convergence of Penalized Solutions). Let γn → ∞. Then for
each n ∈ N the penalized MPEC (45) admits an optimal solution (ūn, ȳn). Moreover, if (ū, ȳ) ∈
L2(Ω)×H1

0 (Ω) is an optimal solution to (44), then there is a subsequence of {(ūn, ȳn)}, still indexed
by n, which converges to (ū, ȳ) in the strong-strong topology on L2(Ω)×H1

0 (Ω).

Proof. Returning to the proof of Proposition 4.1, we can deduce from (46) that

||ūn||
2
L2 − ||ū||2L2 ≤

1

α

(
||ȳn − yd||

2
L2 − ||ȳ − yd||

2
L2

)
.

Using then the strong convergence of ȳn → ȳ in H1
0 (Ω) gives us

0 = ||ū||2L2 − ||ū||2L2 ≤ lim inf
n→∞

||ūn||
2
L2 − ||ū||2L2 ≤ lim inf

n→∞

1

α

(
||ȳn − yd||

2
L2 − ||ȳ − yd||

2
L2

)
= 0

as well as

lim sup
n→∞

||ūn||
2
L2 − ||ū||2L2 ≤ lim sup

n→∞

1

α

(
||ȳn − yd||

2
L2 − ||ȳ − yd||

2
L2

)
= 0.

Thus ūn ⇀ ū in L2(Ω) and ||un||L2 → ||u||L2 . Since L2(Ω) is a Hilbert space, the latter implies the
strong convergence ūn → ū in L2(Ω).

Next, we derive some auxiliary results needed for the main result of this section. Recall the
following two notions of variational convergence:

Definition 4.5 (Mosco Epi-Convergence and Graph Convergence). For n ≥ 1, let φn, φ :
X → R be proper convex lower semicontinuous functions and X a reflexive Banach space. One

says that φn epi-converges in the sense of Mosco to φ, denoted by φn
M−epi
−−−−→ φ, provided the

following two conditions hold for all x ∈ X:

1. ∀xn ⇀X x, φ(x) ≤ lim infn→∞ φn(xn),

2. ∃xn →X x such that φ(x) ≥ lim supn→∞ φn(xn).

For n ≥ 1, let An and A be maximal monotone operators from X into X∗. The sequence An is

said to graph converge to A, denoted by An
G
−→ A, if the following property holds:
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For every (x, y) ∈ gphA, there exists a sequence (xn, yn) ∈ gphAn such that xn → x strongly
in X and yn → y strongly in X∗.

We refer the reader to the monograph by Attouch [1] for more on these and related topics. After
defining graph convergence, Attouch points out in Proposition 3.59 in [1] that for a sequence of

maximal monotone operators An
G
−→ A, the following holds:

For every sequence (xn, yn) ∈ gphAn such that xn → x strongly in X and yn ⇀ y weakly in
X∗, (x, y) ∈ gphA (and vice versa, by exchanging strong and weak).

This result shows that the convergence properties of sequences of normal cone mappings to convex
sets discussed in Section 3 extends to the much broader class of maximal monotone operators.

We now apply these notions and results on variational convergence to our problem.

Lemma 4.6 (Moreau-Yosida Approximations of Unilateral Pointwise Constraints). Let
γn → ∞, and let b ∈ L2(Ω). Define the Moreau-Yosida regularization Fn : L2(Ω) → R by

Fn(u) :=
γn
2
||(u− b)+||

2
L2 , ∀u ∈ L2(Ω).

Then Fn
M−epi
−−−−→ IUad

, where IUad
stands for the indicator function of the set Uad given by

Uad :=
{
u ∈ L2(Ω) | u ≤ b a.e.Ω

}
.

Proof. We begin by assuming that u /∈ Uad. For any un ⇀ u in L2(Ω), we can use the weak lower
semicontinuity of ||(· − b)+||

2
L2 in order to deduce the existence of some ε > 0 such that

lim inf
n→∞

||(un − b)+||
2
L2 ≥ ε > 0.

It follows that lim infn→∞ Fn(un) = +∞. Conversely, suppose that u ∈ Uad, then since the
trivial sequence un = u converges weakly to u in L2(Ω), we have found a sequence such that
lim infn→∞ Fn(un) = 0. Therefore, it holds for all u ∈ L2(Ω) that

∀un →L2(Ω) u, IUad
(u) ≤ lim inf

n→∞
Fn(un).

The remaining argument requires us to demonstrate the existence of a strongly convergent
sequence such that the limit superior condition in Definition 4.5 holds for all u ∈ L2(Ω). Of course,
if u /∈ Uad, then IUad

(u) = +∞. Thus for any sequence un strongly converging to u in L2(Ω), it
follows that

+∞ = IUad
(u) ≥ lim sup

n→∞
Fn(un).

Finally, if u ∈ Uad, then by taking the trivial sequence un = u, we see that Fn(un) = 0 for all n.
Hence,

0 = IUad
(u) ≥ lim sup

n→∞
Fn(un),

as was to be shown.

Combining Lemma 4.6 with [1, Theorem 3.66], we arrive at the following result.

Proposition 4.7 (Convergence of Approximations). Let γn → ∞, b ∈ L2(Ω), and un → u in
L2(Ω). If wn → w in L2(Ω) for wn := γn(un − b)+, then we have w ∈ NUad

(u).
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Proof. The aforementioned theorem by Attouch states that the Mosco epi-convergence for a se-
quence of proper, convex, and lower semicontinuous functions is equivalent to the graph conver-
gence of their subdifferentials (plus a normalizing condition). Using Fn and F from Lemma 4.6,
we see that

∂Fn(u) = γn(u− b)+ and ∂F (u) = ∂IUad
= NUad

(u), u ∈ L2(Ω).

Then by [1, Proposition 3.59] (see above), the assertion holds.

We are now ready to derive the main result of this section.

Theorem 4.8 (Improved Limiting Stationarity Conditions for the Constrained MPEC).
Let γn → ∞, and let (ū, ȳ) ∈ L2(Ω) × H1

0 (Ω) be an optimal solution to (44). Then there exist
sequences

ūn →L2 ū, ȳn →H1
0
ȳ, p̄n ⇀H1

0
p̄, r̄n ⇀H−1 r̄, (57)

where (ūn, ȳn) ∈ L2(Ω)×H1
0 (Ω) solves the penalized MPEC (45) for each n ∈ N, with γ := γn and

(ūn, ȳn, p̄n, r̄n) ∈ L2(Ω)×H1
0 (Ω)×H1

0 (Ω)×H−1(Ω)

satisfying the strong stationarity system (49)–(56). Moreover, the quadruple (ū, ȳ, p̄, r̄) satisfies the
limiting stationarity conditions (36)–(43) with (40) replaced by

0 ≥ 〈r̄, p̄〉H−1,H1
0
.

Proof. Let (ūn, ȳn) be a globally optimal solution of (45) with γ := γn. The existence of ūn and
ȳn follows from Proposition 4.4. Since each pair is an optimal solution, we have from Theorem 4.3
the existence of (p̄n, r̄n) such that the conditions (49)-(56) hold.

Using now the properties of p̄n and r̄n, we have from (50), after multiplying with p̄n, the
following equation

〈A∗p̄n, p̄n〉H−1,H1
0
= (ȳn − yd, p̄n)L2 + 〈r̄n, p̄n〉H−1,H1

0
.

Using the coercivity of A and the fact that 〈r̄n, p̄n〉H−1,H1
0
≤ 0, we know there exists a ξ > 0 such

that
ξ||p̄n||

2
H1

0

≤ (ȳn − yd, p̄n)L2 ≤ ||ȳn − yd||L2 ||p̄n||L2 .

Then by dividing through by ||p̄n||L2 and using the fact that H1
0 (Ω) is continuously embedded into

L2(Ω), we derive the existence of some κ > 0 such that

||p̄n||H1
0
≤ κ||ȳn − yd||L2 .

It follows that {p̄n} is bounded in H1
0 (Ω). Therefore, there exists p̄ ∈ H1

0 (Ω) and a subsequence
{p̄nl

} such that p̄nl
⇀H1

0
p̄. Moreover, we can use this sequence along with (50) to conclude the

existence of a sequence {r̄n} in H−1(Ω) which converges weakly in H−1(Ω) to some r̄ ∈ H−1(Ω).
Thus, the sequences (ūn, ȳn, p̄n, r̄n) satisfy the same requirements as those arising from the definition
of the limiting coderivative in Proposition 3.8.

Next, since for all n
−p̄n − αūn = γn(ūn − b)+,

where pn ⇀ p inH1
0 (Ω), therefore strongly in L2(Ω), and un → u in L2(Ω), we can apply Proposition

4.7 in order to deduce the limiting condition

0 ∈ p+ αu+NUad
(u).
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Hence, (ū, ȳ, p̄, r̄) fulfills the relations (36)-(42) via the same results which were used to prove
Theorem 3.13.

Finally, since 〈r̄n, p̄n〉H−1,H1
0
≤ 0 for all n ≥ 1, with r̄n := A∗p̄n + yd − ȳn, we obtain

0 ≥ 〈A∗p̄n + yd − ȳn, p̄n〉H−1,H1
0
= 〈A∗p̄n, p̄n〉H−1,H1

0
+ (yd − ȳn, p̄n)L2 ≥

lim inf
n→∞

〈A∗p̄n, p̄n〉H−1,H1
0
+ (yd − ȳn, p̄n)L2 ≥

〈A∗p̄, p̄〉H−1,H1
0
+ (yd − ȳ, p̄)L2 = 〈r̄, p̄〉H−1,H1

0
.

Remark 4.9 (Obtaining Strong Stationarity). Since pk ≥ 0, a.e.A(yk) and pk → p̄ in L2(Ω),
it would be easy to obtain a full sign condition for p̄ on A(ȳ) provided the active sets A(yk) were to
converge in the sense of characteristic functions to A(ȳ). This idea was presented in [7] in a similar
setting, but without upper-level constraints on the control. Nevertheless, this does not guarantee
that r̄ has the needed sign condition for strong stationarity as described in Definition 1.1. In finite
dimensions or if r̄ were more regular, e.g., in L2(Ω), one could then argue that r̄ = 0 pointwise
almost everywhere on I(ȳ). Moreover, the inequality r̄p̄ ≤ 0 along with the non-negativity of p̄
on the active set, would imply that r̄ ≤ 0. Hence, in certain regular cases, it would be possible to
derive strong stationarity conditions from our limiting stationarity conditions.

Finally, we note that Theorem 4.8 is interesting ultimately for the fact that by using a simple
smooth penalization of the control constraints, we are able to apply the technique developed in
[9] in order to guarantee that each solution of the penalized problems satisfies strong stationarity
conditions. In addition, when passing to the limit, we obtain a better system than the station-
arity conditions found in Theorem 3.13. Thus, we arrive at a stationarity system better than
C-stationarity but weaker than strong stationarity.

5 Stationarity Conditions for Constrained MPECs

via Regularization-Penalization Techniques

In this section we explore yet another approximation approach to study the class of our constrained
elliptic MPECs. Such a penalization-approximation technique has been recently applied to MPECs
by Hintermüller and Kopacka in [8] while it has been widely employed before in various frameworks
of single-level optimal control and related problems governed by partial differential equations; see,
e.g., the books by Barbu [3, Chapter 3.2] and Mordukhovich [16, Chapter 7.4] with the bibli-
ographies therein. Note also that the concept of penalizing the nonsmoothness/multivaluedness
via a sequence of parameter-dependent differentiable functions goes back to earlier developments
presented in [12] and [6]. Our notation and terminology are based on [8].

For simplicity we consider in this section the class of MPECs (44) described at the beginning
of Section 4 with imposing two additional assumptions. The first one changes the variational
inequality used to define (1) by adding an L2(Ω)-function f to the right-hand side. Thus, in what
follows S denotes the solution map of the variational inequality (lower-level problem)

Ay +NM (y) ∋ u+ f (58)

in the modified MPEC. As noted in [8], under the assumption that the obstacle ψ ∈ H2(Ω) with
ψ|∂Ω ≤ 0, we can transform the lower-level problem such that y := y − ψ and f := f + Aψ. For
this reason, we henceforth use the constraint y ≥ 0, a.e.Ω in place of y ≥ ψ, a.e.Ω. In order to
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easily state the results from [8], we make this assumption here. Second, we assume that A is the
second-order differential operator associated with the bilinear form a : H1

0 (Ω)×H
1
0 (Ω) → R defined

by

a(v,w) =
l∑

i,j=1

∫

Ω
aij

∂v

∂xj

∂w

∂xi
dx+

l∑

i=1

∫

Ω
bi
∂v

∂xi
wdx+

∫

Ω
cvwdx, ∀v,w ∈ H1

0 (Ω), (59)

where aij, bi, c are in L
∞(Ω). Assume, in addition, that aij ∈ C0,1(Ω̄), i.e., Lipschitz continuous on

the closure of Ω, c ≥ 0, and that a(·, ·) is both bounded and coercive.
The new data assumptions given above, we now proceed with the description of the technique.

Suppose that π : H1
0 (Ω) → H−1(Ω) is Lipschitz continuous and monotone with the condition

ker(π) = M . Then the variational inequality (58) can be approximated by a quasi-linear second-
order partial differential equation written here in the form

a(y, ϕ) +
1

β
〈π(y), ϕ〉H−1 ,H1

0
= (u, ϕ)L2 + (f, ϕ)L2

, ∀ϕ ∈ H1
0 (Ω),

where β > 0 is a penalty parameter. The assumptions imposed on the penalty operator π ensure
that the above partial differential equation (PDE) has a unique solution yβ(u). Moreover, it can be
shown that yβ(u) → y(u) in H1

0 (Ω) as β → 0+, where y(u) solves the original variational inequality
(58); see e.g., [6, 8]. Note that in [8] the mapping π was defined by using the maximum operator

π(v) := −max(0,−v), ∀v ∈ H1
0 (Ω).

Since the pointwise maximum max(0, ·) is nondifferentiable, certain regularized (i.e., smoothed)
operators dependent on some parameter ε > 0 were considered in [8]. These smoothed operators,
which we denote now by maxε(0, ·), act almost identically to the max(0, ·) operators with the only
difference that the “kink” at zero is smoothed out on a neighborhood depending on ε. One such
example is given explicitly by

maxε(0, r) :=





r −
ε

2
if r ≥ ε,

r2

2ε
if r ∈ (0, ε),

0 if r ≤ 0.

Under relatively weak assumptions it is shown in [8, Theorem 2.3] that solutions yβ to the regular-
ized penalized problems

Ayβ −
1

β
maxε(0,−yβ) = uβ + f,

with uβ , u ∈ L2(Ω) and uβ → u in H−1(Ω), converge strongly in H1
0 (Ω) as β → 0+ to the solu-

tion y(u) of the original variational inequality (58). By using the penalized regularized variational
inequality, i.e., the quasi-linear partial differential equation, we define the following smoothed pe-
nalized problem that approximates MPEC (44) under consideration:

min 1
2 ||y − yd||

2
L2(Ω) +

α
2 ||u||

2
L2(Ω) over (u, y) ∈ L2(Ω)×H1

0 (Ω)

s.t. a ≤ u ≤ b a.e.Ω,
Ay − 1

β
maxε(0,−y) = u+ f.

(60)

Since (60) is no longer an MPEC, more classical methods for the derivation of optimality con-
ditions can be applied. The process is roughly as follows: the regularization of the non-smoothness
can be used to show that the solution mapping S of the PDE is Fréchet differentiable for each ε > 0.
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After rewriting the problem in terms of the control u, one can then characterize the solutions via
a variational inequality, which after introducing the proper slack variables, leads to the following
result.

Theorem 5.1 (Necessary Optimality Conditions for the Penalized-Regularized Prob-
lems). Let β, ε > 0 and (y, u) ∈ H1

0 (Ω)× L2(Ω) be an optimal solution to (60). Then there exists
an adjoint state p ∈ H1

0 (Ω) such that

y +A∗p+
1

β
max′ε(0,−y)p = yd, (61)

Ay −
1

β
maxε(0,−y) = u+ f, (62)

u ∈ Uad, (αu− p, v − u)L2 ≥ 0, ∀v ∈ Uad. (63)

By defining sequences of stationary points, rather than local or global minimizers in the primal
variables, satisfying (61)–(63) along a sequence of positive numbers β → 0+ and a bounded sequence
{ε(β)} with ε(β) /β → 0 as β → 0+, it is shown in [8, Theorem 3.4] that there exists a quintuple

(ũ, ỹ, ṽ, p̃, r̃) ∈ L2(Ω)×H1
0 (Ω)× L2(Ω)×H1

0 (Ω)×H−1(Ω)

and a subsequence of the stationary points, which we again denote by β, such that

uβ → ũ, in L2(Ω),

yβ → ỹ, in H1
0 (Ω),

1

β
maxε(β)(0,−yβ) → ṽ, in H−1(Ω),

pβ ⇀ p̃, in H1
0 (Ω)

1

β
max′ε(β)(0,−yβ)pβ ⇀ r̃, in H−1(Ω),

where (ũ, ỹ) is ε-almost C-stationary for the original MPEC; see Definitions 1.1 and 1.2.
In fact, the multiplier r̃ can be shown to be in (L∞(Ω))∗, which is more regular in the sense

that each r̃ is then a finitely additive, finite signed-measure, see e.g., [5, Theorem IV.8.16]. For
simplicity we confine ourselves to the case when the coefficient functions bj in the bilinear form
(59) equal to zero.

Proposition 5.2 (Increased Regularity of the Multiplier r̃). The limiting multiplier r̃ in
Theorem 5.1 is an element of H−1(Ω) ∩ (L∞(Ω))∗.

Proof. In principle, this follows from Theorem 3.3 [3], however in the interest of completeness, we
include a short proof here. We begin by letting sign(·) represent the pointwise sign function and
suppose that σ(·) is a monotonic smoothing of sign(·), which has the property

σ(x) < 0, if x < 0, σ(0) = 0, σ(x) > 0, if x > 0.

For an arbitrarily fixed number β > 0, multiply equation (61) above by σ(pβ) and obtain the
equality

〈A∗pβ, σ(pβ)〉H−1,H1
0
+

( 1

β
max′ε(β)(0,−yβ)pβ, σ(pβ)

)
L2

=
(
yd − yβ, σ(pβ)

)
L2 .
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To see that the first term of the latter equation is always nonnegative, we refer back to the definition
of the bilinear form a(·, ·) in (59). This gives

〈A∗pβ, σ(pβ)〉H−1,H1
0
=

∫

Ω
σ′(pβ)

∑

i,j

aij |∇pβ|
2 dx+

∫

Ω
cpβσ(pβ) dx. (64)

The assumptions imposed above ensure that cpβσ(pβ) ≥ 0 almost everywhere on Ω. Furthermore,
observe that the first term on the right-hand side of equation (64) is positive since the derivative
of σ is either zero or positive and since the operator A is coercive. It follows from the convergence
results of Theorem 5.1 that there exists a constant κ > 0 such that

0 ≤
( 1

β
max′ε(β)(0,−yβ)pβ , σ(pβ)

)
L2

≤
(
yd − yβ, σ(pβ)

)
L2 ≤ κ,

Given the positivity of the integrand 1
β
max′

ε(β)(0,−yβ)pβσ(pβ), it follows that

∫

Ω
|
1

β
max′ε(β)(0,−yβ)pβσ(pβ)|dx ≤ κ,∀β > 0.

Then by letting σ → sign(·), we can argue that 1
β
max′

ε(β)(0,−yβ)pβ is bounded in L1(Ω). In which

case, we deduce the existence of a subsequence, still denoted by β, and an element r∗ ∈ (L∞(Ω))∗,

such that 1
β
max′

ε(β)(0,−yβ)pβ
∗
⇀ r∗ in (L∞(Ω))∗. It follows that r∗ = r̃ ∈ (L∞(Ω))∗.

6 Conclusions and Comparisons

In this paper, we considered four possibilities for the derivation of dual optimality/stationarity
conditions of the MPEC (1), namely, via

1. Dualization of a primal optimality condition derived using directional derivatives,

2. Limiting variational calculus,

3. Penalization of the upper-level control constraints,

4. Penalization and regularization of the non-smooth and multivalued term.

From a theoretical standpoint, we saw that the dualization of B-stationarity conditions seems
extremely difficult to directly characterize in order to obtain a multiplier-based, dual optimality
condition.

Then exploiting our knowledge of the directional derivative of the solution map to the variational
inequality in the MPEC under consideration, we were able to work with the limiting variational
objects developed and popularized by the second author. This led us to a new system of limiting
optimality conditions similar to M-stationary conditions. Due to a lack of regularity of certain
sequences, we saw that the limiting conditions obtained are different from C-stationarity. On one
hand, nothing can be said about the product of the adjoint states p̄ and r̄, the multipliers associated
with the lower-level multiplier v̄, unless p̄ has a constant sign on the active set A(ȳ). On the other
hand, the multiplier r̄ associated with the complementarity constraint has an increased level of
information in comparison with C-stationarity.

Further, by employing a smooth Moreau-Yosida-type penalization of the upper-level constraints,
we reduced the original constrained MPEC setting to that in which the results from [9] became
directly applicable. These results guarantee that every solution to the penalized problem is strongly
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stationary. We demonstrated in this way that a sequence of optimal solutions to the penalized
MPECs satisfies a limiting stationarity system stronger than the one obtained using the limiting
variational calculus. The relations of this system are more selective than those of C-stationarity
but weaker than strong stationarity.

Lastly, we applied a more classical penalization-regularization technique examined recently in
[8] in some MPEC settings to derive ε-almost C-stationary conditions for the class of constrained
MPECs under consideration in this paper.

In terms of the usefulness of the results for the development of numerical methods, the penal-
ization/regularization technique has the clear advantage. Indeed, in this setting the practitioner is
required to solve a sequence KKT systems arising from smooth non-linear programs (NLPs). More-
over, the limit of subsequences of solutions to the NLPs is guaranteed under weak assumptions to
satisfy a type of stationarity conditions weaker than C-stationarity, yet stronger than so-called
weak stationarity [19].

The development of a numerical method from the derivation technique described in Section 4
is somewhat more difficult. In contrast to the previously discussed method, in which one speaks of
the convergence of stationary points, this method requires knowledge of optimal solutions for each
of the penalized MPECs. However, provided with this information, one is guaranteed that each
member of the sequence is strongly stationary and that the limit of subsequences of these solutions
will satisfy the limiting stationarity system. The development of numerical methods realizing strong
stationary points is one possible future direction.

Finally, though they provide us with a significant amount of insight in terms of the limits of
solutions satisfying strong stationarity conditions, the limiting calculus appears to impose certain
restrictions on the ability to construct numerical methods in function spaces. This relates mainly
to the fact that the existence of the sequences in Proposition 3.8 is guaranteed by the definition of
the limiting coderivative while the sequences, along with their characteristics, in Theorem 4.8 had
to be derived. Moreover, the relationship in (40) is clearly difficult to handle. If such a method were
available, then the minimal requirements placed on the operator B would allow the practitioner to
consider examples in which the control perturbation of the variational inequality is not distributed
on the entire domain Ω.
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