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Abstract. We consider linear differential-algebraic m-input m-output systems with positive
strict relative degree or proper inverse transfer function; in the single-input single-output case these
two disjoint classes make the whole of all linear DAEs without feedthrough term. Structural proper-
ties - such as normal forms (i.e. the counterpart to the Byrnes-Isidori form for ODE systems), zero
dynamics, and high-gain stabilizability - are analyzed for two purposes: first, to gain insight into the
system classes and secondly, to solve the output regulation problem by funnel control. The funnel
controller achieves tracking of a class of reference signals within a pre-specified funnel; this means in
particular, the transient behaviour of the output error can be specified and the funnel controller does
neither incorporate any internal model for the reference signals nor any identification mechanism, it
is simple in its design. The results are illuminated by position and velocity control of a mechanical
system encompassing springs, masses, and dampers.
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Nomenclature

N, N0 set of natural numbers, N0 = N ∪ {0}, set of all integers, resp.

R≥0 = [0,∞)

C+, C− the open set of complex numbers with positive, negative real
part, resp.

Gln(R) the group of invertible real n× n matrices

R[s] the ring of polynomials with coefficients in R

R(s) the quotient field of R[s]

Rn,m the set of n×m matrices with entries in a ring R

‖x‖ =
√
x⊤x, the Euclidean norm of x ∈ Rn

‖M‖ = max
{
‖M x‖

∣
∣ x ∈ R

m, ‖x‖ = 1
}
, induced matrix norm of M ∈

Rn,m

Cℓ(T ; Rn) the set of ℓ-times continuously differentiable functions f : T →
Rn

Bℓ(T ; Rn) = {f ∈ Cℓ(T ; Rn)
∣
∣ di

dti f is bounded for i = 0, . . . , ℓ}
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1. Introduction. We consider linear differential-algebraic systems of the form

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) ,
(1.1)

where E,A ∈ Rn,n, B,C⊤ ∈ Rn,m are such that the pencil sE−A ∈ R[s]n,n is regular,
i.e. det(sE −A) ∈ R[s]\{0}; the set of these square (i.e., same number of inputs and
outputs) systems is denoted by

Σn,m and we write [E,A,B,C] ∈ Σn,m .

The functions u, y : R → Rm are called input and output of the system, resp. A
trajectory (x, u, y) : R → Rn × Rm × Rm is said to be a solution of (1.1) if, and only
if, it belongs to the behaviour of (1.1):

B(1.1) :=

{

(x, u, y) ∈ C1(R; Rn) × C(R; Rm) × C(R; Rm)

∣
∣
∣
∣

(x, u, y) solves (1.1)
for all t ∈ R

}

.

Regularity of the pencil guarantees that for each consistent initial value x(0) = x0 ∈
Rn there exists a unique and global solution ofEẋ = Ax, see for example [16, Sec. 2.1].
More smoothness for u and y is required for some results.
We also derive frequency domain results for [E,A,B,C] ∈ Σn,m and its transfer
function, defined by

G(s) = C(sE −A)−1B ∈ R(s)m,m.

Roughly speaking, and in Section 1.3 explained in detail, we divide, in the single-
input single-output case, the system class Σn,1 into the disjoint sets of systems with
strictly proper transfer function and with non strictly proper transfer function g(s) =
C(sE−A)−1B ∈ R(s), resp. Our generalization for multi-input, multi-output systems
Σn,m will treat systems with positive strict relative degree and systems with proper
inverse transfer function, resp. However, these two disjoint sets do not unify to whole
Σn,m as, for example, systems with strictly proper transfer function with a non-
constant vector relative degree are not encompassed.

1.1. System equivalence. We will derive normal forms of systems [E,A,B,C] ∈
Σn,m belonging to certain classes specified in Section 1.3. To this end, recall the fol-
lowing:

Two systems [Ei, Ai, Bi, Ci] ∈ Σn,m, i = 1, 2, are called system equivalent if, and
only if,

∃W,T ∈ Gln(R) :

[
sE1 −A1 B1

C1 0

]

=

[
W 0
0 Im

] [
sE2 −A2 B2

C2 0

] [
T 0
0 Im

]

;

we write

[E1 , A1 , B1 , C1 ]
W,T∼ [E2 , A2 , B2 , C2 ] . (1.2)

It is easy to see that system equivalence is an equivalence relation on Σn,m.

It is also easy to see that the transfer function is invariant under system equiva-
lence; more precisely: if (1.2) holds, then

C1(sE1 −A1)
−1B1 = C2(sE2 −A2)

−1B2. (1.3)
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We quote the well known result by Weierstraß for regular pencils sE −A.

Proposition 1.1 (Weierstraß form [7, Th. XII.3]).
For any regular matrix pencil sE −A ∈ R[s]n,n, there exist W,T ∈ Gln(R) such that

sE −A = W

[
sIns

−As 0
0 sN − Inf

]

T, (1.4)

for some As ∈ Rns,ns and nilpotent N ∈ Rnf ,nf . The dimensions ns, nf ∈ N0 are
unique, the matrices As and N are unique up to similarity. ⋄

The index of nilpotency of a nilpotent matrix N ∈ Rk,k is defined to be the
smallest ν ∈ N such that Nν = 0. It can be shown (see e.g. [16, Lem. 2.10]) that the
index of nilpotency ν of N in (1.4) is uniquely defined by the regular pencil sE −A;
ν is therefore called the index of the pencil sE − A if the nilpotent block is present
and the index is ν = 0 if the nilpotent block is absent (i.e., nf = 0).

An immediate result from Proposition 1.1 for systems [E,A,B,C] is the following.

Corollary 1.2 (Decoupled DAE).
Let [E,A,B,C] ∈ Σn,m. Then there exist W,T ∈ Gln(R) such that

[E,A,B,C]
W,T∼

[[
Ins

0
0 N

]

,

[
As 0
0 Inf

]

,

[
Bs

Bf

]

,
[
Cs Cf

]
]

, (1.5)

for some Bs ∈ Rnf ,m, Bf ∈ Rnf ,m, Cs ∈ Rm,ns , Cf ∈ Rm,ns , As ∈ Rns,ns and
nilpotent N ∈ Rnf ,nf . ⋄

The form (1.5) is interpreted, in terms of the DAE (1.1), as follows:

(x, u, y) ∈ B(1.1) if, and only if,

(
xs(·)
xf (·)

)

:= Tx(·)

solves the decoupled DAEs

ẋs(t)
ys(t)

= As xs(t) +Bs u(t)
= Cs xs(t),

(1.6a)

Nẋf (t)
yf (t)

= xf (t) +Bf u(t)
= Cf xf (t),

(1.6b)

y(t) = ys(t) + yf(t). (1.6c)

If (x, u, y) ∈ B(1.1) and in addition u ∈ Cν−1(R; Rm), then by repeated multiplication
of (1.6b) by N from the left, differentiation, and using the identity

(sN − Inf
)−1 = −Inf

− sN − s2N2 − . . .− sν−1Nν−1, (1.7)

where ν is the index of nilpotency of N , it is easy to see that the solution of (1.6b)
satisfies

xf (·) = −
ν−1∑

k=0

NkBfu
(k)(·) . (1.8)
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1.2. System properties.

1.2.1. Zero dynamics. An essential concept in the present article is the zero
dynamics of system (1.1):

ZD(1.1) :=
{

(x, u, y) ∈ B(1.1)

∣
∣ y = 0

}
.

By linearity of (1.1), ZD(1.1) is a real vector space.

The zero dynamics of system (1.1) is called asymptotically stable if, and only if,

∀ ε > 0 ∃ δ > 0 ∀ (x, u, y) ∈ ZD(1.1) s.t. ‖(x(0), u(0))‖ < δ ∀ t ≥ 0 : ‖(x(t), u(t))‖ < ε

and

∀ (x, u, y) ∈ ZD(1.1) : lim
t→∞

(
x(t), u(t)

)
= 0.

(Asymptotically stable) zero dynamics is the vector space of those trajectories of
the system which are, loosely spoken, not visible at the output (and tend to zero).

1.2.2. Relative degree. Another fundamental concept is the relative degree of
the transfer function G(s) = C(sE −A)−1B of (1.1).

A rational matrix function G(s) ∈ R(s)m,m is called

proper :⇐⇒ lim
s→∞

G(s) = D for some D ∈ Rm,m

strictly proper :⇐⇒ lim
s→∞

G(s) = 0,

and we say that the square rational matrix G(s) ∈ R(s)m,m has strict relative
degree ρ ∈ Z if, and only if,

ρ = sr degG(s) := sup
{

k ∈ Z

∣
∣
∣ lim

s→∞
sk G(s) ∈ Glm(R) and lim

s→∞
sk−1G(s) = 0

}

exists. Note that for any G(s) ∈ R(s)m,m we have (consider the entries)

lim
s→∞

sk−1G(s) = 0 for some k ∈ Z =⇒ lim
s→∞

sk−i G(s) = 0 for all i ∈ N.

For convenience, we also say that [E,A,B,C] ∈ Σn,m has strict relative degree ρ
if G(s) = C(sE −A)−1B has strict relative degree ρ. Then the matrix

Γ := lim
s→∞

sρG(s) ∈ Glm(R)

is called high frequency gain matrix.
If g(s) = p(s)/q(s), for p(s) ∈ R[s] and q(s) ∈ R[s]\{0}, is a scalar rational

function, then the strict relative degree always exists and coincides with the well-
known definition of relative degree:

sr deg g(s) = deg q(s) − deg p(s).

1.2.3. Controllability and observability. We recall different concepts of con-
trollability and observability for DAEs (1.1). For brevity, we do not define the concepts
in system theoretic terms but recall algebraic characterizations in Proposition 1.3; the
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latter will be used in our proofs. Different notions of controllability and observability
at infinity are used in the literature: [5] compares the algebraically formulated con-
trollability/observability concepts of [17] and [19]; we go along with those in [17]. For
system theoretic notions of the concepts see [6, Secs. 2 & 3].

Proposition 1.3 (Controllability and observability).
A system (1.1) is

(i) R-controllable ⇐⇒ rk [sE −A,B] = n for all s ∈ C

(ii) stabilizable ⇐⇒ rk [sE −A,B] = n for all s ∈ C+

(iii) controllable at infinity ⇐⇒ rk [E, B] = n

(iv) controllable ⇐⇒ it is R-controllable and controllable at infinity

(v) R-observable ⇐⇒ rk [sE⊤ −A⊤, C⊤] = n for all s ∈ C

(vi) detectable ⇐⇒ rk [sE⊤ −A⊤, C⊤] = n for all s ∈ C+

(vii) observable at infinity ⇐⇒ rk [E⊤, C⊤] = n

(viii) observable ⇐⇒ it is R-observable and observable at infinity.

The properties (i)-(viii) are invariant under system equivalence.

1.2.4. Poles and zeros. Finally, we recall the definition of transmission zeros
and poles of a transfer function; see for example [15, Sec. 6.5].

Let G(s) ∈ R(s)m,m with Smith-McMillan form

U−1(s)G(s)V −1(s) = diag

(
ε1(s)

ψ1(s)
, . . . ,

εr(s)

ψr(s)
, 0, . . . , 0

)

∈ R(s)m,m ,

where U(s), V (s) ∈ R[s]m,m are unimodular (i.e. invertible over R[s]m,m), rk G(s) =
r, εi(s), ψi(s) ∈ R[s] are monic, coprime and satisfy εi(s) | εi+1(s), ψi+1(s) | ψi(s) for
all i = 1, . . . , r− 1. s0 ∈ C is called transmission zero of G(s) if εr(s0) = 0 and a pole
of G(s) if ψ1(s0) = 0.

Note that by (1.3) the transmission zeros and poles are invariant under system equiv-
alence.

1.3. System classes. We introduce the two main system classes investigated
in the present article. In both of them, an explicit feedthrough term is not allowed.
However, this assumption is only made for technical reasons. We also explain how
systems with feedthrough are related to the two system classes under consideration.

1.3.1. Systems with positive strict relative degree. Consider the class of
DAE systems (1.1) such that [E,A,B,C] ∈ Σn,m has positive strict relative degree.

If [E,A,B,C] is single-input, single-output, i.e. m = 1, then its transfer function
g(s) = C(sE − A)−1B = p(s)/q(s) has positive strict relative degree if, and only if,
deg q(s) > deg p(s) or, equivalently, g(s) is strictly proper.

Note that for any G(s) ∈ R(s)m,m we have

G(s) has positive strict relative degree =⇒
6⇐=
i.g.

G(s) is strictly proper.
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An ODE system [E,A,B,C] = [I, A,B,C] has transfer function

G(s) = C(sI −A)−1B = CB s−1 + CAB s−2 + CA2B s−3 + . . .

and therefore strict relative degree ρ ∈ N, if, and only if,

det(CAρ−1B) 6= 0 and, if ρ > 1, ∀ k = 0, . . . , ρ− 2 : CAkB = 0 .

1.3.2. Systems with proper inverse transfer function. The second class of
DAE systems (1.1) considered in the present article are those DAEs [E,A,B,C] ∈
Σn,m whose transfer function G(s) = C(sE − A)−1B ∈ R(s)m,m has proper inverse
over R(s)m,m, i.e. G(s) is invertible over R(s) and lims→∞G−1(s) ∈ Rm,m.

In [2, Prop. 1.2] we have shown that for any G(s) ∈ R(s)m,m the properties of
proper inverse transfer function and strict relative degree are related as follows:

sr degG(s) ≤ 0 =⇒
6⇐=
i.g.

G(s) has proper inverse.

A zero dynamics form for systems [E,A,B,C] ∈ Σn,m with transfer function
G(s) ∈ R(s)m,m whose inverse G−1(s) is proper, is studied in Theorem 2.3. Con-
versely, if a proper transfer function G−1(s) ∈ R(s)m,m is given, then this may be
realized as an ODE [I, A,B,C,D] with feedthrough term D and it is easily verified
that the regular DAE

[[
0 0
0 I

]

,

[
−D −C
B A

]

,

[
I
0

]

, [I, 0]

]

(1.9)

without feedthrough term is a realization of G(s). Furthermore, the Hautus criterion
yields that (1.9) is minimal if, and only if, [I, A,B,C,D] is minimal.

If [E,A,B,C] is single-input, single-output, then its transfer function g(s) =
C(sE − A)−1B = p(s)/q(s) has proper inverse if, and only if, deg q(s) ≤ deg p(s) or,
equivalently, g(s) is not strictly proper. In this case, there does not exist a realization
of g(s) as an ODE system [I, A,B,C] without feedthrough term. The class of single-
input single-output DAE systems Σn,1 can be decomposed into the disjoint sets of
systems with strictly proper transfer function and with non strictly proper transfer
function g(s) = C(sE −A)−1B ∈ R(s), resp.:

Σn,m =
{
[E,A,B,C] ∈ Σn,1

∣
∣ g(s) = p(s)

q(s) , deg q(s) > deg p(s)
}

∪̇
{
[E,A,B,C] ∈ Σn,1

∣
∣ g(s) = p(s)

q(s) , deg q(s) ≤ deg p(s)
}

For multi-input, multi-output systems Σn,m, generalization to systems with pos-
itive strict relative degree and systems with proper inverse transfer function does not
allow for such a disjoint union. This is the topic of the following section.

1.3.3. Systems which have neither positive strict relative degree nor

proper inverse transfer function. The class of multi-input, multi-output systems
[E,A,B,C] ∈ Σn,m with transfer function G(s) = C(sE −A)−1B ∈ R(s)m,m can be
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decomposed in the disjoint union of the following three sets:

Σn,m =
{
[E,A,B,C] ∈ Σn,m

∣
∣ G(s) has positive strict relative degree

}

∪̇
{
[E,A,B,C] ∈ Σn,m

∣
∣ G(s) has proper inverse transfer function

}

∪̇
{

[E,A,B,C] ∈ Σn,m

∣
∣
∣
∣

G(s) has neither positive strict relative degree
nor proper inverse transfer function

}

.

Note that the latter set is, for multi-input, multi-output systems, not empty. It
contains in particular systems with a non-constant vector relative degree and it con-
tains, for example for m = 2, the system

[E,A,B,C] :=









0 −1 0
0 0 0
0 0 1



 ,





1 0 0
0 1 0
0 0 0



 ,





0 0
1 0
0 1



 ,

[
1 0 0
0 0 1

]




with transfer function G(s) =

[
s 0
0 s−1

]

∈ R(s)2,2. We stress that G(s) has neither a

positive strict relative degree nor a proper inverse.

1.3.4. Systems with feedthrough. So far we have not considered systems with
non-zero feedthrough term. In this section we will show that such systems can, by
augmenting the state by the feedthrough term, be rewritten as a system of form (1.1);
the transfer function of the new system coincides with the transfer function of the
original system. Furthermore, it is shown that a system with proper transfer function
can be rewritten as an ODE with feedthrough.

Remark 1.4 (DAE with feedthrough −→ DAE without feedthrough).
Consider a DAE system with feedthrough of the form

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) ,
(1.10)

where E,A ∈ Rn,n, B,C⊤ ∈ Rn,m, D ∈ Rm,m.
Then the behaviour B(1.10), the zero dynamics ZD(1.10) and its asymptotic stability
can be defined completely analogously as for (1.1); this is omitted.

By introducing an ‘augmented state’ of x(t) and w(t) = Du(t), system (1.10) can
be rewritten as a DAE system without feedthrough term, namely

[
E 0
0 0

]

d
dt

(
x(t)
w(t)

)

=

[
A 0
0 −I

] (
x(t)
w(t)

)

+

[
B
D

]

u(t)

y(t) =
[
C I

]
(
x(t)
w(t)

)

.

(1.11)

Clearly, the behaviours and zero dynamics are related in the following way

B(1.11) =
{

((x⊤, w⊤)⊤, u, y)
∣
∣ (x, u, y) ∈ B(1.10), w = Du

}
,

ZD(1.11) =
{

((x⊤, w⊤)⊤, u, y)
∣
∣ (x, u, y) ∈ ZD(1.10), w = Du

}
.

The following observations can now be made:
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a) The transfer functions of (1.10) and (1.11) coincide:

C(sE −A)−1B +D =
[
C I

]
(

s

[
I 0
0 0

]

−
[
A 0
0 −I

])−1 [
B
D

]

.

b) The zero dynamics ZD(1.10) is asymptotically stable if, and only if, the zero dy-
namics ZD(1.11) is asymptotically stable.

c) The pencil s

[
E 0
0 0

]

−
[
A 0
0 −I

]

is regular if, and only if, sE −A is regular.

d) We have

det





sE −A 0 B
0 I D
C I 0



 = det





sE −A 0 B
0 I D
C 0 −D



 = det





sE −A 0 B
0 I 0
C 0 −D





= det

[
sE −A B
C −D

]

.

e) Since, for all s ∈ C,

rk

[
sE −A 0 B

0 I D

]

= rk
[
sE −A B

]
+m, rk





sE −A 0
0 I
C I



 = rk

[
sE −A
C

]

+m,

it is easily seen that system (1.10) is stabilizable (detectable) if, and only if, sys-
tem (1.11) is stabilizable (detectable).

f) If E = I, then (1.10) is an ODE with feedthrough and can be rewritten as a DAE
with regular matrix pencil and transfer function G(s) = C(sI −A)−1B+D, which
coincides with the transfer function of the original ODE system. ⋄

Remark 1.5 (DAE with proper transfer function −→ ODE with feedthrough).
For any DAE (1.1) with regular pencil sE−A ∈ R[s]n,n and lims→∞ C(sE−A)−1B ∈
Rm,m there exists an ODE system with feedthrough

ż(t) = Asz(t) +Bsu(t)

y(t) = Csz(t) − CfBfu(t) ,
(1.12)

for some Bs ∈ Rnf ,m, Bf ∈ Rnf ,m, Cs ∈ Rp,ns , Cf ∈ Rp,ns , As ∈ Rns,ns such that
the transfer functions of (1.1) and (1.12) coincide:

C(sE −A)−1B = Cs(sI −As)
−1Bs + CfBf .

This can be seen as follows: Without restriction of generality, one may assume
that (1.1) is in Weierstraß form (see Proposition 1.1) and given by equations (1.6a)-
(1.6c). Then its transfer function satisfies

C(sE −A)−1B = Cf (sN − Inf
)−1Bf + Cs(sIns

−As)
−1Bs

= −
ν−1∑

i=0

CfN
iBf si +

∑

i≥1

CsA
i−1
s Bs s

−i

and the assumption lims→∞C(sE−A)−1B ∈ Rm,m yields CfN
iBf = 0 for all i ≥ 1.

Now invoking (1.8) and setting z = xs in (1.12) proves the claim. ⋄
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1.4. Control objectives. We consider two control strategies with respect to the
two system classes: for DAE systems with positive strict relative degree, a constant
proportional derivative output feedback is suggested; for DAE systems with proper in-
verse transfer function, a constant proportional output feedback is considered. These
controllers achieve high-gain stabilization and exploit the underlying system prop-
erties. However, since no information on the system entries will be required it is
unknown how “high” the feedback gain has to be chosen. To resolve this, we allow for
funnel control, that is a proportional time-varying high-gain error feedback in combi-
nation with a filter (the filter “adjusts” the higher relative degree) for DAE systems
with positive strict relative degree, and a proportional time-varying high-gain error
feedback for DAE systems with proper inverse transfer function.

1.4.1. Constant high-gain control. First, constant high-gain proportional
output feedback is given by

u(t) = −k · p ( d
dt

) y(t)
for [E,A,B,C] ∈ Σn,m

with positive strict relative degree
(1.13)

u(t) = k · y(t) for [E,A,B,C] ∈ Σn,m

with proper inverse transfer function
(1.14)

where k > 0 and p(s) ∈ R[s] Hurwitz in (1.13), and k ∈ R in (1.14). However, these
results are of more theoretical nature to show the consequences of the underlying
systems properties such as asymptotically stable zero dynamics.

The control objective is output feedback regulation in the sense that the high-
gain controller, i.e. the time-invariant proportional output-derivative feedback (1.13)
or (1.14) resp., yields an asymptotically stable closed-loop system. Here k is the high-
gain parameter and, in general, k has to be large to achieve that the state x(t) decays
to zero.

In Section 4 we will show that the assumption of asymptotically stable zero dy-
namics of a system (1.1) which has either positive strict relative degree or proper
inverse transfer function implies high-gain stabilizability in the following sense: If the
system has positive strict relative degree, k ≫ 1, and p(s) is Hurwitz with positive
leading coefficient, then the high-gain feedback (1.13) or (1.14) resp., applied to (1.1)
forces the output “very quickly” to zero. If the system has proper inverse transfer
function, then it is sufficient to assume |k| ≫ 1 and p(s) ≡ 1 to achieve this goal.

1.4.2. Funnel control. The control objective is output feedback regulation in
the sense that the funnel controller, applied to any system [E,A,B,C] ∈ Σn,m

achieves tracking of the output of any reference signal yref ∈ Bν+1(R≥0; R
m), where

ν is the index of the sE −A, with pre-specified transient behaviour:

∀ t > 0 : ‖e(t)‖ < 1/ϕ(t).

The transient behaviour is pre-specified by a funnel boundary 1/ϕ(·) given by

ϕ ∈ Φµ :=
{
ϕ ∈ Bµ(R≥0,R)

∣
∣ ϕ(0) = 0, ϕ(s) > 0 for all s > 0 and lim inf

s→∞
ϕ(s) > 0

}
,

with which we associate, see Fig. 1.1, the performance funnel

Fϕ :=
{
(t, e) ∈ R≥0 × R

m
∣
∣ ϕ(t)‖e‖ < 1

}
, (1.15)
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Evolution of the error e

Ball with radius 1/ϕ(t)

t

Fϕ

Fig. 1.1: Error evolution in the funnel Fϕ with “width ∞” at t = 0, i.e. ϕ(0) = 0

Note that there is no need that the funnel is monotone. However, the funnel is
not allowed to “shrink” to zero as t → ∞. But the minimal distance (at infinity)
between the funnel boundary and zero, i.e. λ = lim infs→∞ ϕ(s)−1, must be positive
albeit can be arbitrarily small; from a practical point of view, this is not a limitation.

The funnel controller takes two forms. For DAE systems [E,A,B,C] ∈ Σn,m

with positive strict relative degree the higher degree is an obstacle; in (1.13) we have
used derivative feedback while now we will incorporate a filter. This idea goes back
to ODEs, it is shown in [12] that funnel control is feasible if a filter is incorporated in
the feedback. This filter is constructed as follows

ż(t) =












−Im Im 0 · · · 0 0
0 −Im Im · · · 0 0
0 0 −Im · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −Im Im
0 0 0 · · · 0 −Im












︸ ︷︷ ︸

=:Fρ

z(t) +












0
0
0
...
0
Im












︸ ︷︷ ︸

=:Gρ

u(t), z(0) = z0 (1.16)

with initial data z0 ∈ R
(ρ−1)m. The feedback law is defined recursively by the C∞-

functions

γ1 : R × Rm → Rm,
(k, e) 7→ k e ,

γ2 : R × Rm × Rm → Rm,
(k, e, z1) 7→ γ1(k, e) + ‖Dγ1(k, e)‖2 k4 (1 + ‖z1‖2) (z1 + γ1(k, e))

and, for i = 3, . . . , ρ,

γi : R × R
m × R

(i−1)m → R
m, (k, e, (z1, . . . , zi−1)) 7→

γi−1(k, e, (z1, . . . , zi−2))+‖Dγi−1(k, e, (z1, . . . , zi−2))‖2 k4 (1+‖(k, e, (z1, . . . , zi−1))‖2)

×
(
zi−1 + γi−1(k, e, (z1, . . . , zi−2))

)
,

where D denotes the derivative (Jacobian matrix). For a lengthy discussion of the
intuition for the filter see [12]. Now the funnel controller (with filter (1.16)) for systems
[E,A,B,C] ∈ Σn,m with positive strict relative degree ρ ∈ N takes the form
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u(t) = −γρ

(
k(t), e(t), z(t)

)
, e(t) = y(t) − yref(t) ,

ż(t) = Fρz(t) +Gρu(t), k(t) = 1
1−ϕ(t)2‖e(t)‖2 .

(1.17)

The funnel controller for systems [E,A,B,C] ∈ Σn,m with proper inverse transfer

function is much simpler: For appropriate chosen gain parameter k̂ ∈ R \ {0} it is

u(t) = −k(t) e(t), e(t) = y(t) − yref(t) ,

k(t) = k̂
1−ϕ(t)2‖e(t)‖2 .

(1.18)

In Section 5 we will show that the assumption of asymptotically stable zero dy-
namics of a system (1.1) which has either positive strict relative degree or proper
inverse transfer function implies feasibility of the funnel controller. In view of the
fact that such systems are high-gain stabilizable (see Section 4), intuitively we may
believe that if ‖e(t)‖ is close to the funnel boundary ϕ(t)−1, then the high-gain k(t)
forces ‖e(t)‖ away from the funnel boundary. This is the essential property to allow
for funnel control of these systems: k(t) is designed in such a way that it is large if
the the error ‖e(t)‖ is close to the funnel boundary ϕ(t)−1, hence avoiding contact.

The funnel controller is a high-gain adaptive controller which is not high-gain and
not adaptive: Certainly, the gain k(t) in (1.17) and (1.18) takes high values if k(t)
is “close” to the funnel boundary; but it is by no means monotone and exploits the
high-gain property of the system class (i.e. asymptotically stable zero dynamics) only
if necessary. The gain k(t) is adapted by the output, more precisely by the distance
of the norm of the output error to the funnel boundary.

1.5. Literature and outline. The present paper is based on the following pre-
cursors: The Byrnes-Isidori form for ODE systems with strictly proper transfer func-
tion is derived in [13], see also [14, Sec. 5.1]. The zero dynamics form for DAE systems
with proper inverse transfer function is derived in [2]. The concept of funnel control is
introduced in [11]; for a further discussion of funnel control see the survey article [10].

In this article we consider two classes of linear multi-input, multi-output DAE sys-
tems: systems with positive strict relative degree and systems with proper inverse
transfer function; in the single-input single-output case, these two disjoint classes are
the whole of all linear DAEs without feedthrough term. In Section 2, zero dynamics
forms for these system classes are derived, they are the counterpart to the Byrnes-
Isidori form for ODE systems. The normal forms may be interesting in their own right
and are here essential for later proofs of funnel control. In Section 3, parametrization
of the zero dynamics and characterization of asymptotically zero dynamics in terms
of a matrix condition, the zero dynamics form, and the transfer function are derived.
In Section 4, it is shown that a system with asymptotically stable zero dynamics is
high-gain stabilizable with constant gain (in case of proper inverse transfer function)
and constant gain in combination with a filter (in case of positive strict relative degree
of the transfer function). In Section 5 we are ready to present two funnel controllers
for the two system classes. These funnel controllers achieve tracking of a reference
signal (belonging to a rather large class) within a pre-specified funnel; this means in
particular that transient behaviour of the output error can be pre-specified and the
funnel controller does not incorporate any internal model but is simple in its design.
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These results are illustrated in Section 6 by the position control and velocity control
of a mechanical system consisting of springs, masses, and dampers. The proofs are
delegated to Section 7.

2. Normal forms. The notion ‘normal form’ means that it is weaker than
‘canonical form’: Recall that if a set (of systems) may be divided into equivalence
classes and if each orbit (i.e. equivalence class) has a unique representative, then the
mapping from the set to each representative within the orbit is called a canonical
form. The Byrnes-Isidori form for ODE state space systems with strictly proper
transfer function (see [10] and also [14, Sec. 5.1]) is not a canonical form. However,
the freedom left within the non-zero entries of the Byrnes-Isidori form can be specified
and is not significant; this justifies the notion ‘normal form’.

In the present section, certain normal forms, the so called zero dynamics forms,
are studied for two classes of DAE systems with positive strict relative degree and
with proper inverse transfer function. They are interesting in their own right since
they give insight in the properties of the systems class, we will use them to derive
results on zero dynamics and on high-gain output feedback and funnel control.

We first present a zero dynamics form (2.1) for descriptor systems with positive
strict relative degree, see Section 1.3.1.

Theorem 2.1 (Zero dynamics form for systems with positive strict relative de-
gree).
Suppose [E,A,B,C] ∈ Σn,m has strict relative degree ρ ∈ N. Then there exist
W,T ∈ Gln(R) such that

[E,A,B,C]
W,T∼ [Ê, Â, B̂, Ĉ]

with

Â =
















0 Im 0 · · · 0 0 0 0
0 0 Im 0 0 0 0
...

. . .
. . .

. . .
...

...
...

0 0 · · · 0 Im 0 0 0
R1 R2 · · · Rρ−1 Rρ S 0 0
P 0 · · · 0 0 Q 0 0
0 0 · · · 0 0 0 Inc

0
0 0 · · · 0 0 0 0 Inc
















, B̂ =
















0
0
...
0
Γ
0
Bc

0
















,

Ê =
















Im 0 · · · · · · 0 0 0 0
0 Im 0 0 0 0
...

. . .
. . .

. . .
...

...
...

0 0 Im 0 0 0 0
0 0 Im 0 0 0
0 0 · · · 0 0 Iµ 0 0
0 0 · · · 0 0 0 Nc Ncc

0 0 · · · 0 0 0 0 Nc
















, Ĉ =
















Im
0
...
0
0
0
0
C⊤

c
















⊤

,

(2.1)
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where, for some nc, nc ∈ N0, and µ = n− nc − nc − ρm,

Γ = lim
s→∞

sρC(sE −A)−1B ∈ Glm(R) is the high frequency gain matrix,

S ∈ R
m×µ , P ∈ R

µ×m , Q ∈ R
µ×µ ,

[
R1, . . . , Rρ

]
∈ R

m×(ρm),

Bc ∈ R
nc×m , Cc ∈ R

m×nc , Ncc ∈ R
nc×nc

Nc ∈ R
nc×nc , Nc ∈ R

nc×nc are nilpotent, and rk [Nc , Bc] = nc.

(2.2)

The entries R1, . . . , Rρ are unique, system [I,Q, P, S] is unique up to system

equivalence
T̂−1,T̂∼ , and the matrices Nc and Nc are unique up to similarity.

If E is invertible, then nc = nc = 0, this means only the upper left block in Ê is
present.

The form (2.1) is called zero dynamics form of (1.1). The transfer function
satisfies, where Rρ+1 := −I,

C(sE −A)−1B = −
[

ρ+1
∑

i=1

Ris
i−1 + S(sIn−nc−nc−ρm −Q)−1P

]−1

Γ. (2.3)

The proof is in Appendix 7.

Remark 2.2 (Zero dynamics form for DAEs).
An immediate consequence of Theorem 2.1 is the simplified representation of system
[E,A,B,C] ∈ Σn,m: If ν denotes the index of sE −A, then a trajectory satisfies

(x, u, y) ∈ B(1.1) ∩
(
C1(R; Rn) × Cν−1(R; Rm) × Cρ(R; Rm)

)

if, and only if, Tx =
(

y⊤, ẏ⊤, . . . , y(ρ−1)⊤, η⊤, x⊤c , x
⊤
c

)⊤

∈ C1(R; Rn) fulfills

y(ρ)(t) =
ρ∑

i=1

Riy
(i−1)(t) + Sη(t) + Γu(t)

η̇(t) = P y(t) + Qη(t)

xc(t) = −
ν−1∑

i=0

N i
cBcu

(i)(t)

xc(t) = 0.

(2.4)

See Figure 2.1. ⋄

The second zero dynamics form is for systems [E,A,B,C] ∈ Σn,m where the
transfer function C(sE − A)−1B has proper inverse, see Section 1.3.2. This is the
counterpart to (2.1).

Theorem 2.3 (Zero dynamics form for systems with proper inverse transfer
function [2, Thm. 2.3]).
Suppose [E,A,B,C] ∈ Σn,m is such that C(sE − A)−1B has proper inverse. Then
there exist W,T ∈ Gln(R) such that

[E,A,B,C]
W,T∼ [Ê, Â, B̂, Ĉ]
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ξ̇ρ =

ρ
∑

i=1

Riξi + ŷ

+ CAρ−1Bu

d
dt

d
dt

η̇ = Qη + Py

ŷ = Sη

ξ1 = y

y

ŷ

u

ξ1
ξ2 = ẏ

ξ2· · ·
ξρ = y(ρ−1)

ξρ

y

Bc

d
dt
Nc

+

d
dt
Nc

+ +

d
dt
Nc

+

0

xc

xc

Fig. 2.1: Zero dynamics form for systems with positive strict relative degree

with

Â =







A11 A12 0 0
A21 Q 0 0
0 0 Inc

0
0 0 0 Inc






, B̂ =







Im
0n2,m

0nc,m

0nc,m






,

Ê =







0 0 0 Ec

0 In2
0 0

Ec 0 Nc Ncc

0 0 0 Nc






, Ĉ = [Im, 0m,n2

, 0m,nc
, 0m,nc

] ,

(2.5)

where, for some n2, nc, nc ∈ N0,

A11 ∈ R
m,m , A12 ∈ R

m,n2 , A21 ∈ R
n2,m , Q ∈ R

n2,n2 ,

Ec ∈ R
nc,m , Ec ∈ R

m,nc , Ncc ∈ R
nc,nc ,

Nc ∈ R
nc,nc , Nc ∈ R

nc×nc are nilpotent, and rk [Nc , Ec] = nc.

(2.6)

The form (2.5) is called zero dynamics form of (1.1). Furthermore, the following
holds:

(i) Nν
c = 0 and Nν

c = 0, where ν denotes the index of the pencil sE −A .
(ii) the transfer function satisfies

C(sE −A)−1B = −
(
A11 +A12(sIn2

−Q)−1A21

)−1
.

(iii) sr deg
(
C(sE −A)−1B

)
= 0, if, and only if, A11 ∈ Glm(R) .
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(iv) sr deg
(
C(sE −A)−1B

)
= ρ < 0, if, and only if, A11 = 0 and

sr deg
(
A12(sIn2

−Q)−1A21

)
= −ρ.

For uniqueness we have:
(v) If [E,A,B,C], [Ê, Â, B̂, Ĉ] ∈ Σn,m,m are both in zero dynamics form (2.5)

and

[Ê, Â, B̂, Ĉ]
W,T∼ [E,A,B,C] for some W,T ∈ Gln(R) , (2.7)

then there exist Wii ∈ Glni
(R), i ∈ {2, c, c}, Wcc ∈ Rnc,nc such that

W = T−1 =







Im 0 0 0
0 W22 0 0
0 0 Wcc Wcc

0 0 0 Wcc






. (2.8)

(vi) The dimensions n2, nc, nc are unique; the matrices Nc, Nc, Q are unique up
to similarity, so in particular the spectrum of Q is unique;

and A11 = − lims→∞

(
C(sE −A)−1B

)−1
.

The proof is in [2, Theorem 2.3].

Remark 2.4 (Zero dynamics form for DAE).
An immediate consequence of Theorem 2.3 is the representation as a DAE: If ν is the
index of sE −A, then a trajectory satisfies

(x, u, y) ∈ B(1.1) ∩
(
C1(R; Rn) × C1(R; Rm) × Cν(R; Rm)

)

if, and only if, Tx =
(
y, x⊤2 , x

⊤
c , x

⊤
c

)⊤ ∈ C1(R; Rn) fulfills

0 = A11 y(t) +A12 x2(t) + u(t)

ẋ2(t) = A21 y(t) +Qx2(t)

xc(t) =
∑ν−1

i=0 N
i
cEc y

(i+1)(t)

xc(t) = 0.

(2.9)

See Figure 2.2. ⋄

Remark 2.5 (ODE systems with feedthrough).
For ODE systems with feedthrough, i.e. (1.10) with E = I, and strict relative degree
zero we have D ∈ Glm(R). In this case, by using the transcription of (1.10) as
a DAE system (1.11), the zero dynamics form (2.9) can be achieved without changing
the coordinates of the state, namely

0 = −D−1 y(t) + D−1C x(t) + u(t)

ẋ(t) = BD−1 y(t) + (A−BD−1C)x(t).
(2.10)

In the notation of (2.9), the quantities nc and nc are then trivial, while n2 = n and
A11 = −D−1, A12 = D−1C, A21 = A−BD−1C, and Q = A−BD−1C. ⋄
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−A12+

∫

+ A21

Q

−A11
d
dt
E31

d
dt
N33

+

d
dt
N33

++

d
dt
N33

+

0

u x2 ẋ2 y

x3

x4

Fig. 2.2: Zero dynamics form for systems with proper inverse transfer function

3. Zero dynamics. Before we characterize asymptotically stable zero dynamics,
we show that both zero dynamics forms allow to parameterize the zero dynamics.

Remark 3.1 (Parametrization of zero dynamics).

(i) Suppose that [E,A,B,C] ∈ Σn,m has positive strict relative degree and let ν
be the index of sE − A. Then the zero dynamics are given, in terms of the
matrices in (2.1), by

ZD(1.1) =
















T−1










0ρm

eQ·η0

ν−1∑

i=0

N i
cBcΓ

−1SQieQ·η0

0nc










,−Γ−1SeQ·η0, 0










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

η0 ∈ Rµ







.

(3.1)
(ii) Suppose that [E,A,B,C] ∈ Σn,m has proper inverse transfer function. Then

the zero dynamics are given, in terms of (2.5), by

ZD(1.1) =












T−1







0m

eQ·x0
2

0nc

0nc






, −A12e

Q·x0
2, 0







∣
∣
∣
∣
∣
∣
∣
∣

x0
2 ∈ Rn2







. (3.2)

⋄

We are now in a position to characterize asymptotic stable zero dynamics of sys-
tems [E,A,B,C] ∈ Σn,m with positive strict relative degree or proper inverse transfer
function.
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Theorem 3.2 (Asymptotically stable zero dynamics).
Consider a system [E,A,B,C] ∈ Σn,m and suppose it has positive strict relative degree
or proper inverse transfer function. Then the following statements are, in terms of
the system properties defined in Section 1.2, equivalent:

(i) The zero dynamics of system (1.1) are asymptotically stable ;
(ii)

∀ s ∈ C+ : det

[
sE −A B
C 0

]

6= 0 ;

(iii) system (1.1) is minimum phase, i.e.
(a) (1.1) is stabilizable,
(b) (1.1) is detectable,
(c) C(sE −A)−1B does not have any transmission zeros in C+ ;

(iv) σ(Q) ⊆ C−, where Q is in the zero dynamics form (2.1) or (2.5), respectively.

The proof is in Appendix 7.

Condition (ii) in Theorem 3.2 is a convenient mathematical frequency domain
characterization which leads to condition (iv); the latter is the important property to
show constant high-gain stabilizability in Section 4. Condition (iii) is the traditional
definition of a minimum phase system. (ii) and (iii) are very similar to what is known
for asymptotically stable zero dynamics of ODE systems, see [14, Sec. 4.3].

The following two remarks, although not exploited in the next section, may be
worth knowing in its own right.

Remark 3.3 (Zero dynamics and behaviour).

(i) Suppose that [E,A,B,C] ∈ Σn,m has positive strict relative degree. Then the
behaviour B(1.1) can be decomposed, in terms of the transformation matrix T
from Theorem 2.1, into a direct sum of the zero dynamics and a summand as

B(1.1) = ZD(1.1) ⊕R,
where

R :=

{

(x, u, y) ∈ C1(R; Rn)

×C(R; Rm) × C(R; Rm)

∣
∣
∣
∣
∣

(x, u, y) solves (1.1) and

[0µ,ρm, Iµ, 0µ,nc
, 0µ,nc

]Tx(0) = 0

}

.

In terms of (3.1), the representation is immediate from

(
x(·), u(·), y(·)

)
=










T−1










0ρm×ρm

eQ·η0

ν−1∑

i=0

N i
cBcΓ

−1SQieQ·η0

0nc×nc










, −Γ−1SeQ·η0, 0










+










x(·) − T−1










0ρm×ρm

eQ·η0

ν−1∑

i=0

N i
cBcΓ

−1SQieQ·η0

0nc×nc










, u(·) + Γ−1SeQ·η0, y(·)










,
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for any (x, u, y) ∈ B(1.1), where η0 = [0µ,ρm, Iµ, 0µ,nc
, 0µ,nc

]Tx(0).
(ii) Suppose that [E,A,B,C] ∈ Σn,m has proper inverse transfer function. Then

the behaviour B(1.1) can be decomposed, in terms of the transformation matrix
T from Theorem 2.3, into a direct sum of the zero dynamics and a summand
as

B(1.1) = ZD(1.1) ⊕R,

where

R :=

{

(x, u, y) ∈ C1(R; Rn)

×C(R; Rm) × C(R; Rm)

∣
∣
∣
∣
∣

(x, u, y) solves (1.1) and

[0n2,m, In2
, 0n2,nc

, 0n2,nc
]Tx(0) = 0

}

.

This fact is shown in [2, Remark 3.3]. ⋄

Finally, we show that the zero dynamics carries, in a certain sense, the structure
of a dynamical system.

Remark 3.4 (Zero dynamics are a dynamical system).
Let ν be the index of the pencil sE−A. The transition map of system (1.1) is defined,
in terms of Proposition 1.1, as

ϕ : R × R × Rn × Cν−1(R; Rm) → Rn

(t, t0, x
0, u(·)) 7→ T−1

[
eAs(t−t0) 0

0 0

]

Tx0

+
t∫

t0

T−1

[
eAs(t−τ) 0

0 0

]

W−1Bu(τ) dτ

−
ν−1∑

k=0

T−1

[
0 0
0 Nk

]

W−1Bu(k)(t) .

We have shown in [3, Prop. 2.20] that for any (t0, x
0, u) ∈ R×Rn×Cν−1(R; Rm)

the map t 7→ x(t) := ϕ(t, t0, x
0, u(·)) solves the initial value problem

Eẋ(t) = Ax(t) +Bu(t) , x(t0) = x0 (3.3)

if, and only if,

x0 ∈ Vt0,u(·) :=

{

x ∈ R
n

∣
∣
∣
∣
∣
x+

ν−1∑

i=0

T−1

[
0 0
0 N i

]

W−1Bu(i)(t0) ∈ imT−1

[
Ins

0

] }

.

Therefore, consistency of the initial value x0 depends on the initial time t0 and the
input u(·). The output map of system (1.1) is defined by

η : R × R
n × R

m → R
m, (t, x, u) 7→ Cx .

It is readily verified that the structure (R,Rm, Cν−1(R; Rm),Rn,Rm, ϕ, η), where ϕ :
Dϕ → Rn is the restriction of the transition map (by abuse of notation we write the
same symbol) on

Dϕ :=

{

(t, t0, x
0, u) ∈ R × R × Rn × Cν−1(R; Rm)

∣
∣
∣
∣
∣

x0 ∈ Vt0,u(·),

Cϕ(·; t0, x0, u(·)) = 0

}

,
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is an R-linear time-invariant dynamical system as defined
in [8, Defs. 2.1.1, 2.1.24, 2.1.26].
Next let u ∈ Cν−1(R; Rm). As a consequence of uniqueness and global existence of the
solution of the initial value problem (3.3) for x0 ∈ V0,u(·) (see again [3, Prop. 2.20]),
the map

Ψ: Dϕ,0 → ZD(1.1) , (0, 0, x0, u(·)) 7→
(
ϕ(·; 0, x0, u(·)), u(·), Cϕ(·; 0, x0, u(·))

)

is well-defined, where

Dϕ,0 :=
{
(0, 0, x0, u) ∈ Dϕ

}
⊂ Dϕ .

Most importantly, if [E,A,B,C] has positive strict relative degree or proper inverse
transfer function, then Ψ is an isomorphism: it is surjective since a pre-image of
(x, u, 0) ∈ ZD(1.1) is (0, 0, x(0), u(·)) ∈ Dϕ,0 (note that u ∈ Cν−1(R; Rm) by Re-
mark 3.1), it is injective by uniqueness of the solution of the initial value problem (3.3).
In this sense, we may say that ZD(1.1) is a dynamical system. ⋄

4. Stabilization by constant high-gain output feedback. Next we investi-
gate whether asymptotically stable zero dynamics is a sufficient (or even necessary)
condition for high-gain stabilizability in the sense that the feedback (1.13) or (1.14)
resp., applied to (1.1) yields an asymptotically stable closed-loop system.

Theorem 4.1 (High-gain stabilizability).
Consider a system [E,A,B,C] ∈ Σn,m. Then the following statements hold:

(i) Suppose [E,A,B,C] has strict relative degree ρ ∈ N and positive definite high

frequency gain matrix Γ ∈ Rm,m (cf. (2.2)). Let p(s) =
∑ρ−1

i=0 pis
i ∈ R[s] be

Hurwitz and pρ−1 > 0. Then

ZD(1.1) is asympt. stable =⇒
6⇐=

i.g.

{

∃ k∗ ≥ 0 ∀ k ≥ k∗ :

‘(1.1) & (1.13)’ is asympt. stable.

(ii) Suppose [E,A,B,C] has proper inverse transfer function. Then

ZD(1.1) is asympt. stable =⇒
6⇐=

i.g.

{ ∃ k∗ ≥ 0 ∀ k ∈ R, |k| ≥ k∗ ∀ sln. x(·) of

‘(1.1) & (1.14)’ : limt→∞ x(t) = 0.

The proof is in Appendix 7.

Remark 4.2 (High-gain stabilizability).

(i) In case of strict relative degree one, the feedback law (1.13) reduces to the
proportional output feedback u(t) = −k y(t). If the system has higher relative
degree, (1.13) incorporates a compensator p(s) (and thus derivative feedback)
to achieve a relative degree one system.
For ODE systems, the result is proven in [4] for relative degree one. By using
the form (2.1), this result can be generalized to differential-algebraic systems
with positive strict relative degree by using the same techniques.
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(ii) Consider [E,A,B,C] with proper inverse transfer function. It may be surpris-
ing that the sign of k in (1.14) is irrelevant and, furthermore, no compensator
is required.
In view of Remark 2.4, the closed-loop system ‘u(t) = ky(t) & (1.1)’ is equiv-
alent to

−(A11 + kIm) y(t) = A12 x2(t)

ẋ2(t) = Qx2(t) +A21y(t)

xc(t) =
∑ν−1

i=0 N
i
c Ec y

(i+1)(t)

and, if k > ‖A11‖, equivalent to

y(t) = −(A11 + kIm)−1A12x2(t)

ẋ2(t) =
[
Q−A21(A11 + kIm)−1A12

]
x2(t)

xc(t) =
∑ν−1

i=0 N
i
c Ec y

(i+1)(t) .

(4.1)

Note that x2 ∈ C∞(R; Rn2) yields y ∈ C∞(R; Rm) and so the algebraic equa-
tion for x3 is well defined. Note also that asymptotic stability of the zero
dynamics is equivalent to σ(Q) ⊆ C− by Theorem 3.2. Since

lim
k→±∞

σ
(
Q−A21(A11 + kIm)−1A12

)
= σ(Q) ,

the assumptions ‘|k| sufficiently large’ and ‘(1.1) has asymptotically stable
zero dynamics’ yield exponential decay of x2(·), and therefore x3(·) and y(·)
decay exponentially, too. ⋄

5. Funnel control. In this section we will show that the two funnel controllers
(1.17) and (1.18) achieve output tracking of a rather general reference signal within
a pre-specified funnel.

Theorem 5.1 (Funnel control).
Suppose that [E,A,B,C] ∈ Σn,m has asymptotically stable zero dynamics, and let
ν be the index of sE − A. Let ϕ ∈ Φν+1 define a performance funnel Fϕ. The
initial data are an arbitrary consistent initial value x0 ∈ Rn and a reference signal
yref ∈ Bν+1(R≥0; R

m).
(i) If [E,A,B,C] has positive strict relative degree ρ ∈ N and positive definite

high frequency gain matrix Γ = lims→∞ sρC(sE−A)−1B, then the application
of the funnel controller (1.17) to (1.1) yields a closed-loop initial value problem
with precisely one maximal continuously differentiable solution x : [0, ω) →
Rn and this solution is global (i.e. ω = ∞), and all functions x, z, k, u are
bounded.

(ii) If [E,A,B,C] has proper inverse transfer function and the initial gain k(0) =

k̂ ∈ R satisfies |k̂| > lims→∞ ‖G−1(s)‖, then the application of the funnel con-
troller (1.18) to (1.1) yields a closed-loop initial value problem with precisely
one maximal continuously differentiable solution x : [0, ω) → Rn and this so-
lution is global (i.e. ω = ∞), and all functions x, k, u are bounded.

Most importantly, in both cases (i) and (ii), the tracking error e(·) = Cx(·) − yref(·)
satisfies

∃ ε > 0 ∀ t ≥ 0 : ‖e(t)‖ ≤ ϕ(t)−1 − ε , (5.1)
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(that means e(·) evolves within the performance funnel Fϕ and is uniformly bounded
away from the boundary) and for the same ε the gain is bounded by

∀ t ≥ 0 : ‖k‖∞ ≤ |k̂|
1 − (1 − ε‖ϕ‖∞)2

, (5.2)

where k̂ = 1 in case of (i).

The proof is in Appendix 7.

Remark 5.2.

(i) Minimum-phase systems (1.10) with transfer function
G(s) = C(sE −A)−1B +D that has either a proper inverse or has positive
strict relative degree, do also allow funnel control in the sense of Theorem 5.1.
This follows from the artificial extension (1.11).

(ii) Consistency of the initial value x0 ∈ Rn means that the closed-loop sys-
tem (1.1), (1.17) or (1.1), (1.18) resp., with x(0) = x0 has a solution x :
[0, ω) → Rn for some ω ∈ (0,∞]. In practice, consistency of the initial state
of the “unknown” system should be satisfied as far as the DAE [E,A,B,C] is
the correct model.

(iii) In case of Theorem 5.1(ii), the assumption on the initial gain k(0) = k̂ reduces

to k̂ > 0 if lims→∞G−1(s) = 0; the latter means that the transfer function
cannot be realized by an ODE system with feedthrough, see [2, Rem. 6.3].

(iv) In case of ODE systems (1.10), E = I, with invertible feedthrough term,
the transfer function G(s) = C(sI − A)−1B +D has proper inverse and the

assumption on the initial gain k(0) = k̂ is equivalent to |k̂| > ‖D−1‖.
(v) Theorem 5.1 is on system class Σn,m. A careful inspection of the proof of

the theorem shows that one actually only needs that the nominal system can
be brought into the form (2.4) or (2.9), resp. Thus in particular, the pencil
sE −A does not have to be regular; important is σ(Q) ⊆ C−. ⋄

6. Application: Position and velocity control of a mechanical system

with springs, masses and dampers.

6.1. The mechanical model. For purposes of illustration, we consider a me-
chanical system, see Fig. 6.1, with springs, masses and dampers with single-input
spatial distance between the two masses and single-output position of one mass. We
are indebted to Professor P.C. Müller (BU Wuppertal) for suggesting this example to
us. The masses m1, m2, damping constants d1, d2 and spring constants c1, c2 are all
assumed to be positive. As output y(t) = z2(t) we take the position of the mass m2.
In the first example, the input u(t) = z2(t)− z1(t) is the spatial distance between the
masses m1 and m2, whereas, in the second example, the input is the relative velocity
between the masses m1 and m2, i.e. u(t) = ż2(t) − ż1(t).
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s

u(t)m1 m2

s ss

c1

d1

c2

d2

-

-

z1(t)

y(t) = z2(t)

Fig. 6.1: Mass-spring-damper system

6.1.1. Position control. With input u(t) = z2(t)−z1(t), the mechanical system
in Fig. 6.1 may be modelled by the second-order differential-algebraic equation

m1z̈1(t) + d1ż1(t) + c1z1(t) − λ(t) = 0

m2z̈2(t) + d2ż2(t) + c2z2(t) + λ(t) = 0

z2(t) − z1(t) = u(t)

y(t) = z2(t)

(6.1)

where λ(·) is a constraint force viewed as a variable. Defining the state

x(t) = (z1(t), ż1(t), z2(t), ż2(t), λ(t))
⊤, (6.2)

model (6.1) may be rewritten as the linear differential-algebraic input-output sys-
tem (1.1) for

E =









1 0 0 0 0
0 m1 0 0 0
0 0 1 0 0
0 0 0 m2 0
0 0 0 0 0









, A =









0 1 0 0 0
−c1 −d1 0 0 1
0 0 0 1 0
0 0 −c2 −d2 −1
1 0 −1 0 0









, B =









0
0
0
0
1









, C =









0
0
1
0
0









⊤

.

(6.3)
We may immediately see that the pencil sE − A is regular and has index ν = 3;

The transfer function

G(s) = C(sE −A)−1B =
m1s

2 + d1s+ c1
(m1 +m2)s2 + (d1 + d2)s+ (c1 + c2)

has proper inverse: lims→∞G−1(s) = (m1 +m2)/m1. The zero dynamics of (6.3) is
asymptotically stable: setting y(·) = 0 in (6.1) yields z2(·) = 0, λ(·) = 0, z1(·) = −u(·)
and m1 z1(t) + d1ż1(t) + c1z1(t) = 0 for all t ≥ 0; positivity of m1, d1 and c1 then
gives limt→∞ ż1(t) = limt→∞ z1(t) = 0. Summarizing, system (6.3) satisfies the
assumptions of Theorem 5.1(ii).

6.1.2. Velocity control. With input u(t) = ż2(t) − ż1(t), the mechanical sys-
tem in Fig. 6.1 may, analogous to position control, be modelled by the second-order
differential-algebraic equation

m1z̈1(t) + d1ż1(t) + c1z1(t) − λ(t) = 0

m2z̈2(t) + d2ż2(t) + c2z2(t) + λ(t) = 0

ż2(t) − ż1(t) = u(t)

y(t) = z2(t).

(6.4)
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Defining the state as in (6.2), the model (6.4) may be rewritten as the linear differential-
algebraic input-output system (1.1) for

A =









0 1 0 0 0
−c1 −d1 0 0 1
0 0 0 1 0
0 0 −c2 −d2 −1
0 1 0 −1 0









and E, B, C as in (6.3). (6.5)

We may immediately see that the pencil sE −A is regular and has index ν = 2; The
transfer function

G(s) = C(sE −A)−1B =
m1s

2 + d1s+ c1
(m1 +m2)s3 + (d1 + d2)s2 + (c1 + c2)s

,

has strict relative degree 1: lims→∞ s·G(s) = m1/(m1 +m2). Similar to Section 6.1.1,
we may see that the zero dynamics of (6.5) are asymptotically stable, whence we are
in the situation of Theorem 5.1(i).

6.2. Simulations. In both examples, as reference signal yref : R≥0 → R, we
take the first component of the solution of the following initial-value problem for the
Lorenz system

ξ̇1(t) = 10 (ξ2(t) − ξ1(t)), ξ1(0) = 5

ξ̇2(t) = 28 ξ1(t) − ξ1(t) ξ3(t) − ξ2(t), ξ2(0) = 5

ξ̇3(t) = ξ1(t) ξ2(t) − 8
3 ξ3(t), ξ3(0) = 5 .

(6.6)

This may be viewed as a rather academic choice, however it is well known (see for
example [18, App. C]) that the Lorenz system is chaotic (and thus the reference
signal is rather “wild”), the unique global solution of (6.6) is bounded with bounded
derivative on the positive real axis (and thus our assumptions on the class of reference
signals are satisfied). The solution of (6.6) is depicted in Fig. 6.2. The funnel Fϕ is
determined by the function

ϕ : R≥0 → R≥0, t 7→ 0.5 te−t + 2 arctan t . (6.7)

Note that this prescribes an exponentially (exponent 1) decaying funnel in the tran-
sient phase [0, T ], where T ≈ 3, and a tracking accuracy quantified by λ = 1/π
thereafter, see e.g. Fig. 6.3d.

Spring and damping constants, masses and their initial positions are chosen, for
the simulations, as

m1 = 1, m2 = 3, c1 = 2, c2 = 1, d1 = 3, d2 = 5,

z1(0) = 101, z2(0) = 21 and k̂ = 5.
(6.8)



24 T. BERGER, A. ILCHMANN, AND T. REIS

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

50

t

 

 
ξ

1

ξ
2

ξ
3

Fig. 6.2: Solution of the Lorenz system (6.6)

For position control, straightforward calculations show that the closed-loop sys-
tem (1.18), (6.1) has uniquely determined initial velocities ż1(0), ż2(0) as well as initial
constraint force λ(0) and that the initialization is consistent.

In the case of velocity control we further choose the initial velocities

ż1(0) = −11, ż2(0) = −3 (6.9)

and clearly there is a unique initial constraint force λ(0) and the initialization of
(1.17), (6.5) is consistent.

All numerical simulations are performed by MATLAB.

6.2.1. Position control. Since

k̂ = 5 > 4 = lim
s→∞

G−1(s),

all assumptions of Theorem 5.1(ii) are satisfied and we may apply the funnel con-
troller (1.18) with funnel boundary specified in (6.7) and reference signal yref(·) = ξ1(·)
given in (6.6). The simulations over the time interval [0, 10] are depicted in Fig. 6.3:
Fig. 6.3a shows the output y(·) tracking the rather “vivid” reference signal yref(·)
within the funnel shown in Fig. 6.3d. Note that the input u(·) in Fig. 6.3c as well as
the gain function k(·) in Fig. 6.3b have spikes at those times t when the norm of the
error ‖e(t)‖ is “close” to the funnel boundary ϕ(t)−1; this is due to rapid change of
the reference signal. We stress that the gain function k(·) is non-monotone.

6.2.2. Velocity control. Since the system has relative degree one with positive
high frequency gain Γ = m1/(m1 +m2) = 1/4, all assumptions of Theorem 5.1 (i) are
satisfied and we may apply the funnel controller (1.17) with funnel boundary specified
in (6.7) and reference signal yref(·) = ξ1(·) given in (6.6).

The simulations over the time interval [0, 10] are depicted in Fig. 6.4: Fig. 6.4a
shows the output y(·) tracking the reference signal yref(·); the error within the funnel
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Fig. 6.3: Position control: Simulation of the funnel controller (1.18) with funnel
boundary specified in (6.7) and reference signal yref(·) = ξ1(·) given in (6.6) applied
to the mechanical model (6.1) with data (6.8).

is depicted in Fig. 6.4d. Note that, due to the rather “academic choice” of the exam-
ple, the input u(·) (in Fig. 6.4c) and the gain function k(·) (in Fig. 6.4b) both take
considerable larger values than for position control. Another reason for this behaviour
is that we have kept the funnel as tight as for position control simulated in Fig. 6.3,
and the velocity exhibits a very “vivid” behaviour which causes the error to approach
the funnel boundary faster, resulting in the high values of the gain function.

7. Appendix: Proofs. This section contains the proofs of the results presented
in Sections 1-5. First we prove a preliminary lemma.

Lemma 7.1. Suppose [E,A,B,C] ∈ Σn,m has strictly proper transfer function
G(s) = C(sE −A)−1B. Then there exists W,T ∈ Gln(R) such that

[E,A,B,C]
W,T∼









Ins
0 0

0 Nc Ncc

0 0 Nc



 ,





As 0 0
0 Infc

0
0 0 Infc



 ,





Bs

Bfc

0



 ,
[
Cs 0 Cfc

]





(7.1)
for some As ∈ Rns,ns , Bs ∈ Rns,m, Cs ∈ Rm,ns , Nc ∈ Rnfc,nfc , Ncc ∈ Rnfc,nfc ,
Nc ∈ Rnfc,nfc , Bfc ∈ Rnfc,m and Cfc ∈ Rm,nfc , where Nc, Nc are nilpotent and
rk [Nc , Bfc] = nfc. The dimensions ns, nfc, nfc ∈ N0 are unique, the matrices As,
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Fig. 6.4: Velocity control: Simulation of the funnel controller (1.17) with funnel
boundary specified in (6.7) and reference signal yref(·) = ξ1(·) given in (6.6) applied
to the mechanical model (6.4) with data (6.8), (6.9).

Nc and Nc are unique up to similarity. Furthermore, system [E,A,B,C] has strict
relative degree ρ > 0 if, and only if,

det(CsA
ρ−1
s Bs) 6= 0 and, if ρ > 1, ∀ k = 0, . . . , ρ− 2 : CsA

k
sBs = 0 . (7.2)

Proof. We proceed in several steps.
Step 1 : We show that there exist W,T ∈ Gln(R) such that (7.1) holds true.
Corollary 1.2 yields (1.5) for some W1, T1 ∈ Gln(R). It follows from [6, Sec. 2-1.]
that system [N, Inf

, Bf , Cf ] may be decomposed into controllability form so that, for
some T2 ∈ Glnf

(R),

[N, Inf
, Bf , Cf ]

T
−1

2
,T2∼

[[
Nc Ncc

0 Nc

]

,

[
Infc

0
0 Infc

]

,

[
Bfc

0

]

,
[
Cfc, Cfc

]
]

,

where Nc ∈ Rnfc,nfc , Nc ∈ Rnfc,nfc , N12 ∈ Rnfc,nfc , Bfc ∈ Rnfc,m, Cfc ∈ Rm,nfc ,
and Cfc ∈ Rm,nfc , such that Nc, Nc are nilpotent and rk [Nc , Bfc ] = nfc.

We show that Cfc = 0: Since the transfer function is invariant under system
equivalence we have, using (1.7),

G(s) = C(sE −A)−1B = Cs(sIns
−As)

−1Bs −
ν−1∑

k=0

skCfcN
k
c Bfc,

and since G(s) is strictly proper, it follows that CfcN
i
cBfc = 0 for i = 1, . . . , ν − 1.

The nilpotency of Nc gives CfcN
ν−1
c [Nc , Bfc ] = 0, whence CfcN

ν−1
c = 0. Repeating

this argumentation ν − 1 times, we obtain Cfc = 0.
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Setting W := W1

[
I 0
0 T−1

2

]

and T :=

[
I 0
0 T2

]

T1, we obtain (7.1).

Step 2 : We show that the dimensions ns, nfc, nfc ∈ N0 are unique and that the
matrices As, Nc and Nc are unique up to similarity: Assume that









Ins1
0 0

0 Nc1 Ncc1

0 0 Nc1



 ,





As1 0 0
0 Infc1

0
0 0 Infc1



 ,





Bs1

Bfc1

0



 ,
[
Cs1 0 Cfc1

]





W,T∼









Ins2
0 0

0 Nc2 Ncc2

0 0 Nc2



 ,





As2 0 0
0 Infc2

0
0 0 Infc2



 ,





Bs2

Bfc2

0



 ,
[
Cs2 0 Cfc2

]



 .

Proposition 1.1 implies that ns1 = ns2 as well as the similarity of As1 and As2.
Proposition 1.1 also yields the existence of T11 ∈ Rnfc1,nfc2 , T12 ∈ Rnfc1,nfc2 , T21 ∈
Rnfc1,nfc2 , and T22 ∈ Rnfc1,nfc2 such that

T =

[
T11 T12

T21 T22

]

∈ Glnf
(R), and

[
Nc1 Ncc1

0 Nc1

] [
T11 T12

T21 T22

]

=

[
T11 T12

T21 T22

] [
Nc2 Ncc2

0 Nc2

]

,

[
Bfc1

0

]

=

[
T11 T12

T21 T22

] [
Bfc2

0

]

.

Therefore, 0 = T21Bfc2 and T21Nc2 = Nc1T21.
Hence, for k = 1, . . . , ν − 1, we have T21N

k
c2Bfc2 = Nk

c1T21Bfc2 = 0, and so
T21N

ν−1
c2 [Nc2 Bfc2 ] = 0, whence T21N

ν−1
c2 = 0. Repeating this argumentation ν − 1

times, we obtain T21 = 0. Then T ∈ Glnf
(R) yields nfc2 ≤ nfc1. By reversing the

roles of the above matrices, we analogously obtain nfc1 ≤ nfc2 and thus nfc1 = nfc2,
nfc1 = nfc2. This shows that T11 and T22 are square. Together with T ∈ Glnf , we
obtain T11 ∈ Glnfc

(R) and T22 ∈ Glnfc
(R). Hence Nc1, Nc2 and Nc1, Nc2 are similar,

resp.
Step 3 : We show that [E,A,B,C] has strict relative degree ρ > 0 if, and only if, (7.2)
holds.
This is an immediate consequence of the fact that, due to Step 1, the transfer function
has the representation

G(s) = C(sE −A)−1B = Cs(sIns
−As)

−1Bs.

This completes the proof of the lemma.

Proof of Theorem 2.1. We proceed in several steps.

Step 1 : We show that there existW,T ∈ Gln(R) such that [E,A,B,C]
W,T∼ [Ê, Â, B̂, Ĉ]

for [Ê, Â, B̂, Ĉ] as in (2.1).
Since a positive strict relative degree implies that G(s) is strictly proper, we may
apply Lemma 7.1 to obtain (7.1) for some W1, T1 ∈ Gln(R). Furthermore, (7.2) holds
and hence we may transform [I, As, Bs, Cs] into Byrnes-Isidori form (see [13, Lemma
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3.5]), i.e. there exists T2 ∈ Glns
(R) such that

[I, As, Bs, Cs]
T

−1

2
,T2∼













I,












0 Im 0 · · · 0 0
0 0 Im 0 0
...

. . .
. . .

. . .
...

0 0 · · · 0 Im 0
R1 R2 · · · Rρ−1 Rρ S
P 0 · · · 0 0 Q












,












0
0
...
0
Γ
0












,












Im
0

...

0












⊤












.

(7.3)

Set W := W1

[
I 0
0 T−1

2

]

and T :=

[
I 0
0 T2

]

T1. Since Nc, Nc are nilpotent and

rk [Nc , Bfc] = nfc, the claim follows.

Step 2 : For the proof of the uniqueness statements see [1, Theorem 2.5] in com-
bination with Lemma 7.1. In particular, Γ is uniquely determined.

Step 3 : It remains to prove (2.3) and that Γ = lims→∞ sρC(sE −A)−1B.
We prove (2.3):
Determine the solution X(s) of the linear equation










sIm −Im
. . .

. . .

sIm −Im
−R1 . . . −Rρ−1 (sIm −Rρ) −S
−P 0 . . . 0 sIn−nfc−nfc−ρm −Q



















X1(s)
X2(s)
...

Xρ(s)
Xρ+1(s)










=










0
...
0
Γ
0










.

A simple iterative calculation yields

sXi(s) = Xi+1(s), for i = 1, . . . ρ− 1,

−
ρ−1∑

i=1

RiXi(s) + (sIm −Rρ)Xρ(s) − SXρ+1(s) = Γ,

−PX1(s) + (sIn−nfc−nfc−ρm −Q)Xρ+1(s) = 0,

and this is equivalent to

X(s) =
(
X1(s)

⊤, sX1(s)
⊤, . . . , sρ−1X1(s)

⊤, Xρ+1(s)
⊤

)⊤
,

Γ = −
ρ−1∑

i=1

Ris
i−1X1(s) + (sIm −Rρ)s

ρ−1X1(s) − SXρ+1(s),

Xρ+1(s) = (sIn−ρm −Q)−1PX1(s).
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Since the transfer function is invariant under system equivalence we have

C(sE −A)−1B = Ĉ(sÊ − Â)−1B̂

=
[
Im 0 · · · 0

]












sIn−nfc−nfc
−












0 Im 0 · · · 0 0
0 0 Im 0 0
...

. . .
. . .

. . .
...

0 0 · · · 0 Im 0
R1 R2 · · · Rρ−1 Rρ S
P 0 · · · 0 0 Q























−1









0
...
0
Γ
0










+
[
0 Cfc

]
[
sNc − Infc

sNcc

0 sNc − Infc

]−1 [
Bfc

0

]

.

=
[
Im 0 · · · 0

]












sIn−nfc−nfc
−












0 Im 0 · · · 0 0
0 0 Im 0 0
...

. . .
. . .

. . .
...

0 0 · · · 0 Im 0
R1 R2 · · · Rρ−1 Rρ S
P 0 · · · 0 0 Q























−1









0
...
0
Γ
0










=X1(s) = −
[

ρ+1
∑

i=1

Ris
i−1 + S(sIn−nfc−nfc−ρm −Q)−1P

]−1

Γ.

This proves (2.3). Finally,

Γ = lim
s→∞

−
[

ρ+1
∑

i=1

Ris
i−1 + S(sIn−nfc−nfc−ρm −Q)−1P

]

G(s)

= −
ρ

∑

i=1

Ri lim
s→∞

si−1G(s) + lim
s→∞

sρG(s) − lim
s→∞

S(sIn−nfc−nfc−ρm −Q)−1P G(s)

= lim
s→∞

sρG(s)

and the proof of the theorem is complete.

Proof of Theorem 3.2.
(i) ⇔ (iv): This is immediate from Remark 3.1.

For the remainder of the proof we only consider systems with positive strict rela-
tive degree; the proof for systems which have a proper inverse transfer function is in [2,
Theorem 5.4]. In view of invariance of the transfer function under system equivalence
we may assume, without loss of generality, that [E,A,B,C] is in form (2.1).

(ii) ⇔ (iv): First note that Schur’s complement formula (see for example [8,
Lemma A.1.17]) yields, for all X ∈ R

k×m, Y ∈ R
k×k, Z ∈ R

m×m,

det

[
X Y
Z 0

]

= det

[
0 Ik
Im 0

]

· det

[
Z 0
X Y

]

= (−1)km detZ · detY.
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This and the fact that det(sN − Ik) = (−1)k for any nilpotent N ∈ Rk,k yields

det

[
sE −A B
C 0

]

= det
















sIm −Im 0
. . .

. . .
...

sIm −Im 0
−R1 . . . −Rρ−1 sIm −Rρ −S Γ
−P 0 . . . 0 sIµ −Q 0
0 0 . . . 0 sNc − Inc

sNcc Bc

0 0 . . . 0 0 sNc − Inc
0

Im 0 . . . 0 0 Cc 0
















= (−1)m det
















0 −Im sIm
...

. . .
. . .

0 sIm −Im
Γ . . . −Rρ−1 sIm −Rρ −S −R1

0 0 . . . 0 sIµ −Q −P
Bc 0 0 . . . 0 sNc − Inc

sNcc 0
0 0 0 . . . 0 0 sNc − Inc

0
0 0 0 . . . 0 0 Cc Im
















= (−1)m det

[
sNc − Inc

0
Cc Im

]

· det(sNc − Inc
) · det(sIµ −Q)

· det










0 −Im
0 sIm −Im
...

. . .
. . .

0 sIm −Im
Γ −R2 . . . −Rρ−1 sIm −Rρ










= (−1)m+nc+nc det(sIµ −Q) det Γ.

This proves the claim.
(iii) ⇔ (iv): Set

[As, Bs, Cs] =























0 Im 0 · · · 0 0
0 0 Im 0 0
...

. . .
. . .

. . .
...

0 0 · · · 0 Im 0
R1 R2 · · · Rρ−1 Rρ S
P 0 · · · 0 0 Q












,












0
0
...
0
Γ
0












,
[
Im 0 · · · 0

]












.

We immediately see that
a) ∀ s ∈ C : rk [sE −A,B] = rk [sIns

−As, Bs] + nc + nc,
b) ∀ s ∈ C : rk [sE⊤ −A⊤, C⊤] = rk [sIns

−A⊤
s , C

⊤
s ] + nc + nc,

c) G(s) = C(sE −A)−1B = Cs(sIns
−As)

−1Bs,
where c) is proved similar to Step 3 in the proof of Theorem 2.1. Therefore, the
equivalence of (iii) and (iv) has been reduced to the ODE system [Ins

, As, Bs, Cs ].
Now the claim follows from [9, Proposition 2.1.2]. This completes the proof of the
theorem.
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For the proof of Theorem 4.1 a lemma is required.

Lemma 7.2 (High-gain lemma). Consider, for Γ ∈ Cm×m, R̃ ∈ Cm×m, S̃⊤,
P̃ ∈ C(n−m)×m, Q̃ ∈ C(n−m)×(n−m), the parameterized matrix

Aκ :=

[
R̃− κΓ S̃

P̃ Q̃

]

, κ ≥ 0 .

Suppose that the spectrum σ(Γ) = {γ1, . . . , γm} ⊆ C\{0} consists of semi-simple non-
zero eigenvalues only, and denote the spectrum of Q̃ by σ(Q̃) = {qm+1, . . . , qn}. Then
there exist r1, . . . , rm ∈ C only depending on R̃ and Γ with the following property:
For all ε > 0 there exist ρ1, . . . , ρm ≥ 0 and κ∗ ≥ 1 such that, for all κ ≥ κ∗ and a
suitable numeration of the eigenvalues λ1(Aκ), . . . , λn(Aκ) of Aκ, we have

λi(Aκ) ∈
m⋃

j=1

B
(
rj − κγj , ρj

)
∀ i = 1, . . . ,m

and λi(Aκ) ∈
n⋃

j=m+1

B
(
qj , ε) ∀ i = m+ 1, . . . , n,

where B(z, ε) = { w ∈ C | |z − w| < ε } denotes the ball of radius ε around z in C.

Proof. Choose U1 ∈ Glm(C), U2 ∈ Gln−m(C) such that, for appropriately chosen
δm+1, . . . , δn−1 ∈ {0, 1} we have

U1ΓU
−1
1 =






γ1

. . .

γm




 , U2Q̃U

−1
2 =








qm+1 δm+1

. . .
. . .

qn−1 δn−1

qn







,

and let

Tα := diag(α1, α2, . . . , αn−m) , where α > 0.

Then we define

M(α, κ) :=

[
U−1

1 0
0 T−1

α U−1
2

] [
R̃− κΓ S̃

P̃ Q̃

] [
U1 0
0 U2Tα

]

=















U−1
1 R̃U1 − κ






γ1

. . .

γm




 U−1

1 S̃U2Tα

T−1
α U−1

2 P̃U1








qm+1 δm+1/α
. . .

. . .

qn−1 δn−1/α
qn






















.
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Define ri := (U−1
1 R̃U1)ii, i = 1, . . . ,m and the off-diagonal row sums

ρi(α) :=

n∑

j=1

j 6=i

|M(α, κ)ij | , i = 1, . . . , n.

Note that the off-diagonal row sums are independent of κ and the γi. Fix ε > 0. We
may now choose α > 0 sufficiently large so that the effect of the scaling matrix Tα is
that

∀ i ∈ {m+ 1, . . . , n} : ρi := ρi(α) ∈ [0, ε) .

Since γi 6= 0, i = 1, . . . ,m we may now choose κ∗ ≥ 1 sufficiently large so that

∀κ ≥ κ∗ :

m⋃

i=1

B (ri − κγi, ρi) ∩
n⋃

j=m+1

B(qj , ε) = ∅ .

We are now in a position to apply Gershgorin’s disks, see [8, Theorem 4.2.19], to
deduce the claim. This completes the proof of the lemma.

Proof of Theorem 4.1.
(i): We prove “⇒”. By Theorem 2.1, [E,A,B,C] is equivalent to a system in the
form (2.4). We introduce the “new states”

ξ := 1
pρ−1

· p ( d
dt

)y, χ :=

(

y⊤, ẏ⊤, . . . ,
(

y(ρ−2)
)⊤

, η⊤
)⊤

,

and observe that

ξ̇(t) = R̃ ξ(t) + S̃ χ(t) + Γu(t)

χ̇(t) = P̃ ξ(t) + Q̃ χ(t),
(7.4)

where R̃, S̃ are matrices of appropriate size and

P̃ = [0, . . . , 0, Im, 0]⊤, Q̃ =

[
Â 0

P̂ Q

]

,

with Â =








0 I
. . .

. . .

0 I
− p0

pρ−1

I . . . − pρ−3

pρ−1

I − pρ−2

pρ−1

I







, P̂ = [P, 0, . . . , 0].

Note that Â is Hurwitz since p(s) is Hurwitz. The feedback (1.17) reads in the new
coordinates

u(t) = −k p ( d
dt

) y(t) = −k pρ−1 ξ(t), (7.5)

and therefore the application of (1.17) to [E,A,B,C] results, in terms of the new
system (7.4), in the closed-loop system

d
dt

(
ξ(t)
χ(t)

)

=

[
R̃− kpρ−1Γ S̃

P̃ Q̃

]

︸ ︷︷ ︸

=:Ak

(
ξ(t)
χ(t)

)

. (7.6)
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Note that the closed-loop system (1.1), (1.13) is asymptotically stable if (7.6) is
asymptotically stable. This is due to the fact that p(s) is Hurwitz and if y decays
exponentially so do all derivatives of y and, by (2.4), also u and all derivatives of u,
which finally gives that xc decays exponentially.
We show that (7.6) is asymptotically stable. Note that Q̃ is Hurwitz since Q is
Hurwitz. Therefore, by pρ−1 > 0, Γ positive definite and σ(Q̃) ⊆ C−, we may apply
Lemma 7.2 to conclude that

∃ k∗ ≥ 0 ∀ k ≥ k∗ : σ(Ak) ⊆ C−.

This proves the claim.
To see that “⇐” does not hold true, consider system (1.1) for

E = I, A =

[
0 1
−1 0

]

, B =

[
1
0

]

, C = [1, 0], (7.7)

which is in zero dynamics form (2.1) and has strict relative degree 1. We may observe
that Q = 0 and therefore the zero dynamics of (7.7) are not asymptotically stable.
However, the closed-loop system (7.7), (1.13) where p(s) ≡ p0 > 0 takes the form

ẋ(t) = Akx(t) =

[
−kp0 1
−1 0

]

x(t),

which is, since

σ(Ak) =

{

−p0k

2
±

√

(p0k)2

4
− 1

}

,

asymptotically stable for all k > 0. This shows that [E,A,B,C] is high-gain stabiliz-
able.

(ii): The proof of “⇒” has been carried out in Remark 4.2(ii). It remains to show
that “⇐” does not hold true. Consider system (1.1) for

E =







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1






, A =







0 0 1 0
0 0 0 1
0 −1 0 0
1 0 0 −1






, B =







1 0
0 1
0 0
0 0






, C =

[
1 0 0 0
0 1 0 0

]

,

(7.8)
which is in zero dynamics form (2.5) with n1 = n2 = 2, nc = nc = 0 and

A11 =

[
0 0
0 0

]

, A12 =

[
1 0
0 1

]

, A21 =

[
0 1
−1 0

]

, Q =

[
0 0
0 −1

]

.

Since Q has an eigenvalue at the origin, Theorem 3.2 yields that the zero dynamics are
not asymptotically stable. The asymptotic stability of the closed-loop system ‘(7.8)
& (1.14)’ is determined by the spectrum of the matrix

Q−A21(kI2 +A11)
−1A12 =

[
0 1

k

− 1
k

−1

]

,

and this satisfies, for all k ∈ R\{0},

σ(Q−A21(kI2 −A11)
−1A12) =

{

− 1
2 +

√
1
4 − 1

k2 ,− 1
2 −

√
1
4 − 1

k2

}

⊆ C−.
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This shows that [E,A,B,C] is high-gain stabilizable and completes the proof of the
theorem.

Proof of Theorem 5.1.
(i): Without restriction of generality, one may consider [E,A,B,C] in the form (2.4).
Ignoring the bottom two algebraic equations in (2.4), the claim in (i) and the bound
on e follow from [12, Theorem 2]. Since γρ is a C∞-function, it is easy to see that u
is (ν − 1)-times continuously differentiable and all of these derivatives are bounded
functions. Therefore, xc and x̄c in (2.4) are bounded functions. It remains to show
the bound on k in (5.2): We clearly have that

∀ t > 0 : ‖k‖∞ ≤ 1

1 − ‖ϕ‖2
∞‖e(t)‖2

(5.1)

≤ 1

1 − (ϕ(t)−1‖ϕ‖∞ − ε‖ϕ‖∞)2
.

Taking the infimum over all t > 0 and observing that inft>0 ϕ(t)−1 = (supt>0 ϕ(t))−1 =
‖ϕ‖−1

∞ , yields (5.2).
(ii): This result is shown in [2, Thm. 6.2].

Acknowledgement: We are indebted to our colleague Fabian Wirth (University
of Würzburg) for helpful discussions.
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