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Abstract

This paper presents some weighted H2-regularity estimates for a model
Poisson problem with discontinuous coefficient at high contrast. The co-
efficient represents a random particle reinforced composite material, i.e.,
highly conducting circular particles are randomly distributed in some
background material with low conductivity. Based on these regularity
results we study the percolation of thermal conductivity of the material
as the volume fraction of the particles is close to the jammed state. We
proof that the characteristic percolation behavior of the material is well
captured by standard conforming finite element models.

Keywords perforated domain, thickness of a domain, finite element method,
high contrast, percolation, phase transition

1 Introduction

This note studies the numerical approximability of thermal diffusion in a rep-
resentative class of particle composite materials (or composites). The particles
(or inclusions) are pairwise disjoint closed disks I = {I1, I2, . . . , IN} with posi-
tive radii. They are randomly distributed in a background material (or matrix)
that occupies some open, bounded, convex, polygonal domain Ω ⊂ R2. The
inclusions are highly conducting compared to the matrix Ωmat := Ω \∪I, a fact
which is reflected in the diffusion coefficient

c(x) =

{
1 if x ∈ Ωmat,
ccont if x ∈ ∪I (1.1)

with some contrast parameter ccont � 1.
The thermal diffusion in the composite is modelled by the stationary heat

equation,
−div c∇u = f in Ω, u = uD on ∂Ω, (1.2)

with a prescribed temperature uD at the boundary of Ω and a heat source f .
If the source term f is supported in the matrix then, in the limit ccont → ∞,
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problem (1.2) reduces to an equation in the perforated domain Ωmat. Consider
the function spaces

V := {v ∈ H1(Ωmat) : v|∂I = const. for all I ∈ I} and

V0 := {v ∈ V : v|∂Ω = 0 in the sense of traces}.

Then the corresponding variational problem reads: Given f ∈ L2(Ωmat) and
uD ∈ C2(∂Ω), find u ∈ V such that∫

Ωmat

∇u(x)∇v(x) dx =

∫
Ωmat

f(x)v(x) dx for all v ∈ V0 (1.3.a)

and
u(x) = uD(x) for almost all x ∈ ∂Ω. (1.3.b)

Since the elements of V have a constant trace on the boundary of a single
inclusion, they can trivially be extended to Ω in a way that the extension v ∈
H1(Ω) satisfies ∇v|(∪I) = 0. Hence, the inequalities of Friedrichs and Schwarz
yield

‖v‖2H1(Ωmat) ≤ (1 + diam
(
Ω
)2

)‖∇v‖2L2(Ωmat) and (1.4.a)∫
Ωmat

∇u(x)∇v(x) dx ≤ ‖u‖H1(Ωmat)‖v‖H1(Ωmat) (1.4.b)

for all u, v ∈ V0. The inequalities (1.4) ensure the unique solvability of the
variational problem (1.3).

The major difficulty in discretizing (1.3) arises from the fact that the en-
ergy of the solution u, given by ‖∇u‖2L2(Ωmat), might depend crucially on the
geometric properties of the filler. Consider the appearance of an almost con-
ducting path of inclusions, which connects two parts of the outer boundary ∂Ω
where different temperatures are prescribed (as in Figure 1.a). The gap in the
temperature needs to be compensated on the path, i.e., in the small regions
(characterized by a small parameter δcond in Figure 1.a) between the inclusions
of the path. Hence, the solution shows steep gradients. If the inclusions of the
path touch pairwise, the path is perfectly conducting and hence, the energy is
infinite. Depending on the volume fraction of particles, the material shows a
phase transition from moderate to high conductivity. Mathematically speaking,
the solution operator, which maps a pair (uD, f) ∈ C2(∂Ω) × L2(Ωmat) to the
solution of (1.3), is not uniformly bounded with respect to the geometry of the
set of inclusions I.

In this study, we will show that standard conforming1 finite element approx-
imations of (1.3) (denoted by ufem) capture such a percolation phenomenon
effectively. More precisely,

‖∇(u− ufem)‖L2(Ωmat) ≤ C (1.5)

holds with some generic constant C independent of the distance of the particles
(see Theorem 4.1). Thus, conforming finite element methods are robust with

1A finite element method is called conforming if the corresponding finite element space is
contained in V . In the present context, conformity shall primarily ensure that the complicated
geometry of the composite is resolved exactly by the underlying finite element mesh.
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respect to δcond → 0 and allow meaningful material simulation even in densely
packed composites.

The issue of percolation and its numerical traceability in transport problems
related to high contrast particle composites was previously addressed by discrete
network models [4, 2, 3]. A pioneering result [3, Theorem 3.3] is that discrete
network models, for equally sized inclusions in the absence of outer forces (f =
0), mimic the blow-up of the energy as the volume fraction of the particles is
close to the jammed state.

Compared to the analysis in [2, 3], which rests mainly on duality arguments,
our analysis is built upon regularity estimates for the solution of (1.3) in certain
weighted norms. In this context, the weight (denoted by δ) reflects the local
thickness of the perforated domain Ωmat (see Section 2.1). By choosing this
specific weight, the constant in the regularity estimates (cf. Theorems 3.6 and
3.8) turn out to be independent of δ, i.e., they do not depend on the distances
between the inclusions. The combination of the quasi-optimality of conforming
finite elements, standard interpolation error estimates, and the new regularity
estimates yield the general statement on robustness (1.5) without even specify-
ing a discrete space precisely. Our technique generalizes in a straight forward
way to problem classes beyond the model problem under consideration, e.g.,
to more general inclusion geometries, to the 3-dimensional case, and to general
second order elliptic operators.

2 Geometric Preliminaries

This section manifests the notion of thickness of a perforated domain and a
finite, problem-adapted subdivision of the perforated domain under considera-
tion.

2.1 The Thickness of a Domain

Our definition of thickness relies on a certain (infinite) triangulation of Ωmat,
which is first introduced.

A convex polygon T is the convex hull of 2 or more distinct points. The set
of its vertices (corners) V(T ) is the minimal set of points x1, x2, . . . , xk ∈ R2,
so that T = conv({x1, x2, . . . , xk}). According to the above definition, convex
polygons are closed. A convex polygon T is called cyclic if its vertices (corners)
V(T ) are located on the boundary of its circumdisk CD(T ). Examples of cyclic
polygons are line segments, triangles and rectangles.

Following [9], Ωmat can be represented by a regular, infinite subdivision Tmat

into cyclic polygons (or triangulation for short). More precisely, Tmat is a set of
cyclic polygons such that its set of vertices V(Tmat) equals ∂Ωmat,

V(Tmat) :=
⋃

T∈Tmat

V(T ) = ∂Ωmat,

and any two distinct cyclic polygons in Tmat are either disjoint, or share exactly
one vertex, or have exactly one edge in common. Moreover, the triangulation
Tmat can be chosen in a way that all of its elements T ∈ Tmat satisfy the so-called
Delaunay criterion

CD(T ) ∩ V(Tmat) = V(T ). (2.1)
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high temperature

δcond

low temperature

(a) Conducting path
of inclusions.

(b) Infinite/Generalized Delaunay tri-
angulation of a set of inclusions con-
tained in the unit square.

Figure 1: Geometric aspects of problem (1.3).

Figure 1(b) depicts Tmat for some set of inclusions (the thick edges between
neighboring inclusions are unions of line segments to be explained in Section
2.2).

Remark 2.1 The elements of the Delaunay triangulation Tmat can be charac-
terized locally: Let x ∈ ∂Ωmat be any point on the boundary of Ωmat and νx be
the corresponding outer normal vector, let A be some closed subset of ∂Ωmat,
and let

Π(x,A) := argmin
y∈A

dist (x, y)

max{〈(y − x)/dist (x, y) , νx〉, 0}
6= ∅ (2.2)

be the set of points in A which are closest to x in normal direction. Then the
cyclic polygon Tx := conv(x ∪Π(x, ∂Ωmat)) ∈ Tmat. Moreover, for all T ∈ Tmat

there is some x ∈ ∂Ωmat such that T = Tx.

Since the Delaunay criterion (2.1) ensures that int (CD(T )) ⊂ Ωmat for all T ∈
Tmat, the diameter of T might serve as a local measure of the thickness of the
perforated domain Ωmat.

Definition 2.2 (Thickness of a domain) The Tmat-piecewise constant func-
tion δ : Ωmat → R>0, given by

δ|T := δT := diam
(
CD(T )

)
for T ∈ Tmat,

is denoted as the thickness of Ωmat.

2.2 A Finite Subdivision of Perforated Domains

Inspired by [2], a finite subdivision of the perforated Ωmat is extracted from
the infinite triangulation Tmat which was introduced in the previous subsection.
Without loss of generality let us make the following technical assumption.
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Assumption 2.3 An element of Tmat shall either be a line segment or a tri-
angle. In addition, every pair of triangles shall be separated by at least one line
segment.

Remark 2.4 Assumption 2.3 is not fulfilled in general. The triangulation Tmat

might contain cyclic polygons with more than three vertices. Their appearance is
related to the lack of uniqueness of the Delaunay triangulation (into triangles)
if the given points are not in general position2. However, this degeneracy can be
circumvented by subdividing every cyclic polygon with more than three vertices
into triangles. The resulting new triangles are not separated by a line segment
but share a common edge. This edge can simply be added as an element to the
triangulation Tmat.

Let H := {H1, H2 . . . , HM} be a minimal set of shifted halfspaces that form
the outer boundary of Ω, i.e.,

Ωc := R2 \ Ω =

M⋃
k=1

Hk.

Since the halfspaces in the set H can be regarded as disks with infinite radius
we define an extended set of inclusions Ĩ := I ∪ H.

A cyclic polygon T ∈ Tmat with vertices x1, . . . , xk ∈ ∂Ωmat (k = 2 or 3)
connects a subset of inclusions {I1, . . . , Ik} ⊂ Ĩ if it satisfies xj ∈ Ij for all

j = 1, . . . , k. The latter definition gives rise to a mapping Ĩ(·) : Tmat → P(Ĩ)
with

Ĩ(T ) = {I1, . . . , Ik} if T connects I1, . . . , Ik.

The desired finite partition of Ωmat is given by the quotient modulo of Ĩ(·). It
is denoted as the generalized Delaunay partition D (see [8, 9]) and consists of
curvilinear polygons, more precisely

1. (generalized) edges, i.e., channel-like objects (unions of line segments) that
connect two neighboring inclusions, and

2. triangles.

According to the classification above, we distinguish between the set of edges
E ⊂ D and the set of triangles T = D \ E .

We emphasize that the generalized Delaunay triangulation serves as a tool
in the subsequent regularity analysis. It is a natural way to represent the geom-
etry of particle reinforced composite materials, but it is not based on physical
grounds.

3 Thickness-Weighted H2-Regularity

3.1 Preliminary Remarks

Recall the classical H2-regularity result on a smooth (C2) domain K ⊂ R2 as
it is stated in every textbook on partial differential equations (e.g., [6, Theorem

2A set of points in the plane is in general position if no four points lie on a common circle.
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6.4]): Any u ∈ H1
0 (K) with ∆u ∈ L2(K) is in H2(K) and there is a constant C

that does not depend on u such that

‖∇2u‖L2(K) ≤ C‖∆u‖L2(K). (3.1)

This result extends to certain domains with piecewise analytic boundary, es-
pecially to the elements of the subdivision D from Section 2.2. In [1], K is
considered to be a curvilinear polygon, i.e., K is a simply-connected, bounded
domain with the boundary ∂K =

⋃m
k=1 Γk, where Γk are analytic simple arcs,

Γ̄k = {φk(ξ) : ξ ∈ [−1, 1]}.

The functions φk are analytic on [−1, 1] with |∇φk| being bounded away from
zero. Under the assumption that all internal angles γ1, γ2, . . . , γm of K satisfy
0 < γk ≤ π, there is a constant Creg such that

‖∇2u‖L2(K) ≤ Creg‖∆u‖L2(K) (3.2)

holds for all u ∈ H1
0 (K) with ∆u ∈ L2(K). Let us stress that the constant Creg

does not depend on the scaling of K (see, e.g., [7, Remark 5.5.6]).

3.2 Local Regularity

3.2.1 Regularity on Generalized Edges

Let E ∈ E , |E| > 0, be some generalized edge which connects two inclusions
I1, I2 ∈ I. Without loss of generality, let I1 = Br1([0, 0]T ) and I2 = Br2([0, d]T ),
where Br(y) denotes the closed disk of radius r around y. Let r1 ≥ r2 and
d > r1 + r2. For simplicity, E is supposed to be connected (cf. Remark 3(d) in
[8]); otherwise every connected component might be considered on its own.

The subsequent results require a parameterization of the edge E. The re-
striction of E to I1, E ∩ ∂I1, shall be parameterized by some angle s ∈ [α, β] ⊂
]− π/2, π/2[, i.e., E ∩ ∂I1 = φ([α, β]) with φ(s) := r1(sin(s), cos(s)). The map-
ping Π(·, ∂I2) introduced in (2.2) maps E ∩ ∂I1 onto E ∩ ∂I2. Based on φ and
Π(·, ∂I2), the generalized edge E is parameterized by the diffeomorphism

J : ]α, β[×]0, d[→ int (E) , J (s, λ) = (1− λ)φ(s) + λΠ(φ(s), ∂I2). (3.3)

For any parameter η, 0 < η < ηmax
E := min{|α+π/2|, |β−π/2|}, a neighborhood

of E is defined by Eη := J (]α− η, β + η[×]0, d[).

Lemma 3.1 There exists a constant C ′E > 0 which only depends on the ratios
r2/r1, d/η, and (ηmax

E − η)−1 such that for all u ∈ H1(Eη) with ∆u ∈ L2(Eη)
and u|∂(I1∪I2) = 0 it holds u ∈ H2(E) and

‖∇2u‖L2(E) ≤ C ′E
(
‖∆u‖L2(Eη) + η−1‖∇u‖L2(Eη\E)

)
.

Proof. We introduce a smooth cut-off function ψE,η : Eη → [0, 1] with the
following properties (see also Remark 3.2 below):

(ψE,η)|E = 1,

(ψE,η)|(∂Eη\∂(I1∪I2)) = 0, and

‖∇k(ψE,η)‖L∞(Eη) ≤ Ccoη
k for k ∈ N ∪ {0}.

(3.4)
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By construction, the product u · ψE,η vanishes on the boundary of Eη. Hence,
the application of (3.2) and (3.4) yields

‖∇2u‖L2(E) = ‖∇2(uψE,η)‖L2(E) ≤ ‖∇2(uψE,η)‖L2(Eη)

(3.2)

≤ Creg‖∆(uψE,η)‖L2(Eη)

(3.4)

≤ CcoCreg

(
‖∆u‖L2(Eη) + 2η−1‖∇u‖L2(Eη\E) + η−2‖u‖L2(Eη\E)

)
. (3.5)

Since u vanishes on ∂Eη ∩∂(I1∪ I2), Friedrichs’ inequality allows one to control
the L2 part of the right hand side of (3.5),

‖u‖L2(Eη\E) ≤ d‖∇u‖L2(Eη\E),

where d = dist (I1, I2) + r1 + r2 refers to the distance between the centers of I1

and I2 as above. Thus the assertion is proved with C ′E = 2CcoCreg

(
1 + d

η

)
.

Remark 3.2 The constant Cco in (3.4) reflects the size of the inclusions I1
and I2 as well as their ratio and, hence, the local uniformity of the distribution
of inclusions. It depends on the ratio r2/r1 and on (ηmax

E − η)−1, where the
latter constant behaves critical either if the radius r1 tends to zero or if the ratio
δT /‖δ‖L∞(E) becomes large for some adjacent triangle T ∈ T .

Lemma 3.1 will be applied to certain subdomains of the edge E (subedges) in
order to derive estimates in a thickness weighted norm.

Lemma 3.3 If u ∈ H1(Eη) with ∆u ∈ L2(Eη) and u|∂(I1∪I2) = 0, then it holds

(a) ‖δ∇2u‖L2(E) ≤ 4C ′E(‖δ‖L∞(Eη)‖∆u‖L2(Eη) + η−1‖δ∇u‖L2(Eη)) and

(b) ‖δ∇2u‖L2(E) ≤ C ′′E(‖δ∆u‖L2(Eη) + ‖∇u‖L2(Eη)),

where C ′′E depends only on the constant C ′E from Lemma 3.1.

Proof. We assume α < β = −α for simplicity. Let 0 = s0 < s1 < s2 < . . . <
sJ = β induce a subdivision of [0, β]. According to {sj}Jj=1 we define subsets
E1, E2, . . . , EJ+1 of E by

E1 := J (]− s1, s1[×]0, d[),

Ej := J (]− sj , sj [×]0, d[) \ Ej−1 for j = 2, 3, . . . , J, and

EJ+1 := Eη \ E.
(3.6)

To prove part (a), the {sj}Jj=1 shall be chosen in such a way that

δ0 := min
E

δ and

δj := ‖δ‖L∞(Ej) = min{‖δ‖L∞(E), 2δj−1} for j = 1, 2, . . . , J.
(3.7)

The application of Lemma 3.1 with E replaced by Ẽj :=
⋃j
k=1Ek, j = 1, 2, . . . , J ,

yields

‖∇2u‖L2(Ej) ≤ ‖∇
2u‖L2(Ẽj)

≤ C ′E

(
‖∆u‖L2(Eη) + η−1‖∇u‖L2(Eη\Ẽj)

)
.

(3.8.j)
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The summation of (3.8.j) multiplied by δj over j = 1 to J leads to

‖δ∇2u‖L2(E) ≤
J∑
j=1

‖δ∇2u‖L2(Ej) ≤
J∑
j=1

δj‖∇2u‖L2(Ej)

(3.8.j)

≤ C ′E

J∑
j=1

δj

(
‖∆u‖L2(Eη) + η−1‖∇u‖L2(Eη\Ẽj)

)

≤C ′E
(

2δJ‖∆u‖L2(Eη) + η−1
J∑
j=1

‖∇u‖L2(Ej)

j−1∑
k=1

δk

)
(3.7)

≤ 4C ′E
(
‖δ‖L∞(Eη)‖∆u‖L2(Eη) + η−1‖δ∇u‖L2(Eη)

)
.

To prove the estimate (b) we choose {sj}Jj=1 in a different way (yielding a
different partition of Eη), i.e.,

s0 := min
E

δ and

sj := min{β, 2sj−1} for j = 1, 2, . . . , J.
(3.9)

The actual choice, with regard to the inclusion geometry (convexity of the par-
ticles), implies that

sj ≥ 1
Cs
δj := ‖δ‖L∞(Ej) for all j = 1, 2, . . . , J − 1. (3.10)

The application of Lemma 3.1 with E replaced by E1, and Eη replaced by
E1 ∪ E2 yields

‖∇2u‖L2(E1) ≤ C ′E
(
‖∆u‖L2(E1∪E2) + s−1

1 ‖∇u‖L2(E2)

)
. (3.11.1)

The above estimate easily adapts to the case where E1 and E2 are replaced by
some Ej and Ej+1, j = 2, 3, . . . , J ,

‖∇2u‖L2(Ej) ≤ C
′
E

(
‖∆u‖L2(Ej−1∪Ej∪Ej+1) + s−1

j−1‖∇u‖L2(Ej−1∪Ej+1)

)
(3.11.j)

The summation of (3.11.j) multiplied by δj over j = 1, . . . , J yields

‖δ∇2u‖L2(E) ≤
J∑
j=1

‖δ∇2u‖L2(Ej) ≤
J∑
j=1

δj‖∇2u‖L2(Ej)

(3.11.j)

≤ C ′E

J∑
j=1

δj
(
‖∆u‖L2(Ej−1∪Ej∪Ej+1) + s−1

j−1‖∇u‖L2(Ej−1∪Ej+1)

)
(3.9),(3.10)

≤ (16 + Cs/2)C ′E
(
‖δ∆u‖L2(Eη) + ‖∇u‖L2(Eη)

)
.

Remark 3.4 So far, the analysis in this subsection has not treated edges that
are related to parts of the outer boundary ∂Ω. However, by slightly modified
arguments, such cases can be treated as well. We have to distinguish two cases.
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1. E ∈ E is some generalized edge that connects an inclusion I ∈ I and an
artificial inclusion H ∈ H representing a part of the outer boundary ∂Ω
(see Section 2.2): The previous results apply almost equally, because the
boundary part can be regarded as disk with infinite radius.

2. E ∈ E connects two parts of the outer boundary H1, H2 ∈ H: It might
happen that the environment Eη is not contained in Ωmat (see for instance
the generalized edges in the corners in Figure 1(b)). However, this issue
can be cured by simply replacing Eη with Eη ∩ Ω in the upper bounds.
Since the solution is given on ∂Eη ∩ ∂Ω, Lemma 3.3 can be generalized in
a straight forward way.

In general, the solution of (1.2) does not vanish on the boundary of the
inclusions I. We, therefore, need to face inhomogeneous boundary data in
the regularity estimate. To this end, consider the affine function q(s, λ) =
(1 − λ)u1 + λu2 on the reference edge Eref := [α, β] × [0, d] with uk being the
value of u ∈ V at the inclusion Ik, k = 1, 2. The transformation to E defines a
function

U := q ◦ J−1, (3.12)

which is not affine but has a small Hessian ∇2U in the following sense:

‖δ∇2U‖L2(E) ≤ CJ η−1
E ‖δ∇U‖L2(E). (3.13)

The constant CJ η−1
E in (3.13) is related to ‖J−1‖C2(Eref ). Hence, CJ depends

on the ratio ηE/(η
max
E − ηE), but not on the local thickness δ.

3.2.2 Interior Regularity on Triangles

For some T ∈ T and θ ≥ 0 we denote a scaled version of T by

Tθ := {x ∈ T : dist (x, ∂T ) ≥ θ}. (3.14)

We employ a cutoff function ψT,θ with

(ψT,θ)|Tθ = 1,

(ψT,θ)|∂T = 0, and

‖∇kψT,θ‖L∞(T ) ≤ C∆
coθ

k for k ∈ N ∪ {0},
(3.15)

to conclude that for all u ∈ H1(T ) with ∆u ∈ L2(T ), it holds that u ∈ H2(Tθ),
and

‖∇2u‖L2(Tθ) ≤ ‖∇2(uψ)‖L2(T )

(3.2),(3.15)

≤ C ′T
(
‖∆2u‖L2(T ) + θ−1‖∇u‖L2(T\Tθ) + θ−2‖u‖L2(T\Tθ)

)
, (3.16.a)

where C ′T = 2C∆
coCreg. Note that in fact

‖∇2u‖L2(Tθ) ≤ CT
(
‖∆u‖L2(T ) + θ−1‖∇(u−W )‖L2(T\Tθ)

+θ−2‖u−W‖L2(T\Tθ)

)
holds with any affine function W : T → R, because ∇2W ≡ 0. Hence, the choice
W = |T |−1

∫
T
udx together with the Poincaré inequality yields

‖∇2u‖L2(Tθ) ≤ CT
(
‖∆u‖L2(T ) + θ−1‖∇(u)‖L2(T )

)
(3.16.b)

with a constant CT that depends only on C ′T and the ratio δT
θ .
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3.3 Global Regularity

We simply sum up the local estimates for the elements of D = E ∪ T to derive
the global bound. For every edge E ∈ E we choose a parameter η = ηE so that

0 < ηE < ηmax
E and Eη ∩ Ω ⊂ cl

(
Ωmat

)
. (3.17)

Accordingly, we choose parameters θ = θT > 0 for every triangle T ∈ T so that
the union of the extended edges and the scaled triangles covers Ωmat,

Ωmat ⊂
⋃
E∈E

Eη/2 ∪
⋃
T∈T

Tθ. (3.18)

Some D-piecewise constant function σ : Ωmat → R>0 is given by

σ|E = ηE for E ∈ E and

σ|T = θT for T ∈ T .
(3.19)

Remark 3.5 The results of the present section and beyond will depend locally
on some negative powers of the parameter function σ defined in (3.19). Obvi-
ously, there exists a constant cI such that for all K ∈ D, σK ≥ cI‖δ‖L∞(K).
Since, in this paper, we focus on the dependence of regularity on the thickness
function δ we do not put any effort in the optimization of our subdivision with
regard to the constants σ.

For u ∈ V we denote its Tmat-piecewise affine interpolation by IDu. More
precisly, IDu is defined by (3.12) on every edge, and IDu is the unique affine
interpolant of u at the vertices of T on every triangle T ∈ T .

Theorem 3.6 Let u ∈ V be the solution of (1.3) and UD := IDu its Tmat-
piecewise affine interpolation. Then there exists CD > 0, which only depends on
the constants of Lemma 3.3 and (3.16.b), such that

‖δ∇2u‖L2(Ωmat) ≤ CD
(
‖δf‖L2(Ωmat) + ‖σ−1δ∇UD‖L2(Ωmat)

)
.

Proof. We decompose u = (u−uhar) + (uhar−Uhar) + (Uhar−UD) +UD, where
uhar ∈ H1(Ωmat) denotes the unique harmonic function with trace u|∂Ωmat , and
Uhar the D-piecewise harmonic function which equals UD on the boundary of
every element K ∈ D. The application of the triangle inequality yields

‖δ∇2u‖L2(Ωmat) ≤ ‖δ∇2(u− uhar)‖L2(Ωmat) + ‖δ∇2(uhar − Uhar)‖L2(Ωmat)

+ ‖δ∇2(Uhar − UD)‖L2(Ωmat) + ‖δ∇2UD‖L2(Ωmat)

=: M1 +M2 +M3 + ‖δ∇2UD‖L2(Ωmat). (3.20)

The estimate

M2
1

(3.18)

≤
∑
T∈T
‖δ∇2(u− uhar)‖2L2(Tθ) +

∑
E∈E
‖δ∇2(u− uhar)‖2L2(Eη/2)

(3.16.b),L3.3(b)

≤
∑
T∈T

C2
T

(
‖δf‖L2(T ) + ‖∇(u− uhar)‖L2(T )

)2
+
∑
E∈E

C ′′2E
(
‖δf‖L2(Eη) + ‖∇(u− uhar)‖L2(Eη)

)2
≤ C2

1

(
‖δf‖L2(Ωmat) + ‖∇(u− uhar)‖L2(Ωmat)

)2
(3.21)
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holds with a constant C1 which depends only on the constants of Lemma 3.3.b
and (3.16). Since (u − uhar) ∈ H1

0 (Ωmat), we have from (1.3.a) and a localized
version of the Friedrichs’ inequality (see Lemma A.1),

‖∇(u− uhar)‖L2(Ωmat) ≤ CF‖δf‖L2(Ωmat).

Since uhar−Uhar is locally harmonic, the application of Lemma 3.3(a) locally
on Eη/2, E ∈ E and (3.16) on Tθ, T ∈ T , yields

M2 ≤ C ′2‖σ−1δ∇(uhar − Uhar)‖L2(Ωmat), (3.22)

where the constant C2 depends only on C ′E and CT . From Lemma A.2, we also
get

M2 ≤ C2‖σ−1δ∇UD‖L2(Ωmat). (3.23)

Finally, the application of Lemma 3.3.b on every E ∈ E , yields

M2
3 ≤ C ′23

(
‖δ∆UD‖2L2(Ωmat) +

∑
E∈E
‖Uhar − UD‖2L2(E)

)

where the constant C ′3 depends only on C ′′E . The definition of Uhar, (3.13), and
Lemma A.1 yield

M3 ≤ C3‖σ−1δ∇UD‖L2(Ωmat). (3.24)

The assertion follows readily by combining (3.20), (3.21), (3.23), and (3.24).

Lemma 3.7 Let u ∈ V be the solution of (1.3) and UD := IDu its Tmat-
piecewise affine interpolation. Then it holds

‖δ∇UD‖L2(Ωmat) ≤ CI

(
‖f‖L2(Ωmat) + ‖uD‖L∞(∂Ωmat)

)
with some constant CI that does not depend on δ.

Proof. By an inverse inequality we get

‖δ∇UD‖L2(Ωmat) ≤ ‖UD‖L2(Ωmat).

Moreover,

‖UD‖L2(Ωmat) ≤ C ′I‖u‖L2(Ωmat) ≤ C ′I
(
‖u− uhar‖L2(Ωmat) + ‖uhar‖L2(Ωmat)

)
≤ CI

(
‖f‖L2(Ωmat) + ‖uhar‖L∞(∂Ωmat)

)
,

where we have used the boundedness of the interpolation operator ID, the
maximum principle for second order elliptic operators (see [6, Theorem 6.4.1])
and a classical L2 a priori estimate (see [6, Theorem 6.2.6]).

Theorem 3.8 Let u ∈ V be the solution for (1.3). Then there exists CuD,f,σ >
0, which depends only on the data f and uD, on σ defined in (3.19), and the
constants of Theorem 3.6 and Lemma 3.7, such that

‖δ∇2u‖L2(Ωmat) ≤ CuD,f,σ.

Proof. The proof follows readily by combining Theorem 3.6 and Lemma 3.7.
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4 Stable Approximation Close to Percolation

We now consider any appropriate conforming finite element approximation of
(1.3). Let Vh ⊂ V be some finite dimensional subspace of V . The corresponding
discrete variational problem reads: Find uh ∈ Vh such that∫

Ωmat

∇uh(x)∇vh(x) dx =

∫
Ωmat

f(x)vh(x) dx for all vh ∈ Vh ∩H1
0 (Ωmat), (4.1.a)

uh = uD on ∂Ω. (4.1.b)

It is assumed for simplicity that the Dirichlet data uD is resolved by Vh, i.e.,
there is some vh ∈ Vh such that vh|∂Ω = uD. The discrete space Vh shall
consist of functions that are piecewise smooth with respect to some mesh G of
Ωmat. The mesh G, which consist of possibly curved elements, is supposed be
conforming in the sense that ∪G = Ω̄. Its mesh density function is denoted
by h : Ωmat → R>0, h|K := hK := diam

(
K
)

for all K ∈ G. Clearly, there
holds h ≤ CGδ with some constant CG which is related to shape regularity
of the elements, i.e., the ratio between the radius of the largest ball that can
be inscribed in an element and the radius of the smallest ball that contains the
element. We assume that the space Vh satisfies approximation properties locally,
i.e., there exists some constant Cappr so that for all K ∈ G and all u ∈ H2(K),

inf
vh∈Vh

(
h−1
K ‖u− vh‖L2(K) + ‖∇(u− vh)‖L2(K)

)
≤ CapprhK‖∇2u‖L2(K). (4.2)

Theorem 4.1 If u ∈ V is the solution for (1.3), and uh ∈ Vh its Galerkin
approximation that solves (4.1), then

‖∇(u− uh)‖L2(Ωmat) ≤ Cf,uD,Vh‖h/δ‖L∞(Ωmat)

holds with Cf,uD,Vh = CapprCuD,f,σ where Cappr is the constant from (4.2) and
CuD,f,σ the one from Theorem 3.8.

Proof. The optimality of the Galerkin method in energy norm together with
the approximation properties of the space Vh (cf. (4.2)) imply that

‖∇(u− uh)‖L2(Ωmat) ≤ Cappr‖h∇2u‖L2(Ωmat). (4.3)

Using the assumption that the ratio h/δ is bounded and applying Theorem 3.8
we further estimate

‖h∇2u‖L2(Ωmat) ≤ ‖h/δ‖L∞(Ωmat)‖δ∇2u‖L2(Ωmat) ≤ CuD,f,σ‖h/δ‖L∞(Ωmat).
(4.4)

The combination of (4.3) and (4.4) yields the assertion.
A special choice of the mesh G and the corresponding space Vh is discussed

in [10] where

G = D and Vh = VD := {v ∈ C0(Ωmat) : v is Tmat-piecewise affine}.

Corollary 4.2 If u ∈ V is the solution for (1.3) and uh ∈ VD its Galerkin
approximation that solves (4.1), then

‖∇(u− uh)‖L2(Ωmat) ≤ Cip,DCuD,f,σ,

where the constant Cip,D is related to the approximation property of VD (see [10,
Theorem 3.1, Corollary 3.3]).
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The proof follows readily by combining Theorem 4.1 and the approximation
property of the space VD provided by [10, Theorem 3.1, Corollary 3.3].

Thus, in this section, we have proved that the error of conforming finite
element methods does not depend on the thickness of the underlying domain.
Hence, these methods allow one to capture percolation effects, i.e., they allow
one to trace the blow-up of the energy as the thickness tends to zero on a path
of inclusions that separates the domain.

The theory presented here can be extended to the case of general smooth
inclusions. The same holds true for 3-dimensional setting and for the consider-
ation of general second order elliptic differential operators.

A Inequalities

We now proof a version of Friedrichs’ inequality that is local with respect to the
thickness of the domain.

Lemma A.1 There is some constant CF which does not depend on δ such that
for all v ∈ H1

0 (Ωmat), it holds that

‖v‖L2(Ωmat) ≤ CF‖δ∇v‖L2(Ωmat).

Proof. Let E ∈ E be some generalized edge and consider subedges Ej , j =
1, 2, . . . , JE as in (3.6) and (3.7). The classical Friedrichs’ inequality is applicable
(cf. Remark (A.1)) on all subedges Ej . More precisely, there holds

‖v‖L2(Ej) ≤ ‖δ‖L∞(Ej)‖∇v‖L2(Ej).

Hence, by (3.7) we get

‖v‖L2(E) ≤ 2‖δ∇v‖L2(E). (A.1)

On the triangles T ∈ T such a result is not directly applicable, because ∂Ωmat∩
∂T is of measure zero. However, the L2-norm of v on T can be estimated
together with the generalized edges E1, E2, E3 ∈ E adjacent to T . Let T̃ :=
T ∪ E1 ∪ E2 ∪ E3 be chosen in a way that

min
x∈T̃∩Ek

δ(x) ≥ 1
2δT for all k = 1, 2, 3.

Then

‖v‖L2(T̃ )≤CF
|∂T̃ ∩ ∂Ωmat|
|∂T |

‖δ∇v‖L2(T̃ ). (A.2)

The constant CF does not depend on δ, the ratio |∂T̃∩∂Ωmat|
|∂T | , or on v (see [5]).

The assertion follows by simply summing up the local estimates (A.1) and (A.2)
over all edges E ∈ E and all triangles T ∈ T .

We now present some thickness-weighted energy estimate.

Lemma A.2 Let u ∈ V be the solution of (1.3) and v ∈ V be any function
with trace v|∂Ωmat = u|∂Ωmat . Then there holds

‖δ∇(u− v)‖L2(Ωmat) ≤ Ccwe

(
‖δ2f‖L2(Ωmat) + ‖δ∇v‖L2(Ωmat)

)
with some constant Ccwe that does not depend on u, σ, or δ.
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Proof. Let D̃ denote the subdivision of Ωmat which consists of the triangles
T ∈ T and the subedges E1, . . . , EJE of E ∈ E as in (3.6) and (3.10). Let
{φK}K∈D̃ be the partition of unity related to D̃ such that for all K ∈ D̃,

supp(φK) is contained in the union of K and its neighboring elements in D̃, and

‖∇φK‖L∞(Ωmat) ≤ CD̃‖δ‖
−1
L∞(K) =: δ−1

K , (A.3)

where CD̃ is some universal constant that does not depend on δ. Then there
holds

‖δ∇(u− v)‖2L2(Ωmat) =

∫
Ωmat

δ2∇(u− v)∇

∑
K∈D̃

φK(u− v)

 dx

(1.3)

≤
K∑
k=1

δ2
K

(∫
supp(φK)

|f(u− v)|dx+ δ2
K

∫
supp(φK)

|∇v∇ (φK(u− v)) |dx

)
LemmaA.1,(3.10),(A.3)

≤ C
∑
K∈D̃

(
‖δ2f‖L2(supp(φK))‖δ∇(u− v)‖L2(supp(φK))

+‖δ∇v‖L2(supp(φK))‖δ∇(u− v)‖L2(supp(φK))

)
.

For any ε > 0, Young’s inequality yields

‖δ∇(u− v)‖2L2(Ωmat) ≤ C
2ε−1

(
‖δ2f‖L2(Ωmat) + ‖δ∇v‖L2(Ωmat)

)
+ 2C2ε‖δ∇(u− v)‖L2(Ωmat).

Choosing ε = (2C)−2 proves the assertion.
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