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Abstract

We introduce geodesic finite elements as a conforming way to dis-
cretize partial differential equations for functions v : Ω → M , where Ω is
an open subset of Rd and M is a Riemannian manifold. These geodesic
finite elements naturally generalize standard first-order finite elements for
Euclidean spaces. They also generalize the geodesic finite elements pro-
posed for d = 1 in [24]. Our formulation is equivariant under isometries of
M , and hence preserves objectivity of continuous problem formulations.
We concentrate on partial differential equations that can be formulated
as minimization problems. Discretization leads to algebraic minimiza-
tion problems on product manifolds Mn. These can be solved efficiently
using a Riemannian trust-region method. We propose a monotone multi-
grid method to solve the constrained inner problems with linear multigrid
speed. As an example we numerically compute harmonic maps from a
domain in R

3 to S2.

1 Introduction

Many problems in mathematical physics can be written as partial differential
equations (PDEs) for functions

f : N → M,

where N and M are Riemannian manifolds. In the vast majority of cases these
manifolds will be open subsets of Euclidean spaces. Such problems are treated
successfully using finite elements.

In this article we focus on the case that N is an open subset of Rd, but
M is a nonlinear Riemannian manifold. Such problems cannot be discretized
using finite elements, because the standard definition of finite element functions
presupposes a vector space structure on M . We give a more general definition
which also encompasses the nonlinear case.1

Instances of such problems are, for example, the simulation of nematic liq-
uid crystals. There, depending on the symmetry of the substance in question,
functions describing crystal configurations take values in the unit sphere S2,
the projective plane RP

2, or the special orthogonal group SO(3) [13]. In the

∗This work was supported by the DFG research center Matheon
1 The case that N is nonlinear is treated by the theory of geometric partial differential

equations [14]. The problems due to nonlinearity of the domain N and the range space M are
unrelated and need different techniques for their solution.
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simulation of superfluid helium-3 more exotic spaces such as certain quotients
of S2 × RP

3 occur [20].
A different set of applications is the numerical treatment of Cosserat materi-

als. These are mechanical models of continua, where, in addition to a position,
each point has an associated orientation [23]. The value space M is hence the
special Euclidean group SE(3) = R

3
⋊ SO(3). A treatment of one-dimensional

Cosserat models by geodesic finite elements has been presented in [24]. Finally,
PDEs for manifold-valued functions also occur in some image processing appli-
cations. For example, the diffusion equation for functions with values in S2 can
be used to denoise color images [26].

Various ways have been proposed in the literature to discretize problems
for functions with values in a manifold M . The central problem is how to
generalize linear interpolation, i.e., how to interpolate between a set of values
vi ∈ M , i = 1, . . . , d + 1. One simple way is to use an embedding of M in a
Euclidean space R

m [3]. The values are then interpolated in R
m, and possibly

projected back onto M . While this is simple, and in many cases cheap and even
objective, the result depends on the embedding.

Alternatively, one can single out a tangent space TpM of M , and retract the
values vi onto TpM using the exponential map. The retracted values are then
interpolated on TpM , and projected back onto M (see, e.g., [22]). This works
only as long as the vi stay away from the cut locus of p. Also, the dependence
on a fixed tangent space TpM breaks objectivity.

A third approach notes that the interpolation function is needed only at a
fixed set of quadrature points. The values there can be treated as additional
variables. In the framework of an iterative solver they are initialized with known
values, and only corrections—which live in linear spaces—are ever interpolated.
This method was used by Simo and Vu-Quoc [25] to simulate Cosserat rods.
However, as was shown later [12], the method introduces spurious dependencies
of the solution on the initial iterate and the parameters of the path-following
mechanism.

In this work we follow a new approach by using the Riemannian center of
mass to generalize linear interpolation. The Riemannian center of mass is well-
known in the differential geometry literature (see, e.g., [5] and the references it
contains). Its usefulness for data interpolation on manifolds has been recognized
by Buss and Fillmore [10] for M = Sm and by Moakher [21] for M = SO(3).
We extend this idea to obtain conforming first-order finite elements for general
M , which we call geodesic finite elements. The result is an elegant theory which
is completely intrinsic and covariant. The price is an increased algorithmic
difficulty of handling the new interpolation functions.

We focus on PDEs that are the Euler–Lagrange equations of some energy
functional J .2 Numerically, this means that one has to find minimizers of J
over the discrete nonlinear finite element space V M

h . The corresponding alge-
braic problem is the minimization of a functional J over a product manifold
Mn, with n the number of grid vertices. For such problems, Absil et al. [1] have
proposed the Riemannian trust-region method, which generalizes the standard
trust-region approach to nonlinear configuration spaces, while retaining the con-
vergence properties of regular trust-region methods. At each step a quadratic
minimization problem with convex inequality constraints has to be solved. In

2The discretization of nonconservative equations will be the subject of a separate paper.
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the case of finite elements, these problems are sparse, but possibly very large.
We propose a monotone multigrid method as a way to solve the quadratic prob-
lems with the speed of a linear multigrid method.

The implicit definition of geodesic finite element functions by means of the
Riemannian center of mass makes their numerical handling more involved than
the handling of regular finite element functions. To evaluate a function value,
a small minimization problem has to be solved. Function gradients can be
obtained by additionally solving a small linear system of equations. This makes
geodesic finite elements more expensive than other approaches. Still, we believe
that the good theoretical properties and general elegance of our approach can
outweigh the additional costs and complexity of the implementation.

The content of this article is as follows. Chapter 2 introduces simplicial
geodesic interpolation, a generalization of linear interpolation to functions with
values in a Riemannian manifold. This new concept is then used in Chapter 3
to construct geodesic finite element spaces. Chapters 4 and 5 deal with the
numerical solution of the algebraic minimization problems. Chapter 4 introduces
the Riemannian trust-region method and the monotone multigrid inner solver,
while Chapter 5 shows how geodesic finite element functions and various of
their derivatives can be evaluated algorithmically. Chapter 6 brings a numerical
example, computing harmonic maps from a domain in R

3 to the unit sphere S2.
Various formulae for unit spheres needed for the implementation are collected
in an appendix.

2 Simplicial Geodesic Interpolation

The definition of a finite element space consists of two parts, namely an inter-
polation rule on the reference element and a way to piece together the local
functions at the element boundaries to form a global space. In this chapter we
treat the local problem by introducing a generalization of linear interpolation
on the reference element to functions with values in Riemannian manifolds. The
next chapter will then introduce the global spaces.

2.1 Definition

To motivate our definition we briefly review linear interpolation, which is at the
heart of first-order finite elements. Let

∆̃d =
{
ξ ∈ R

d
∣∣ ξi ≥ 0, i = 1, . . . , d,

d∑

i=1

ξi ≤ 1
}

be the d-dimensional reference simplex. We omit the superscript d when it
is clear from the context. In the finite element literature, an affine function
ṽ : ∆̃ → R is defined by its values v1, . . . , vd+1 at the simplex corners and the
interpolation formula

ṽ(ξ) =

d+1∑

i=1

viϕi(ξ), ξ ∈ ∆̃, (1)
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where the functions

ϕi : ∆̃ → R, ϕi(ξ) =

{
(1 −∑d

j=1 ξj) if i = 1,

ξi−1 else,

are the first-order Lagrangian shape functions on the reference simplex.
It is unclear how an interpolation formula like (1) would look like if ṽ were

to take its values in a nonlinear manifold M , because the sum in (1) assumes
a vector space structure on M . We therefore rewrite (1) to obtain a form that
is more easily generalized to nonlinear spaces. For this, we introduce the d-
dimensional standard simplex

∆d =
{
w ∈ R

d+1
∣∣ wi ≥ 0, i = 1, . . . , d+ 1,

d+1∑

i=1

wi = 1
}
,

whose corners are the canonical basis vectors in R
d+1, which we denote by

e1, . . . , ed+1. Coordinates w = {w1, . . . , wd+1} on the standard simplex are
called barycentric coordinates and can be computed from coordinates ξ on the
reference simplex by

w = B(ξ) = Bξ + c =

(
−1T

Idd×d

)
ξ +

(
1
0

)
, (2)

with −1T the row vector consisting of d entries of −1, and 0 the column vector
consisting of d entries of 0. In barycentric coordinates w, the interpolation
formula (1) reads

ṽ(ξ) = v(w) =

d+1∑

i=1

viwi. (3)

We still need a sum to compute v(w), but the shape functions are now simply
the coordinate functions wi. To also get rid of the sum in (3) we note that

d+1∑

i=1

viwi = argmin
q∈R

d+1∑

i=1

wi‖vi − q‖2.

Now the sum adds norms instead of values, and we can generalize this expression
to nonlinear spaces.

Definition 2.1. Let M be a connected Riemannian manifold and dist(·, ·) :
M ×M → R a distance metric on M . For values v1, . . . , vd+1 ∈ M we call

Υ : Md+1 ×∆ → M

Υ(v1, . . . , vd+1;w) = argmin
q∈M

d+1∑

i=1

wi dist(vi, q)
2 (4)

simplicial geodesic interpolation on M .

The construction is illustrated in Figure 1. For brevity we will frequently
write Υ(v, w) instead of Υ(v1, . . . , vd+1;w).
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Figure 1: Geodesic simplicial interpolation from ∆2 into a sphere. The simplex
corners e1, . . . , e3 are mapped to the values v1, . . . , v3.

Remark 2.1. Strictly speaking we have not used the manifold structure of M ,
and Definition 2.1 would also make sense in more general metric spaces. The
value of such a generalization is unclear.

As it turns out, simplicial geodesic interpolation is a special case of a more
general concept known as the Riemannian center of mass [5].

Definition 2.2. Let M be a Riemannian manifold and da a measure of unit
weight. Then the Riemannian center of mass is defined as

C(da) = argmin
q∈M

∫

M

dist(a, q)2 da.

To see the relationship to the simplicial geodesic interpolation between d+1
values vi on M , let w ∈ ∆ be coordinates and define the discrete measure

dµw =
d+1∑

i=1

wiδvi , δvi(X) =

{
1 if vi ∈ X,

0 else,

which has unit weight. Then C(dµw) = Υ(v, w).

2.2 Well-Posedness of the Definition

Using the Riemannian center of mass for the definition of a function Υ(v, ·) :
∆ → M is only meaningful if the minimizer in (4) is well-defined. However it is
not immediately clear from Definition 2.1 whether this is the case. Indeed, it is
easy to construct a case where the function

fv,w : M → R, fv,w(q) =

d+1∑

i=1

wi dist(vi, q)
2 (5)

in (4) does not have a minimizer. An example is M = R
2 \{0}, d = 2, wi = 1/3,

i = 1, 2, 3, and values vi at equal mutual distances on the unit circle. We avoid
such cases in the following by requiring M to be complete. If M is compact then
fv,w must have a minimum. However, this minimum need not be unique. For
example, set M the unit sphere S2, d = 2, wi = 1/3, i = 1, 2, 3, and v1, v2, v3
placed on the equator at equal distances. Then both poles minimize fv,w.
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Existence and uniqueness of a minimizer can be obtained, however, if the
corner values are “close together” in a certain sense. The precise conditions
have been given by Karcher [16]. Remember that a set D ⊂ M is called convex
if for each p, q ∈ D the minimizing geodesic from p to q is entirely contained
in D.

Theorem 2.1 (Karcher [16]). Let M be complete, Bρ an open geodesic ball
of radius ρ in M , and v1, . . . , vd+1 ∈ M . Assume that vi ∈ Bρ for all i =
1, . . . , d+ 1.

1. If the sectional curvatures of M in Bρ are bounded by a positive constant
K, and ρ < 1

4πK
−1/2, then the function

fv,w(q) =

d+1∑

i=1

wi dist(vi, q)
2

has a unique minimizer in Bρ for all w ∈ ∆d.

2. If the sectional curvatures of M in Bρ are at most 0, then fv,w has a
unique minimizer in Bρ for all w ∈ ∆d.

Note that under the given assumptions the ballsBρ are convex [9, Thm. II.1.4].
If M has nonpositive curvature and is simply connected we know from the the-
orem of Hadamard that geodesic balls of arbitrary size exist. Hence, together
with the second part of Theorem 2.1 we get the following corollary.

Corollary 2.1. Let M be complete, simply connected and have nonpositive
sectional curvatures. Then for all v1, . . . , vd+1 ∈ M , w ∈ ∆, the functional fv,w
has a unique minimum in M .

The requirement for the vi to be “close together” for Υ to be well-defined
is not a serious restriction in a finite element context. There, many properties
are expected to hold on sufficiently fine grids only, anyways. Theorem 3.2 will
show that the conditions of Theorem 2.1 are fulfilled if the grid is fine enough.
The reader should compare this to the one-dimensional theory in [24].

Karcher’s proof of Theorem 2.1 contains a subresult which we will state
separately in order to be able to refer to it later.

Lemma 2.1. Under the assumptions of Theorem 2.1 the Hessian of fv,w exists
and is invertible on Bρ.

2.3 Geometrical Properties

Since dist(p, q) = ‖p− q‖ in the Euclidean spaces Rm, Definition 2.1 reproduces
linear interpolation if M = R

m for any m ∈ N. It also generalizes the inter-
polation along geodesics introduced in [24]. This justifies the name simplicial
geodesic interpolation for Υ.

Lemma 2.2. Let p1, p2 ∈ M and let γ : [0, 1] → M be the minimizing geodesic
from p1 to p2, assumed to be unique and parametrized by arc length. Then, for
any w = (w1, w2) ∈ ∆1 we have Υ(p1, p2;w) = γ(w2).
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Proof. Let w ∈ ∆1 be fixed and assume without loss of generality that dist(p1, p2) =
1. We will compute a minimizer for the functional

fw : M → R, fw(q) = w1 dist(p1, q)
2 + w2 dist(p2, q)

2.

Introducing the new variables α = dist(p1, q) and β = dist(p2, q) turns this into
a minimization problem for a functional

f̃w : R2 → R, f̃w(α, β) = w1α
2 + w2β

2,

subject to the constraints

α, β ≥ 0, and α+ β ≥ 1. (6)

The constraints represent the fact that α and β are distances. Note that not all
pairs α, β can actually be realized by a q ∈ M . The graph of f̃w is a paraboloid
centered at the origin of R

2, hence its minimizer subject to (6) will satisfy
α + β = 1. To compute the minimizer exactly note that the gradient of f̃w at
the minimizer will be perpendicular to the line {α, β |α + β = 1}, or, in other
words, a multiple of (1, 1)T . Since ∇f̃w = (2w1α, 2w2β)

T this is the case if
α = w2 and β = w1. But such α, β can be realized, namely by a point q on
the minimizing geodesic from p1 to p2 with dist(a, q) = w2 and dist(q, b) = w1.
This proves the assertion.

Our next result characterizes the images of the faces of ∆ under a geodesic
simplicial interpolation mapping.

Lemma 2.3. Let

∆d−1
i = ∆d ∩ {w ∈ R

d+1 | wi = 0}

be the i-th d − 1-dimensional face of the standard simplex ∆d, and let Υv(w) :
∆d → M be the geodesic interpolation of the fixed values v1, . . . , vd+1 ∈ M .
Then its restriction Υv|∆d−1

i
is also a simplicial geodesic interpolation, namely

of the values of the corners of ∆d−1
i .

Proof. From the definition of geodesic simplicial interpolation we know that

Υv(w) = argmin
q∈M

d+1∑

j=1

wj dist(vj , q)
2.

The restriction to ∆d−1
i is given by

Υv|∆d−1

i
(w) = argmin

q∈M

d+1∑

j=1

j 6=i

wj dist(vj , q)
2, (7)

and we have
∑d+1

j=1

j 6=i

wj = 1. Hence (7) is the definition of a geodesic inter-

polation function for the coordinates (w1, . . . , wi−1, wi+1, . . . , wd+1) and values
(v1, . . . , vi−1, vi+1, . . . , vd+1).

Applying this argument recursively we get the following generalization.
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Corollary 2.2. Let δ be any face of any dimension of ∆. Then Υv|δ is a
function defined by simplicial geodesic interpolation between the values at the
corners of δ.

Together with Lemma 2.2 we find in particular that the images of the edges
of the standard simplex under a geodesic simplicial interpolation mapping are
geodesics in M .

Next we discuss the smoothness of the map Υ. For the finite element method
we need derivatives of Υ with respect to w and the coefficients vi. Their existence
is based on the smoothness of the squared Riemannian distance. Remember that
the injectivity radius inj p at a point p of a manifold M is the largest number r
such that minimizing geodesics from p to q are unique if dist(p, q) < r.

Lemma 2.4. Let M be a complete Riemannian manifold and p ∈ M . Then the
squared Riemannian distance dist(p, ·)2 : M → R is infinitely differentiable at
all q ∈ M with dist(p, q) < inj p.

Proof. It suffices to show this in one coordinate system. Under the assumptions
there exists a normal coordinate chart centered at p and containing q. Let
(q1, . . . , qm) be the coordinates of q. Then by Corollary 6.11 from [18] we get
dist(p, q)2 =

∑m
i=1 q

2
i , which is C∞.

Differentiability of Υ now follows from the implicit function theorem.

Theorem 2.2. Let M be complete and let Bρ be an open geodesic ball with
v1, . . . , vd+1 ∈ Bρ. We assume that ρ is small enough such that the curvature
assumptions of Theorem 2.1 hold, and that ρ < 1/2 injvi for all i = 1, . . . , d+1.
Then the function

Υ(v1, . . . , vd+1;w) : Md+1 ×∆ → M

is infinitely differentiable with respect to the vi and w.

Proof. By definition, the interpolation values Υ(v1, . . . , vd+1;w) are given as
minimizers of the functional

fv,w(q) =

d+1∑

i=1

wi dist(vi, q)
2.

By Theorem 2.1 minimizers exist and are unique. By the assumptions and
Lemma 2.4, dist(vi, ·)2 is smooth on Bρ for all vi, and so is fv,w. The function
value of Υ(v, w) is alternatively described as a zero of the gradient vector field

F (v, w, q) := ∇fv,w(q).

The function F (v, w, q) is smooth in w and the vi. Also, its derivative with
respect to q exists and is invertible. To see this note that ∂F

∂q = Hess fv,w, and

use Lemma 2.1. Hence by the implicit function theorem the function Υ(v, w),
for which

F (v, w,Υ(v, w)) = 0

holds, is also smooth with respect to w and the vi.
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2.4 Symmetry Properties

Simplicial geodesic interpolation enjoys various symmetry properties expected
from a finite element interpolation procedure. The first is a symmetry of the
domain, the proof of which is evident. For finite element applications this
symmetry means that it is irrelevant how the corners of an element in a grid
are numbered.

Lemma 2.5. Simplicial geodesic interpolation is invariant under permutation
of the vertices of the standard simplex, i.e.,

Υ(π(v1), . . . , π(vd+1);π(w1), . . . , π(wd+1)) = Υ(v1, . . . , vd+1;w1, . . . , wd+1)

for all permutations π of the vertices of ∆d.

Remark 2.2. The desirability of this simple invariance forces us to disregard
an alternative interpolation method that appears in [19]. There, in a differ-
ent context, an interpolation procedure based on successive interpolation along
geodesics is proposed. While this is much easier to evaluate, it lacks the above
invariance, as follows from [7].

The second important symmetry is equivariance of the interpolation under
isometries of M . In mechanics this property is known as frame-invariance or
objectivity. The result for the general Riemannian center of mass has already
been stated in [16]. We give a simple proof for the readers’ convenience.

Lemma 2.6. Let M be a complete Riemannian manifold and G a group that
acts on M by isometries. Let v1, . . . , vd+1 ∈ M be such that the assumptions of
Theorem 2.1 hold. Then

QΥ(v1, . . . , vd+1;w) = Υ(Qv1, . . . , Qvd+1;w)

for all w ∈ ∆ and Q ∈ G.

Proof. Set v∗ = Υ(Qv1, . . . , Qvd+1;w) for ease of notation and assume that

v∗ 6= QΥ(v1, . . . , vd+1;w). (8)

By the definition of Υ this means that

d+1∑

i=1

wi dist(Qvi, v
∗)2 <

d+1∑

i=1

wi dist
(
Qvi, QΥ(v1, . . . , vd+1;w)

)2
,

because, by Theorem 2.1, the minimum v∗ is unique in a geodesic ball containing
the Qvi. However, since Q is an isometry, we get

d+1∑

i=1

wi dist(vi, Q
−1v∗)2 <

d+1∑

i=1

wi dist
(
vi,Υ(v1, . . . , vd+1;w)

)2
.

This is a contradiction, because by definition Υ(v1, . . . , vd+1;w) minimizes fv,w(·) =∑
iwi dist(vi, ·)2 in a geodesic ball containing the vi, and, again by Theorem 2.1,

it is unique there. Hence the assumption (8) must be wrong and the lemma is
proved.
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As an example, note that this invariance is enjoyed by standard scalar finite
elements. Indeed, let M = R with the canonical metric. Then G = R acts
isometrically on R by addition. Using formula (3) for linear interpolation we
see that for any group element Qa acting by addition of the scalar a we have

Υ(Qav, w) = Υ(a+ v1, . . . , a+ vd+1;w)

=
d+1∑

i=1

wi(a+ vi) = a+
d+1∑

i=1

wivi = QaΥ(v, w).

In Cosserat mechanics, where M = R
3
⋊ SO(3), the group G of isometries

is R
3
⋊ SO(3) itself. Hence Lemma 2.6 states equivariance under translations

and rotations of three-space. This means that discretization by geodesic finite
elements will not destroy the frame-invariance of a continuous mechanics model.

3 Geodesic Finite Elements

In this section we use the interpolation method presented above to construct
global finite element spaces. We show that these spaces are conforming in the
sense that they are subsets ofH1(Ω,M), and we discuss the relationship between
geodesic finite element functions and coefficient vectors. Finally we extend the
equivariance result of the previous section (Lemma 2.6) to global geodesic finite
element functions.

From now on let Ω be an open bounded subset of Rd, d ≥ 1. For simplicity
we assume that Ω has a polygonal boundary. Let G be a conforming grid for Ω
consisting of simplices only. The number of grid vertices shall be denoted by n.

Definition 3.1 (Geodesic Finite Elements). Let G be a simplicial grid on Ω,
and let M be a complete Riemannian manifold. We call vh : Ω → M a geodesic
finite element function for M if it is continuous, and for each element T ∈ G
the restriction vh|T is a geodesic simplicial interpolation in the sense that

vh|T (x) = Υ
(
vT,1, . . . , vT,d+1;FT (x)

)
,

where FT : T → ∆ is affine and the vT,i are values in M . The space of all such
functions vh will be denoted by V M

h .

With the help of Lemma 2.2 it is seen directly that this definition provides a
generalization of the one-dimensional geodesic finite elements proposed in [24].
Setting M = R

m for m ∈ N we also recover the definition of standard first-
order finite elements. On the other hand, the well-posedness of Definition 3.1
is again unclear, as we inherit the corresponding well-posedness problems from
the definition of geodesic simplicial interpolation. We will see below, when we
discuss the relationship between geodesic finite element functions and coefficient
vectors, that the spaces V M

h do contain sufficiently many functions for finite
element analysis.

We begin our investigations by showing that geodesic finite element functions
are conforming. We first introduce Sobolev spaces for manifold-valued functions
(see, e.g., [6]).
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Definition 3.2. Let M be a Riemannian manifold isometrically embedded in
R

m for some m ∈ N. Then

Hk(Ω,M) := {v ∈ Hk(Ω,Rm) | v(x) ∈ M a.e.}

is called the k-th order Sobolev space for functions with values in M .

It is now easy to show that geodesic finite element functions are indeed
Sobolev functions.

Theorem 3.1. V M
h (Ω) ⊂ H1(Ω,M).

The proof uses the following simple lemma, which can be shown similarly to
Theorem 5.2 in [8].

Lemma 3.1. Let k ≥ 1, m ≥ 1, and Ω open and bounded. A function v :
Ω → R

m that is piecewise arbitrarily smooth is in Hk(Ω,Rm) if and only if
v ∈ Ck−1(Ω,Rm).

Proof of Theorem 3.1. Let vh ∈ V M
h (Ω). By Lemma 2.2, vh is differentiable

on each element T of G as a function T → M . By Nash’s theorem there
exists a smooth isometric embedding of M into an R

m, and then vh is also
differentiable on each element T as a function from T to R

m. By definition, vh is
continuous and with Lemma 3.1 we can conclude that vh ∈ H1(Ω,Rm). But also
by definition we have vh(x) ∈ M for all x ∈ Ω, and hence vh ∈ H1(Ω,M).

The classical linear finite element method distinguishes the discrete problem,
which deals with finite element functions, from the algebraic problem, which
deals with vectors of coefficients. The latter is used to implement numerical
algorithms. Both formulations are equivalent, because a classical finite element
function uniquely corresponds to a coefficient vector once a basis of the finite
element space has been chosen. In the simplest case the basis is the nodal basis
and the coefficients are the function values at the grid vertices.

The distinction between discrete and algebraic formulations persists in the
theory of geodesic finite elements. However, the relationship between geodesic
finite element functions vh ∈ V M

h and sets of coefficients v̄ ∈ Mn is more
subtle. Since any vh ∈ V M

h is continuous we can associate to it the coefficient
set consisting of the values of vh at the grid vertices. However, given a set of
coefficients v̄ ∈ Mn it is not clear whether there is a corresponding geodesic
finite element function, and whether this function is unique, if there is one. The
difficulty stems mainly from the corresponding problem for geodesic simplicial
interpolation, but it is also not obvious whether individual geodesic interpolation
functions can be stitched together continuously.

To formally investigate the relationship between geodesic finite element func-
tions and sets of coefficients we define the nodal evaluation operator

E : V M
h → Mn

(E(vh))i = vh(xi), xi the i-th vertex of G.

To each geodesic finite element function vh ∈ V M
h it associates the set of function

values at the grid vertices. Since functions in VM
h are continuous the operator

E is well-defined and single-valued for all vh ∈ V M
h .
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We are now interested in the inverse operator E−1, which associates geodesic
finite element functions to a given set of coefficients. Since M is supposed to
be geodesically complete, the inverse E−1 is defined for all v̄ ∈ Mn; however for
arbitrary v̄ it may be multi-valued.3 Using Theorem 2.1 the sets of coefficients
for which E−1 is single-valued can be characterized.

Lemma 3.2. Let G be a simplicial grid with n vertices, and let v̄ ∈ Mn be a set
of coefficients. Set ρ = 1

4πK
−1/2 if the sectional curvatures of M are bounded

from above by a positive constant K, and set ρ = ∞ if the sectional curvatures
are bounded from above by 0. If for each element T of G with associated coeffi-
cients v̄T,1, . . . , v̄T,d+1 there exists an open geodesic ball Bρ of radius ρ such that
v̄T,i ∈ Bρ for each i = 1, . . . , d + 1, then there is a unique function vh ∈ V M

h

with vh = E−1(v̄).

Proof. For each x ∈ Ω let T be an element of G with x ∈ T and corner values
v̄T,i, i = 1, . . . , d + 1. Set FT an affine mapping from T onto the standard
simplex ∆d and define the function vh : Ω → M by

vh(x) = Υ(v̄T,1, . . . , v̄T,d+1;FT (x)).

By the assumptions on the grid and the coefficients we can invoke Theorem 2.1
to get that vh is single-valued on each T . Since

Υ(v̄T,1, . . . , v̄T,d+1; ei) = v̄T,i ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d+1−i

)

we have that E(vh) = v̄. Also, by Lemma 2.3, vh varies continuously between
adjacent elements. Hence vh ∈ V M

h .

Corollary 2.1 has the following global analogon.

Corollary 3.1. Let M be complete, simply connected, and have nonpositive
sectional curvatures. Then E : VM

h → Mn is a bijection.

If M has positive, but bounded sectional curvatures, the unique correspon-
dence between geodesic finite element functions and sets of coefficients can still
be obtained, but only in the following asymptotic sense.

Theorem 3.2. Let M be a complete Riemannian manifold with sectional cur-
vatures bounded from above by a constant K > 0, and let v : Ω → M be Lipschitz
continuous in the sense that there exists a constant L such that

dist(v(x), v(y)) ≤ L|x− y|

for all x, y ∈ Ω. Let G be a simplicial grid of Ω and h the length of the longest
edge of G. Set v̄ = E(v), tacitly extending the definition of E to all continuous
functions Ω → M . If

h <
ρ

L
=

πK−1/2

4L
,

then the inverse of E has only a single value in V M
h for each ṽ in a neighborhood

of v̄.

3An example of this is given in Figure 3 in [24].
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Proof. Let T be an element of G with corners xT,1, . . . , xT,d+1 ∈ Ω, and let
vT,1, . . . , vT,d+1 ∈ M be the values of v at these corners. Set ρ = 1

4πK
−1/2 and

let Bρ(vT,1) be the geodesic open ball of radius ρ around vT,1. Then for each
i = 1, . . . , d+ 1 we have vT,i ∈ Bρ(vT,1) because

dist(vT,i, vT,1) ≤ L|xT,i − xT,1| ≤ Lh < ρ.

Hence we can use Lemma 3.2 to conclude that there is a unique function vh ∈
V M
h with E(vh) = v̄.
Since h is strictly less than ρ/L there is an ǫ ∈ (0, 1) such that even h <

ǫρ/L. Then dist(vT,i, vT,1) ≤ ǫρ for all 1 ≤ i ≤ d + 1. Define ǫ∗ = (1 − ǫ)ρ
and set Bǫ∗(vT,i) the geodesic ball of radius ǫ∗ around vT,i. Then for any
ṽT,i ∈ Bǫ∗(vT,i), i = 1, . . . , d+ 1 we have, by the triangle inequality,

dist(ṽT,i, vT,1) ≤ dist(ṽT,i, vT,i) + dist(vT,i, vT,1) ≤ (1− ǫ)ρ+ ǫρ = ρ.

Hence
Bǫ∗,∞(v̄) := {ṽ ∈ Mn | ṽi ∈ Bǫ∗(v̄i), i = 1, . . . , n}

is a neighborhood of v̄ in Mn, and for each ṽ ∈ Bǫ∗,∞(v̄) there is a unique
function ṽh in V M

h with E(ṽh) = ṽ.

This lemma implies that for a given problem with a Lipschitz-continuous
solution we can always find a grid fine enough such that we can disregard the
distinction between V M

h and Mn in the vicinity of the solution. Hence locally a
geodesic finite element problem can be represented by a corresponding algebraic
problem on the product manifold Mn. Locally, the function space V M

h inherits
the manifold structure of Mn, because functions defined by simplicial geodesic
interpolation depend differentiably on their corner values (Lemma 2.2).

We close the chapter with the result that geodesic finite element functions
are equivariant under isometries of M . It is a central result of geodesic finite
element theory, because it implies that the invariance of a continuous model
under isometries will not be lost by discretization. In mechanics, e.g., it allows
for discrete approximations that are exactly frame-indifferent. The proof is
trivial with the help of Lemma 2.6.

Theorem 3.3. Let M be a Riemannian manifold and G a group that acts on
M by isometries. Extend the action of G to Mn by setting

(Qv̄)i = Qv̄i ∀v̄ ∈ Mn, i = 1, . . . , n,

and to V M
h by setting

(Qvh)(x) = Q(vh(x)) ∀vh ∈ V M
h , x ∈ Ω.

Then
E(Qvh) = QE(vh)

for all Q ∈ G and vh ∈ V M
h , whenever these expressions are well defined.
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4 Numerical Solution of Minimization Problems

in Geodesic Finite Element Spaces

In the previous two chapters we have introduced geodesic finite element spaces
as a conforming approximation for H1(Ω,M), where Ω is an open subset of
R

d, d ≥ 1, and M is a Riemannian manifold. We will now use these geodesic
finite elements to solve partial differential equations for functions in H1(Ω,M).
We restrict our attention to time-independent PDEs that have a minimization
formulation. That is, we assume that there is an energy functional

J : H1(Ω,M) → R

such that the (stable) problem solutions are minima of J subject to suitable
boundary conditions. For simplicity we consider Dirichlet boundary conditions
only. More formally, our continuous problem is then to find a function u ∈
H1(Ω,M) such that

J (u) ≤ J (v) (9)

for all v in a neighborhood of u in H1(Ω,M), and

u = uD on ∂Ω, (10)

with uD : ∂Ω → M sufficiently smooth. We leave out any discussion of the
well-posedness of this kind of problems, as that would go beyond the scope of
this article.

4.1 Discrete and Algebraic Problem Formulations

We state the discrete problem corresponding to (9)–(10). Remember that Ω is
assumed to be polygonally bounded and let G be a conforming simplicial grid of
Ω. We have shown in Theorem 3.1 that the geodesic finite element space V M

h is
a subspace of H1(Ω,M). Consequently, the energy functional J is well-defined
on V M

h . We can formulate a discrete version of Problem (9)–(10) by restricting
the ansatz space to V M

h : Find a function uh ∈ V M
h (Ω) such that

J (uh) ≤ J (vh) (11)

for all vh in a neighborhood U ∈ V M
h of uh, and with

uh = uh,D on ∂Ω,

where uh,D is a suitable approximation of the Dirichlet data uD.
For a numerical treatment of (11) we need the corresponding algebraic for-

mulation. Let u be a solution of the continuous problem (9) and assume that
it is Lipschitz continuous. By Theorem 3.2 there is a number h0 > 0 and a
neighborhood V of E(u) in Mn such that for all coefficient sets v̄ ∈ V there is a
unique discrete function E−1(v̄) ∈ V M

h if the maximum grid edge length is less
than h0. We assume that E(uh) ∈ V , which allows us to formulate the algebraic
minimization problem corresponding to (11): Find ū ∈ Mn such that

J (E−1(ū)) ≤ J (E−1(v̄)) (12)
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for all v̄ ∈ Mn such that v̄ ∈ E(U)∩ V , and subject to the boundary conditions

ūi = (E(uh,D))i for all vertices xi on ∂Ω.

For simplicity of notation we define the algebraic energy functional

J : Mn → R, J(v̄) := J (E−1v̄).

With this functional we can rewrite the algebraic problem (12) as: Find ū ∈ Mn

such that
J(ū) ≤ J(v̄) (13)

for all v̄ ∈ Mn such that v̄ ∈ E(U)∩ V , and subject to the boundary conditions

ūi = (E(uh,D))i

for all vertices xi on ∂Ω.

4.2 Riemannian Trust-Region Methods

The algebraic problem (13) is a minimization problem on the manifold Mn. For
such problems Absil et al. [2] introduced the Riemannian trust-region method.
We briefly describe their method and then present an extension that allows to
solve the quadratic subproblems that occur at each iteration very efficiently in
a finite element context.

Let N be a Riemannian manifold with metric g, and j : N → R twice
differentiable. The basic idea of the Riemannian trust-region algorithm is that
in a neighborhood of a point q ∈ N the objective function can be lifted onto
the tangent space TqN . There, a vector space trust-region subproblem can be
solved and the result transported back onto N .

More formally, let ν ∈ N be an iteration number and let qν ∈ N be the
current iterate. We obtain the lifted functional by setting

̂ν : TqνN → R

̂ν(s) = j(expqν s).

Let ρν > 0 be the current trust-region radius. The Riemannian metric g turns
TqνN into a Banach space with the norm ‖·‖qν =

√
gqν (·, ·). There, the trust-

region subproblem reads

sν = argmin
s∈TqνN

mν(s), ‖s‖qν ≤ ρν , (14)

with the quadratic, but not necessarily convex model

mν(s) = ̂ν(0) + gqν (∇̂ν(0), s) +
1

2
gqν (Hess ̂ν(0)s, s). (15)

Here ∇̂ν is the gradient and Hess ̂ν the Hessian of ̂ν , and both are evaluated
at 0 ∈ TqνN . Note that (15) is independent of a specific coordinate system on
TqνN . As a minimization problem of a continuous function on a compact set,
(14) has at least one solution sν , which generates the new iterate by

qν+1 = expqν sν .
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As in trust-region methods in linear spaces, the quality of a correction step
sν is estimated by comparing the functional decrease and the model decrease.
If the quotient

κν =
j(qν)− j(expqν sν)

mν(0)−mν(sν)
(16)

is smaller than a fixed value η1, then the step is rejected, and sν is recomputed
for a smaller trust-region radius ρ. Otherwise the step is accepted. If κν is
larger than a second value η2, the trust-region radius is enlarged for the next
step. Common values are η1 = 0.01 and η2 = 0.9 [11].

For this method, Absil et al. proved global convergence to first-order sta-
tionary points, and, depending on the exactness of the inner solver, locally
superlinear or even locally quadratic convergence. The interested reader should
consult the monograph [2] for details.

4.3 Using Monotone Multigrid for the Quadratic Prob-

lems

Various solvers have been proposed for the inner quadratic problems (14).
Absil et al. used the Steihaug–Toint algorithm [2], and their local convergence
result relies on properties of this solver. As an alternative for finite element
problems, we propose a multigrid method which can solve the subproblems (14)
with linear complexity.

We focus again on the finite element case, which means that N is a product
manifold Mn, with n the number of grid vertices. Our construction is based on
the fact that the trust-region convergence theory allows norms other than ‖·‖qν
for the definition of the trust-region [11]. We therefore introduce a maximum
norm

‖·‖∞,TMn : TMn → R
+
0

on the tangent bundle of Mn by defining for each q = (q1, . . . , qn) ∈ Mn,
s = (s1, . . . , sn) ∈ TqM

n

‖s‖∞,TMn = max
i=1,...,n

‖si‖∞,T
qi

M . (17)

The maximum norms ‖·‖∞,T
qi

M : TqiM → R
+
0 on the tangent spaces of M are

to be understood with respect to fixed but arbitrary bases. Together with this
choice of bases, the norm ‖·‖∞,TMn turns Mn into a Finsler manifold.

Using ‖·‖∞,TMn for the definition of the trust region, the quadratic subprob-
lem (14) reads

sν = argmin
s∈TqνM

n

mν(s), ‖s‖∞,TqνM
n ≤ ρν , (18)

with mν given again by (15). The key observation now is that the new trust
region

Ktr
∞,ν :=

{
s ∈ TqνM

n
∣∣ ‖s‖∞,TMn ≤ ρν

}

has a tensor product structure

Ktr
∞,ν = [−ρν , ρν ]

ndimM ⊂ R
n dimM .
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Hence Problem (18) is a minimization problem for a quadratic functional on a
compact hypercube. Since the quadratic part 1

2gqν (Hess ̂ν(0)·, ·) of mν stems
from the discretization of a finite element problem, it is a sparse matrix.

For strictly convex quadratic minimization problems on sets with tensor
product structure, Kornhuber introduced the monotone multigrid method (MMG)
[17]. We will use it to solve the quadratic problems (18). As it turns out MMG
performs well even for nonconvex energies, if the admissible set is compact.

The monotone multigrid method is a generalization of the linear multigrid
method. Like the latter it assumes a nested hierarchy of grids G0, . . . ,GL and
grid-dependent prolongation operators Pj : Rnj−1 → R

nj , j = 1, . . . , L, where
nj is the number of vertices on the j-th level. In the easiest case the operators
Pj are the ones known from linear multigrid theory. The linear smoothers
are replaced by a projected Gauß–Seidel method. On the coarser grid levels,
coarse grid approximations to the admissible defect set are constructed such
that an admissible coarse grid correction does not lead to an inadmissible fine
grid iterate. The following is a simple pseudocode implementation of a single
multigrid correction step for the functional

Jalg(x) =
1

2
xTAx− bx on K =

nL∏

i=1

[µ−
i , µ

+
i ],

where A ∈ R
nL×nL is symmetric, b ∈ R

nL , µ−
i , µ

+
i ∈ R for all 1 ≤ i ≤ nL, and

K 6= ∅. The ei occurring in the code are the canonical basis vectors of Rnj .

// MMG i t e r a t i o n on l e v e l j

mmg step (Aj , rj , λ
−

j , λ
+
j , j )

// non l i near Gauss−Se i d e l smoother

de f i n e Jj(w) = 1
2
wTAjw − rjw

for each i = 1, . . . , nj do

s e t (vj)i = argmin
v∈[(λ−

j
)i,(λ

+

j
)i]

Jj

(

i−1
∑

k=1

(vj)kek + vei

)

i f ( j>0)
// con s t ru c t coarse g r i d d e f e c t problem

s e t Aj−1 = P T
j AjPj

s e t rj−1 = P T
j (rj − Ajvj)

// compute monotone coarse d e f e c t o b s t a c l e s

compute λ−

j−1 such that vj + Pjλ
−

j−1 ≥ λ−

j

compute λ+
j−1 such that vj + Pjλ

+
j−1 ≤ λ+

j

// recurse

s e t vj = vj + Pj mmg step (Aj−1, rj−1, λ
−

j−1, λ
+
j−1, j − 1)

return vj

end

As the pseudocode implementation computes corrections it has to be called as

s e t xk+1 = xk+mmg step (A, b− Axk, µ− − xk, µ+ − xk, L ) .
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For details we refer the reader to the literature (e.g., [15, 17]).
In practice, the most important situation is a strictly convex quadratic func-

tional mν . In this case, monotone multigrid converges globally with asymptotic
multigrid speed.

Theorem 4.1 (Kornhuber [17]). Let A ∈ R
n×n be symmetric and positive

definite, b ∈ R
n, and let K =

∏n
i=1[µ

−
i , µ

+
i ], with µ−

i , µ
+
i ∈ R, K 6= ∅.

1. For any initial iterate x0 ∈ R
n, the MMG method converges to the unique

minimizer of the functional Jalg(x) =
1
2x

TAx− bx on K.

2. If strict complementarity holds (see, e.g., [11]), there exists a number k0 ∈
N such that for all iterations k > k0 the active set

N •
k = {i ∈ 1, . . . , n | xk

i = µ−
i or xk

i = µ+
i }

remains invariant and MMG degenerates to a standard multigrid method.

If the functional Jalg is not strictly convex the method remains well defined.
Scalar minimization in directions in which the functional is concave still has
minimizers, because the admissible setK is compact. If there are two minimizers
for a search direction ei either one can be chosen by the algorithm. The proof of
global convergence under mild additional assumptions will appear in a separate
article. In Chapter 6 we will demonstrate the fast convergence numerically.

5 Numerical Aspects of Geodesic Finite Elements

Geodesic finite elements are more difficult to handle than regular finite ele-
ments, because they are only defined implicitly through minimization problems.
Therefore, in this section we revisit geodesic finite element functions from an
algorithmic point of view.

So far we have only considered PDE problems with a minimization formu-
lation. We now restrict our attention even further to problems with functionals
of the form

J (v) =

∫

Ω

W (∇v(x), v(x), x) dx, v ∈ H1(Ω,M),

where W is a scalar energy density assumed to be as smooth as necessary. For
a given grid G with n vertices the corresponding algebraic energy is

J(v̄) =

∫

Ω

W
(
∇(E−1(v̄))(x), (E−1(v̄))(x), x

)
dx, v̄ ∈ Mn. (19)

To compute this energy numerically for a given function vh = E−1(v̄) ∈ V M
h

(needed in (16) to assess the quality of trust-region steps) we have to evaluate
geodesic finite element function values vh(x) and derivatives ∇vh(x) at (quadra-
ture) points x in Ω. For the minimization by Riemannian trust-region methods
we further need to evaluate first and second derivatives of J with respect to the
coefficients v̄. By the chain rule, this in turn requires derivatives of vh(x) and
∇vh(x) with respect to the finite element coefficients. In this work we compute
analytical expressions for the first derivatives. Doing the same for second deriva-
tives is possible but the expressions get fairly large. In our numerical example
we have approximated the Hessian of J by finite differences.
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Remark 5.1. So far geodesic finite element functions have been defined in terms
of coordinates on the standard simplex ∆. However, in the finite element liter-
ature the reference simplex ∆̃ is much more common. For example, quadrature
rules in existing codes are usually given with respect to ∆̃. Since the formulas
we present in this chapter are meant to be implemented in actual computer
codes, we formulate them in coordinates on the reference simplex. Therefore
the mapping B : ∆̃ → ∆ given in (2) appears in the equations.

5.1 Evaluation of Geodesic Finite Element Functions

Let vh : Ω → M be a geodesic finite element function and x ∈ Ω. We want
to compute vh(x) ∈ M . If T is an element of G with x ∈ T , then vh(x)
can be computed by geodesic simplicial interpolation between the coefficients
vT,1, . . . , vT,d+1 ∈ M corresponding to the corners of T . More formally, let

F̃T : T → ∆̃ be an affine mapping from T onto the reference simplex. Then we
have vh(x) = ṽT (ξ) with ξ = F̃T (x) and ṽT a function defined on the reference
simplex. By construction of vh, the value ṽT (ξ) is given by

ṽT (ξ) = argmin
q∈M

f̃ξ(q), f̃ξ(·) =
d+1∑

i=1

B(ξ)i dist(vT,i, ·)2. (20)

In general the minimization problem (20) can only be solved numerically.
Since its objective function f̃ξ is defined on a Riemannian manifold M we use
a Riemannian trust-region method as presented in Section 4.2. Under the as-
sumptions of Theorem 2.1, f̃ξ is C∞ (Lemma 2.4) and strictly convex on an
open geodesic ball containing the vT,i [16, Thm. 1.2].

With k the trust-region iteration number let qk ∈ M be the current iterate.
We use the exponential map expqk : TqkM → M to define lifted functionals

f̂k : TqkM → R

f̂k(s) =

d+1∑

i=1

B(ξ)i dist(vT,i, expqk s)
2,

and corresponding quadratic models

mk(s) = f̂k(0) + gqk(∇f̂k(0), s) +
1

2
gqk(Hess f̂k(0)s, s).

Using ∇ exp 0 = Id we see that the gradient of f̂k at 0 ∈ TqkM is

∇f̂k(0) =

d+1∑

i=1

B(ξ)i
∂

∂q
dist(vT,i, q)

2,

and that the Hessian is

Hess f̂k(0) =

d+1∑

i=1

B(ξ)i
∂2

∂q2
dist(vT,i, q)

2.

The derivatives of dist(·, ·)2 embody the geometry of the manifold M . In the
appendix we have computed the relevant formulas for M being a unit sphere.
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At each step k of the Riemannian trust-region method a constrained quadratic
problem of the form

sk = argmin
s∈Tqk

M
mk(s) ‖s‖ ≤ ρk (21)

has to be solved. The number of variables of this problem is dimM if the algo-
rithm uses local coordinates on M , or a larger number if M is parametrized by
an embedding into a Euclidean space. In many practical cases the number of
variables is small, but there is no guarantee for this. In any case, the number
is independent of the number of vertices in the finite element grid. The prob-
lems (21) can be solved, for example, by a preconditioned truncated conjugate
gradient method as described in [11].

5.2 Gradients of Geodesic Finite Element Functions

To evaluate the energy J in (19) we also need to be able to compute the deriva-
tives ∇vh(x) at quadrature points x ∈ Ω. Let again vh : Ω → M be a geodesic
finite element function and x ∈ Ω. The derivative of vh at x (if it exists) is a
linear map

∇vh(x) : TxΩ → Tvh(x)M.

Again it is sufficient to consider functions on the reference simplex only. Indeed,
if G is a grid, T an element of G such that x is in the interior of T and F̃T an
affine mapping from T onto the reference simplex ∆̃, then

∇vh(x) =
∂

∂x
ṽT (F̃T (x)) =

∂

∂ξ
ṽT (ξ) ·

∂

∂x
F̃T (x),

with ṽT : ∆̃ → M as defined in (20). The problem hence reduces to computing

the gradient of a function ṽT : ∆̃ → M defined by geodesic interpolation.
In the proof of Lemma 2.2 the implicit function theorem was used to show

under what circumstances the derivative ∂ṽT /∂ξ exists. Here we use it again
for the actual computation. Let vT,1, . . . , vT,d+1 ∈ M be the coefficients of vh at

the corners of T . The definition of geodesic simplicial interpolation on ∆̃ reads

ṽT (ξ) = Υ(vT ,B(ξ)) = argmin
q∈M

fvT ,B(ξ)(q),

with fvT ,B(ξ) as defined in (5). By Lemma 2.4 the functional on the right is
smooth, and the minimizer can hence also be characterized by

F (vT ,B(ξ),Υ(vT ,B(ξ))) = 0, (22)

where

F : Md+1 ×∆×M → TM

F (v, w, q) =
∂

∂q
fv,w(q) =

d+1∑

i=1

wi
∂

∂q
dist(vi, q)

2. (23)
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Taking the total derivative of (22) with respect to ξ and using B(ξ) = Bξ + c
we get

d

dξ
F (vT ,B(ξ),Υ(vT ,B(ξ)))

=
∂F (vT , w, q)

∂w
·B +

∂F (vT , w, q)

∂q
· ∂Υ(vT ,B(ξ))

∂ξ
= 0.

By Lemma 2.1 the matrix
∂F

∂q
= Hess fvT ,w (24)

is invertible, and hence ∂ṽT (ξ)/∂ξ = ∂Υ(vT ,B(ξ))/∂ξ can be computed as the
solution of the linear system of equations

∂F (vT , w, q)

∂q
· ∂Υ(vT ,B(ξ))

∂ξ
= −∂F (vT , w, q)

∂w
·B. (25)

Using the definition (23) we see that in coordinates ∂F/∂w is a (dimM)×(d+1)-
matrix, where the i-th column is

(∂F
∂w

T)
i
=

∂

∂q
dist(vT,i, q)

2.

Hence evaluating the derivative of a geodesic finite element function amounts
to an evaluation of its value (to know where to evaluate the derivatives of F )
and the solution of the symmetric linear system (25).

5.3 Derivatives of Finite Element Function Values with

Respect to Coefficients

In order to find minima of the algebraic energy functional J by a Riemannian
trust-region method we need its derivatives ∂J/∂v̄i, 1 ≤ i ≤ n. By the chain
rule, the expression for these derivatives includes derivatives ∂vh(x)/∂v̄i, where
vh ∈ V M

h and x is a (quadrature) point in Ω. By the same reasoning as in
Section 5.1 it follows that the ∂vh(x)/∂v̄i can be obtained by computing the
corresponding derivatives of geodesic simplicial interpolation functions on the
reference simplex.

Let therefore ṽT : ∆̃ → M be a function given by geodesic simplicial in-
terpolation, vi ∈ M , i = 1, . . . , d + 1 its corner coefficients, and let ξ ∈ ∆̃ be
arbitrary but fixed coordinates. We want to compute the derivatives

∂

∂vi
ṽT (ξ) =

∂

∂vi
Υ(v1, . . . , vd+1;B(ξ)) : TviM → TΥ(v,B(ξ))M

for all i = 1, . . . , d+ 1. By definition of Υ we have

F (v1, . . . , vd+1,B(ξ),Υ(v1, . . . , vd+1;B(ξ))) = 0.

Taking the total derivative of this with respect to vi gives

dF

dvi
=

∂F

∂vi
+

∂F

∂q
· ∂Υ(v,B(ξ))

∂vi
= 0,
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with
∂F

∂vi
= B(ξ)i

∂

∂vi

∂

∂q
dist(vi, q)

2

and ∂F/∂q as in (24). By Lemma 2.1 the matrix ∂F/∂q is invertible. Hence
the derivative of Υ(v1, . . . , vd+1;B(ξ)) with respect to one of its coefficients vi
can be computed as a minimization problem to obtain the value Υ(v,B(ξ)) and
the solution of the linear system of equations

∂F

∂q
· ∂

∂vi
Υ(v,B(ξ)) = −∂F

∂vi
. (26)

5.4 Derivatives of the Finite Element Gradient with Re-

spect to Coefficients

Let vh : Ω → M be a geodesic finite element function and let x ∈ Ω be such
that ∇vh(x) exists. We assume that the conditions of Theorem 3.2 hold and
hence for a fixed x we can view ∇vh(x) as a function of the coefficient vector
v̄ = E(vh) ∈ Mn. For each i = 1, . . . , n we want to compute the derivative
∂

∂v̄i
∇vh(x). Note that since ∇vh(x) is a linear map, its derivative is a trilinear

form—written in coordinates it will have three indices.
Let T be an element of G such that x ∈ T , and vT,i, 1 ≤ i ≤ d + 1 the

coefficients at the corners of T . As in Section 5.2 we use the decomposition

∇vh(x) =
∂

∂ξ
ṽT (ξ) ·

∂

∂x
F̃T (x),

where F̃T is an affine mapping from T onto the reference simplex ∆̃, and ṽT =
Υ(vT ,B(·)) is defined on ∆̃. We can then write

∂

∂v̄i
∇vh(x) =

∂

∂v̄i

( ∂

∂ξ
ṽT (ξ) ·

∂

∂x
F̃T (x)

)
=

(
∂

∂vT,∗

∂

∂ξ
ṽT (ξ)

)
· ∂

∂x
F̃T (x),

where vT,∗ is the coefficient of ṽT corresponding to the global coefficient v̄i. It
is hence again sufficient to consider only functions on the reference simplex.

To compute the derivative of ∇ṽT with respect to vT,∗ we take the total
derivative of expression (25) with respect to vT,∗ and obtain

∂F

∂q
· ∂2Υ

∂vT,∗ ∂ξ
= − ∂2F

∂vT,∗ ∂q
· ∂Υ
∂ξ

− ∂Υ

∂vT,∗
· ∂

2F

∂q2
· ∂Υ
∂ξ

− ∂2F

∂vT,∗ ∂w
· B − ∂Υ

∂vT,∗
· ∂2F

∂q ∂w
·B. (27)

In coordinates (and using the Einstein convention), this is

∂Fl

∂qj

∂2Υl

∂(vT,∗)i ∂ξk
= − ∂2Fl

∂(vT,∗)i ∂qj

∂Υl

∂ξk
− ∂Υl

∂(vT,∗)i

[∂2F

∂q2

]
ljm

∂Υm

∂ξk

− ∂2Fj

∂(vT,∗)i ∂wl
Blk −

∂Υm

∂(vT,∗)i

∂2Fj

∂qm ∂wl
Blk.
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This time we need to compute the value of ṽT (ξ), solve a linear system for
∂Υ/∂ξ, and then solve the linear system (27) to obtain the desired value of
∂2Υ/∂VT,∗∂ξ. Various new derivatives of F appear. These are

∂2Fj

∂(vT,∗)i ∂wk
= δ∗k

∂

∂(vT,∗)i

∂

∂qj
dist(vT,∗, q)

2

∂2Fk

∂(vT,∗)i ∂qj
= w∗

∂

∂(vT,∗)i

[ ∂2

∂q2
dist(vT,∗, q)

2
]
jk

[∂2F

∂q2

]
ijk

=
d+1∑

l=1

wl

[ ∂3

∂q3
dist(vT,l, q)

2
]
ijk

∂2Fj

∂qi ∂wk
=

[ ∂2

∂q2
dist(vT,k, q)

2
]
ij
.

Note that these are all third-order objects.

5.5 Summary: Required Information about M

In the preceding sections we have computed values of geodesic finite element
functions, and the various derivatives that were necessary to implement geodesic
finite element methods. For computations of values a Riemannian trust-region
method was used, and derivatives were obtained by different applications of the
implicit function theorem. We have seen that all information about the mani-
fold M enters in form of different derivatives of the squared distance function
dist(·, ·)2 : M ×M → R. In summary, the derivatives used were

∂

∂q
dist(p, q)2,

∂2

∂p∂q
dist(p, q)2,

∂2

∂q2
dist(p, q)2,

∂3

∂p∂q2
dist(p, q)2,

∂3

∂q3
dist(p, q)2.

Additionally, the exponential map onM was needed for the trust-region method.
If the Hessian of the energy functional J were also to be computed analytically,
then various forth-order derivatives would have to be added to the list.

For various important spaces such as SO(3) and the unit spheres Sm, m ∈ N,
the derivatives can be computed analytically. Formulas for the latter can be
found in the appendix. If no closed-form expressions are available the derivatives
can in principle be approximated numerically.

6 Example: Harmonic Maps in Liquid Crystals

We close this article by giving a numerical example. Our aim is two-fold. First,
we want to show that the Riemannian trust-region method of Section 4.2 to-
gether with the monotone multigrid solver is able to efficiently solve geodesic
finite element problems. Secondly, we want to numerically estimate the conver-
gence order of the discretization by geodesic finite elements.

Let N and M be two Riemannian manifolds. A function v : N → M is
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Figure 2: Left: Coarse grid. Right: Cut through the solution field on a grid
obtained by four steps of uniform refinement.

called a harmonic map if it is a stationary point of the energy functional

J : H1(N,M) → R

J (v) =

∫

N

|∇v|2 dx, (28)

where ∇ : TN → TM is the differential of v and the norm | · | is the one
corresponding to the induced metric on the bundle TN ⊗ v−1TM . We consider
the special case N = Ω ⊂ R

d open and bounded and M = S2 the unit sphere
in R

3, and try to solve the associated Dirichlet problem

minimize J (v) =

∫

Ω

|∇v|2 dx in H1(Ω, S2)

subject to
v = vD on ∂Ω,

with vD a given set of boundary conditions. This is a standard model for
equilibrium states of nematic liquid crystals, known as the one-constant ap-
proximation [13].

As coordinates on the unit sphere S2 we use the canonical embedding into R3

(see the appendix for details). With the metric on S2 induced by the embedding
we obtain the coordinate representation

|∇v|2 =

d∑

i=1

3∑

α=1

(∂vα
∂xi

)2

,

that is, ∇v is a 3× d-matrix and | · | the Frobenius norm.
As the domain Ω we choose an approximation of the ellipsoid

Ω =
{
x ∈ R

3 | 1
4
x2
1 + x2

2 + x2
3 ≤ 1

}
,

which we discretize by an unstructured simplicial grid G0 consisting of 40 ver-
tices and 95 tetrahedra (Figure 2, left). The choice of an unstructured grid is
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Figure 3: Left: Error after each trust-region step on a grid obtained by four
steps of uniform refinement. Right: Average convergence rate of the monotone
multigrid solver for each grid size and trust-region step.

deliberate, since we want to stress that geodesic finite elements do not rely on
geometric structure in the grid. To create an example field of Dirichlet data vD
we first define a rotation axis a(x) = (x1,x2,1)

|(x1,x2,1)|
and then set

vD(x) = R(a(x),−3π|x|)e3,

where R(a, α) is the matrix corresponding to a rotation of an angle α around
the axis a, and e3 is the third canonical basis vector. The gradient of the
energy functional (28) in the geodesic finite element space V S2

h was computed
analytically, whereas its Hessian was approximated by a finite difference method.
The discretization and solution algorithms were implemented in C++ using the
Dune libraries [4].

We begin by measuring the efficiency of the trust-region solver. For this
we use a grid G4 of n4 = 69 304 vertices, obtained from G0 by four steps of
uniform refinement. We compute a reference solution v∗ ∈ (S2)n4 by solving
the problem up to machine precision (Figure 2, right). Then, starting from

v0 ∈ (S2)n4 , v0i =

{
vD(xi) if xi ∈ ∂Ω,

(1, 0, 0)T else,

we iterate again until the maximum norm of the correction steps drops below
10−9. After each iteration ν, the error of the current iterate vν ∈ (S2)n4 with
respect to the reference solution is computed as

eν = ‖E−1(vν)− E−1(v∗)‖1,

where ‖·‖1 is the standard H1-norm on the space H1(Ω,R3). Figure 3, left,
shows the error eν per iteration step ν. One can clearly see the local superlinear
behavior predicted by the trust-region convergence theory.

Our next interest is the behavior of the solver as the grid is refined. We
therefore repeat the previous experiment on a family of grids G0, . . . ,G5 obtained
from G0 by up to five steps of uniform refinement. On each grid Gj we compute
a reference solution v∗j and measure the solver convergence as before. Table 1
shows the number of trust-region iterations needed on each grid. We see that
the number appears to be bounded from above independently from the grid
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grid G0 G1 G2 G3 G4 G5

vertices 40 208 1 311 9 245 69 305 536 433
overall it. 24 15 14 8 10 11
unsuccessful it. 20 1 1 0 1 1

Table 1: Number of iterations of the trust-region solver per grid size.
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Figure 4: Discretization error as a function of normalized grid edge length.

size. This appears plausible considering the investigations in [27] for the linear
case. It makes the method attractive, as using a finer grid to obtain a higher
approximation quality does not automatically result in larger iteration numbers.
The reason for the large number of unsuccessful iterations on the coarsest grid
is unclear.

Figure 3, right, shows the convergence rates of the monotone multigrid solver.
For each solve of the quadratic inner problem (18) we computed an average
convergence rate. These rates are plotted for each grid and each trust-region
step ν, including the unsuccessful ones. It can be seen from the figure that the
rates stay well below 1, ever for the larger grids. From general multigrid theory
we expect that there is an upper bound strictly lower than 1 even for h → 0.
The data we have assembled suggests this but is not comprehensive enough for
a definite conclusion.

After having investigated the solver we now turn to the discretization error
of geodesic finite elements. From the study on the solver speed we take the ref-
erence solutions v∗j , j = 0, . . . , 5 computed on the grids G0, . . . ,G5, respectively.
We pick v∗5 to be the reference solution for the discretization error and compute
the errors

ekV = ‖E−1(v∗k)− E−1(v∗5)‖V , k = 0, . . . , 4,

where V is one of L2(Ω,R3), L∞(Ω,R3), or H1(Ω,R3). Note that since geodesic
finite element functions are not piecewise polynomials in R

3, the error norms
can only be computed with an additional error due to numerical quadrature.

Figure 6 shows the errors as functions of the mesh size h. We see that
the H1-error and L2-error are linear and quadratic functions of h, respectively.

26



Hence we can reproduce the optimal convergence behaviour well-known from
the linear theory even in this nonlinear case.

A Appendix: The Unit Sphere Sm

The geometry of the manifold M appears in the implementation of a geodesic
finite element method in form of various derivatives of the squared distance
function dist(·, ·)2 : M ×M → R. A list of these derivatives has been given in
Section 5.5. In this appendix we give explicit formulas for the case that M is the
unit sphere Sm. In our numerical examples only the two-dimensional sphere S2

was used. However, the formulas can be stated for all m ∈ N without increase
in complexity.

The unit sphere Sm is the smooth compact manifold

Sm = {p ∈ R
m+1 | ‖p‖ = 1},

and global coordinates on Sm are naturally given by this embedding into R
m+1.

The tangent space at a point p ∈ Sm is

TpS
m = {v ∈ R

m+1 | 〈p, v〉Rm+1 = 0}.
Hence tangent vectors v ∈ TpS

m can be treated as vectors in R
m+1. Sm becomes

a Riemannian manifold by inheriting the metric of the surrounding space

〈v, w〉TpSm := 〈v, w〉Rm+1 for all v, w ∈ TpS
m.

For a point p ∈ Sm and a tangent vector v ∈ TpS
m, the exponential map

expp : TpS
m → Sm is then given by [2, Ex. 5.4.1]

expp v = cos |v| · p+ sin |v|
|v| · v.

The geodesics of Sm are the segments of great circles. Any two points
p, q ∈ Sm can be connected by such segments; hence Sm is geodesically complete.
If p 6= −q there is a unique shortest geodesic that connects p and q. For all pairs
of points p = −q there are infinitely many minimizing geodesics, each of length
π. Hence the injectivity radius of Sm is inj(Sm) = π. Any geodesic ball on Sm

with radius ρ < π/2 is convex. The Riemannian distance between two points p
and q is the length of the shortest arc of a great circle connecting p to q. It is
given by

dist(p, q) = arccos〈p, q〉. (29)

To compute derivatives of dist(·, ·)2 on Sm we use the following result [2,
Prop. 5.3.2]. Part 1 covers the first derivatives, and Part 2 allows to cover the
higher ones.

Lemma A.1. Let M be a smooth Riemannian manifold isometrically embedded
in a Euclidean space R

m+1. For each p ∈ M let Pp : TpR
m+1 → TpM be the

orthogonal projection onto the tangent space at p.

1. Let f : M → R be continuously differentiable and f̃ a smooth extension of
f to a neighborhood of M in R

m+1. Then

∇f = Pp∇̃f̃ , (30)

where ∇ is the gradient operator on M , and ∇̃ is the gradient in R
m+1.
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2. Let F,G be (tangential) vector fields on M , and F̃ , G̃ smooth extensions
of F and G to a neighborhood of M in R

m+1. Then

∇FG = Pp∇̃F̃ G̃,

where ∇FG is the covariant derivative on M and ∇̃F̃ G̃ is the covariant
derivative in R

m+1.

As a suitable extension of the squared distance function we choose

d̃ist(p, q)2 = dist
( p

|p| ,
q

|q|
)2

= arccos2
〈 p

|p| ,
q

|q|
〉
.

This is well-defined and smooth on a neighborhood of Sm in R
m+1. For any

p ∈ Sm, the projection Pp : TpR
m+1 → TpS

m is given in coordinates by

(Pp)ij = δij − pipj .

For ease of notation we define α : [−1, 1] → R, α(x) := arccos2(x).
We now compute the derivatives of dist(·, ·)2 listed in Section 5.5, beginning

with the gradient

∇ dist(p, ·)2 =
∂

∂q
dist(p, q)2 ∈ TqS

m,

for arbitrary but fixed p ∈ Sm. Note that

∂

∂q

〈 p

|p| ,
q

|q|
〉
= Pqp if |p| = |q| = 1.

With (29), (30), and |p| = |q| = 1 we get

∂

∂qi
dist(p, q)2 =

( ∂

∂q
dist(p, q)2

)
i
= α′(x)

∣∣∣
x=〈p,q〉

(Pqp)i.

The derivatives of α(x) will be discussed below. To simplify the notation further
we will write α′ to mean the value of the derivative of α(x) at x = 〈p, q〉, and
similarly for higher derivatives.

For the second derivatives of dist(·, ·)2 we note that

∂

∂pj
(Pqp)i = (Pq)ij = δij − qiqj and

∂

∂qj
(Pqp)i = −δij〈p, q〉 − qipj .

This allows to compute

[ ∂2

∂q2
dist(p, q)2

]
ij
= α′′(Pqp)i(Pqp)j − α′(Pq)ij〈p, q〉.

Similarly we get the mixed derivative

∂

∂pi

∂

∂qj
dist(p, q)2 = α′′(Ppq)i(Pqp)j + α′(Pp)ik(Pq)kj ,
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where summation over pairs of equal indices is implied. Finally, the derivatives
of third order are

∂

∂pi

[ ∂2

∂q2
dist(p, q)2

]
jk

= α′′′(Ppq)i(Pqp)j(Pqp)k

+ α′′(Pp)il(Pq)jl(Pqp)k + α′′(Pp)il(Pqp)j(Pq)kl

− α′′(Ppq)i(Pq)jk〈p, q〉 − α′(Ppq)i(Pq)jk

and

[ ∂3

∂q3
dist(p, q)2

]
ijk

= α′′′(Pqp)i(Pqp)j(Pqp)k − α′′(Pq)ij〈p, q〉(Pqp)k

+ α′′(Pqp)iqj(Pqp)k − α′′(Pqp)j(Pq)ik〈p, q〉
+ α′′(Pqp)i(Pqp)jqk − α′′(Pqp)i(Pq)jk〈p, q〉
+ α′(Pq)ijqk〈p, q〉+ α′(Pq)ikqj〈p, q〉 − α′(Pqp)i(Pq)jk.

What is left are the derivatives of α(x) = arccos2(x). For each of them, a
closed form expression is available. They are

α′(x) = −2 arccos(x)√
1− x2

,

α′′(x) =
2

1− x2
− 2x arccos(x)

(1 − x2)3/2
,

α′′′(x) =
6x

(1− x2)2
− (4x2 − 2) arccos(x)

(1− x2)5/2
.

These expressions get numerically unstable around x = 1. There, the series
expansions

α′(x) = −2 +
2(x− 1)

3
+ O((x − 1)2),

α′′(x) =
2

3
− 8

15
(x− 1) +O((x − 1)2),

α′′′(x) = − 8

15
+

24

35
(x− 1) +O((x − 1)2),

have to be used instead. The series diverge for x → −1, which is not surprising
as x = 〈p, q〉 = −1 corresponds to the case that q is in the cut locus of p.

Remark A.1. Treating tangent vectors as vectors in R
m+1 with respect to the

canonical basis there is simple and elegant, but it also has several disadvantages.
First, the matrix representation of Hess fv,w (24) will have a nontrivial kernel,
and the systems (25), (26), and (27) have to solved with a rank-aware algorithm.
Also, the convergence result for the monotone multigrid method only holds if
the maximum norm (17) on each tangent space of Sm is given with respect
to a basis of the tangent space. For these reasons, we construct a basis for
each tangent space of Sm, and use it for the representation of Hess fv,w and
the trust-region corrections. Let x ∈ R

m+1 be a point on Sm with xm+1 ≤ 0.
Stereographic projection of x from the north pole onto the plane xm+1 = 0 is
given by

σ(x) = (y1, . . . , ym) =
( x1

1− xm+1
, . . . ,

xm

1− xm+1

)
. (31)
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The derivative of the inverse of σ is given by

(∇(σ−1))ij =
∂(σ−1)i
∂yj

=

{
2δij(1+|y|2)−4yiyj

(1+|y|2)2
if i ≤ m,

4yj

(1+|y|2)2
else.

(32)

Let ei, i = 1, . . . ,m be the canonical basis vectors of Rm. Since the stereographic
projection σ is conformal, the vectors êi = ∇(σ−1)ei, i = 1, . . . ,m form an
orthogonal basis of TxS

m. The basis remains orthogonal even if the factor
(1 + |y|2)−2 is neglected. To avoid degeneracies near the north pole all points
x ∈ Sm with xm+1 > 0 have to be treated by stereographic projection from the
south pole. This amounts to replacing the denominator in (31) by 1 + xm+1

and the second case of (32) by − 4yj

(1+|y|2)2
.
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