
A Limit Theorem for Financial Markets with Inert
Investors

Erhan Bayraktar∗, Ulrich Horst†, and Ronnie Sircar‡

13th February 2004

Abstract
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1 Introduction

We prove a functional central limit theorem for stationary semi-Markov processes in which

the limit process is a stochastic integral with respect to fractional Brownian motion. Our

motivation is to develop a probabilistic framework within which to analyze the aggregate

effect of investor inertia on asset price dynamics. We show that, in isolation, such infrequent

trading patterns can lead to long-range dependence in stock prices and arbitrage opportu-

nities for other more “sophisticated” traders.

In mathematical finance, the dynamics of asset prices are usually modelled by trajectories

of a stochastic process defined on some underlying probability space (Ω,F ,P). Geometric

Brownian motion has long become the canonical reference model of financial price fluctua-

tions. Since prices are generated by the demand of market participants, it is of interest to

support such an approach by a microeconomic model of interacting agents. One possibility

is to justify geometric Brownian motion as a rational expectations equilibrium in a market

with highly sophisticated and completely rational agents who instantaneously incorporate

all available information into the present price; see, for instance, Bick (1987). Föllmer and

Schweizer (1993) modelled asset prices as a sequence of temporary price equilibria and in

some exogenous random environment. Combining their microeconomic point of view with

an invariance principle, they derived a diffusion approximation for the logarithmic price pro-

cess. Horst (2002) extended this approach by considering a financial market model with

many interacting agents that allows for herding and contagion effects.

In recent years, agent-based models of financial markets have attracted much attention.

These models are capable of explaining, often through simulations, many facts like the

emergence of herding behavior (Lux (1998)), volatility clustering (Lux and Marchesi (2000))

or fat-tailed distributions of stock returns (Cont and Bouchaud (2000)) that are observed

in financial data. Brock and Hommes (1997, 1998) proposed to model financial markets

as Adaptive Belief Systems. In a model with many traders the dynamics of the asset price

process can be described by a fairly simple random dynamical system; see Brock et al. (2002).

All these discrete-time models assume that the agents trade the asset in each period. At

the end of each trading interval, the agents update their expectations for the future evolution

of the stock price and formulate their excess demand for the following period. Agents are

also supposed to act as price takers. This assumption suggests that investors are small;

individual stock holdings do not have an impact on the formation of asset prices. Small

investors, however, are typically inert: they are usually inactive, and actually trade only

occasionally. This may be because they are waiting to accumulate sufficient capital to make
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further stock purchases, or because they tend to monitor their portfolios infrequently.

We study a simple microstructure model for the price evolution of a financial asset in

continuous time where the price is driven by the demand of many small investors whose

trading behavior exhibits “inertia”. To each agent a, we associate a stochastic process

xa = (xa
t )t≥0 which represents his propensity for trading. The processes xa are stationary,

non-centered semi-Markov processes on a finite state space with heavy-tailed sojourn times

in an inactivity (zero) state, and thin-tailed sojourn times in various active states, which may

be positive (buying) or negative (selling). Semi-Markov processes are tailor made to model

individual traders’ inertia as they generalize Markov processes by removing the requirement

of exponentially distributed, and therefore thin-tailed, holding times. In addition, we allow

for a market-wide amplitude process Ψ, that describes the evolution of typical trading size

in the market. It is large on heavy-trading days and small on light trading days. We suggest

a non-Walrasian approach to asset pricing and, and assume that prices move in the direction

of market imbalance.

We show that in a model with many inert investors long range dependence in the price

process emerges. The observation of this phenomenon (sometimes called the Joseph effect)

in financial time series motivated the use of fractional Brownian motion as a basis for asset

pricing models; see, for instance, Mandelbrot (1997) or Cutland et al. (1995). In fact, by

our invariance principle, for Ψ a continuous semimartingale, the drift-adjusted logarithmic

price process converges weakly to a stochastic integral with respect to a fractional Brownian

motion with Hurst coefficient H > 1
2
. Our approach may thus be viewed as a microeconomic

foundation for these models. A recent paper that proposes entirely different economic foun-

dations for models based on fractional Brownian motion is Klüppelberg and Kühn (2002).

Evidence of long-range dependence in financial data is discussed in Cutland, Kopp, and

Willinger (1995), for example. Bayraktar et al. (2002) studied an asymptotically efficient

wavelet-based estimator for the Hurst parameter, and applied these techniques on high

frequency data set of S&P 500 index over the span of 11.5 years (1989-2000). It was observed

that, although the Hurst parameter of this data set is significantly above the efficient markets

value of H = 1
2
, it started to approach that level over the period 1997-2000. They suggested

that this behaviour of the market might be related to the increase in Internet trading,

which had the two-fold effect of increasing the number of small traders and the frequency of

trading activity. The model presented in the present work may serve as an explanation of

this observation.

As is well-known, see, e.g., Rogers (1997) or Cheridito (2003), fractional Brownian motion

processes are not semimartingales, and so these models may allow arbitrage opportunities.
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As a result, in our microstructure model, arbitrage opportunities may arise for other, suffi-

ciently sophisticated, market participants. In that sense, inertia leads to arbitrage.

Our mathematical contribution is twofold. First, we establish a functional central limit

theorem for semi-Markov processes which extends the results of Taqqu et al. (1997) and

Taqqu and Levy (1986) who proved a result similar to ours in a situation where the semi-

Markov processes take values in a binary state space. Their arguments do not carry over

to models with more general state spaces. Our approach builds on Markov renewal theory

as well as results reported in Heath et al. (1996) and Jelenkovic and Lazar (1998). Taqqu

and Levy (1986) considered renewal reward processes with heavy tailed renewal periods and

independent and identically distributed rewards. They assume a general state space, but give

up the heterogeneity of the distributions of the length of renewal periods. A recent paper by

Mikosch et al. (2002) studies the binary case under a different limit taking mechanism. Our

limit theorem, which is proved in Section 3, also has application to queuing networks and

teletraffic, for which the original binary on/off theory was developed. We demonstrate (see

Example 3.3) that there may be a different limit behaviour when the semi-Markov processes

are centered, a situation which does not arise in the binary case.

We also allow for limits which are integrals with respect to fractional Brownian motion,

extending the results of Taqqu et al. (1997) whose limit is pure fractional Brownian motion.

Specifically, in Section 4, we prove an approximation result for stochastic integrals of con-

tinuous semimartingales with respect to fractional Brownian motion. We consider {Ψn} a

sequence of good semimartingales and {Xn} a sequence of stochastic processes having zero

quadratic variation and give sufficient conditions which guarantee that joint convergence of

(Xn, Ψn) to (BH , Ψ), where BH is a fractional Brownian motion process with Hurst param-

eter H > 1
2
, and Ψ is a continuous semimartingale, implies the convergence of the stochastic

integrals
∫

ΨndXn to
∫

ΨdBH . In addition, we obtain a stability result for the integral of

a fractional Brownian motion with respect to itself. These results may be viewed as an

extension of Theorem 2.2 in Kurtz and Protter (1991) beyond the semimartingale setting.

2 The microeconomic setup and the main results

We consider a financial market with a set A := {a1, a2, . . . , aN} of agents trading a single risky

asset. Our aim is to analyze the effects investor inertia has on the dynamics of stock price

processes. For this we choose the simplest possible setup. In particular, as in, e.g., Garman

(1976), Föllmer and Schweizer (1993) and Cont and Bouchaud (2000), we do not characterize

agents’ investment decisions as solutions to individual utility maximization problems.
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Instead, we model directly the behavior of individual traders. Specifically, we associate

to each agent a ∈ A a stochastic process xa = (xa
t )t≥0 on a finite state space E, containing

zero. This process describes the agent’s trading mood. He accumulates the asset at a rate

Ψtx
a
t at time t ≥ 0. The random quantity Ψt > 0 describes the size of a typical trade at

time t, and xa
t may be negative, indicating the agent is selling. Agents do not trade at times

when xa
t = 0. We therefore call the state 0 the agents’ inactive state.

Remark 2.1 In the simplest setting, xa ∈ {−1, 0, 1}, so that each investor is either buying,

selling or inactive, and Ψ ≡ 1: there is no external amplification. Even here, the existing

results of Taqqu et al. (1997) do not apply because the state space is not binary.

The holdings of the agent a ∈ A and the “market imbalance” at time t ≥ 0 are given by

∫ t

0

Ψsx
a
sds and IN

t :=
∑

a∈A

∫ t

0

Ψsx
a
sds, (1)

respectively. Hence the process (IN
t )t≥0 describes the stochastic evolution of the market

imbalance. For the quantities IN
t to be well defined, we need to assume that the asset is in

infinite supply.

In our continuous time model buyers and sellers arrive at different points in time. Hence

the economic paradigm that a Walrasian auctioneer can set prices such that the markets clear

at the end of each trading period does not apply. Rather, temporary imbalances between

demand and supply will occur, and prices are assumed to reflect the extent of the current

market imbalance. Specifically, we consider the pricing rule

dSN
t =

∑

a∈A
Ψtx

a
t dt and so SN

t = S0 + IN
t , (2)

for the evolution of the logarithmic stock price process SN = (SN
t )t≥0. In particular, market

imbalance is the only component driving the dynamics of stock prices.

2.1 The dynamics of individual behavior

Next, we specify the probabilistic structure of the processes xa. We assume that the agents

are homogeneous and that all the processes xa and Ψ are independent. It is therefore enough

to specify the dynamics of some reference process x = (xt)t≥0. In order to incorporate the

idea of market inertia as defined by Assumption 2.4 below, we assume that x is a semi-

Markov process defined on some probability space (Ω,F ,P) with a finite state space E.

Here E may contain both positive and negative values and we assume 0 ∈ E. The process
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x is specified in terms of random variables ξn : Ω → E and Tn : Ω → R+ which satisfy

0 = T0 ≤ T1 ≤ · · · almost surely and

P{ξn+1 = j, Tn+1 − Tn ≤ t
∣∣ξ0, ..., ξn; T0, ..., Tn} = P{ξn+1 = j, Tn+1 − Tn ≤ t

∣∣ξn}

for each n ∈ N, j ∈ E and all t ∈ R+ through the relation

xt =
∑
n≥0

ξn1[Tn,Tn+1)(t). (3)

Remark 2.2 (i) In economic terms, the representative agent’s mood in the random time

interval [Tn, Tn+1) is given by ξn. The distribution of the length of the interval Tn+1−Tn

may depend on the sequence {ξn}n∈N through the states ξn and ξn+1. This allows us to

assume different distributions for the lengths of the agents’ active and inactive periods,

and in particular to model inertia as a heavy-tailed sojourn time in the zero state.

(ii) In this first step towards analyzing investor inertia, we do not allow for feedback effects

of prices into agents’ investment decisions. While such an assumption might be justified

for small, non-professional investors, it is clearly desirable to allow active traders’

investment decisions to be influenced by asset prices. Allowing for feedback effects

into the stock price dynamics leads to a significant increase in the complexity of the

system, and is not our focus here. Another extension would be to allow for strategically

interacting institutional investors; see Bayraktar and Poor (2002) for a possible game

theoretic framework.

Throughout, we assume that x is temporally homogeneous under the measure P, i.e.,

that

P{ξn+1 = j, Tn+1 − Tn ≤ t
∣∣ξn = i} = Q(i, j, t) (4)

is independent of n ∈ N. By Proposition 1.6 in Çinlar (1975), this implies that {ξn}n∈N is a

homogeneous Markov chain on E whose transition probability matrix P = (pij) is given by

pij = lim
t→∞

Q(i, j, t).

Clearly, x is an ordinary temporally homogeneous Markov process if Q takes the form

Q(i, j, t) = pij

(
1− e−λit

)
. (5)

We assume that the embedded Markov chain {ξn}n∈N satisfies the following condition.
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Assumption 2.3 For all i, j ∈ E, i 6= j we have that pij > 0. In particular, there exists a

unique probability measure π on E such that πP = π.

The conditional distribution function of the length of the n-th sojourn time, Tn+1 − Tn,

given ξn+1 and ξn is specified in terms of the semi-Markov kernel {Q(i, j, t); i, j ∈ E, t ≥ 0}
and the transition matrix P by

G(i, j, t) :=
Q(i, j, t)

pij

= P{Tn+1 − Tn ≤ t|ξn = i, ξn+1 = j}. (6)

For later reference we also introduce the distribution of the first occurrence of state j

under P, given x0 = i. Specifically, for i 6= j, we put

F (i, j, t) := P{τj ≤ t|x0 = i}, (7)

where τj := inf{t ≥ 0 : xt = j}. We denote by F (j, j, ·) the distribution of the time until

the next entrance into state j and by ηj :=
∫

tF (j, j, dt) the expected time between two

occurrences of state j ∈ E. Further, we recall that a function L : R+ → R+ is called slowly

varying at infinity if

lim
t→∞

L(xt)

L(t)
= 1 for all x > 0

and that f(t) ∼ g(t) for two functions f, g : R+ → R+ means limt→∞
f(t)
g(t)

= 1.

Assumption 2.4 (i) The average sojourn time at state i ∈ E is finite:

mi := E[Tn+1 − Tn|ξn = i] < ∞. (8)

Here E denotes the expectation operator with respect to P.

(ii) There exists a constant 1 < α < 2 and a locally bounded function L : R+ → R+ which

is slowly varying at infinity such that

P{Tn+1 − Tn ≥ t
∣∣ξn = 0} ∼ t−αL(t). (9)

(iii) There exists β > α such that the distributions of the sojourn times at state i 6= 0 satisfy

lim
t→0

P{Tn+1 − Tn ≥ t
∣∣ξn = i}

t−βL(t)
= 0.

(iv) The distribution of the sojourn times in the various states have bounded densities with

respect to Lebesgue measure on R+.
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Our condition (9) is satisfied if, for instance, the length of the sojourn time at state 0 ∈ E

is distributed according to a Pareto distribution. Assumption 2.4 (iii) reflects the idea of

market inertia: the probability of long uninterrupted trading periods is small compared to

the probability of an individual agent being inactive for a long time. Such an assumption is

appropriate if we think of the agents as being small investors.

2.2 An invariance principle for semi-Markov processes

In this section, we state our main results. With our choice of scaling, the logarithmic price

process can be approximated in law by the stochastic integral of Ψ with respect to fractional

Brownian motion BH where the Hurst coefficient H depends on α. The convergence concept

we use is weak convergence of the Skorohod space D of all real-valued right continuous

processes with left limits. We write L- limn→∞ Zn = Z if a sequence of D-valued stochastic

processes {Zn}n∈N, converges in distribution to Z.

In order to derive our approximation result, we assume that the semi-Markov process x

is stationary. For this, we apply the following result. Its proof is follows from, e.g., Theorem

4.2.5 in Brandt et al. (1990); see also Section 1.4.4 in Baccelli and Bremaud (1994).

Lemma 2.5 Under Assumption 2.3, there exists a probability measure P∗ on (Ω,F) such

that (xt)t≥0 is stationary under P∗. Under the law P∗ the following holds:

(i) The joint distribution of the initial state and the initial sojourn time takes the form

P∗ {ξ0 = k, T1 > t} =
πk∑

j∈E πjmj

∫ ∞

t

h(k, s)ds. (10)

Here mi denotes the mean sojourn time in state i ∈ E as defined by (8), and for i ∈ E,

h(i, t) = 1−
∑
j∈E

Q(i, j, t) (11)

is the probability that the sojourn time at state i ∈ E is at least t.

(ii) The law ν = (νk)k∈E of xt in the stationary regime is given by

νk =
πkmk∑
j∈E πjmj

. (12)

(iii) The conditional joint distribution of (ξ1, T1), given ξ0 is

P∗ {ξ1 = j, T1 < t | ξ0 = k} =
pkj

mk,j

∫ t

0

[1−G(k, j, s)]ds. (13)

Here mk,j :=
∫∞

0
[1−G(k, j, s)]ds denotes the conditional expected sojourn time at state

k, given the next state is j, and the functions G(k, j, ·) are defined in (6).
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Let us now introduce a dimensionless parameter ε > 0, and consider the rescaled processes

xa
t/ε. For ε small, xa

t/ε is a “speeded-up”semi-Markov process. In other words, the investors’

individual trading dispensations are evolving on a faster scale than Ψ. Observe, however,

that we are not altering the main qualitative feature of the model. That is, agents still

remain in the inactive state for relatively much longer times than in an active state.

Mathematically, there is no reason to restrict ourselves to the case where Ψ is non-

negative. Hence we shall from now on only assume that Ψ is a continuous semimartingale.

Given the processes Ψ and xa (a ∈ {a1, . . . , aN}), the aggregate order rate at time t is given

by

Y ε,N
t =

∑

a∈A
Ψtx

a
t/ε. (14)

Let µ := E∗xt. For a finite time interval [0, T ], let Xε,N = (Xε,N
t )0≤t≤T be the centered

process defined by

Xε,N
t :=

∫ t

0

∑

a∈A
Ψs(x

a
s/ε − µ) ds =

∫ t

0

Y ε,N
s ds− µN

∫ t

0

Ψsds. (15)

We are now ready to state our main result. Its proof will be carried out in Sections 3 and 4.

Theorem 2.6 Let Ψ = (Ψt)t≥0 be a continuous semimartingale on (Ω,F ,P∗). If assump-

tions 2.3 and 2.4 are satisfied, and if µ
∑

k∈E kmk

η2
k

> 0, then there exists c > 0 such that the

process Xε,N satisfies

L- lim
ε↓0
L- lim

N→∞

(
1

ε1−H
√

NL(ε−1)
Xε,N

t

)

0≤t≤T

=

(
c

∫ t

0

ΨsdBH
s

)

0≤t≤T

. (16)

Here the Hurst coefficient of the fractional Brownian motion process BH is H = 3−α
2

> 1
2
.

The definition of the stochastic integral with respect to fractional Brownian motion is given

in Section 4.

Observe that Theorem 2.6 does not apply to the case µ = 0. For centered semi-Markov

processes xa, Example 3.3 below illustrates that the limiting process depends on the tail

structure of the waiting time distribution in the various active states. This phenomenon

does not appear in the case of binary state spaces.

Remark 2.7 (i) Theorem 2.6 says the drift-adjusted logarithmic price process in our

model of inert investors can be approximated in law by the stochastic integral of Ψ

with respect to a fractional Brownian motion process with Hurst coefficient H > 1
2
.
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(ii) In a situation where the processes xa are independent, stationary and ergodic Markov

processes on E, i.e., in cases where the semi-Markov kernel takes the form (5), it is

easy to show that

L- lim
ε↓0
L- lim

N→∞

(
1√
εN

Xε,N
t

)

0≤t≤T

=

(
c

∫ t

0

ΨsdWs

)

0≤t≤T

where (Wt)t≥0 is a standard Wiener process. Thus, if the market participants are not

inert, i.e., if the distribution of the lengths of the agents’ inactivity periods is thin-tailed,

no arbitrage opportunities emerge because the limit process is a semimartingale.

The proof of Theorem 2.6 will be carried out in two steps. In Section 3 we prove a

functional central limit theorem for stationary semi-Markov processes on finite state spaces.

In Section 4 we combine our central limit theorem for semi-Markov processes with extensions

of arguments given in Kurtz and Protter (1991) to obtain (16).

2.3 Markets with both Active and Inert Investors

It is simple to extend the previous analysis to incorporate both active and inert investors.

Let ρ be the ratio of active to inert investors. We associate to each active trader b ∈
{1, 2, . . . , ρN} a stationary Markov chain yb = (yb

t )t≥0 on the state space E. The processes

yb are independent and identically distributed and independent of the processes xa. The

thin-tailed sojourn time in the zero state of yb reflects the idea that, as opposed to inert

investors, these agents frequently trade the stock. We assume for simplicity that Ψ ≡ 1.

With Ŷ ε,N
t =

∑ρN
b=1

(
yb

t/ε − E∗y0

)
and X̂ε,N

t :=
∫ t

0
Ŷ ε,N

s ds, it is straightforward to prove the

following modification of Theorem 2.6.

Proposition 2.8 Let xa (a = 1, 2, . . . , N) be semi-Markov processes that satisfy the assump-

tion of Theorem 2.6. If yb (b = 1, 2, . . . , ρN) are independent stationary Markov processes

on E, then there exist constants c1, c2 > 0 such that

L- lim
ε↓0
L- lim

N→∞

(
1

ε1−H
√

NL(ε−1)
Xε,N

t +
1√
Nε

X̂ε,N
t

)

0≤t≤T

=
(
c1B

H
t + c2

√
ρ Wt

)
0≤t≤T

.

Here, W = (Wt)t≥0 is a standard Wiener process.

Thus, in a financial market with both active and inert investors, the dynamics of the

asset price process can be approximated in law by a stochastic integral with respect to

a superposition, BH + δW , of a fractional and a regular Brownian motion. It is known
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(Cheridito (2001)) that BH + δW is a semimartingale for any δ 6= 0, if H > 3
4
, i.e., if

α < 3
2
, but not if H ∈ (1

2
, 3

4
]. Thus, no arbitrage opportunities arise if the small investors

are “sufficiently inert.” The parameter α can also be viewed as a measure for the fraction

of small investors that are active at any point in time. Hence, independent of the actual

trading volume, the market is arbitrage free in periods where the fraction of inert investors

who are active on the financial market is small enough.

3 A limit theorem for stationary semi-Markov pro-

cesses

This section establishes Theorem 2.6 for the special case Ψ ≡ 1. We approach the general

case where Ψ is a continuous semimartingale in Section 4. Here we consider the situation

where

Y ε,N
t =

∑

a∈A
xa

t/ε and where Xε,N
t =

∫ t

0

Y ε,N
s ds−Nµt,

and prove a functional central limit theorem for stationary semi-Markov processes. Our

Theorem 3.1 below extends the results of Taqqu et al. (1997) to situations where the semi-

Markov process takes values in an arbitrary finite state space. The arguments given there

are based on results from ordinary renewal theory, and do not carry over to models with

more general state spaces. The proof of the following theorem will be carried out through a

series of lemmas.

Theorem 3.1 Let H = 3−α
2

. Under the assumptions of Theorem 2.6,

L- lim
ε↓0
L- lim

N→∞

(
1

ε1−H
√

NL(ε−1)
Xε,N

t

)

0≤t≤T

=
(
cBH

t

)
0≤t≤T

. (17)

Let γ be the covariance function of the semi-Markov process (xt)t≥0 under P∗, and consider

the case ε = 1. By the Central Limit Theorem, and because x is stationary, the process

Y = (Yt)t≥0 defined by

Yt = L- lim
N→∞

1√
N

(Y 1,N
t −Nµ)

is a stationary zero-mean Gaussian process. It is easily checked that the covariance function

of the process ( 1√
N

Y 1,N
t ) is also γ for any N , and hence for Yt. By standard calculations, the

variance Var(t) of the aggregate process (
∫ t

0
Ys ds) at time t ≥ 0 is given by

Var(t) := Var

(∫ t

0

Ys ds

)
= 2

∫ t

0

(∫ v

0

γ(u)du

)
dv. (18)
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In the first step towards the proof of Theorem 3.1, we can proceed by analogy to Taqqu

et al. (1997). We are interested in the asymptotics as ε ↓ 0 of the process

Xε
t :=

∫ t

0

Ys/ε ds, (19)

which can be written Xε
t = ε

∫ t/ε

0
Ys ds. Therefore the object of interest is the large t behavior

of Var(t). Suppose that we can show

Var(t) ∼ c2t2HL(t) as t →∞. (20)

Then the mean-zero Gaussian processes Xε = (Xε
t )t≥0 have stationary increments and satisfy

lim
ε↓0
E∗

(
1

ε1−H
√

L(ε−1)
Xε

t

)2

= c2t2H . (21)

Since the variance characterizes the finite dimensional distributions of a mean-zero Gaus-

sian process with stationary increments, we see that the finite dimensional distributions of

the process

(
1

ε1−H
√

L(ε−1)
Xε

t

)

t≥0

converge to
(
cBH

t

)
t≥0

whenever (20) holds. The following

lemma gives a sufficient condition for (20) in terms of the covariance function γ.

Lemma 3.2 For (20) to hold, it suffices that

γ(t) ∼ c2H(2H − 1)t2H−2L(t) as t →∞. (22)

Proof: By Proposition 1.5.8 in Bingham et al. (1987), every slowly varying function L

which is locally bounded on R+ satisfies
∫ t

0

τβL(τ)dτ ∼ tβ+1L(t)

β + 1

if β > −1. Applying this proposition to the slowly varying function

L̃(t) :=
γ(t)

c2H(2H − 1)t2H−2
,

we conclude ∫ t

0

∫ v

0

γ(u)du dv ∼ c2

2
t2HL(t),

and so our assertion follows from (18). 2

Before we proceed with the proof of our main result, let us briefly consider the case

µ = 0. If E∗x0 = 0, then the structure of the limit process depends on the distribution of

the sojourn times in the various active states.1

1We thank Chris Rogers for Example 3.3 (i).
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Example 3.3 We consider the case E = {−1, 0, 1}, and assume that p−1,0 = p1,0 = 1 and

that p0,−1 = p0,1 = 1
2
. With ν1 = P∗{xt = 1} > 0, we obtain

γ(t) = ν1 (E∗[xtx0|x0 = 1] + E∗[xtx0|x0 = −1]) .

(i) Suppose that the sojourns in the inactive state be heavy tailed, and that the waiting

times in the active states are exponentially distributed with parameter 1. In such a

symmetric situation

E∗[xtx0|x0 = ±1] = P∗{T1 ≥ t|x0 = ±1} = e−t.

Therefore, γ(t) = 2ν1e
−t. In view of (21), this yields c > 0 such that

L- lim
ε↓0
L- lim

N→∞

(
1√
εN

Xε,N
t

)

0≤t≤T

= (cWt)0≤t≤T

for some standard Wiener process W .

(ii) Assume now that the sojourn times in the active states have Pareto distributions:

P{Tn+1 − Tn ≥ t|ξn = ±1} ∼ L(t)t−β for some 1 < α < β < 2.

In this case γ(t) ∼ 2ν1L(t)t−β. Hence (21) yields c > 0 such that

L- lim
ε↓0
L- lim

N→∞

(
1

ε1−H
√

NL(ε−1)
Xε,N

t

)

0≤t≤T

=
(
cBH

t

)
0≤t≤T

.

Here, BH is a fractional Brownian motion process with H = 3−β
2

.

Our Theorem 3.1 is proven as soon as we can show that (22) holds. For this, the following

representation of the covariance function turns out to be useful: in terms of the marginal

distribution νi = P∗{xt = i} (i ∈ E) of the stationary semi-Markov process given in Lemma

2.5 (i), and in terms of the conditional probabilities

P ∗
t (i, j) := P∗{xt = j|x0 = i},

we have

γ(t) =
∑
i,j∈E

ijνi (P
∗
t (i, j)− νj) . (23)

It follows from, e.g., Proposition 6.12 in Çinlar (1975) that P ∗
t (i, j) → νj as t →∞. Hence

limt→∞ γ(t) = 0. In order to prove Theorem 3.1, however, we also need to show that this

convergence is sufficiently slow. We shall see that the agents’ inertia accounts for the slow

12



decay of correlations. It is thus the agents’ inactivity that is responsible for that fact that

the logarithmic price process is not approximated by a stochastic integral with respect to a

Wiener process, but by an integral with respect to fractional Brownian motion.

We are now going to determine the rate of convergence of the covariance function to 0.

To this end, we show that P ∗
t (i, j) can be written as a convolution of a renewal function

with a slowly decaying function plus a term which has asymptotically, i.e., for t → ∞, a

vanishing effect compared to the first term; see Lemma 3.5 below. We will then apply results

by Heath et al. (1996) and Jelenkovic and Lazar (1998) to analyze the tail structure of the

convolution term.

Let

R(i, j, t) := E

{ ∞∑
n=0

1{ξn=j,Tn≤t} | |x0 = ξ0 = i

}
,

the expected number of visits of the process (xt)t≥0 to state j up to time t in the non-

stationary situation, i.e., under the measure P, given x0 = i. For fixed i, j ∈ E, the function

t 7→ R(i, j, t) is a renewal function. If, under P, the initial state is j, then the entrances to j

form an ordinary renewal process and

R(j, j, t) =
∞∑

n=0

F n(j, j, t). (24)

Here F (j, j, ·) denotes the distribution of the travel time between to occurrences of state

j ∈ E as defined in (7), and F n(j, j, ·) is the n-fold convolution of F (j, j, ·). On the other

hand, if i 6= j, the time until the first visit to j has distribution F (i, j, ·) under P which

might be different from F (j, j, ·). In this case R(i, j, ·) satisfies a delayed renewal equation,

and we have

R(i, j, t) =

∫ t

0

R(j, j, t− u)F (i, j, du). (25)

We refer the interested reader to Çinlar (1975) for a survey on Markov renewal theory.

Let us now return to the stationary setting and derive a representation for the expected

number R∗(i, j, t) of visits of the process (xt)t≥0 to state j up to time t under P∗, given x0 = i.

To this end, we denote by F ∗(i, j, ·) the distribution function in the stationary setting of the

first occurrence of j, given x0 = i and put

Pt(i, j) := P{xt = j|x0 = i}.

Given the first jump time T1 and given that xT1 = i we have that

P∗{xt = j|xT1 = i} = Pt−T1(i, j) on {t ≥ T1}. (26)
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Thus,

R∗(i, j, t) =

∫ t

0

R(j, j, t− u)F ∗(i, j, du). (27)

3.1 A representation for the conditional transition probabilities

In this section we derive a representation for P ∗
t (i, j) which will allow us to analyze the

asymptotic behavior of P ∗
t (i, j)− νj. To this end, we recall the definition of the joint distri-

bution of the initial state and the initial sojourn time and the definition of the conditional

joint distribution of (ξ1, T1), given ξ0 from (10) and (13) respectively. We define

s(i, t) := P∗{ξ0 = i, T1 > t} and ŝ(i, j, t) = P∗{ξ1 = j, T1 ≤ t|ξ0 = i}.

In terms of these quantities, the transition probability P ∗
t (i, j) can be written as

P ∗
t (i, j) =

s(i, t)

νi

δij +
∑

k∈E

∫ t

0

Pt−u(k, j)ŝ(i, k, du). (28)

Here the first term on the right-hand-side of (28) accounts for the P∗-probability that x0 = i

and that the state i survives until time t. The quantity
∫ t

0
Pt−u(k, j)ŝ(i, k, du) captures

the conditional probability that the first transition happens to be to state k before time

t, given ξ0 = i. Observe that we integrate the conditional probability Pt−u(i, j) and not

P ∗
t−u(i, j): conditioned on the value of semi-Markov process at the first renewal instance the

distributions of (xt)t≥0 under P and P∗ are the same; see (26).

In the sequel it will be convenient to have the following convolution operation: let h̃ be

a locally bounded function, and F̃ be a distribution function both of which are defined on

R+. The convolution F̃ ∗ h̃ of F̃ and h̃ is given by

F̃ ∗ h̃(t) :=

∫ t

0

h̃(t− x)F̃ (dx) for t ≥ 0. (29)

Remark 3.4 Since F̃ ∗ h̃ is locally bounded, the map t 7→ G ∗ (F̃ ∗ h̃)(t) is well defined for

any distribution G on R+. Moreover, G ∗ (F̃ ∗ h̃)(t) = F̃ ∗ (G ∗ h̃)(t) = (G ∗ F̃ ) ∗ h̃(t). In

this sense distributions acting on the locally bounded function can commute. Thus, for the

renewal function R =
∑∞

n=0 F̃ n associated to F̃ , as defined in (24), the integral R ∗ h̃(t) is

well defined and R ∗ (G ∗ h̃)(t) = G ∗ (R ∗ h̃)(t) = (R ∗G) ∗ h̃(t).

We are now going to establish an alternative representation for the conditional probability

P ∗
t (i, j) that turns out to be more appropriate for our subsequent analysis.

14



Lemma 3.5 In terms of the quantities s(i, t) and h(i, t) in (11) and R∗(i, j, t), we have

P ∗
t (i, j) =

s(i, t)

νi

δij +

∫ t

0

h(j, t− s)R∗(i, j, ds). (30)

Proof: In view of (28), it is enough to show

R∗(i, j, t) ∗ h(j, t) =
∑

k∈E

∫ t

0

Pt−u(k, j)ŝ(i, k, du).

To this end, observe first that F ∗(i, j, t) can be decomposed as

F ∗(i, j, t) = ŝ(i, j, t) +
∑

k 6=j

∫ t

0

F (k, j, t− u)ŝ(i, k, du). (31)

Indeed, ŝ(i, j, t) is the probability that the first transition takes place before time t and

happens to be to state j ∈ E, and

∫ t

0

F (k, j, t− u)ŝ(i, k, du) = P∗{xv = j for some v ≤ t, xT1 = k|x0 = i}.

In view of (27) and (31), Remark 3.4 yields

R∗(i, j, t) ∗ h(j, t) = R(j, j, t) ∗ F ∗(i, j, t) ∗ h(j, t)

= R(j, j, t) ∗ ŝ(i, j, t) ∗ h(j, t) +
∑

k 6=j

F (k, j, t) ∗ ŝ(i, k, t) ∗R(j, j, t) ∗ h(j, t).

Now recall from, e.g., Proposition 6.3 in Çinlar (1975) that

Pt(i, j) =

∫ t

0

h(j, t− s)R(i, j, ds).

Thus, we obtain

R∗(i, j, t) ∗ h(j, t) = ŝ(i, j, t) ∗ Pt(j, j) +
∑

k 6=j

R(j, j, t) ∗ F (k, j, t) ∗ ŝ(i, k, t) ∗ h(j, t)

= ŝ(i, j, t) ∗ Pt(j, j) +
∑

k 6=j

R(k, j, t) ∗ ŝ(i, k, t) ∗ h(j, t)

=
∑

k

ŝ(i, k, t) ∗ Pt(k, j).

This proves our assertion. 2
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3.2 The rate of convergence to equilibrium

Now, our goal is to derive the rates of convergence of the mappings t 7→ s(i, t) to 0 and

t 7→ R∗(i, j, t)∗h(j, t) to νj, respectively. Due to (23) it is enough to analyze the case i, j 6= 0.

In a first step we are going to show that the function s(i, ·) converges to 0 sufficiently fast.

Lemma 3.6 For all i 6= 0 we have

lim
t→∞

s(i, t)

t−α+1L(t)
= 0.

Proof: By Assumption 2.4 (iii) there exists 1 < α < β such that

lim
t→∞

h(i, t)

t−βL(t)
= 0 for all i 6= 0.

In particular,

s(i, t) =

∫ ∞

t

h(i, s)ds ≤
∫ ∞

t

s−βL(s)ds (32)

for all sufficiently large t > 0. Now, we apply Proposition 1.5.10 in Bingham, Goldie, and

Teugels (1987): if g is a function on R+ that satisfies g(t) ∼ t−βL(t) for β > 1, then

∫ ∞

t

g(s)ds ∼ t−β+1

β − 1
L(t).

Thus, it follows from (10) and (32) that

lim sup
t→∞

s(i, t)

t−α+1L(t)
≤ πi∑

j πjmj

lim sup
t→∞

∫∞
t

s−βL(s)ds

t−α+1L(t)
= lim sup

t→∞
t−β+α = 0.

This proves our assertion. 2

In order to derive the rate of convergence of the function t 7→ R∗(i, j, t) ∗ h(i, t), we shall

first study the asymptotic behavior of the map t 7→ R∗(i, j, t). Since R(i, j, ·) is a renewal

function, we see from (27) and (30) that the asymptotics of R∗(i, j, ·) can be derived by

Lemma A.1 if we can show that

F ∗(i, j, t) ∗ h(j, t) = o(F̄ (i, j, t)) as t →∞. (33)

3.2.1 The tail structure of the travel times

Let us first deal with the issue of finding the convergence rate of F̄ (j, j, t) = 1− F (j, j, t) to

0. To this end, we introduce the family of random variables

Θ = {(θ`
i,j), i, j ∈ E, ` = 1, 2, ...}, (34)
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such that any two random variable in Θ are independent, and for fixed pair (i, j) the random

variables θk
i,j have G(i, j, ·) as their common distribution function. To ease the notational

complexity we assume that the law of Tn+1−Tn only depends on ξn. We shall therefore drop

the second sub-index from the elements of Θ. The random variables (θ`
i )`∈N are independent

copies of the sojourn time in state i. We shall prove Lemma 3.8 below under this additional

assumption. The general case where Tn+1−Tn depends both on ξn and ξn+1 can be analyzed

by similar means.

Let N i,j
k denote the number of times the embedded Markov chain {ξn}n∈N visits state

k ∈ E before it visits state j, given ξ0 = i. By definition, N i,j
j = 0 with probability one. We

denote by N i,j the vector of length |E| with entries N i,j
k , and by n = (nk)k∈E an element of

N|E|. Then we have

F̄ (i, j, t) = P



θ1

i +
∑

k 6=j

N i,j
k∑

`=1

θ`
k ≥ t



 . (35)

With G(k, t) := P{Tn+1 − Tn ≤ t
∣∣ξn = k}, we can rewrite (35) as

F̄ (i, j, t) =
∑
n
P

{
θ1

i +
∑

k 6=j

nk∑

`=1

θ`
k ≥ t

∣∣∣∣N i,j = n,

}
P{N i,j = n}

= 1−G(i, t) ∗
∑
n

∗
k 6=j

Gnk(k, t)P{N i,j = n}.

Now, our goal is to show that

lim
t→∞

F̄ (i, j, t)

t−αL(t)
=

∑
n≥0

nP{N i,j
0 = n}+ δi,0 (36)

for i, j 6= 0. Here,
∑

n≥0 nP{N i,j
0 = n} is the expected number of occurrences of state 0

under P before the first visit to state j, given ξ0 = x0 = i. This quantity is positive, due

to Assumption 2.3. In order to prove (36), we need the following results which appear as

Lemma 10 in Jelenkovic and Lazar (1998).

Lemma 3.7 Let F1, ..., Fm be probability distribution functions such that, for all j 6= i, we

have F̄j(t) = o(F̄i(t)) as t →∞. Then for any positive integers n1, . . . , nm,

1− F n1
1 ∗ ... ∗ F nm

m (t) ∼ niF̄i(t).

Moreover, for each u > 0, there exists some Ku < ∞ such that

1− F n1
1 ∗ ... ∗ F nm

m (t)

1− F ni
i (t)

≤ Ku(1 + u)ni

for all t ≥ 0.
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We are now ready to prove (36).

Lemma 3.8 Under the assumptions of Theorem 3.1 we have, for j 6= 0,

lim
t→∞

F̄ (i, j, t)

t−αL(t)
=

∑
n≥0

nP{N i,j
0 = n}+ δi,0 > 0.

Proof: Let us first prove that the expected number of occurrences of state 0 before the

first return to state j occurs is finite. To this end, we put p = min{pij : i, j ∈ E, i 6= j} > 0.

Since

P{N i,j
0 = n} ≤ P{ξm 6= j for all m ≤ n} ≤ (1− p)n,

we obtain ∑
n≥0

nP{N i,j
0 = n} ≤

∑
n≥0

n(1− p)n < ∞. (37)

Now, we define a probability measure µ̄ on N|E| by

µ̄{n} = P{N i,j = n}

and put

An(t) = G(i, t) ∗
k 6=j

Gnk(k, t).

Since 1−G(0,t)
t−αL(t)

→ 1 as t →∞, the first part of Lemma 3.7 yields

lim
t→∞

1− An(t)

t−αL(t)
= lim

t→∞




1−G(i, t) ∗
k 6=j

Gnk(k, t)

1−G(0, t)




(
1−G(0, t)

t−αL(t)

)
= n0 + δi,0.

From the definition of the measure µ̄, we obtain

1−∑
n An(t)P{N i,j = n}

t−αL(t)
= Eµ̄

{
1− An(t)

t−αL(t)

}
,

and so our assertion follows from the dominated convergence theorem if we can show that

sup
t

1− An(t)

t−αL(t)
∈ L1(µ̄). (38)

To verify (38), we will use the second part of Lemma 3.7. For each u > 0 there exists a

constant Ku such that

1− An(t)

t−αL(t)
=

(
1− An(t)

1−G(0, t)

)(
1−G(0, t)

t−αL(t)

)
≤ Ku(1 + u)n0+δi,0 sup

t

1−G(0, t)

t−αL(t)
.

Since

lim
t→∞

1−G(0, t)

t−αL(t)
= 1,
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and because we are only interested in the asymptotic behavior of the function t 7→ F̄ (i,j,t)
t−αL(t)

,

we may with no loss of generality assume that

sup
t

1−G(0, t)

t−αL(t)
= 1.

This yields

sup
t

1− An(t)

t−αL(t)
≤ Ku(1 + u)n0+δi,0 . (39)

From (37) and (39) we get

Eµ̄

{
sup

t

1− An(t)

t−αL(t)

}
≤ Ku(1 + u)δi,0

∞∑

k=0

(1− p)k(1 + u)k.

Choosing u < p
1−p

we obtain β := (1− p)(1 + u) < 1 and so the assertion follows from

Eµ̄

{
sup

t

1− An(t)

t−αL(t)

}
≤ Ku(1 + u)δi,0

∑
n≥0

βn < ∞.

2

So far, we have shown that F̄ (i, j, t) ∼ t−αL(t)
(∑

n≥0 nP{N i,j
0 = n}+ δi,0

)
for j 6= 0. In

view of Lemmas 3.7 and 3.8, the representation (31) of F ∗(i, j, t) yields a similar result for

the stationary setting.

Corollary 3.9 For all i, j 6= 0 we have

lim
t→∞

F̄ ∗(i, j, t)
t−αL(t)

=
∑
n≥0

nP∗{N i,j
0 = n} < ∞.

3.2.2 The tail structure of R∗ ∗ h

So far, we have analyzed the tail structure of the distribution of the travel time between

states i and j (i, j 6= 0) in the stationary regime. In this section we are now going to study

the tail structure of R∗(i, j, t) ∗ h(j, t). Having recalled to notion of virtually non-increasing

functions from the appendix, let us now prove the following result which turns out to be

central to the proof of our main theorem.

Lemma 3.10 Let A,B be distribution functions on R+. Assume that A and B have bounded

densities a and b, respectively, and B̄(t) = o(Ā(t)) as t →∞.

(i) We have limt→∞
A∗B̄(t)
1−A(t)

= 0. In particular, limt→∞ A ∗ B̄(t) = 0.
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(ii) The map z(t) := A ∗ B̄(t) allows the representation

A ∗ B̄(t) = −Ā(t) +

∫ ∞

t

∫ s

0

b(s− u)a(u) du ds, (40)

and

lim
t→∞

∫∞
t

∫ s

0
b(s− u)a(u) du ds

1− A(t)
= 1. (41)

(iii) The map z(t) is of bounded variation and virtually non-increasing in the sense of (51).

Proof: Since B̄(t) = o(Ā(t)) as t →∞, the first assertion follows from Lemma 3.7 because

Ā(t) + A ∗ B̄(t) = 1− A ∗ (1− B̄)(t) = 1− A ∗B(t) ∼ Ā(t).

The second assertion follows from (i) along with an application of Leibniz’ rule:

∂

∂t
A ∗ B̄(t) = a(t)−

∫ t

0

b(t− s)a(s)ds.

By (41), there exists T such that
∫ ∞

t

∫ s

0

b(s− u)a(u) du ds ≤ 2Ā(t) for all t ≥ T .

Thus, z is of bounded variation. In order to prove that z is also virtually non-increasing,

we introduce a continuous and decreasing probability density function ã : R+ → R+ that

satisfies

ã(0) > 0, and a(t) ∼ ã(t).

We put Ã(t) :=
∫ t

0
ã(s)ds, and introduce the differentiable function z̃(t) := Ã ∗ B̄(t). Since

ã is decreasing, Lemma 4.1 in Heath et al. (1996) yields

z̃(t) ≤ z̃∗(t) ≤ z̃(t) + δ(t) where δ(t) = 2

∫ ∞

t

B̄(s)ã(s)ds

and z̃∗ is defined as in (50). In a first step we are now going to show that z̃ is virtually

non-increasing. Then we apply a comparison argument in order to prove that not only z̃,

but also z is virtually non-increasing.

a) Let us rewrite z̃ as z̃(t) =
∫ t

0
B̄(s)ã(t− s) ds. Hence, for every ε > 0, we obtain

z̃(t) =

∫ εt

0

B̄(s)ã(t− s)ds +

∫ t

εt

B̄(s)ã(t− s)ds := z̃1(t) + z̃2(t).

As shown by Heath et al. (1996), there exist a constant c1 < ∞ such that

z̃1(t) ∼ ã(t) and such that z̃2(t) ≤ c1B̄(t) as t →∞. (42)
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On the other hand, since the map t 7→ B̄(t) is decreasing, since ã(0) > 0 and because

ã is continuous, there is c2 > 0 such that

z̃2(t) =

∫ t

εt

B̄(s)ã(t− s)ds ≥ B̄(t)

∫ t

εt

ã(t− s)ds ≥ c2B̄(t). (43)

¿From (42) along with (43), it follows that the function z̃2 converges to 0 at the same

rate as the map B̄. Hence,

lim
t→∞

δ(t)

z̃(t)
= lim

t→∞
δ(t)

z̃1(t) + z̃2(t)
≤ lim

t→∞
2
∫∞

t
B̄(s)ã(s)ds

ã(t) + c2B̄(t)
= 0.

Therefore, the map z̃ is virtually non-increasing.

b) We are now ready to show that the map z itself is virtually non-increasing. To this

end, it is enough to show that

lim
t→∞

∣∣∣∣
∫ ∞

t

(z̃′(s)− z′(s)) ds

∣∣∣∣ = 0 and lim
t→∞

∣∣∣∣
∫ ∞

t

(|z̃′(s)| − |z′(s)|) ds

∣∣∣∣ = 0. (44)

Since ∫ ∞

t

z̃′(s)ds = −1 + Ã(t) +

∫ ∞

t

∫ s

0

b(s− u)ã(u) du ds

and because
∫ ∞

t

z′(s)ds = −1 + A(t) +

∫ ∞

t

∫ s

0

b(s− u)a(u) du ds,

part (ii) yields the first equation in (44). In order to prove second relation, it suffices

to show that

lim
t→∞

∫ ∞

t

∫ s

0

b(s− u)|a(u)− ã(u)| du ds = 0.

Since a(t) ∼ ã(t), this can be achieved by defining a density function g ≥ |a− ã| whose

tail structure takes the form g(t) ∼ 2a(t). Then (ii) allows to conclude.

2

Let us now fix i, j ∈ E with j 6= 0. In order to prove the main result of this section, we

need to apply the key renewal theorem to the function

z(t) = F ∗(i, j, t) ∗ h(j, t). (45)

Corollary 3.11 Under the assumptions of Theorem 3.1 the function z defined by (45) is of

bounded variation, z(t) = o(F̄ (i, j, t)) as t →∞, and z is virtually non-increasing.
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Proof: Since i, j 6= 0 and because pi,0 > 0 the probability that the semi-Markov process x

visits the state 0 before it reaches the state j is positive. Thus, it follows from Assumption

2.4 (iii) and from Corollary 3.9 that

h(j, t) = o(F̄ ∗(i, j, t)) as t →∞.

Hence Lemma 3.10 (i) and (iii) shows that F ∗(i, j, t) ∗ h(j, t) = o(F̄ (i, j, t)) as t → ∞ and

that z is of bounded variation, respectively. It follows from Assumption 2.4 (iv) and the

representation (35) that the distribution function F ∗(i, j, ·) has a density with respect to

Lebesgue measure. Therefore, z is virtually non-increasing by Lemma 3.10 (iv). 2

We are now going to specify the asymptotic behavior of the function R∗(i, j, t) ∗ h(j, t).

Lemma 3.12 There exists Cj > 0 such that, for j 6= 0,

lim
t→∞

R∗(i, j, t) ∗ h(j, t)− νj

t−α+1L(t)
=

Cj

α− 1

for all i ∈ E, i 6= 0, where the map h(j, ·) has been defined in (11).

Proof: Let us fix i, j ∈ E, i, j 6= 0. Using the representation (27) for the function R∗(i, j, ·)
it is enough to show that

lim
t→∞

R(j, j, t) ∗ F ∗(i, j, t) ∗ h(j, t)− νj

t−α+1L(t)
=

Cj

α− 1
.

By Lemma 3.11, F ∗(i, j, t) ∗ h(j, t) = o(F̄ (i, j, t)) as t → ∞. Observe that t 7→ F ∗(i, j, t) ∗
h(j, t) is a bounded continuous non-negative function of bounded variation. It follows from

Fubini’s theorem that
∫ ∞

0

F ∗(i, j, t) ∗ h(j, t)dt =

∫ ∞

0

∫ ∞

0

h(j, t− s)1{s≤t}F
∗(i, j, ds)dt

=

∫ ∞

0

∫ ∞

s

h(j, t− s)dtF ∗(i, j, ds)

=

∫ ∞

0

h(j, t)dt

= mj,

where mj is the mean sojourn time at state j ∈ E as defined in (8).

Since R(j, j, t) =
∑

n≥0 F n(j, j, t) is a renewal function, because F (j, j, ·) is nonsingular

and because F̄ (j, j, t) ∼ t−αL(t) for j 6= 0 it follows from Corollary 3.11 and theorem A.1

that

mj

ηj

−
∫ t

0

F ∗(i, j, t− s) ∗ h(j, t− s)R(j, j, ds) ∼ − mj

(α− 1)η2
j

t−α+1L(t).
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By Propositions 5.5 and 6.12 in Çinlar (1975), νj =
mj

ηj
. Therefore,

lim
t→∞

R∗(i, j, t) ∗ h(j, t)− νj

t−α+1L(t)
=

mj

(α− 1)η2
j

.

This proves our assertion with Cj :=
mj

η2
j
. 2

3.2.3 Proof of the central limit theorem for semi-Markov processes

We are now ready to prove the main result of this section.

Proof of Theorem 3.1: By (30) we have the representation

P ∗
t (i, j) =

s(i, t)

νi

δij +

∫ t

0

h(j, t− s)R∗(i, j, ds).

for the conditional probability that xt = j, given x0 = i. Due to Lemmas 3.6 and 3.12,

lim
t→∞

P ∗
t (i, j)− νj

t−α+1L(t)
=

Cj

α− 1
(i, j 6= 0).

With H = 3−α
2

it follows from (23) that

lim
t→∞

γ(t)

t2H−2L(t)
=

1

(2− 2H)

∑
i,j∈E

ijνiCj.

By Lemma 3.2 this proves the existence of a constant c such that the finite dimensional

distributions of the processes

(
1

ε1−H
√

L(ε−1)
Xε

t

)

0≤t<∞
converge weakly to the finite dimen-

sional distributions of the fractional Brownian motion process cBH as ε ↓ 0, and c is given

by

c2 =
1

2H(1−H)(2H − 1)

∑
i,j∈E

ijνi
mj

η2
j

=
1

2H(1−H)(2H − 1)
µ

∑
j∈E

j
mj

η2
j

.

It remains to prove tightness. The arguments given in Taqqu et al. (1997) for the case

|E| = 2 carry over to our case and we repeat them here for the sake of completeness. Let us

denote by {Xεn}n∈N, a subsequence of continuous stochastic processes. Then by Theorem

12.3 in Billingsley (1968) it is sufficient to show the following moment condition in order to

conclude tightness of the sequence {Xεn}n∈N:

E[Xε
t1
−Xε

t2
]γ ≤ C|t2 − t1|δ (46)

for some γ ≥ 0 and δ > 1. Note that Xε is a process with stationary increments whose

variance is given by Var(t/ε)
ε−2HL(ε−1)

where Var(t) is defined by (18). Thus, (19) yields

E[Xε
t2
−Xε

t1
]2 = L(ε−1)−1ε2HVar

(
t2 − t1

ε

)
.
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Since Var(t) satisfies (20), we see that for any u > 0, there exists Tu such that for all T > Tu

E[Xε
t2
−Xε

t1
]2 ≤ (1 + u)c2(t2 − t1)

2H L(ε−1(t2 − t1))

L(ε−1)
.

Since L(ε−1(t2−t1))
L(ε−1)

tends to 1 and is bounded by kn−u0 for any u0 > 0 and some k > 0,

choosing u0 such that δ = 2H − u0 > 1 we get (46) with C = (1 + u)kc2. 2.

4 A limit theorem for stationary semi-Markov pro-

cesses in a random environment

In this section we prove an approximation result for stochastic integrals which contains

Theorem 2.6 as a special case. More precisely we give conditions which guarantee that for a

sequence of processes {(Ψn, Zn)}n∈N the convergence L- limn→∞(Ψn, Zn) = (Ψ, BH) implies

the convergence L- limn→∞
(
Ψn, Zn,

∫
ΨndZn

)
=

(
Ψ, BH ,

∫
ΨdBH

)
.

All stochastic integrals in this section are understood as probabilistic limits of Stieltjes-

type sums. That is, given stochastic processes φ and Z, such that φ is adapted to the

filtration generated by Z, we say that the integral
∫

φdZ exists if for any T < ∞ and for

each sequence of partitions {τ l}l∈N, τ l = (τ l
1, τ

l
2, . . . , τ

l
Nl

), of the interval [0, T ] that satisfies

liml→∞ maxi |τ l
i+1 − τ l

i | = 0,
∫ T

0

φsdZs = P- lim
l→∞

∑
i

φτ l
i
(Zτ l

i+1
− Zτ l

i
). (47)

This definition of stochastic integrals applies to the usual semimartingale setting where φ

is a process in D and where Z is a semimartingale. If Z = BH is a fractional Brownian

motion process with Hurst coefficient H > 1
2

the limit in (47) exists for a large classes of

integrands, including continuous semimartingales and C1-functions of fractional Brownian

motion. In particular, the stochastic integral
∫

BHdBH exists in the sense of (47), and for

the continuous semimartingale Ψ we have the following integration by parts formula, due to

Lin (1995):

−
∫

BHdΨ + ΨBH =

∫
ΨdBH . (48)

Before we state the main result of this section, we recall that a sequence {Ψn}n∈N of

semimartingales defined on probability spaces (Ωn,Fn,Pn) is called “good” in the sense of

Duffie and Protter (1992) if, for any sequence {Zn}n∈N of càdlàg adapted processes, the

convergence L- limn→∞(Ψn, Zn) = (Ψ, Z) implies the convergence

L- lim
n→∞

(
Ψn, Zn,

∫
Zn
−dΨn

)
=

(
Ψ, Z,

∫
Z−dΨ

)
.
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In the following we will denote by {Ψn}n∈N a sequence of “good” semimartingales and

by {Zn}n∈N a sequence of D-valued stochastic processes defined on some probability space

(Ω,F ,P) and assume that the following conditions are satisfied.

Assumption 4.1 (i) The sample paths of the processes Zn are almost surely of zero

quadratic variation on compact sets, and P{Zn
0 = 0} = 1.

(ii) The stochastic integrals
∫

ΨndZn and
∫

ZndZn exist in the sense of (47), and the

sample paths t 7→ ∫ t

0
Zn

s dZn
s and t 7→ ∫ t

0
Ψn

s dZ
n
s are càdlàg.

We are now ready to state the main theorem of this section. Its proof requires some

preparation which will be carried out below.

Theorem 4.2 Let {Ψn}n∈N be a sequence of good semimartingales and let {Zn}n∈N be a

sequence of D-valued stochastic processes that satisfy Assumption 4.1. If Ψ is a continuous

semimartingale and if BH is a fractional Brownian motion process with Hurst parameter

H > 1
2
, then the convergence L- limn→∞(Ψn, Zn) = (Ψ, BH) implies the convergence

L- lim
n→∞

(
Ψn, Zn,

∫
ΨndZn

)
=

(
Ψ, BH ,

∫
ΨdBH

)
.

Before we turn to the proof of Theorem 4.2, we consider an example where Assumption

4.1 can indeed be verified.

Example 4.3 Let {Hn}n∈N be a sequence of real numbers with Hn > 1
2
, and assume that

limn→∞ Hn = H > 1
2
. Let Zn be a fractional Brownian motion process with Hurst parameter

Hn and let Ψ be a continuous semimartingale. Since Hn > 1
2
, the processes Zn have zero

quadratic variation. Moreover, L- limn→∞ Zn = BH because the centered Gaussian processes

Zn and BH are uniquely determined by their covariation functions and all stochastic integrals

exists in the sense of (47). Thus, Theorem 4.2 yields

L- lim
n→∞

(
Zn,

∫
ΨdZn

)
=

(
BH ,

∫
ΨdBH

)
.

We prepare the proof of Theorem 4.2 with the following simple lemma.

Lemma 4.4 Under the assumptions of Theorem 4.2 the processes [Zn] and [Zn, Ψn] defined

by

[Zn]t := (Zn
t )2 − 2

∫ t

0

Zn
s−dZn

s and [Zn, Ψn]t := Zn
t Ψn

t −
∫ t

0

Zn
s−dΨn

s −
∫ t

0

Ψn
s−dZn

s ,

have P-a.s. sample paths which are equal to zero.
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Proof: It follow from the representation of the stochastic integrals
∫

ZndZn,
∫

ΨndZn and∫
ZndΨn as probabilistic limits of Stieltjes-type sums that, for any t and each sequence of

partitions {τ l}l∈N of [0, t] with liml→∞ maxi |τ l
i+1 − τ l

i |,

[Zn] = P- lim
l→∞

∑
i

(Zn
τ l
i+1
− Zn

τ l
i
)2 and [Zn, Ψn] = P- lim

l→∞

∑
i

(Zn
τ l
i+1
− Zn

τ l
i
)(Ψn

τ l
i+1
−Ψn

τ l
i
).

Since a typical sample path of the stochastic integrals
∫

ΨndZn and
∫

ZndΨn is in D, we

can apply the same arguments as in the proof of Theorem II.6.25 in Protter (1990) in order

to obtain the Cauchy-Schwartz-type inequality P {[Zn, Ψn]2t ≤ [Zn]t[Ψ
n]t} = 1. Thus, our

assertion follows from P{[Zn]t = 0 for all t ≥ 0} = 1. 2

For the proof of Theorem 4.2 we will also need the following simple lemma.

Lemma 4.5 (i) Let C be the space of all real valued continuous functions. For n ∈ N,

let αn, βn ∈ D and assume that the sequence {(αn, βn)}n∈N converges in the Skorohod

topology to (α, β) ∈ C. Then, on compact intervals, the process

γn = (γn(t))t≥0 defined by γn(t) = αn(t)βn(t)

converges to αβ = (α(t)β(t))t≥0 in the Skorohod topology on D.

(ii) Let {(Y n, Zn)}n∈N be a sequence of D-valued random variables defined on some prob-

ability space (Ω,F ,P) that converges in law to (Y, Z). If P{(Y, Z) ∈ C × C} = 1,

then

L- lim
n→∞

{(Y n
t Zn

t )0≤t≤T} = (YtZt)0≤t≤T

holds for all T < ∞.

Proof: Since α and β are continuous, (i) follows from Lemma 2.1 in Kurtz and Protter

(1991). The second assertion follows from (i) and Skorohod’s representation theorem. 2

We are now ready to finish the proof of Theorem 4.2.

Proof of Theorem 4.2: Since {Ψn}n∈N is a sequence of good semimartingales and because

a typical sample path of a fractional Brownian motion process is continuous, we deduce from

Theorem 2.2 in Kurtz and Protter (1991) and from Lemma 4.5 (ii) that

L- lim
n→∞

(
Ψn, Zn,

∫
ZndΨn

)
=

(
Ψ, BH ,

∫
BHdΨ

)
and L- lim

n→∞
(ΨnZn) =

(
ΨBH

)
, (49)
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respectively. By the continuous mapping theorem, it follows from (49), from Lemma 4.4 and

from the integration by parts formula for fractional Brownian motion (48) that the finite

dimensional distributions of the processes
(

Ψn, Zn,

∫
ΨndZn

)
=

(
Ψn, Zn,−

∫
ZndΨn + ΨnZn

)

converge weakly to the finite dimensional distributions of the process
(

Ψ, BH ,−
∫

BHdΨ + ΨBH

)
=

(
Ψ, BH ,

∫
ΨdBH

)
.

It also follows from (49) that the sequences
{∫

ZndΨn
}

n∈N and {ΨnZn}n∈N are tight. By

Corollary VI.3.33 in Jacod and Shiryaev (1987) the sum of tight sequences of stochastic

processes with continuous sample paths is tight. Thus, continuity of the processes ΨBH and∫
BHdΨ yields tightness of the sequence

{∫
ΨndZn

}
n∈N. This shows that

L- lim
n→∞

(
Ψn, Zn,

∫
ΨndZn

)
=

(
Ψ, BH ,

∫
ΨdBH

)
.

2

In view of Lemma 4.4 and the integration by parts formula for fractional Brownian

motion processes we also have the following approximation result for the integral of fractional

Brownian motion process with respect to itself.

Proposition 4.6 Under the assumption of Theorem 4.2 it holds that

L- lim
n→∞

∫
ZndZn =

∫
BHdBH .

Proof: By Lemma 4.4

(Zn
t )2 = 2

∫ t

0

Zn
s dZn

s P-a.s.

Thus, in view of Lemma 4.5 (ii) and the Itô formula for fractional Brownian motion the

sequence {(Zn
t )2}n∈N converges in distribution to

(BH
t )2 = 2

∫ t

0

BH
s dBH

s .

This yields the assertion. 2

We finish this section with the proof of Theorem 2.6.

Proof of Theorem 2.6: In terms of the processes Xε introduced in (19), we have

L- lim
N→∞

1√
N

(Xε,N
t )0≤t≤T =

(∫ t

0

ΨsdXε
s

)

0≤t≤T

and

∫ t

0

Xε
sdXε

s =

∫ t

0

Xε
sYs/ε ds
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where the stochastic integrals have continuous sample paths. By Theorem 3.1,

L- lim
ε↓0

1

ε1−H
√

L(ε−1)
Xε = c BH

with H > 1
2
, and so the assertion follows from Theorem 4.2 if we can show that the pro-

cesses Xε have zero quadratic variation on compact time intervals and that the stochastic

integrals
∫

ΨdXε and
∫

Xε dXε exist as the probabilistic limits of Stieltjes-type sums. These

properties, however, follow from (19) by direct computation. 2

A The key renewal theorem in the heavy tailed case

In order to keep the paper as self contained as possible, we recall here a result of Heath et

al. (1996) on the rate of convergence in the key renewal theorem in the heavy tailed case.

Let z be a continuous, non-negative function of bounded variation on [0,∞), such that

limt→∞ z(y) = 0. That is, z(t) =
∫∞

t
ζ(dy) for some finite signed measure ζ on [0,∞). Let

z∗ denote the total variation function of ζ. That is,

z∗(t) =

∫ ∞

t

|ζ|(dy). (50)

Following Heath et al. (1996), we say that z is virtually non-increasing if

lim
t→∞

z(t)

z∗(t)
= 1. (51)

The following extension of the key renewal theorem appears as Theorem 3.10 (iii) in

Heath et al. (1996).

Theorem A.1 Let F be a distribution with domain [0,∞) satisfying

F̄ (t) = 1− F (t) ∼ t−αL(t)

for some 1 ≤ α < 2, and L be a slowly varying function at infinity. Assume that F n is

nonsingular for some n ≥ 1. Let ζ =
∫∞
0

F̄ (x)dx be the expected value and denote by U the

renewal function associated with F , i.e.,

U =
∞∑

n=0

F n.

Let z be a virtually non-increasing function on [0,∞), such that z(t) = o(F̄ (t)) as t → ∞.

Let λ =
∫∞

0
z(t)dt < ∞. Then the function h : R+ → R+ defined by

h(t) =
λ

ζ
−

∫ t

0

z(t− s)U(ds)
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satisfies

h(t) ∼ − λ

(α− 1)ζ2
t−α+1L(t).
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