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Abstract

In this paper we introduce and study the concept of optimal and surely
optimal dual martingales in the context of dual valuation of Bermudan
options, and outline the development of new algorithms in this context.
We provide a characterization theorem, a theorem which gives conditions
for a martingale to be surely optimal, and a stability theorem concern-
ing martingales which are near to be surely optimal in a sense. Guided
by these results we develop a framework of backward algorithms for con-
structing such a martingale. In turn this martingale may then be utilized
for computing an upper bound of the Bermudan product. The method-
ology is pure dual in the sense that it doesn’t require certain (input)
approximations to the Snell envelope.

In an Itô-Lévy environment we outline a particular regression based
backward algorithm which allows for computing dual upper bounds with-
out nested Monte Carlo simulation. Moreover, as a by-product this al-
gorithm also provides approximations to the continuation values of the
product, which in turn determine a stopping policy. Hence, we may ob-
tain lower bounds at the same time.

In a first numerical study we demonstrate a backward dual regres-
sion algorithm in a Wiener environment that is easy to implement and
is regarding accuracy comparable with the method of Belomestny et. al.
(2009).
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1 Introduction

It is well-known that evaluation of Bermudan callable derivatives comes down
to solving an optimal stopping problem. For many callable exotic products,
for example interest products, the underlying state space is high-dimensional
however. As such these products are usually very hard to solve with determin-
istic (PDE) methods and therefore simulation based (Monte Carlo) methods are
called for. The first developments in this respect concentrated on the construc-
tion of a “good” exercise policy. We mention, among others, regression based
methods by Carriere (1996), Longstaff and Schwartz (2001), and Tsistsiklis and
Van Roy (1999), the stochastic mesh method of Broadie and Glasserman (2004),
and quantization algorithms by Bally and Pages (2003). Especially for very high
dimension, Kolodko and Schoenmakers (2004) developed a policy improvement
approach which can be effectively combined with Longstaff and Schwartz (2001)
for example (see Bender et al. (2008) and Bender et al. (2006)).

As a common feature, the aforementioned simulation methods provide lower
biased estimates for the Bermudan product under consideration. As a new
breakthrough, Rogers (2001), and Haugh and Kogan (2004) introduced a dual
approach, which comes down to minimization over a set of martingales rather
than maximization over a family of stopping times. By its very nature the dual
approach gives upper biased estimates for the Bermudan product and after
its appearance several numerical algorithms for computing dual upper bounds
are proposed. Probably the most popular one is the method of Andersen and
Broadie (2004), although this method requires nested Monte Carlo simulation
(see also Kolodko and Schoenmakers (2004) and Schoenmakers (2005)). In a
Wiener environment, Belomestny et. al. (2009) provide a fast generic method
for computing dual upper bounds by non-nested simulation.

The algorithms for computing dual upper bounds so far have in common
that they start with some given “good enough” approximation of the Snell
envelope and then construct the Doob-martingale due to this approximation.
In a recent paper Rogers (2010), points out how to construct a particular ’good’
martingale via a sequence of martingales which are constant on an ever bigger
time interval. In this construction no input approximation to the Snell envelope
is used. The methods proposed in this paper have some flavor of the method
of Rogers (2010), in the sense that no approximation to the Snell envelope is
involved either. In a recent paper Desai et. al. (2010) treat the dual problem
by methods from convex optimization theory.

Starting with a short resume of well-known facts on Bermudan derivatives
in Section 2, we analyze in Section 3 the almost sure property of the dual
representation in detail. We there introduce the concept of a surely optimal
martingale, which is loosely speaking, a martingale that minimizes the dual
representation with a particular almost sure property. In this respect we will
point out that a martingale which minimizes the dual representation is not
necessarily surely optimal, and on the other hand, a surely optimal martingale
is generally not unique.

In Section 4 we present, as one of the main contributions in this paper,
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a characterizing theorem for surely optimal martingales (Theorem 6), and an
adaptiveness criterion that guarantees that a martingale is surely optimal (The-
orem 10 and Corollary 11).

In the application of the Andersen and Broadie (2004) algorithm one gen-
erally observes that, the better the constructed dual martingale, the lower the
variance of the upper bound estimator. Actually this observation was not well
studied from a mathematical point of view so far. In Section 5 we study this
phenomenon and, as a next main contribution, give an explanation of it by a
convergence or stability Theorem 12, related to surely optimal martingales.

Guided by Theorem 6, Theorem 10, and Theorem 12, we outline the devel-
opment of backward algorithms in Section 6 for constructing martingales which
are in a sense near to be surely optimal, and which subsequently may be used
for evaluation of dual upper bounds. In this context we give a short recap of es-
timating conditional variances with kernel and regression based methods. In an
Itô-Lévy environment it is shown how a particular backward algorithm may be
designed as a regression procedure which yields dual martingales that allow for
computing upper bounds without nested Monte Carlo (like in Belomestny et. al.
(2009)). In this environment we obtain moreover, as a by-product, estimations
of continuation values. Thus, as a result, we end up with a procedure which
computes upper bounds as well as lower bounds at the same time by non-nested
simulation. In a Wiener environment this procedure is quite easy to implement
and may be considered as an interesting alternative to the non-nested method of
Belomestny et. al. (2009), where a dual martingale is obtained by constructing
a discretized Clark-Ocone derivative of some (input) approximation to the Snell
envelope via regression.

In a first numerical study (Section 7) we illustrate at two multi-dimensional
benchmark products (the same products as considered in Belomestny et. al.
(2009)) a backward regression algorithm that is of the same quality as the one
in Belomestny et. al. (2009) regarding speed and accuracy of upper bounds,
and moreover produces very fast good lower bounds.

Finally, we underline that the focus in this paper is on the introduction and
rigorous mathematical treatment of surely optimal martingales, and the way it
leads to new dual algorithms for Bermudan products. An in depth analysis of
convergence and performance of these algorithms is an interesting subject for
further study, but considered beyond the scope of this paper.

2 Bermudan derivatives and optimal stopping

Let (Zi : i = 0, 1, . . . , T )1 be a non-negative stochastic process in discrete time
on a filtered probability space (Ω,F , P ), adapted to a filtration F := (Fi :
0 ≤ i ≤ T ) which satisfies E|Zi| < ∞, for 0 ≤ i ≤ T. The measure P may be
considered as a pricing measure and the process Z may be seen as a (discounted)

1For notational convenience we have chosen for this stylized time set. The reader may refor-
mulate all statements and results in this paper for a general discrete time set {T0, T1, . . . , TJ}
in a trivial way.
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cash-flow, which an investor may exercise once in the time set {0, ..., T}. As such
he is faced with a Bermudan derivative. As a well known fact, a fair price of
such a derivative is the value of the Snell envelope process

Y ∗i = sup
τ∈{i,...,T},

EiZτ , 0 ≤ i ≤ T, (1)

at time i = 0. In (1), τ denotes a stopping time, Ei := EFi
denotes conditional

expectation with respect to the σ-algebra Fi, and sup (inf) is to be understood
as essential supremum (infimum) if it ranges over an uncountable family of
random variables. Let us recall some well-known facts (e.g. see Neveu (1975)).

1. The Snell envelope Y ∗ of Z is the smallest super-martingale that domi-
nates Z.

2. A family of optimal stopping times is given by

τ∗i = inf{j : j ≥ i, Zj ≥ Y ∗j }, 0 ≤ i ≤ T.

In particular,
Y ∗i = EiZτ∗i , 0 ≤ i ≤ T,

and the above family is the family of first optimal stopping times if several
optimal stopping families exist.

The optimal stopping problem (1) has a natural interpretation in the point
of view of the option holder: He seeks for an optimal exercise strategy which
optimizes his expected pay-off. On the other hand, the seller of the option rather
seeks for the minimal cash amount (smallest super-martingale) he has to have
at hand in any case the holder of the option exercises.

3 Duality and surely optimal martingales

We briefly recall the dual approach proposed by Rogers (2001) and, indepen-
dently, Haugh and Kogan (2004). The dual approach is based on the following
observation. For any martingale (Mj) with M0 = 0 we have,

Y ∗0 = sup
τ∈{0,...,T}

E0Zτ ≤ sup
τ∈{0,...,T}

E0 (Zτ −Mτ ) ≤ E0 max
0≤j≤T

(Zj −Mj) , (2)

hence the right-hand side provides a (dual) upper bound for Y ∗0 . Rogers (2001),
and independently Haugh and Kogan (2004), showed that (2) holds with equal-
ity for the martingale part of the Doob decomposition of Y ∗, i.e. Y ∗j = Y ∗0 +
M∗j − A∗j , where M∗ is a martingale with M∗0 = 0, and A∗ is predictable with
A∗0 = 0. I.e.,

M∗j =

j∑
l=1

(Y ∗l − El−1Y ∗l ) , A∗j =

j∑
l=1

(
Y ∗l−1 − El−1Y ∗l

)
, (3)
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where A∗ is non-decreasing due to the Bellman principle. In addition, they
showed that

Y ∗0 = max
0≤j≤T

(
Zj −M∗j

)
a.s. (4)

The next lemma, by Kolodko and Schoenmakers (2006), provides a somewhat
more general class of super-martingales, which turn (2) into an equality such
that moreover (4) holds.

Lemma 1 Let S be a super-martingale with S0 = 0, and such that Zj−Y ∗0 ≤ Sj,
1 ≤ j ≤ T . It then holds,

Y ∗0 = max
0≤j≤T

(Zj − Sj) a.s. (5)

For the proof see Kolodko and Schoenmakers (2006).

Examples 2 Obviously, by taking for S the Doob martingale (3), Lemma 1
applies. But, this is not the only one. For example, in the case Z > 0 a.s. we
may also take

Sj = (N∗j − 1)Y
∗

0 ,

where N∗ is the multiplicative Doob part of the Snell envelope. I.e., Y ∗j =
Y ∗0 N

∗
j B
∗
j for a martingale N∗ with N∗0 = 1 and predictable B∗ with B∗0 = 1.

Hence

N∗j =

j∏
l=1

Y ∗l
El−1Y ∗l

, B∗j =

j∏
l=1

El−1Y
∗
l

Y ∗l−1
. (6)

Indeed, since B∗ is non-increasing due to the Bellman principle, we have

Sj = Y
∗

0

(
Y ∗j
Y ∗0 B

∗
j

− 1

)
≥ Y

∗

0

(
Y ∗j
Y ∗0
− 1

)
= Y ∗j − Y

∗

0 ≥ Zj − Y
∗

0 ,

and so Lemma 1 applies again.

The multiplicative Doob decomposition in (6) is used by Jamshidian (2007)
for constructing a multiplicative dual representation. In a comparative study,
Chen and Glasserman (2007) pointed out however, that from a numerical point
of view additive dual algorithms perform better due to the nice almost sure
property (4).

Remark 3 It is not true that for any martingale M which turns (2) into equal-
ity the almost sure statement (4) holds. As a simple counterexample consider
T = 1, Z0 = 0, Z1 = 2, M0 = 0, and M1 = ±1 each with probability 1/2. Indeed,
we see that Y ∗0 = 2 = E0(2−M1) = E0 max(0, 2−M1), but, Y ∗0 6= max(0, 2−M1)
a.s.
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In order to have a unified dual representation for the Snell envelope Y ∗i at
any i, it is convenient to drop the assumption that martingales start at zero.
We then may restate the dual theorem as

Y ∗i = inf
M∈M

Ei max
i≤j≤T

(Zj −Mj +Mi) (7)

= max
i≤j≤T

(
Zj −M∗j +M∗i

)
a.s., (8)

for any i, 0 ≤ i ≤ T, where M is the set of all martingales and M∗ is the Doob
martingale part of Y ∗.

In view of Remark 3 and Examples 2, a martingale for which the infimum
(7) is attained must not necessarily satisfy the almost sure property (8), and,
martingales which do satisfy (8) are generally not unique.

Definition 4 We say that a martingale M is surely optimal for the Snell
envelope Y ∗ at a time i, 0 ≤ i ≤ T, if (8) holds.

Remark 5 Obviously, the Doob martingale of Y ∗ is surely optimal at each
i, 0 ≤ i ≤ T, and any martingale M is trivially surely optimal at i = T.
However, it is not true that sure optimality for some i with i < T implies sure
optimality at i + 1. As a counterexample let us consider T = 2, and Z0 = 4,
Z1 = 0, Z2 = 2. Take as martingale M0 = 0, M1 = ±1, each with probability
1/2, and M2 = M1 ± 1, each with probability 1/2 conditional on M1. Then
max0≤j≤2 (Zj −Mj +M0) = 4 a.s. Since we have trivially Y ∗0 = 4, M is surely
optimal at i = 0. But, max1≤j≤2 (Zj −Mj +M1) = 2 −M2 + M1 /∈ F1, so M
is not surely optimal for Y ∗ at i = 1.

4 Characterization of surely optimal martingales

In this section we give a unique characterization of martingales that are surely
optimal for all i = 0, . . . , T.

Theorem 6 A martingale M with M0 = 0 is surely optimal for i = 0, . . . , T, if
and only if there exists a sequence of adapted random variables (ζi)0≤i≤T, such
that Ei−1ζi = 1, and ζi ≥ 0 for all 0 < i ≤ T, and

Mi = M∗i −A∗i +
i∑
l=1

(
A∗l −A∗l−1

)
ζi, (9)

where, respectively, M∗ is the Doob-martingale part and A∗i the predictable part
of the Snell envelope Y ∗, given in (3).

Proof. i) Let us assume that M is surely optimal as stated. Then by (8) it
holds for any 0 < i ≤ T,

Y ∗i−1 = max
i−1≤j≤T

(Zj −Mj +Mi−1)

= max(Zi−1,Mi−1 −Mi + max
i≤j≤T

(Zj −Mj +Mi))

= max(Zi−1,Mi−1 −Mi + Y ∗i ). (10)
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Since always Zi−1 ≤ Y ∗i−1, and Zi−1 < Y ∗i−1 implies A∗i−1 = A∗i , we obtain from
(10),

Y ∗i−1 − Zi−1 = (Mi−1 −Mi + Y ∗i − Zi−1)+

=
(
Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1 + Y ∗i−1 − Zi−1

)
+

= 1Zi−1<Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 + Y ∗i−1 − Zi−1

)
+

+ 1Zi−1=Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1

)
+
.

We so must have

1Zi−1<Y ∗i−1

(
Y ∗i−1 − Zi−1

)
=

1Zi−1<Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 + Y ∗i−1 − Zi−1

)
, and

1Zi−1=Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1

)
+

= 0,

respectively. Hence we get

1Zi−1<Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1

)
= 0, and (11)

1Zi−1=Y ∗i−1

(
Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1

)
= −1Zi−1=Y ∗i−1

µi, (12)

for some non-negative Fi-measurable random variable µi. W.l.o.g. we assume
that µi ≡ 0 on the set {Zi−1 < Y ∗i−1}. By taking Fi−1 conditional expectations
on both sides of (12), and using the martingale property of both M and M∗,
and the predictability of A∗, it then follows that

Ei−1µi = 1Zi−1=Y ∗i−1
Ei−1µi = 1Zi−1=Y ∗i−1

(
A∗i −A∗i−1

)
. (13)

In particular, since µi ≥ 0 almost surely, it follows from (13) that µi = 0 on the
set {A∗i = A∗i−1} (⊇ {Zi−1 < Y ∗i−1}). By next defining

ζi :=

{ (
A∗i −A∗i−1

)−1
µi if A∗i > A∗i−1,

1 elsewhere
, (14)

we have µi =
(
A∗i −A∗i−1

)
ζi a.s., and by (13) we have (using the convention

0 · ∞ = 0)

Ei−1ζi = 1A∗i>A∗i−1
Ei−1

(
A∗i −A∗i−1

)−1
µi + 1A∗i =A∗i−1

= 1A∗i>A∗i−1
1Zi−1=Y ∗i−1

+ 1A∗i>A∗i−1
1Zi−1<Y ∗i−1

+ 1A∗i =A∗i−1
= 1,

since the middle term is trivially zero. We thus obtain from (11) and (12),

Mi−1 −Mi +M∗i −M∗i−1 −A∗i +A∗i−1 = −
(
A∗i −A∗i−1

)
ζi,
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from which (9) follows.
ii) Conversely, if a martingale M satisfies (9), we have for any 0 ≤ i ≤ T,

max
i≤j≤T

(Zj −Mj +Mi) = max
i≤j≤T

(
Zj −M∗j +A∗j −

j∑
l=1

(
A∗l −A∗l−1

)
ζl

+M∗i −A∗i +

i∑
l=1

(
A∗l −A∗l−1

)
ζl

)

= Y ∗i + max
i≤j≤T

(
Zj − Y ∗j −

j∑
l=i+1

(
A∗l −A∗l−1

)
ζl

)
≤ Y ∗i ,

and then by (7) the almost sure optimality follows.

By Theorem 6 we have immediately the next alternative characterization of
almost sure martingales.

Corollary 7 A martingale M with M0 = 0 is surely optimal for i = 0, . . . , T,
if and only if there exists an non-decreasing adapted process N (which is not
necessarily predictable!) with N0 = 0, such that

Y ∗i = Y ∗0 +Mi −Ni.

Proof. If M is surely optimal as stated, we have by the “if” part of Theorem 6
(see (9)),

Y ∗i − Y ∗0 −Mi = −
i∑
l=1

(
A∗l −A∗l−1

)
ζi =: −Ni, (15)

with N being adapted, non-decreasing and N0 = 0. Conversely, if

Y ∗i = Y ∗0 +Mi −Ni
for some martingale M, M0 = 0, and non-decreasing adapted N, N0 = 0, we
consider for each i, 0 ≤ i ≤ T,

max
i≤j≤T

(Zj −Mj +Mi) = max
i≤j≤T

(
Zj − Y ∗j −Nj + Y ∗i +Ni

)
≤ Yi,∗

and then apply (7) again.
The following corollary is important in the context of the algorithms devel-

oped in Section 6.

Corollary 8 Let the martingale M with M0 = 0 be surely optimal for i =
0, . . . , T. For the non-decreasing process N defined by (15) it then holds

Y ∗i −Mi +Mi−1 − Zi−1 = Y ∗i−1 −Ni +Ni−1 − Zi−1 =: Ui,

and since by (15), Ni −Ni−1 =
(
A∗i −A∗i−1

)
ζi we thus have

(Ui)+ = Y ∗i−1 − Zi−1 a.s.

So, in particular we have that (Ui)+ is Fi−1-measurable while Ui itself is gen-
erally not, except for the case where M = M∗.
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From Theorem 6 it is clear that there exist infinitely many martingales which
are surely optimal for all i = 0, . . . , T. In the following example we construct a
(one-)parametric family of such martingales which includes the Doob martingale
of the Snell envelope.

Example 9 Let us assume Z > 0 a.s. (if Z is strictly bounded from below by a
constant −K, we may consider the equivalent stopping problem due to Z +K).
Then Y ∗ > 0 a.s., and for any α, 0 ≤ α ≤ 1, we consider

ζi := 1− α+ α
Y ∗i

Ei−1Y ∗i
= 1− α+ α

N∗l
N∗l−1

,

where N∗ is the martingale part of the multiplicative decomposition Y ∗i = Y ∗0 N
∗
i B
∗
i

of the Snell envelope (see Examples 2). Obviously, it holds Ei−1ζi = 1 and
ζi ≥ 0, and so by Theorem 6 we obtain for each 0 ≤ α ≤ 1 a martingale

Mi = M∗i −A∗i +

i∑
l=1

(
A∗l −A∗l−1

)(
1− α+ α

N∗l
N∗l−1

)

= M∗i − αA∗i + α

i∑
l=1

(
A∗l −A∗l−1

) N∗l
N∗l−1

,

which is surely optimal for i = 0, ..., T. Thus, for α = 0 (i.e. ζi ≡ 1) we retrieve
the standard Doob martingale of the Snell envelope, and for α = 1 we obtain

Mi = Y ∗i − Y ∗0 +

i∑
l=1

(
A∗l −A∗l−1

) N∗l
N∗l−1

=

i∑
l=1

(
Y ∗l − Y ∗l−1 + Y ∗l−1

(
1− B∗l

B∗l−1

)
N∗l
N∗l−1

)

= Y ∗0

i∑
l=1

(
N∗l B

∗
l −N∗l−1B∗l−1 +B∗l−1

(
1− B∗l

B∗l−1

)
N∗l

)

= Y ∗0

i∑
l=1

B∗l−1
(
N∗l −N∗l−1

)
. (16)

Note that this martingale differs from the martingale Y
∗

0 (N∗i −1) in Examples 2
(they would coincide after dropping the factors B∗l−1). It is easy to show (using
Theorem 6 again!) that the latter martingale is generally only optimal at i = 0,
while the martingale (16) is surely optimal for all i = 0, ..., T, by construction.

The next theorem provides a key criterion for identifying surely optimal mar-
tingales.

Theorem 10 Let Y ∗ be the Snell envelope of the cash-flow Z and let M be any
martingale. Then, for every i ∈ {0, ..., T} the following statement holds:
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For any set Ai ∈ Fi we have

1Ai
max
i≤j≤T

(Zj −Mj +Mi) ∈ Fi =⇒ 1Ai
max
i≤j≤T

(Zj −Mj +Mi) = 1Ai
Y ∗i .

Proof. We use backward induction on the number i. If i = T the statement
reads, for any AT ∈ FT we have 1AT

ZT ∈ FT =⇒ 1AT
ZT = 1AT

Y ∗T , which
is trivially true. Suppose the statement holds for some i + 1 with 0 ≤ i < T,
and assume for an arbitrary but fixed set Ai ∈ Fi that

1Aiϑi := 1Ai max
i≤j≤T

(Zj −Mj +Mi) ∈ Fi.

We then have

1Aiϑi = 1Ai max(Zi, Mi −Mi+1 + max
i+1≤j≤T

(Zj −Mj +Mi+1))

= 1Ai
max(Zi, Mi −Mi+1 + ϑi+1) ∈ Fi.

We next consider the following Fi measurable events:

Ai ∩Ai) with Ai) := {ϑi = Zi} ∩ {Mi −Mi+1 + ϑi+1 ≤ Zi}, and

Ai ∩Aii) with Aii) = Ω\Ai)

:= {ϑi = Mi −Mi+1 + ϑi+1} ∩ {Zi < Mi −Mi+1 + ϑi+1}.

By taking Fi-conditional expectations it follows that

1Ai∩Ai)Zi = Ei 1Ai∩Ai)Zi ≥ Ei (Mi −Mi+1 + ϑi+1) 1Ai∩Ai) = 1Ai∩Ai)Ei ϑi+1.
(17)

Since M is a martingale, Ei+1 ϑi+1 is an upper bound for Y ∗i+1 by (7), and we
thus have,

Ei ϑi+1 = EiEi+1 ϑi+1 ≥ EiY ∗i+1,

which yields combined with (17),

1Ai∩Ai)EiY
∗
i+1 ≤ 1Ai∩Ai)Zi,

and so
1Ai∩Ai)ϑi = 1Ai∩Ai)Zi = 1Ai∩Ai)Y ∗i . (18)

On the other hand, we notice that 1Ai∩Aii)ϑi+1 ∈ Fi+1, so we have by induction
that 1Ai∩Aii)ϑi+1 = 1Ai∩Aii)Y ∗i+1. It then follows that

1Ai∩Aii)ϑi = Ei 1Ai∩Aii)ϑi = Ei 1Ai∩Aii) (Mi −Mi+1 + ϑi+1) = 1Ai∩Aii)Eiϑi+1

= Ei 1Ai∩Aii)ϑi+1 = Ei 1Ai∩Aii)Y ∗i+1 = 1Ai∩Aii)EiY
∗
i+1. (19)

Combining (18) and (19) finally yields 1Ai
ϑi = 1Ai

Y ∗i .

As an immediate consequence of Theorem 10 we obtain:

Corollary 11 Let Y ∗, Z, and M be any martingale, as in Theorem 10. For
i ∈ {0, ..., T} it holds,

max
i≤j≤T

(Zj −Mj +Mi) ∈ Fi =⇒ M is surely optimal at i.

10



5 Stability of surely optimal martingales

In equivalent terms, Corollary 11 states that, if a martingale M is such that the
conditional variance of

ϑ
(M)
i := max

i≤j≤T
(Zj −Mj +Mi) , i = 0, ..., T,

is zero, i.e.

V ari

(
ϑ
(M)
i

)
:= Ei (ϑi − Eiϑi)2 = 0, a.s., i = 0, ..., T,

then ϑ
(M)
i = Y ∗i , for i = 0, ..., T. Hence the martingale M is surely optimal

for i = 0, ..., T. In this section we present a stability result for martingales
M which are, loosely speaking, near to be surely optimal in the sense that

each i, Vari

(
ϑ
(M)
i

)
is small. More specifically, for a sequence of martingales

(M (n))n≥1 we provide mild conditions which guarantee that the corresponding
upper bounds converge to the Snell envelope (although the sequence of martin-
gales (M (n)) does not need to converge itself). We have the following theorem.

Theorem 12 Suppose that for each i, 0 ≤ i ≤ T, Vari(ϑ
(n)
i )

P→ 0, if n → ∞,
where ϑ

(n)
i := maxi≤j≤T

(
Zj −M (n)

j +M
(n)
i

)
. In addition, suppose that for

each i, the sequence of martingales
(
M

(n)
i

)
n≥1

is uniformly integrable for n ≥ 1.

It then holds
(
ϑ
(n)
i

)
n≥1

is uniformly integrable for each i, and

Ei ϑ
(n)
i

L1→ Y ∗i , i = 0, ..., T.

Proof. We will prove the theorem by backward induction on i. For i = T there
is nothing to prove. Suppose the theorem is proved for i + 1, i < T. Let us
consider

ϑ
(n)
i − Zi := max

i≤j≤T

(
Zj −M (n)

j +M
(n)
i

)
− Zi

=

(
M

(n)
i −M (n)

i+1 + max
i+1≤j≤T

(
Zj − Zi −M (n)

j +M
(n)
i+1

))
+

=
(
ϑ
(n)
i+1 − Zi +M

(n)
i −M (n)

i+1

)
+
, (20)

and define
ψ
(n)
i := ϑ

(n)
i+1 − Zi +M

(n)
i −M (n)

i+1. (21)

Due to the induction hypothesis Ei+1ϑ
(n)
i+1

L1→ Y ∗i+1 with ϑ
(n)
i+1 being uniformly

integrable. Thus, ψ
(n)
i and ϑ

(n)
i are uniformly integrability due to (20), (21),

and the uniform integrability of the martingales. So it holds,

Ei ψ
(n)
i = EiEi+1ϑ

(n)
i+1 − Zi

L1→ EiY
∗
i+1 − Zi. (22)

11



We will then show that

Ei

(
ψ
(n)
i

)
+

L1→
(
EiY

∗
i+1 − Zi

)
+
, (23)

which in turn implies by (20),

Ei ϑ
(n)
i

L1→ Zi +
(
EiY

∗
i+1 − Zi

)
+

= max
(
Zi, EiY

∗
i+1

)
= Y ∗i .

Since the family Ei

(
ψ
(n)
i

)
+

is uniformly integrable too, it is enough to show

that
Ei

(
ψ
(n)
i

)
+

P→
(
EiY

∗
i+1 − Zi

)
+
. (24)

From (22) it follows (
Ei ψ

(n)
i

)
+

P→
(
EiY

∗
i+1 − Zi

)
+
,

so it is sufficient to prove that

Ei

(
ψ
(n)
i

)
+
−
(
Ei ψ

(n)
i

)
+

P→ 0.

On the one side, by Jensen’s inequality, we have

Ei

(
ψ
(n)
i

)
+
≥
(
Eiψ

(n)
i

)
+

a.s.

Now take an arbitrary ε > 0 and consider the inequality

1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ

(n)
i

)
+
≤
(
Ei ψ

(n)
i

)
+

} (25)

≤ 1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ

(n)
i

)
+
≤Ei

(
ψ

(n)
i

)
+
−ε
}.

A conditional version of Chebyschev’s inequality implies that

In := 1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Ei 1{(
ψ

(n)
i

)
+
≤Ei

(
ψ

(n)
i

)
+
−ε
}

≤ 1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Vari

((
ψ
(n)
i

)
+

)
ε2

= 1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Vari

(
ϑ
(n)
i

)
ε2

P→ 0,

by the assumptions of the Theorem. Since obviously 0 ≤ In ≤ 1, this implies

that In
L1→ 0. Then note that (see (25))

1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ

(n)
i

)
−
>0

}
≤ 1{

Ei ψ
(n)
i >

(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ

(n)
i

)
+
≤
(
Ei ψ

(n)
i

)
+

}
.

12



As a consequence it follows that

0 ≤ Ei1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}1{(
ψ

(n)
i

)
−
>0

} ≤ In L1→ 0. (26)

Now since the family
(
ψ
(n)
i

)
−

is uniformly integrable also, it is not difficult to

see that (26) implies

1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Ei (ψ(n)
i

)
−

L1→ 0. (27)

Next we consider

1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

}Ei (ψ(n)
i

)
−

= 1{
Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

} [Ei (ψ(n)
i

)
+
− Ei ψ(n)

i

]
≥ 1{

Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

} [(Ei ψ(n)
i

)
+
− Ei ψ(n)

i + ε

]
= 1{

Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

} [(Ei ψ(n)
i

)
−

+ ε

]
≥ ε1{

Ei

(
ψ

(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+
+ε

} ≥ 0,

and so by (27),

P

(
Ei

(
ψ
(n)
i

)
+
>
(
Ei ψ

(n)
i

)
+

+ ε

)
→ 0.

The following simple example illustrates that Theorem 12 would not be true
when the uniform integrability condition is dropped.

Example 13 Take T = 1, Z0 = Z1 = 0, M
(n)
0 = 0, M

(n)
1 =: −ξn with E0ξn =

0, n = 1, 2, . . . Then obviously Y ∗0 = 0, and we have

ϑ
(n)
0 = max(Z0 −M (n)

0 , Z1 −M (n)
1 ) = max(0, ξ(n)) = ξ

(n)
+ .

Now take

ξ(n) =

{
1 with Prob. n−1

n
1− n with Prob. 1

n

(hence E0ξ
(n) = 0). Then, for n → ∞ we have Var0(ϑ

(n)
0 ) = E0(ξ

(n)
+ )2 −(

E0ξ
(n)
+

)2
= n−1

n −
(
n−1
n

)2
= n−1

n2 → 0, whereas E0ϑ
(n)
0 = E0ξ

+
n = n−1

n → 1.

Clearly, for each K > 1, E0

∣∣∣M (n)
1

∣∣∣ 1{∣∣∣M(n)
1

∣∣∣>K} ≥ n−1
n 1{n−1>K} → 1 as n →

∞, hence the
(
M

(n)
1

)
are not uniformly integrable.

13



Remark 14 Theorem 12 is important in practical situations, for instance, if
there exists some underlying (multi-dimensional) Markovian structure with re-
spect to some (multi-dimensional) Wiener filtration. In this environment we
may consider the following class of uniformly integrable martingales.

Let X be a D-dimensional Markov process adapted to a filtration generated
by an m-dimensional Brownian motion W and let the function c(·, ·) : R≥0×
RD → R≥0 be such that E0

∫ T
0
c2(s,Xs)ds < ∞. Then the class MUI of mar-

tingales defined by

M ∈MUI :⇐⇒Mt =

∫ t

0

bT(s,Xs)dWs, 0 ≤ t ≤ T, for b with |b| ≤ c

is uniformly integrable due to the criterion of de la Vallée Poussin, since

sup
M∈MUI

E |Mt|2 ≤
∫ T

0

E0c
2(s,Xs)ds <∞, 0 ≤ t ≤ T.

Remark 15 Consider any class of uniformly integrable martingales MUI , for
example the one considered in Remark 14. As the topology of convergence in
probability is metrizable by the Ky Fan Metric (e.g., see Dudley (2002))

dP (X,Y ) := inf{ε > 0 : P (|X − Y | > ε) ≤ ε},

one may restate Theorem 12 as follows. For any ε > 0 there exist a δ > 0 such
that[
M ∈MUI ∧ max

0≤i≤T
dP (Vari(ϑ

(M)
i ), 0) < δ

]
=⇒ max

0≤i≤T

∥∥∥ϑ(M)
i − Y ∗i

∥∥∥
L1

< ε.

In view of Remark 15, Theorem 12 may be considered as a stability theorem
related to the statement of Corollary 11.

6 Towards new dual algorithms for pricing of
Bermudan derivatives

In this section we outline the design of new dual algorithms for solving multiple
stopping problems, hence pricing bermudan products, which rely on the trust of
Corollary11 and Theorem 12: For constructing a dual martingale M̂ that yields
a tight upper bound it is sufficient to establish that the expected conditional
variances

EVari

(
ϑM̂i

)
:= EVari

(
max
i≤j≤T

(Zj − M̂j + M̂i)

)
, i = 0, ..., T,

are close enough to zero. Note for Theorem 12 that EVari

(
ϑM̂i

)
→ 0 implies

Vari

(
ϑM̂i

)
P→ 0. Henceforth we assume an environment where there exists an

14



underlying D-dimensional Markovian process X adapted to the filtration F,
such that the cash-flow process is of the form

Zi = Zi(Xi), 0 ≤ i ≤ T.

As an immediate consequence, the Snell envelope is also of this form, i.e.
Y ∗i = Y ∗i (Xi), 0 ≤ i ≤ T. For a generic description of our approach that
covers a variety of applications, we introduce a parametric system of adapted
random variables in the following way. Let for each i, 1 ≤ i ≤ T, Ii be a given
(deterministic) index set, and let Ii := ⊗Tl=iIl be the formal (tensor) product
set consisting of products of the form ai := ⊗Tl=ial ∈ Ii with al ∈ Il, i ≤ l ≤ T.
We then consider a system of adapted random variables,

ξai
i ∈ Fi, ai ∈ Ii, 0 ≤ i ≤ T, such that Eiξ

ai
i+1 = 0, if 0 ≤ i < T.

(28)
We moreover require that for any i, 1 ≤ i ≤ T, we have that for any bounded
measurable function fi : RT−i+1× RD×(T−i+1) → R, and any sequence (al)i≤l≤T
with al ∈ Il, it holds

Ei−1fi(ξ
ai
i , ..., ξ

aT

T , Xi, ..., XT ) = EXi−1
fi(ξ

ai
i , ..., ξ

aT

T , Xi, ..., XT ) (29)

with aj = ⊗Tl=jal, i ≤ j ≤ T. Next, for any sequence (al)1≤l≤T with al ∈ Il, we
consider the martingale

Ma
i :=

i∑
j=1

ξ
aj

j , (30)

with Ma
0 := 0 and aj = ⊗Tl=jal, 1 ≤ j ≤ T. By requirement (29), a kind of

Markov property, the simultaneous distribution of Xi, ..., XT , and any martin-
gale increment Ma

j −Ma
i−1, j ≥ i > 0, given Fi−1, is already determined by

Xi−1. Obviously, any surely optimal martingale, for which the characterizing
random sequence (ζi) in Theorem 6 fulfills (29), in particular the Doob martin-
gale of the Snell envelope, has this property. It should also be noted that by
construction (30), martingale increments

Ma
l −Ma

i−1, l ≥ i > 0,

are already determined by the tail product ai = ⊗Tl=ial. For our applications
it is anticipated that, in a Monte Carlo simulation of X, the outcomes of the
random variables (28) may be obtained in a tractable way (for example as closed
form expressions in the underlying state variable) for any parameter choice, on
each trajectory of X.

Canonical cases

Case I. Let us take Ii = R for each i, 1 ≤ i ≤ T and consider

ξai
i :=

T∑
k=i

ak(EiZk − Ei−1Zk), where ai := ⊗Tl=ial.
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We then obtain via (30)

Ma
i =

T∑
k=1

ak(EiZk − E0Zk), 1 ≤ i ≤ T, (31)

hence a linear combination of martingales induced by European options corre-
sponding to the cash-flow process. In fact, this case is considered in Joshi and
Theis (2002), in the context of Bermudan swaptions. The corresponding dual
optimization problem

â := arg inf
a∈I1

E max
0≤j≤T

(
Zj −Ma

j

)
,

with linearly structured Ma according to (31) is there solved by minimizing the
usual Monte Carlo estimator for Emax0≤j≤T

(
Zj −Ma

j

)
on a fixed set of Monte

Carlo trajectories, using a multi-dimensional search procedure for determining
an optimal vector parameter â = ⊗Tl=1âl. However, such multi-dimensional min-
imization problems are not always easy to solve, and in general it may be more
effective to have an algorithm as developed in this section later on, where the
sequence (âl) is constructed in a (backward) recursive way.

Case II. Let us now take Ii = RT−i+1 and consider

ξai
i := ξaii :=

T∑
k=i

aik(EiZk−Ei−1Zk), ai = (aii, ..., aiT ) ∈ Ii, ai := ai⊗ai+1,

hence, in this case ξai
i doesn’t depend on ai+1. We then obtain via (30) the

structure

Ma
i =

T∑
k=1

i∧k∑
l=1

alk(ElZk − El−1Zk),

which boils down to (31) under the restriction a1k = ... = akk =: ak, k = 1, ..., T.

Case III. In many environments one may construct a large class of sequences
of “elementary” martingale increments (ξi)1≤i≤T . We here consider an example
environment which applies in many situations. Suppose the dynamics of Xt

are given in continuous time for t ∈ [0, T ], by the unique strong solution of an
Itô-Lévy SDE,

Xt = X0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs +

∫ t

0

c(s−, Xs−)dHs, (32)

where the D-dimensional vector valued function a, the D × m matrix valued
function b, and the D × q matrix valued function c, satisfy sufficient regularity
conditions, W is a m-dimensional standard Wiener process, and

Ht :=

∫ t

0

∫
Rq

u(µ(ds, du)− Fs(du)ds), 0 ≤ t ≤ T,
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is a q-dimensional jump Lévy-martingale with Lévy measure Fs(du)ds on Rq ×
R+, satisfying (the for notational convenience a little stronger than usual)

integrability condition
∫ T
0

∫
Rq

(
‖u‖ ∧ ‖u‖2

)
Fs(du)ds < ∞ (see for example

Øksendal and Sulem (2004)). Calling upon the Brownian martingale repre-
sentation theorem, and the martingale representation theorem of Kunita and
Watanabe for Lévy processes (e.g. see Applebaum (2004) p- 266 and the ref-
erences therein), we may construct “elementary” martingale increments of two
types. Firstly, due to the Wiener part of (32) we may consider (as in Belomestny
et. al. (2009)) for any given “elementary” (possibly time independent) basis
function ϕ(t, x) : R+ × RD → Rm,

ξWi :=

∫ i+1

i

ϕ>(s,Xs)dWs. (33)

Secondly, for any “elementary” (possibly time independent) basis function ϕJ(t, x, u) :
R+ × RD × Rq → R, we may consider

ξJi :=

∫ i+1

i

∫
Rq

ϕJ(s−, Xs−, u)(µ(ds, du)− Fs(du)ds). (34)

In order to guarantee that (33) and (34) define martingale increments indeed,
the basis functions are assumed to satisfy sufficient integrability (e.g. Novikov)
conditions. Now, for given sets of basis functions

(ϕk(t, x))1≤k≤K , and
(
ϕJk (t, x, u)

)
1≤k≤K ,

as in (33) and (34), respectively, we may take Ii := RK×RK for each 1 ≤ i ≤ T,
and consider

ξai
i := ξaii :=

K∑
k=1

βWi,k

∫ i+1

i

ϕ>k (s,Xs)dWs (35)

+

K∑
k=1

βJi,k

∫ i+1

i

ϕJk (s−, Xs−, u)(µ(ds, du)− Fs(du)ds),

for any ai := (βWi,1, ..., β
W
i,K , β

J
i,1, ..., β

J
i,K) ∈ Ii.As in case (II), ξai

i only depends on
ai ∈ Ii. On any trajectory Xs = Xs(ω), induced by a trajectory of Ws = Ws(ω)
and Hs = Hs(ω) via (32), the integrals in (35) may be approximated by suitable
numerical schemes. For instance the Wiener integrals my be computed by the
standard Euler scheme∫ i+1

i

ϕT
k (s,Xs)dWs ≈

δ−1−1∑
l=0

ϕ>k (i+ lδ,Xi+lδ)
(
Wi+(l+1)δ −Wi+lδ

)
, (36)

for a small enough δ > 0. For more sophisticated approximations of the Wiener
integrals see Kloeden and Platen (1992), and for approximations of integrals
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involving Levy processes see Platen and Bruti-Liberati (2010) (we omit the
details). The thus constructed family of martingale increments given by (35)
clearly satisfies (28) and (29).

In view of Theorem 12, we are now going to design a generic dual backward
algorithm for constructing an optimal (product) parameter â for the martingale
Ma where a = ⊗Tj=1aj ∈ I1, via minimizing backwardly, i.e. starting from
i = T down to i = 0, the expected conditional variances

EVari
(
ϑ
ai+1

i

)
:= EVari

(
max
i≤j≤T

(Zj −Ma
j +Ma

i )

)
(37)

= EVarXi

(
max
i≤j≤T

(Zj −
j∑

l=i+1

ξal

l )

)
, al := ⊗Tr=lar

with aT+1 being defined as an empty product. Note that due to requirement
(29), in (37) variance conditional on Fi coincides with variance conditional on
Xi. For minimizing (37) we estimate the expected conditional variances on one

fixed Monte Carlo sample of trajectories (X
(m)
i , 0 ≤ i ≤ T )m=1,...,M , using a

suitable estimation procedure, for instance as described in Section 6.1 below.
Finally, the martingale M â obtained at last may be used for estimating a price
upper bound

Ỹ up0 :=
1

M̃

M̃∑
m=1

max
0≤j≤T

(
Zj(X̃

(m)
j )− M̃ â,(m)

j

)
(38)

using a second Monte Carlo simulation that generates (X̃
(m)
i , 0 ≤ i ≤ T )

m=1,...,M̃
,

and where M̃
â,(m)
j is evaluated along each trajectory of this simulation.

The potential efficiency of the whole procedure is supported by the following
remark.

Remark 16 If the parametric family of martingales (Ma) contains a martin-
gale M â that is “close to” to be surely optimal, the expected conditional variances
(37) to be estimated due to the parameter choice â in the corresponding backward
algorithm are “low”. In general, estimating the variance of a random variable
which actual variance is close to zero by Monte Carlo is most efficient in the
sense that it requires only a relatively small sample size.

Main lines of the algorithm

In a pseudo-algorithmic language, the procedure is as follows.

Step A1) At the initialization time i = T we simply have ϑT = ϑ̂T = ZT (XT ),

hence VarT

(
ϑ̂T

)
= 0 almost surely, and formally âT+1 is initialized as an empty

product.
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Step A2) Now assume that for a fixed i, 0 < i ≤ T, an estimation of âi+1 =
⊗Tl=i+1âl is constructed, and that for each trajectory m, m = 1, ...,M, the path-
wise maximum

ϑ
âi+1,(m)
i := max

i≤j≤T
(Z

(m)
j −

j∑
l=i+1

ξ
âl,(m)
l )

(with Z
(m)
j := Zj(X

(m)
j )) is constructed and handed over. We are then going

to estimate a solution of the minimization problem

ai := arg inf
a∈Ii

EVarXi−1

(
ϑ
a⊗âi+1

i−1

)
= arg inf

a∈Ii
EVarXi−1

(
max(Zi−1, ϑ

âi+1

i − ξa⊗âi+1

i

)
= arg inf

a∈Ii
EVarXi−1

(
ϑ
âi+1

i − ξa⊗âi+1

i − Zi−1
)
+

=: arg inf
a∈Ii

EVarXi−1
(Uai )+

(as Zi−1 is Xi−1-measurable). Since for any random variable U it holds

VarXi−1
U+ ≤ VarXi−1

U, (39)

we here have two options:
A2a) Estimate a solution of the minimization problem

âi = arg inf
a∈Ii

EVarXi−1
(Uai )+ , (40)

A2b) or estimate a solution of the minimization problem

âi =: arg inf
a∈Ii

EVarXi−1
(Uai ) , (41)

where, for example, estimation procedures for expected conditional variances
described in Section 6.1 below may be used.

• ad A2a) Because of (39) the attainable minimum for the expected condi-
tional variance in (41) is obviously always above (or equal to) the attain-

able minimum in (40). Let us imagine that we have at hand ϑ
âi+1

i exactly,

i.e. Y ∗i = ϑ
âi+1

i . From Corollary 8 we then see that, if our pool of martin-
gales (Ma) contains an almost sure one, but not the Doob-martingale of
the Snell envelope M∗, it may happen that, while for a certain â ∈ Ii, in
(40) EVarXi−1

(
U âi
)
+

is zero or “close” to zero, EVarXi−1
(Uai ) in (41)

is not “close” to zero for any a ∈ Ii. In this situation we therefore just
minimize (40) and proceed.
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• ad A2b) If, on the other hand, the underlying class of martingales (Ma)
is rich enough in the sense that it contains martingales which are close
to M∗ (Doob martingale of the Snell envelope) in some sense, we may
obtain a minimum in (41) that is “close” to zero for some â ∈ Ii, i.e. Uai
is “near to be” Xi−1-measurable. So, as we see again from Corollary 8,
the random variable

U âi + Zi−1 = ϑ
âi+1

i − ξâ⊗âi+1

i = max
i≤j≤T

(Zj −
j∑

l=i+1

ξâl

l )− ξâ⊗âi+1

i , (42)

can then be interpreted as an approximation to the continuation value

EXi−1
Y ∗i . If moreover the ξ

â⊗âi+1

i are linearly structured as in (35) for ex-
ample, we show in Section 6.1 below how to include the determination of â
in a simultaneous regression procedure for the minimization problem (41),
where the expected conditional variance is computed and minimized at the
same time in fact. Then, this procedure also delivers as a “by-product”

an estimation C
â⊗âi+1

i−1 (x) (say) to the continuation functions EXi−1
Y ∗i .

This function can then be used afterwards for defining an exercise policy,
hence constructing a lower bound (see (43)).

Step A3) Having estimated âi in the previous step we next set âi = âi ⊗
âi+1 = ⊗Tl=iâl, and update

ϑ
âi,(m)
i = ϑ

âi⊗âi+1,(m)
i−1 = max(Z

(m)
i−1 , ϑ

âi+1,(m)
i − ξâi⊗âi+1(m)

i )

for each trajectory m = 1, ...,M.
Step A4) After working all the way back we thus end up with an estimation

â = ⊗Tl=1âl, and a martingale M â, and finally compute an upper biased estimate
of a price upper bound via (38) using a second simulation of X.

Remark 17 Note that in canonical case (I), with the structure (31), we may set
âT = âT = 1 in advance, and each backward step (A2) involves the estimation
of only one scalar quantity âi.

In case the above algorithm is carried out along the path A2b) with linearly

structured ξ
â⊗âi+1

i , using the regression procedure (47) outlined below, we may
define an exercise policy

τ0 := inf{i : 0 ≤ i ≤ T, Zi(Xi) ≥ C âi
i (X)},

and simulate a lower biased price estimate,

Y low0 ≈ 1

M̃

M̃∑
m̃=1

Z
τ
(m̃)
0

(X̃
(m̃)

τ
(m̃)
0

), where (43)

τ
(m̃)
0 = inf{i : 0 ≤ i ≤ T, Zi(X̃

(m̃)
i ) ≥ C âi

i (X̃
(m̃)
i )}, m̃ = 1, ..., M̃ ,

where the simulation sample in (38) may be used again.
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6.1 Estimators for expected conditional variance

In this subsection we propose some usual procedures for estimating the expected
conditional variances which appear in the minimization algorithm described
above. In fact, the object to be estimated (for a fixed parameter) is

EVarX(U) := E
[
EXU − (EXU)

2
]

= E U2 − E (EXU)
2
, (44)

for a generic random vector (X,U) ∈ RD ×R, where the estimation is going to
be based on a Monte Carlo sample

(X(m), U (m))m=1,...,M .

By (44) the only non-trivial issue is estimation of the term E (EXU)
2
.

Kernel estimation. One popular way to estimate conditional expectation
is the use of a kernel estimator. We here give only a sketch based on a simply
structured kernel, for a detailed treatment of kernel estimators we refer to the
literature (e.g. Liero (1989)). For a given kernel Φ(x) on RD with compact
support, Φ(x) = Φ(−x), Φ ≥ 0, and

∫
Φ(x)dx = 1, and a suitably chosen

band-with parameter h > 0, we may consider the estimator

EX=xU ≈
∑M
m=1 U

(m)Φ(X
(m)−x
h )∑M

m=1 Φ(X
(m)−x
h )

= U(x),

and then estimate

EVarX(U) ≈ ŝ(M)
EVarX(U) :=

1

M

M∑
m=1

(
U (m)

)2
− 1

M

M∑
m=1

(
U(X(m))

)2
. (45)

It is known that, due to the fact that the kernel has compact support, com-
putation of (45) requires computation time at most proportional to M logDM
(see e.g. Greengard and Strain (1991) for details). This computation time must
be considered par time slice i and par parameter trial a for the minimization
problem

â =: arg inf
a∈I

ŝ
(M)
EVarX(Ua)

,

where, for example, I may stand for Ii, and Ua for (Uai )+ or (Uai ) in (40) or
(41) respectively. The kernel estimation method is usually effective when the
index set Ii is one-dimensional. Then typically only a few number of trials will

be needed for a good estimate âi. Moreover, the objects Φ(X
(m)−X(m′)

h ) may be
stored in advance of the search procedure, as they are independent of the trial
parameters.

Global linear regression. As another (maybe even more) popular ap-
proach we recap the global regression method. In this method one represents
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an estimation U(x) for EX=xU by a linear combination

U(x) =:

K∑
k=1

γkψk(x)

of a family of (real valued) basis functions x ∈ RD → ψk(x), k = 1, ...,K, where
γ solves the standard linear regression problem

γ := arg inf
γ∈RK

M∑
m=1

(
U (m) −

K∑
k=1

γkψk(X(m))

)2

.

The expected conditional variance is then estimated by

EVarX(U) ≈
M∑
m=1

(
U (m) −

K∑
k=1

γkψk(X(m))

)2

. (46)

The regression method is most powerful when in addition Ua is linearly struc-
tured in the form

Ua = U (0) +

L∑
l=1

alU
(l), a ∈ I := RL,

and U (l) are certain given “elementary”random variables (as in (42)). In this
case, the estimation of the expected conditional variance (46), and its minimiza-
tion over the parameter set can be done in one and the same linear regression
procedure(!),

(â, γ) = arg inf
a∈RL, γ∈RK

M∑
m=1

(
U (0),(m) +

L∑
l=1

alU
(l),(m) −

K∑
k=1

γkψk(X(m))

)2

. (47)

When we are in an environment as described in the important Canonical Case
(III), the regression (47) may be effectively applied to the problem (41), where

Ua stands for ϑ
âi+1

i −ξaii −Zi−1, and ξaii = ξ
âi⊗âi+1

i is of the form (35). Moreover,
the functions

C âi
i (x) =

K∑
k=1

γi,kψk(x),

so obtained on the flight, can be used to construct a lower bound, see (43). In
the next section we will present a numerical example in this context.

Remark 18 We expect that the convergence of the kernel based and regres-
sion based algorithms presented in this section can be proved in the spirit of
Belomestny et. al. (2010), where related methods are studied in the context of
optimal control, see also Clement et al. (2002).
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7 Numerical examples

In this section we consider an algorithm for a Wiener environment (see case
III) that is based on step A2b) and the global regression method described in
the previous section. It is tested at the two benchmark examples, Bermudan
basket-put on 5 assets and Bermudan max-call on 2 and 5 assets, which are also
considered in Bender et al. (2006a) and Belomestny et. al. (2009), respectively.
In both examples, the risk-neutral dynamic of each asset is governed by

dXd
t = (r − δ)Xd

t dt+ σXd
t dW

d
t , d = 1, ..., D,

where D is the number of assets, W d
t , d = 1, ..., D, are independent one-

dimensional Brownian motions (hence m = D in case III), and r, δ and σ are con-
stants. Exercise opportunities are equally spaced at times Tj = jT

J , j = 0, ..., J .
The discounted payoff from exercise at time t is given by

Zt(Xt) = e−rt(K − X1
t + . . .+XD

t

D
)+ for the Bermudan basket-put,

and

Zt(Xt) = e−rt(max(X1
t , . . . , X

D
t )−K)+ for the Bermudan max-call,

where Xt = (X1
t , . . . , X

D
t ). For each numerical implementation, the time inter-

val [Tj , Tj+1], j = 0, . . . , J −1, is partitioned into L equal subintervals of width
∆t = T

N with N = J × L. The numerical procedure can be described briefly
as follows. We first simulate M independent samples of Brownian increments

{(∆W 1,(m)
i , . . . ,∆W

D,(m)
i ), i = 1, . . . , N}, m = 1, . . . ,M . Then the trajectories

of X
(m)
i = (X

1,(m)
i , . . . , X

D,(m)
i ), i = 1, . . . , N , m = 1, . . . ,M are given by

X
d,(m)
i = X

d,(m)
i−1 exp{(r − δ − 1

2
σ2)∆t+ σ∆W

d,(m)
i }, (48)

for d = 1, . . . , D and initial data X0. We next carry out the algorithm from
Section 6, along step A2b). In the spirit of (47) we solve the regression problem

(âi, γi) := arg min
(β,γ)

M∑
m=1

[
ϑ
âi+1(m)
i −

K∑
k=1

βk

∫ i+1

i

ϕT
k (u,X(m)

u )dW (m)
u

−
K1∑
k=1

γkψk(i,X
(m)
i )

]2
, (49)

for basis functions (ϕk) =
(
ϕ
(d)
k

)
with ϕ

(d)
k = ϕ

(1)
k for any d, and (ψk) , chosen as

explained below. In (49) the Wiener integrals are approximated by the standard
Euler scheme (see (36)), using the same Brownian increments as in (48).

As one may expect, the choice of basis functions is crucial to obtain tight
upper and lower bounds. In this respect, special information on the pricing
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problem may help us finding suitable basis functions. Suppose that Et (ZT (XT ))
= f(t,Xt) for 0 ≤ t ≤ T = TJ . Then, by Itô’s formula and the fact that Et(ZT )
is a martingale we have

ZT (XT )− ETJ−1
(ZT (XT )) =

D∑
d=1

σ

∫ T

TJ−1

fxd(t,Xt)X
d
t dW

d
t .

Recall that ϑ̂T = ZT and ETJ−1
(ZT (XT )) can be expressed in the following

form
ETJ−1

(ZT (XT )) = e−rTJ−1EP (TJ−1, XTJ−1
;T ),

where EP (t, x;T ) is the price of the corresponding European option with ma-
turity T at time t. Thus, it is natural to choose from time T to time TJ−1
European option values for the basis (ψk(t, x)) and the corresponding European
deltas multiplied by the value of the underlying asset for the basis (ϕk(t, x)).
Although for the following steps (t < TJ−1) there is no easy way to predict op-
timal choices of (ψk) and (ϕk), the above analysis suggests us to always include
the still-alive European options into the basis (ψk) and include the information
on the European deltas into the basis (ϕk). In fact, based on similar arguments,
these choices of basis functions were already proposed in Belomestny et. al.
(2009).

We next carry out Step A3) and work all the way back, to obtain estimations
of the coefficients (ãi, γi), i = 1, ..., T. Finally by a new independent simulation
we estimate an upper bound Y up0 as described in step A4) and a lower bounds
Y low0 via (43).

7.1 Bermudan basket-put

In this example, we take the following parameter values,

r = 0.05, δ = 0, σ = 0.2, D = 5, T = 3,

and
X1

0 = . . . = XD
0 = x0, K = 100.

For Tj ≤ t < Tj+1, j = 0, . . . , J − 1, we choose the set {1, Pol3(Xt),
Pol3(EP (t,Xt;Tj+1)), Pol3(EP (t,Xt;TJ))} as basis functions (ψk), where Poln(y)
denotes the set of polynomials of degree up to n in the components of a vector
y and EP (t,X;T ) denotes the (approximated) value of a European basket-put

with maturity T at time t. Further we use {1, Xd
t
∂EP (t,Xt;Tj+1)

∂Xd
t

,

Xd
t
∂EP (t,Xt;TJ )

∂Xd
t

, d = 1, . . . , D} as basis (ϕk). Since there is no closed-form

formula for the still-alive European basket-put, we use the moment-matching
method to approximate their values (e.g., see Brigo et al. (2004), and Lord

(2006)). Let St =
X1
t + . . .+XD

t

D
, and consider another asset Gt whose risk-

neutral dynamic follows

dGt = rGtdt+ σ̃GtdW
1
t ,

24



where σ̃ is a constant. The value of the European put on this asset can be easily
computed by the well-known Black-Scholes formula, that is,

E[e−rT (K −GT )+] = BS(G0, r, σ̃,K, T ). (50)

If ST and GT have the same moments up to two, then the Black-Scholes price
in (50) can be regarded as a good approximation for the value of the European
basket-put E

(
e−rT (K − ST )+

)
. Since

E(ST ) =
1

D

D∑
d=1

Xd
0 e
rT ,

E(S2
T ) =

1

D2
e2rT

 D∑
i,j=1

Xi
0X

j
0 exp(1i=jσ

2T )


and

E(GT ) = G0e
rT , E(G2

T ) = G2
0e

2rT+σ̃2T ,

we can simply set

G0 =
1

D

D∑
d=1

Xd
0

and

σ̃2 =
1

T
ln

 1

(
∑D
d=1X

d
0 )2

D∑
i,j=1

Xi
0X

j
0 exp(1i=jσ

2T )

 .

The European deltas can be approximated by

∂BS

∂G0

∂G0

∂Xd
0

= −N (−d1)
1

D
, d = 1, . . . , D,

where d1 =
ln(G0

K ) + (r + σ2

2 )T

σ̃
√
T

and N denotes the cumulative standard normal

distribution function.
The numerical results are shown in Table 1. 100000 simulations are used for

the regression procedure and 100000 simulations for computing the upper and
lower bounds. Values in parentheses are the standard errors. The last column in
the table shows the lower and upper bounds obtained in Bender et al. (2006a).

7.2 Bermudan max-call

We use the same parameter values as in Section 7.1 except δ = 0.1 and D = 2
or 5. As in the previous example we use European (call) options in the basis
(ψk) and the corresponding deltas in the basis (ϕk). The value of the European
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Table 1: Lower and upper bounds for Bermudan basket-put on 5 assets with
parameters r = 0.05, δ = 0, σ = 0.2, K = 100, T = 3 and different J and x0

J x0 Lower Bound (SD) Upper Bound (SD) BKS Price Interval
90 10.0000 (0.0000) 10.0000 (0.0000) [10.000,10.004]

3 100 2.1649 (0.0119) 2.1817 (0.0015) [2.154,2.164]
110 0.5357 (0.0060) 0.5584 (0.0008) [0.535,0.540]
90 10.0000 (0.0000) 10.0007 (0.0001) [10.000,10.000]

6 100 2.3986 (0.0112) 2.4336 (0.0013) [2.359,2.412]
110 0.5870 (0.0061) 0.5994 (0.0007) [0.569,0.580]
90 10.0000 (0.0000) 10.0024 (0.0001) [10.000,10.005]

9 100 2.4862 (0.0109) 2.5197 (0.0012) [2.385,2.502]
110 0.6006 (0.0060) 0.6164 (0.0006) [0.577,0.600]

max-call option is computed by the following formula (Johnson (1987)),

D∑
l=1

X l
0

e−δT√
2π

∫
(−∞,dl+]

exp[−1

2
z2]

D∏
l′=1
l′ 6=l

N

 ln
Xl

0

Xl′
0

σ
√
T
− z + σ

√
T

 dz

−Ke−rT +Ke−rT
D∏
l=1

(
1−N

(
dl−
))
,

where

dl− :=
ln

Xl
0

K + (r − δ − σ2

2 )T

σ
√
T

, dl+ = dl− + σ
√
T .

We use the central difference quote
f(x+ h

2 )− f(x− h
2 )

h
(or the forward differ-

ence quote
f(x+ h)− f(x)

h
) to approximate the European deltas. Note that

the rounding errors resulting from too small values of h may give totally dif-
ferent basis function. So special attentions need to be paid to the choice of a
suitable h. In our numerical experiment, we choose h = 0.1.

The numerical results are shown in Table 2. They are based on 1000 simu-
lations for the regression procedure, 1000 simulations for computing the upper
bound, 100000 simulations for computing the lower bound. The price intervals
in the last column are quoted from Andersen and Broadie (2004).

Concluding remark

The numerical results presented in Tables 1,2 due to our new algorithm may
be considered satisfactory given the required low computation times, which are
in the order of minutes (in a C++ compiled implementation). In this respect
it should be noted that computing upper bounds (in a rather generic way) in
the order of minutes is quite fast compared to Bender et al. (2006a), Table 1,
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Table 2: Lower and upper bounds for Bermudan max-call with parameters
r = 0.05, δ = 0.1, σ = 0.2, K = 100, T = 3 and different D and x0

D x0 Lower Bound (SD) Upper Bound (SD) A&B Price Interval
90 8.1027 (0.0380) 8.1369 (0.0379) [8.053, 8.082]

2 100 13.8049 (0.0475) 14.0501 (0.0467) [13.892, 13.934]
110 21.3208 (0.0556) 21.4860 (0.0531) [21.316, 21.359]
90 16.6026 (0.0516) 16.7735 (0.0609) [16.602,16.655]

5 100 26.0786 (0.0613) 26.4854 (0.0763) [26.109,26.292]
110 36.6561 (0.0693) 37.0723 (0.0844) [36.704,36.832]

and Andersen and Broadie (2004), Table 2, which are computed with nested
Monte Carlo simulation requiring much more computation time. Moreover, the
algorithm delivers very fast and surprisingly good lower bounds while the upper
bounds are comparable with the ones obtained with the algorithm in Belomestny
et. al. (2009). Needless to say that, as for the method of Belomestny et. al.
(2009), the performance of the here presented algorithm will highly depend
on the choice of the basis functions. An in depth treatment of this issue is
considered beyond scope however.
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