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Abstract
Multiresolution meshes provide an efficient and structured representation of geometric objects. To increase the
mesh resolution only at vital parts of the object, adaptive refinement is widely used. We propose a lossless com-
pression scheme for these adaptive structures that exploits the parent-child relationships inherent to the mesh
hierarchy. We use the rules that correspond to the adaptive refinement scheme and store bits only where some
freedom of choice is left, leading to compact codes that are free of redundancy. Moreover, we extend the coder to
sequences of meshes with varying refinement. The connectivity compression ratio of our method exceeds that of
state-of-the-art coders by a factor of 2 to 7.
For efficient compression of vertex positions we adapt popular wavelet-based coding schemes to the adaptive
triangular and quadrangular cases to demonstrate the compatibility with our method. Akin to state-of-the-art
coders, we use a zerotree to encode the resulting coefficients. Using improved context modeling we enhanced the
zerotree compression, cutting the overall geometry data rate by 7% below those of the successful Progressive
Geometry Compression. More importantly, by exploiting the existing refinement structure we achieve compression
factors that are 4 times greater than those of coders which can handle irregular meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Multiresolution meshes, i.e., meshes obtained through suc-
cessive subdivision of a coarse base complex, are common-
place in a variety of areas such as the movie industry, com-
puter aided design and in numerical simulations. The com-
puting power of todays computer systems and the availabil-
ity of advanced modeling software make it easy to gener-
ate grids with up to several million vertices. Storing those
meshes in a raw data format is notoriously expensive due to
the sheer amount of data. This is where compression comes
into play.

Adaptive refinement, i.e., the introduction of detail only
where it is needed, is an essential strategy to master the pro-
cessing, rendering, transmission and storage of such meshes.
For uniform refinement, the connectivity of the mesh can be
represented by a coarse base complex and the number of sub-
division levels. In contrast, adaptively refined meshes exhibit
a non-trivial hierarchical structure. To the best of our knowl-
edge, the lossless compression of adaptive hierarchies has
not been researched into before.

Figure 1: Adaptive refinement of a bone model. Elements are
colored according to our coding scheme. We store a bit for
each blue and red triangle, specifying whether it is refined or
not. These bits are sufficient to reconstruct the connectivity
of the model. All other triangles can be reconstructed using
rules of the refinement scheme as explained in the text.
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Generally, compression comes in two stages: The first is
a lossy stage, where essential information of the input is ex-
tracted and negligible data is dropped. The data decimation
is then followed by lossless encoding in which the remain-
ing data is transcoded into a compact byte stream, typically
using entropy coding like Huffman or arithmetic coding.

In view of mesh coding, the mesh data consists of connec-
tivity, geometry, and possibly attribute data such as colors
and texture coordinates. 3D mesh coders are often referred
to as lossless if they preserve the original connectivity of the
mesh, even if floating point data of coordinates and attributes
are truncated to a fixed precision. This tolerance within the
"lossless" category may be due to the fact that geometry data
will never be free from errors, and errors introduced by trun-
cating the least significant bits of a float value are often
negligible compared to noise, discretization, and quantiza-
tion errors during mesh acquisition.

Lossy mesh coders consider the connectivity of the mesh
as auxiliary information that does not contribute to the shape
of the model. In the same manner, tangential positions of
vertices within the surface are regarded as negligible. The
intention of those coders is usually the best reproduction of
the shape with respect to some distance norm within a given
byte limit. The mesh is often remeshed to a semi-regular
mesh that allows wavelet analysis to compress the geome-
try data.

We consider connectivity compression a vital issue since
the outcome of many algorithms from geometry processing
and numerical analysis depend on an exact reproduction of
connectivity—think of animation or morphing. In our work
we assume that the data reduction has already taken place.
Our input models are hierarchical models that are adaptively
refined. We assume that somebody has carefully selected im-
portant details and pruned the negligible ones by some crite-
rion, be it by preservation of shape, normals, visual impact,
or by some numerical criteria. The use of a lossy black box
encoder is prohibitive if no further detail should be lost. Such
situations arise for example in optimal control problems with
time-dependent PDEs where several frames with varying re-
finement structure have to be stored. In this case, the base
mesh is stored just once, with different refinement stages for
each time step. The storage of view-dependent refinements
of objects in virtual environments creates a similar situation.

RELATED WORK Numerous compression schemes for
surface meshes have been developed for single-rate coding
(compressing the whole mesh in a region-growing fashion)
as well as progressive coding (encoding the model from
coarse to fine). On the single-rate side Edgebreaker [Ros99]
and the method of Touma and Gotsman [TG98] are the
most prominent coders for triangle meshes which have
spawned a wealth of variants and improvements. Among
the best-performing variants for connectivity compression is
the early-split coder of Isenburg and Snoeyink [IS06] and
the optimized Edgebreaker encoding of Szymczak [Szy02].

These coders profit from mesh regularity and are able to push
the bit rate well below the Tutte limit [Tut62] of roughly
3.24 bits per vertex. Many triangle mesh coders have been
generalized to polygonal meshes, such as Martin Isenburg’s
method [Ise02] which extends the Touma-Gotsman coder.

The FreeLence [KPRW05] and Angle Analyzer [LAD02]
algorithm exploit correlation between connectivity and ge-
ometry by accessing already encoded geometry data when
encoding connectivity and vice versa, allowing it to push the
bit rates below that of [IS06] and [Szy02]. While FreeLence
is especially performant in the triangular case, Angle Ana-
lyzer outperforms it for quadrangular meshes.

For progressive transmission, models are often simpli-
fied or remeshed [LSS∗, GVSS00] to generate a simple
base mesh from arbitrary connectivity meshes. In this con-
text, wavelet-based coding has proven itself as the approach
for efficient compression. Wavelet transforms recursively
construct lower resolution approximations of a given in-
put model, decorrelating high- and low-frequency geome-
try data. The difference of the details to predictions based on
the coarse data are stored as wavelet coefficients. These typi-
cally feature a smaller entropy than the original data yielding
superb compression rates.

Wavelet-based coding schemes exist for both irregular and
semi-regular meshes. The first group is based on mesh sim-
plification methods that progressively remove vertices caus-
ing the smallest distortion. Bits are written to identify a ver-
tex within the mesh as well as its geometric position in order
to be able to reconstruct the original mesh. Prominent coders
of this group are [JS99, AD01, VP04].

The best results for geometry compression however have
been achieved for semi-regular meshes. Based on sten-
cils from subdivision schemes, efficient wavelet transforms
have been derived. The best known wavelet-based coder
in this category is the progressive geometry compression
(PGC) codec by Khodakovsky et al. [KSS00] adapting the
renowned zerotree coding scheme [Sha93] from image com-
pression. A wealth of descendants have been proposed ex-
tending PGC to different types of meshes [KG03], resolu-
tion scalability [AMG05] and efficient embedded quantiza-
tion [PA05]. However, these coders only aim at the compres-
sion of the geometry and do not allow lossless reconstruction
of the connectivity even for meshes generated through adap-
tive refinement. (Although the normal mesh compression by
Khodakovsky et al. [KG03] is able to generate such meshes,
the adaptivity is controlled by the coder, thus neglecting any
original criteria.)

Adaptively refined hierarchies also play a major role in
point cloud compression. In [BWK02] and many follow-ups,
a bounding box is adaptively refined up to a certain degree,
and the leaf cells at the finest level then represent the point
positions. Although these methods also compress adaptive
trees, we propose optimization strategies specialized for the

submitted to COMPUTER GRAPHICS Forum (5/2011).



C. von Tycowicz, F. Kälberer, & K. Polthier / Context-Based Coding of AMR Meshes 3

situations on surface meshes, such as non-trivial root do-
mains, red-green conformity, and balanced refinement. On
the contrary, point cloud compression schemes utilize char-
acteristics of surface geometry. For instance, close-by points
are expected to be nearly coplanar, as done in [SK06].

CONTRIBUTION Our major contribution is a connectiv-
ity compression scheme that is adapted to the special charac-
teristics of adaptive multiresolution meshes. We convert the
tree-like hierarchical structure to a binary stream, and use
the refinement scheme’s rules, to prune redundant bits. With
context-based arithmetic coding and an adapted traversal of
the mesh we can furthermore take advantage of structural
regularities that are typically present in real-world data. In
combination, these measures push the data rates to signif-
icantly below those of general single-rate and progressive
coders, outperforming state-of-the-art by factors of 2 to 7.
Additionally, we present extensions to our compression that
exploit correlations of the refinement structure in sequences
of time-dependent grids.

To show that our connectivity compression for adap-
tive hierarchies works seamlessly with leading geometry
compression schemes, we have extended the well-proven,
wavelet-based progressive geometry coding (PGC) of Kho-
dakovsky et al. [KSS00] to adaptive triangle and quad based
hierarchies. As in connectivity coding we applied context-
based modeling for geometry compression. For uniform hi-
erarchies we could achieve gains of 7% on average over
PGC for the coding of wavelet coefficients. Furthermore,
we surpass non-specialized coders (Wavemesh [VP04], and
PMC [Ise02]) by average factors of 2.8 for adaptive triangu-
lar and 4.5 for quadrilateral meshes.

All our methods are described for triangular and quadrilat-
eral surface meshes and we provide connectivity and geom-
etry compression results for both cases. Although we illus-
trate our scheme for adaptive surface hierarchies, the meth-
ods are not restricted to these meshes, and an extension to
adaptive tetrahedral or hexahedral meshes is straightforward.

Our scheme is fast and can be implemented to run in linear
time. The code is progressive, i.e., after decoding the base
mesh, the topology and coarse shape is reconstructed. Fur-
ther details will be added from coarse to fine levels as more
code is processed.

2. Hierarchy Coding

In this section we explain how we encode the hierarchical
structure of adaptive multiresolution meshes and thus their
connectivity. First we will explain the concepts of adaptive
triangular and quadrilateral refinement, before we outline
our encoding procedure in Section 2.2. Sections 2.3 to 2.6
then elaborate on the details.

Figure 2: Uniform refinement of coarse domains using the
dyadic split (top) and face split (bottom).

2.1. Adaptive Refinement Schemes

In the field of subdivision surfaces and FEM a variety of
refinement schemes have been devised. Among them, the
dyadic split (cf. butterfly [DLG90] or Loop [Loo87]) for tri-
angle surfaces and the face split (cf. Catmull, Clark [CC78])
for polygonal surfaces are widely spread. The dyadic split
operation divides each triangle into four congruent subtri-
angles. First new vertices are introduced at each edge mid-
point, dividing the edges into two. Connecting the three edge
midpoints within each triangle then splits the triangle into
four. Consequently, this scheme is often referred to as 1-to-4
split. The face split, on the other hand, can be applied to ele-
ments of arbitrary degree. New vertices are inserted not only
at edge midpoints but also at the center of the element. Then
the vertices at the edge midpoints are connected to the center
vertex, thus splitting an n-gon into n quadrilaterals. Figure 2
illustrates both the dyadic and the face split refinements.

Unlike global mesh refinement where all elements in the
mesh are subdivided to obtain a finer mesh, adaptive or lo-
cal mesh refinement performs the split operation only for
selected elements. The transition between elements of dif-
ferent refinement levels requires extra care since a new ver-
tex is inserted on an edge of the refined element, but the
coarse neighboring face still contains the edge undivided.
These irregular vertices are called hanging nodes. To re-
solve the non-conforming situations between elements of
various refinement grades, the adjacent unrefined elements
must also be refined. To maintain locality of the conformiza-
tion, non-conformal elements must be split without introduc-
ing additional hanging nodes (see Figure 3, top). In the finite
element community triangles introduced to resolve hang-
ing nodes are called green triangles whereas elements that
are generated by the dyadic split are called red triangles
(hence the name red-green refinement [BSW83]). Several
conformization schemes exist for quadrilateral hierarchies,
some of them introducing non-quadrilateral elements. We
implemented the scheme described in [SMFF04] (see Fig-
ure 3, bottom). Following the aforementioned terminology
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Figure 3: Conformization of hanging nodes. Up to symme-
try, these are the only configurations that can occur in bal-
anced meshes.

elements inserted by these schemes will also be referred to
as green elements.

Since green elements are less shape regular than their par-
ents the adaptive refinement is usually restricted to balanced
meshes where the refinement level of neighboring elements
must not differ by more than one level. This bounds the num-
ber of hanging nodes on each edge to one, preventing the re-
finement of green elements and therefore ever thinner faces.

The refinement strategy yields a canonical hierarchical
structure where each split element acts as a parent for the
new sub-elements. Therefore each element of the coarse
base mesh will have an associated tree that specifies its re-
finement. We refer to the entities of the trees as nodes to
underline the parental relationship between elements at dif-
ferent resolutions of the mesh. For a split element we as-
sign the sub-element incident to the n-th vertex as the n-th
child of the related node. In the triangle setting, the remain-
ing central sub-element will be the fourth child. Figure 4
shows three root elements with associated refinement trees
as well as the represented adaptive grid.

2.2. Encoding

Akin to existing progressive coders we separately encode the
base domain from the hierarchy. Typically the root grid is de-
scribed by a small, carefully laid out mesh that can be com-
pressed well using single-rate coders. Our prototype uses
FreeLence [KPRW05] and PMC [Ise02] to losslessly encode
the triangular and quadrilateral root grids, respectively. This
compression will generally alter the order of the base do-
main elements as well the as their local indexing, i.e., the or-
dering of references to vertices. To ensure the compatibility
of the refinement hierarchy, the root grid and its associated
refinement forest is matched to the reconstructed determinis-
tic output of the FreeLence decoder so that refinement trees
can be bijectively mapped to root elements without coding
of further information.

Starting from the base domain, encoding the refinement
hierarchy is sufficient to reconstruct the connectivity of the
mesh at any level of detail. Provided that the encoder and
decoder agree on a common node traversal strategy, the

Figure 4: Base mesh with refinement trees and its corre-
sponding red-green refined hierarchical mesh.

refinement hierarchy can be stored with one bit per node
where each bit specifies whether the node has children (is re-
fined) or not. Exceptions are made when the conformization
schemes leaves freedom of choice, e.g. triangles with two
hanging nodes, see Figure 3. The other possibility to resolve
this non-conforming situation arises by flipping the diagonal
edge. In practice, the concrete conformization is often deter-
mined exclusively by local indexing. Since we change the
local indexing during the compression of the base mesh, the
original indexing is lost. Therefore we need to store addi-
tional symbols to determine the conformizations. For the tri-
angle hierarchies these will be one bit per triangle with two
hanging nodes. Using a conformization scheme that intro-
duces only quadrilaterals (see e. g. [Sch96]) at most one bit
for each border between regions of different refinement must
be coded for quadrilateral hierarchies. The conformization
scheme of Settgast et al. [SMFF04] on the other hand has no
such ambiguities. We entropy code these bits, but found that
they where virtually incompressible without knowing the ex-
act implementation of the grid manager. If, however, a geo-
metric criterion is used to determine the conformizations, we
can omit these bits altogether. The same is true if the applica-
tion does not expect any green elements and the conformiza-
tion is constructed on the fly, for example the Progressive
Geometry Compression software from Caltech [KSS00].

Due to the deterministic conversion of the hierarchical
structure to a bit stream we can estimate an upper bound
for the code size. Let us begin with hierarchies generated by
face splits. Except for the root level, each parent is split into
four children. Therefore, the number of bits in the stream
will sum to one bit per leaf plus one 1

4 bit for their parents,
1
42 bit for their grandparents and so on until reaching 1

4d−1

bit for the first level, where d is the depth of the leaf in the
tree. Additionally, we have to add 1

4d−1
1
n bit for the n-gon

contained in the root level. We can write this sum as
d−1

∑
i=0

1
4i +

1
4d−1

1
n
=

4
3
+

1
4d−1

(
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3
+

1
n

)
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This bound also holds for the triangle hierarchies since they
are composed entirely of quad trees so the n in the last term
will be 4. Since the number of leaves in the hierarchy is no
greater than the number f of elements of the finest resolu-
tion, our stream will contain no more than 4

3 f bits. So far
we did not account for symbols needed to resolve multi-
ple possibilities of conformization. In these cases we have
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to store additional bits, but in fact, we already counted mul-
tiple green elements in f that where represented by just one
node in the hierarchy.

To maintain the progressivity of the generated bit code we
traverse the hierarchy breadth-first, so that we successively
visit the nodes at a certain depth in all trees, before switching
to the next finer level. Finally the generated bit stream is
entropy encoded. In the following sections the algorithm is
explained in more detail.

2.3. Redundant Symbols

We converted the refinement structure into a compact bit
stream. Nevertheless the knowledge of the structure can be
used to further improve the hierarchy compression by culling
out nodes from the bit stream whose state can be implic-
itly reconstructed. Because the hierarchy is directly related
to the mesh, the mesh constraints implied by the refinement
scheme are mirrored the hierarchy’s structure. These depen-
dencies are exploited by the following extensions:

1-REGULARITY As mentioned

Marked triangles can’t
be further refined due
to green triangles in
the parent level.

before, adaptive refinement pro-
duces balanced meshes. There will
be at most one hanging node per
side of an element. Moreover, since
the nodes of the hierarchy are con-
quered level-wise, we already know
whether the neighbors of the node
in question are green elements that
resolved a non-conforming situation
in the parent level. As a conse-
quence, nodes representing faces adjacent to coarse green
elements cannot be refined and can thus be skipped by the
encoder.

HANGING NODES Some implementations of adaptive re-
finement prohibit more than a certain number of hanging
nodes per element. In these setups, the hanging nodes are
conformized by applying the usual split operation, introduc-
ing hanging nodes in adjacent coarse elements. During com-
pression, if all neighbors of the current node are already pro-
cessed, the number of hanging nodes within the element will
be known to the coder. Hence, elements that exceed the max-
imum number of allowed hanging nodes can be split imme-
diately and no symbol has to be coded. Anyhow, we do not
need to treat these cases explicitly since they will be handled
by our coder without overhead, cf. Section 2.4.

UNIFORM REFINEMENT Uniformly refined meshes ex-
hibit a featureless hierarchical structure—the whole forest
can be described by a single scalar that specifies the overall
height of the refinement trees. Because many meshes in prac-
tice are uniformly refined to a certain degree, we exploit this
property to reduce the number of code symbols. We store a
single byte encoding the degree of uniform refinement sepa-
rately, allowing the coder to skip all nodes on coarser levels.

STREAM TRUNCATION Note that decoding a 0 from the
stream has no effect on the hierarchy while a 1 causes a
refinement of the current node (or its associated element,
respectively). As the refinement forest is conquered in a
breadth-first manner, nodes at the finest level are visited last,
thus concluding the output stream. These are all 0 entries and
are only needed for closing the forest, i.e., generating a valid
hierarchical structure. This structure can be constructed by
the decoder without using these entries. Therefore the en-
coder omits the finest nodes from the output and even trun-
cates 0’s written after the last 1 as these can be implied,
cf. [Sai04]. The decoder thus simply skips nodes for which
no bit was stored (i.e., the code contains no further symbols
that can be read).

Encoding the degree of uniform refinement in combination
with the omission of trailing zeros guarantees that not a sin-
gle symbol ends up in the output when a uniformly refined
mesh is compressed. The results of the number of symbols
that have to be coded for our benchmark models are shown
in Table 1. Among the described optimizations stream trun-
cation and 1-regularity perform best and contribute most to
the reduction of symbols. Because uniform refinement only
affects the coarsest levels only a few symbols are omitted
for our adaptive test models. Overall, the number of sym-
bols that have to be coded averages out at nearly half the
number of nodes.

2.4. Context Groups

With the steps in the last section we used the rules of the re-
finement scheme to eliminate code symbols in cases where
the refinement scheme leaves no room for choice. The steps
above reduce the binary representation of the refinement tree
to a compact, redundancy free representation, without even
looking at the characteristics of the particular input model.
Models that appear in practice, however, do show certain
characteristics. Just like two adjacent pixels in a digital pho-
tograph are likely to be similar, the refinement grades in hi-
erarchical meshes typically tend to be locally similar.

Luckily, our forest structure admits the definition of
neighbors, which lets us easily determine the effects of lo-
cality. We call two nodes within one level of the hierarchy
adjacent, if their element counterparts in the mesh of that
level share an edge. Due to the locality of the refinement
depth, the split information of two adjacent nodes is highly
correlated, so the refinement state of the neighbor node is a
valuable hint. For instance, 23k of the 96k nodes of the fan-
disk model have children, which gives each hierarchy trian-
gle the probability of 24 % of being split. Given the knowl-
edge that a particular neighbor is a leaf, the probability of
being subdivided drops to 7 %. If all three direct neighbors
are leaves, that probability is a mere 1.2 %.

Let X be the binary stream of split data. As shown by
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model f #nodes drop 0s 1-regul. uniform #left code size
bones 5622 5438 8% 16% 0.0% 76% (4133) 1520 (1904)
fandisk3 86092 95532 34% 23% 0.0% 43% (40770) 23208 (40520)
feline 254044 303072 37% 16% 0.8% 46%(138523) 60096 (138512)
femur 8944 10608 26% 13% 0.0% 60% (6417) 2392 (4680)
heat_transfer 96412 115034 5% 15% 0.6% 79% (91111) 28632 (82840)
horse 96368 113228 37% 18% 0.2% 46% (51545) 25368 (51440)
rabbit 68506 78570 23% 21% 1.3% 55% (43368) 21496 (42928)
venus 138672 154792 40% 24% 0.0% 36% (56112) 35560 (50320)
blade 51157 35905 16% 36% 0.0% 49% (17425) 9960 (17488)
fandisk4 24595 30662 24% 3% 0.0% 73% (22521) 1424 (17888)
fertility 192635 129420 14% 37% 0.0% 49% (63513) 42848 (63592)
shoulder 108361 77219 16% 34% 0.4% 49% (38120) 23448 (38192)
rockerarm 30747 27160 30% 21% 6.8% 42% (11482) 5392 (11360)
torso 54918 38583 12% 36% 0.7% 52% (19929) 11968 (19968)
average 72111 86802 23% 22% 0.8% 54% (43212) 20951 (41545)

Table 1: Removal of redundant symbols. Column 2 contains the number of faces and column 3 the number of tree nodes, i.e.,
the number of binary decisions the decoder has to make. Columns 4 to 6 list percentage of bits that can be omitted by dropping
trailing zeros, exploiting 1-regularity, storing the number of levels of uniform refinement. Column 7 list the percentage and
actual number of bits that have to be stored, and the last row shows the size of the compressed code in bits, with (and without)
the use of context groups.

Shannon [Sha48], the entropy

H(X) =
1

∑
i=0
−p(i) log(p(i)),

measured in bits per symbol, is the information content of X .
It poses a lower bound for the code length of any encoding
of the message X , where p(0) and p(1) are the probabilities
of X being 0 or 1, respectively. Good entropy coders, such
as arithmetic coding [WNC87], approach this lower bound
in the limit and are thus optimal in that sense.

If we do have additional information about X , for instance
the state of the neighbor elements, the code length can be
reduced. Let Y be an information source that is correlated to
X (in our case y ∈ Y describes a particular configuration of
refinement states of the neighbor elements). The amount of
information that actually has to be stored is measured by the
conditional entropy

H(X |Y ) = ∑
y∈Y

p(Y=y)
1

∑
i=0
−p(i|Y=y) log p(i|Y=y),

that is, the amount of new information in X , given that we
already know Y . If X and Y are correlated, H(X |Y ) is strictly
less than H(X).

In our implementation we use context groups as a simple
measure to profit from the correlation of hierarchy elements.
Recall that we specify with one bit whether the current node
is refined as we traverse the nodes in the trees level by level.
Whenever a binary code symbol is produced, we check the
status of the neighbors. If the neighbor has already been vis-
ited during traversal, its refinement status will be known to

the decoder. Thus we can use the refinement status of already
processed neighbors as the definition of contexts: a neighbor
can either be refined (45 ), not refined (4), or it has not been
processed before (?).

The status of the neighbor elements define the context
group in which the symbol is encoded. We write symbols
of different context groups in separate arrays, which are
entropy coded independently. With arithmetic coding, each
context group y will compress to

H(X |Y=y) =
1

∑
i=0
−p(i|Y=y) log(p(i|Y=y))

in the limit. The total code size per symbol is obtained by
averaging the entropies individual contexts weighted by their
respective probabilities,

∑
y∈Y

p(Y=y)H(X |Y=y) = H(X |Y ),

which proves that contexts are an appropriate tool to capture
all the mutual information that is inherent in the correlation
of neighboring elements.

So far we have not specified exactly how we define the
contexts. The contexts arise from the number of45 ,4, and
? neighbors of a hierarchy node. We write (x,y,z) to denote
the context with x45 situations, y times4, and z times ?.
For the triangle hierarchy setting the all possible cases are
listed in Table 2.
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Group Naïve traversal Improved traversal
45 ,4,? #symb %1’s bits/symb #symb %1’s bits/symb
(0, 3, 0) 13606 2% 0.123 681 10% 0.517
(1, 2, 0) 5603 37% 0.954 30 50% 1.400
(2, 1, 0) 5913 82% 0.693 91 78% 0.945
(3, 0, 0) 12146 100% 0.003 685 100% 0.041
(0, 2, 1) 14314 6% 0.340 29789 5% 0.289
(1, 1, 1) 6373 43% 0.992 12079 72% 0.860
(2, 0, 1) 14130 99% 0.049 33227 98% 0.129
(0, 1, 2) 17256 10% 0.487 40996 23% 0.772
(1, 0, 2) 18520 94% 0.342 20944 96% 0.222
(0, 0, 3) 30855 55% 0.994 1 100% 5.000
culled 164356 0 164549 0
total 303072 0.23 303072 0.20

Table 2: Population of the context groups for the naïve and
improved traversal strategy on the feline model. For each
strategy we provided the number of symbols in each context
group, the percentage of 1’s among those symbols, and the
efficiency in terms of bits per symbol.

2.5. Traversal Order

In this section we review the compression rates within the
single context groups and discuss the impact of the hierarchy
traversal strategy on them.

The level-wise traversal of the hierarchy is an important
factor in our coder. Yet it leaves freedom to choose any iter-
ation of nodes within each level. This choice directly affects
the distribution of the symbols over the context groups as the
context of a node solely depends on the refinement state of
its neighbors and therefore on the fact whether these have
been already visited or not.

A customary traversal scheme would visit the children of
each node in a fixed ordering. Table 2 shows the symbols
distribution in each context group for one of our test models.
Here naïve traversal refers to a strategy where children are
visited in order.

In our implementation elements incident to the parent’s
vertices are visited first. Additionally local indexing of par-
ent elements determines the order of its children. Hence con-
text group (0,0,n), where none of the neighbors are known,
contains the most entries. This group, though, is virtually in-
compressible as no advantage can be taken of mutual infor-
mation. The same holds for context groups where the extra
information is rather ambiguous e. g. (1,1,1), (1,2,0), and
(2,1,0) in the triangle setting. Contrarily, the other context
groups perform very well but are less populated.

The positive effects of an adaptive traversal order have
been observed in Angle-Analyzer [LAD02] for surface
meshes. Also, Schnabel et al. [SK06] optimize the octree
traversal in each level. In this spirit, we designed a new
traversal scheme (Improved traversal in Table 2) to redis-
tribute the symbols and maximize the overall compression.
Instead of ordering the children in a fixed manner we first it-
erate over every tree and collect all nodes at a certain depth.

This allows a global optimization of the level-wise node
traversal.

The principle of our algorithm is to maximize the mu-
tual information that can be exploited for encoding each
node. For that purpose we prioritize each node by the en-
tropy of its current context. Therefore, nodes that already
profit from encoded neighbors will be conquered first, which
in turn provides more information to its unprocessed neigh-
bors. Clearly all nodes that are skipped by the coder due to
optimizations from Section 2.3 feature a zero entropy and
will hence be traversed before all other nodes. A promising
candidate for prioritization of the remaining nodes is to use
the actual entropies of the individual contexts. The greedy
strategy traverses nodes in the context with lowest entropy
first in order to minimize the overall compression rate. Ex-
periments showed that this strategy already achieves signif-
icant improvements in compression. Learning the entropies
of the contexts, however, is expensive in terms of compres-
sion performance as well as computational cost. Once the
learning phase is settled, the algorithm sticks with a fixed
prioritization of contexts. To remove all effects of the learn-
ing process of the contexts’ entropies from the traversal, we
additionally investigated fixed priorities for the nodes, i.e., a
fixed order of contexts during the search for the next node to
conquer. We looked at different orderings:

• increasing by the learned (settled) entropies of contexts,
• increasing by the number of unknown neighbors, and
• decreasing by the difference of known coarse and known

refined neighbors.

In the case of ties we also tried all possible permutations.

The tests revealed that we can substantially improve the
performance of the traversal by skipping the learning pro-
cess. Although we could not identify a single strategy that
performed best on the entire set, ordering the contexts as in
Table 2 (increasing by number of unknown neighbors and
breaking ties increasing by the number of known refined
neighbors) constantly provided good results. Therefore we
chose this ordering as the default for our coder and thus for
all the presented tests.

As a result of our choice, the context group (0,0,n) con-
tains almost no entries—in fact, it will always be comprised
of one symbol if the mesh represents a connected surfaces.
The nodes are thus conquered in a region-growing manner,
so nodes whose neighbors are all known become extremely
rare (cf. group (3,0,0), (2,1,0), and (1,2,0) in Table 2).
Furthermore, the traversal directly affects the nodes’ order
which causes the change in the number of culled out sym-
bols. Reviewing the final compression rates on our test mod-
els shows an average improvement of 7 %.

2.6. Time-varying Sequences

As we observed, we can profit well from the correlations
between adjacent elements. We can profit in the same way
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(a) feline_mean
v=127020, f0=504

(b) horse
v=48186, f0=220

(c) heat_transfer
v=48652, f0=2

(d) femur
v=4474, f0=532

(e) rabbit
v=34k, f0=210

(f) bones
v=2809 f0=3882

(g) venus
v=69338, f0=388

(h) fandisk3
v=43048, f0=4828

(i) fandisk4
v=23312, f0=258

(j) shoulder
v=66366, f0=293

(k) blade
v=30866, f0=497

(l) rockerarm
v=22171, f0=368

(m) torso
v=33334, f0=265

(n) fertility
v=113097, f0=265

Figure 5: The test set we used, the number v of vertices at the finest resolution, and the number f0 of elements of the base mesh.

when we have a time-varying series of refinements of a com-
mon base mesh. Here, we assume that the degree of refine-
ment varies only a little from one frame to another, just as
one assumes smooth transitions for animated geometries or
videos.

When processing a hierarchy node in a series, we query
the state of the corresponding node in the previous time
frame, which can give us one of three states:

• it was a node with children,
• it is a leaf node, or
• it didn’t exist

in the previous frame. Thus, the number of contexts triples,
if we also include the status of the previous frame in the
contexts.

If the refinement trees don’t vary much between the time
steps, then contexts corresponding to the first case will be

mainly filled with ones, while the latter two will primarily
contain zeros. Thus, grids which equal their preceding frame
can be stored at no cost, aside from a small overhead due to
the use of more contexts. At the contrary, if the grids are not
correlated, the entropy of the individual contexts can never
be worse than in the static setting, since symbols from one
context are simply spread to three, maintaining or improving
symbol possibilities. Table 3 shows the results of the time
series adaption applied to three time-varying hierarchies.

3. Geometry Compression

Thus far, we have described our coder in terms of connectiv-
ity compression. This section covers the compression of the
geometry of the adaptive hierarchies by extending progres-
sive coding schemes from the uniform setting. The follow-
ing text will cover wavelets and zerotrees only very briefly as
extensive literature on these topics exist. We refer the reader
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Figure 6: The three test sequences used. Top: planar domain refined driven by heat transfer computations (showing tempera-
ture as z-component). Middle: View-dependent refinement taking curvature, visibility and silhouette into account (as proposed
in [SMFF04]). Bottom: cloth simulation with curvature-dependent refinement.

model #frames average total diff.
bunny 21 585 (1002) 12280 (21046) -42%
heat 11 420 (1125) 4621 (12376) -63%
cloth 15 459 (472) 6888 (7085) -3%

Table 3: Compression results for time-varying sequences.
Left to right: Model, number of frames in the sequence, av-
erage code size per frame in bytes for dynamic (static) coder,
total code size in bytes for dynamic (static) coder, and the
difference in code size between dynamic and static coder.

to [KSS00] for a discussion on wavelet transforms of semi-
regular meshes and to [SPM96] for a detailed description of
zerotrees.

3.1. Wavelet transform

Wavelet transforms convert a mesh hierarchy into a coarse
base mesh and nested sets of wavelet coefficients represent-
ing the mesh details. The coefficients are computed as dif-
ferences to predictions derived from the parent level. Thus,
any resolution of the mesh can be reconstructed recursively
from the base mesh and the coefficients from all intermedi-
ate resolutions. Various subdivision schemes can be used to
predict new points from the parent level.

In our implementation we compute the wavelet trans-
form based on interpolatory subdivision schemes. Although
lifted wavelet transforms have been reported to provide bet-
ter compression, we used unlifted schemes for simplicity.
We applied butterfly subdivision [DLG90] for triangle hier-
archies and Leif Kobbelt’s scheme [Kob96] for quadrilateral
hierarchies. An exception is the uniformly refined triangular
case, where we used the PGC software for the lifted butterfly
wavelet transform. This way, we can ensure the exact same
quantization errors, which simplifies comparison.

We represent the vector-valued wavelet coefficients in a
local frame induced by the tangent plane of the surface.
Since normal errors have more impact on the distortion, we
increase the precision of the normal component. We chose a
factor of 4, which has been reported as being reasonable in
the literature. Each component is encoded individually using
zerotree coding.

Once the coefficients in level j are computed, we adjust
their scaling by a factor of 2− j . Such scaling arises from L2-
normalizing the subdivision basis functions. It is commonly
applied in compression to compensate for their shrinking
support on finer levels. Note that the scaling provides higher
accuracy on coarser levels and causes stronger quantization
for coefficients on finer levels.
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Figure 7: Parent-child relationships in triangular and
quadrilateral hierarchies. Solid circles indicate parents;
empty circles indicate children.

3.2. Zerotrees

For decreasing thresholds Tk = T0/2k, the zerotree coder
successively transmits the location and sign of coefficients
that become significant, i.e., when |ci|> Tk. In order to trans-
mit this information efficiently, coefficients are grouped in a
tree structure implementing the parent-child relationship de-
picted in Figure 7.

For triangle hierarchies, coefficients have a one-to-one
association with edges of the coarser level. For quadrilat-
eral hierarchies there are two types of associations: vertices
inserted at face midpoints are associated with these faces,
whereas vertices on edge midpoints are associated to these
edges. Based on this structure we use the SPIHT encod-
ing [SPM96] to transmit significance information either for
a single coefficient or for sets of coefficients, requiring only
a single bit if all coefficients in a set are insignificant. Thus,
the zerotree coder exploits the fact that the distribution of the
wavelet coefficients is centered around zero and that their
magnitudes tend to decrease at finer subbands depending on
the smoothness of the input surface.

In addition to the significance and sign data, refinement
bits have to be sent in each pass for coefficients that became
significant in earlier passes. The initial threshold T0 and the
number of zerotree passes determine the quantization of the
coefficients. In our experiments we choose T0 to be the great-
est magnitude of all coefficients’ components. The number
of bit planes was chosen to achieve L2 errors that are com-
parable to those caused by uniform 12-bit quantization.

For the progressive transmission of multiresolution
meshes it is important to interleave the connectivity and ge-
ometry data. This enables the decoder to reconstruct an in-
termediate mesh from any prefix of the stream. Therefore a
common mesh traversal strategy has to be chosen for the ge-
ometry and hierarchy compression. Nevertheless, the traver-
sal used by our coder can be changed to any progressive con-
quering of the mesh in order to facilitate a special geometry
coder.

3.3. Entropy Coding

Although very efficient, the compression performance of the
zerotree coder can be further improved by applying entropy
coding to significance bits. Refinement and sign bits, on the
other hand, are much harder to compress.

As Denis et al. recently observed [DSM∗10], there is a
strong correlation between neighboring coefficients within
each level (intraband correlation) and a correlation between
parents and their child coefficients (interband correlation),
with the former being stronger than the latter. The SPIHT en-
coder (and therefore PGC) exploits the interband correlation
by transmitting the significance information for children of a
parent as a j-bit symbol, where j ∈ {1,2,3,4} is the number
of insignificant children.

However, as seen in Figure 8, there are coefficients in the
same level (squares) that are closer than the siblings defined
by the zerotree (light gray). Since there is a higher correla-
tion between direct neighbors within a subband, we decided
to use their significance information for entropy coding.

Following the ideas of our connectivity coding, we define
contexts based on the number of significant, insignificant,
and unprocessed neighbor coefficients. Since the wavelet co-
efficients of different subbands are of different magnitudes,
we consider only neighbors of the same subdivision level
to guarantee similarity of the data. We devise four contexts
representing the neighbor status:

• all processed neighbors are significant
• all processed neighbors are insignificant
• all neighbors are unprocessed.
• there are significant and insignificant neighbors

This choice of contexts can be used for various mesh types
and is robust if the number of neighbors varies due to bound-
aries, adaptivity, or irregular face degrees.

The significance bits in the SPIHT algorithm occur not
only for single coefficients but also for sets of coefficients,
both contributing roughly the same amount to the code size.
Following the context construction for coefficients we also
apply context-based coding for type A and type B set sig-
nificance bits separately, tripling the number of contexts to
twelve (see [SPM96] for a definition of set types). For the
set contexts, neighbors are counted as significant if their re-
spective set significance test is positive.

To also exploit interband correlation we double the num-
ber of contexts for coefficients and type A sets, increasing the
total number to 20. For a coefficient, the context decision is
based on the significance value of its parent. For a type A set,

Figure 8: The neighbors (squares) that are used for context-
based coding of significance bits. The black circle marks the
current coefficient and gray circles represent sibling coeffi-
cients that are grouped in the SPIHT coder.
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PMC Wavemesh PGC our
triangle mesh v geom conn L2 geom conn L2 geom conn L2 geom conn L2

ad
ap

tiv
e

bones 2809 20.63 2.34 47 21.60 4.44 47 – – – 18.98 1.84 46
fandisk3 43048 11.15 1.53 38 11.94 2.87 37 – – – 6.06 0.58 32
feline 127020 10.18 1.23 37 10.33 2.40 37 – – – 2.39 0.48 35
femur 4474 17.12 1.32 38 18.53 2.75 38 – – – 13.19 0.71 31
heat_trans 48652 2.22 1.21 0 3.57 2.52 0 – – – 0.10 0.64 4
horse 48186 11.30 1.32 40 11.39 2.37 40 – – – 3.10 0.53 40
rabbit 34255 12.94 1.47 43 13.28 2.81 43 – – – 5.12 0.64 32
venus 69338 12.60 1.50 33 12.39 2.60 33 – – – 4.30 0.52 31

un
ifo

rm

fandisk3 154498 4.47 0.03 40 4.40 0.04 28 1.99 0.01 26 1.67 0.01 26
feline 258046 5.34 0.01 37 2.64 0.01 31 1.14 0.00 34 1.08 0.00 34
horse 112642 5.51 0.01 40 3.45 0.01 32 1.35 0.00 40 1.30 0.00 40
rabbit 107522 5.65 0.01 43 3.90 0.01 43 1.93 0.00 32 1.89 0.00 32
venus 198658 5.67 0.01 35 3.63 0.01 40 2.04 0.00 30 1.96 0.00 30
avg. (adaptive) 47222 12.27 1.49 35 12.88 2.85 34 – – – 6.66 0.74 31
avg. (uniform) 166273 5.33 0.01 39 3.54 0.02 35 1.69 0.00 32 1.58 0.00 32

Table 4: Connectivity and geometry rates (columns conn and geom) for triangle hierarchies in bits per vertex. Column v lists
the number of vertices, and L2 the root mean square errors reported by metro in units of 10−6 w.r.t. the bounding box diameter.

we check the parent of the coarsest coefficients in the set and
switch the context if it is significant. For type B sets, we do
not need to store a bit if the parents are insignificant. In this
case, the set will always be significant. Hence, no doubling
of contexts is needed for type B sets.

3.4. Adaptive Zerotree Coding

So far, we have only described geometry encoding of uni-
formly refined hierarchies. Using adaptive meshes, we can
profit from the fact that we don’t have to store any bits for
coefficients that are not present in the adaptive mesh. In our
context model for the significance bits, we consider non-
existent coefficients as unprocessed.

An alternative is to fill up the zerotree with zero co-
efficients producing a uniformly refined tree structure, as
done in Khodakovsky’s and Guskov’s normal mesh com-
pression [KG03]. Due to the efficiency of the zerotree coder,
the impact on the code size is small. Nevertheless, to re-
construct the original adaptivity, the refinement information
must be transmitted, which is more costly than our proposed
method, especially if the mesh refinement is not geometry
related.

4. Results and Conclusion

We measured the performance of our coder using the 14
models in Figure 5 as well as the three time-varying se-
quences in Figure 6. The uniform feline, horse, rabbit, and
venus models are from the PGC data set, courtesy of Kho-
dakovsky et al. We constructed the respective adaptive mod-
els by local coarsening according to various curvature mea-
sures. Bones and heat_transfer—courtesy of Zuse Institute
Berlin—result from heat transfer simulations. The femur

model, courtesy of Oliver Sander, was refined according to
criteria of a two-body contact problem in a human knee
joint. The quadrilateral hierarchies are remeshes based on
QuadCover [KNP07] parameterizations. The fandisk4 and
the rockerarm refinements have been constructed based on
heat diffusion and thin shell simulation, respectively. The
other quad models were coarsened based on curvature. Note
that we included the entropy coded orientation bits for the
conformization of triangle hierarchies as well when neces-
sary. In particular, this concerns bones, heat_transfer, and
femur, as these models were not generated with our own hi-
erarchy manager.

Table 1 shows the efficiency of our strategies for redun-
dancy removal from the binary representation of the refine-
ment hierarchy. Here especially two approaches contribute
to the overall result: stream truncation and 1-regularity.
1-regularity heavily profits from the fact that the refinement
scheme only allows the subclass of balanced meshes. Stream
truncation exploits the rather simple observation that trailing
0 symbols can be omitted as these cause no change in the re-
constructed hierarchy. The effect of stream truncation cannot
be achieved by the context based entropy coder alone. Keep-
ing the zeros expanded our codes by 17%. The strategies of
Section 2.3 nearly halve the number of symbols that have to
be coded. If the mesh is not balanced, the 1-regularity opti-
mization can not be applied. In this case, refinement bits can
be entropy coded using the same context models as above,
counting the green neighbors as unrefined.

Arithmetic coding is another vital part of our compression
scheme. Without context groups, the compact binary repre-
sentation of the hierarchy is almost incompressible due to a
rather uniform distribution of the symbols, as confirmed by
values in parentheses in Table 1. Again, knowledge about
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PMC our
quad mesh v geom conn L2 geom conn L2

ad
ap

tiv
e

blade 36358 9.31 2.14 55 3.63 0.28 52
fandisk4 23657 5.50 0.33 58 2.70 0.07 45
fertility 134351 8.11 2.22 55 1.61 0.32 53
rockerarm 24460 8.52 1.46 61 3.49 0.23 49
shoulder 77573 8.80 2.08 56 1.75 0.31 61
torso 39086 9.23 2.10 58 2.72 0.31 54

un
ifo

rm

blade 127234 4.48 0.00 55 1.02 0.00 58
fandisk4 263682 3.61 0.00 52 0.72 0.00 40
fertility 274426 4.15 0.00 55 0.68 0.00 58
rockerarm 300546 5.06 0.00 61 1.20 0.00 70
shoulder 94208 4.10 0.00 56 0.42 0.00 62
torso 269826 4.03 0.00 58 0.35 0.00 46
avg. (adaptive) 8.11 1.72 57 2.65 0.25 52
avg. (uniform) 4.24 0.00 56 0.73 0.00 56

Table 5: Connectivity and geometry rates for quadrilateral
hierarchies in bits per vertex.

the mesh structure is used to apply context based arithmetic
encoding. The introduced context groups reduced the code
length by approximately 50 %.

An evaluation of compression rates within each context
group is given in Table 2 and revealed huge gaps between
the performance of individual groups. These gaps can be at-
tributed to the mutual information inherent to each context
group. Therefore we devised a hierarchy traversal scheme
that shifts the distribution of symbols over the contexts and
thus balances the mutual information available for the cod-
ing of each node. As a result, an average gain of 7 % for the
overall compression rates could be achieved.

In Tables 4 and 5 we provide compression results for the
connectivity as well as the geometry of our test models. Al-
though the connectivity is trivial in the uniform case, we pro-
vide results for all models for which the finest level geometry
information was also available.

Table 4 summarizes our results for the triangle multires-
olution meshes. We are comparing our results to the single-
rate Polygonal Mesh Compression [Ise02] (PMC) and to the
progressive wavelet based coders Wavemesh and PGC. In
the connectivity case, our scheme significantly outperforms
PMC by an average factor of 2.0 and Wavemesh by an aver-
age factor of 3.8 for the adaptively refined meshes.

For geometry compression, we used uniform 12-bit quan-
tization for PMC for all models. This is also true for the
coarse base meshes needed by PGC and our coder. For
Wavemesh, we used the current version 2.1 and chose for
each model the options that provided the best results: uni-
form 12-bit quantization for the adaptive models, and ze-
rotree encoding with lifting radius 1 for the uniform ones.
Wavemesh was able to detect the subdivision connectivity of
the uniform models and was thus able to handle the uniform
models much better than the adaptive ones.

Overall, we exceed PGC codec by 7% on average for uni-
form multiresolution models, due to the use of improved

context models for significance bits and we surpass PMC
and Wavemesh by average factors between 2.0 and 3.0 for
the uniform as well as the adaptive models.

Similarly, Table 5 presents compression results for quadri-
lateral hierarchies for our coder and PMC. One reason for the
drastic drop in the connectivity rate is due to the fact that we
encode face-based symbols and quadrilateral meshes have
half as many faces per vertex. Evaluating the connectivity
compression results, we exceed PMC by an average factor of
6.9 for the connectivity and 2.8/3.4 for the adaptive/uniform
geometry, which demonstrates the efficiency of our scheme
for quadrilateral multiresolution meshes.

Table 3 shows compression results for time-varying se-
quences. Overall, using the proposed extensions to the our
static compression scheme, can improve compression rates
significantly. Even though the extension is only on par with
the static version if the refinement varies a lot (see cloth), we
recommend using the extension due to its simple implemen-
tation.

Even though we have a non-optimized prototype imple-
mentation, the execution times in our tests were dominated
by the times for loading and parsing the uncompressed mod-
els from the hard disk. After processing the small base mesh,
connectivity encoding and decoding of a model is performed
by a single traversal of the hierarchy in which each node
is touched only once. Connectivity processing of a node
merely involves finding its neighbors and children, arith-
metic coding of one bit, and finding a node with highest pri-
ority. Each of those operations is done in constant time. This
applies even to finding a highest priority node if the nodes of
each priority are collected in separate doubly linked lists.

When coding the wavelet coefficients, every coefficient is
visited once for each bit plane. Thus, geometry coding time
is linear in the number of coefficients and the number of bit
planes.

4.1. Further Extensions and Future Work

We took an in-depth look at connectivity compression, but
only briefly covered geometry compression. Progressive ge-
ometry compression has been an active field of research
and many tweaks have been reported to further increase ge-
ometry compression performance, but consideration of all
of them is beyond the scope of this paper. Many of those
tweaks can be transferred from the uniform to the adaptive
case. For instance, second generation wavelets derived via
the lifting scheme [SS95] have often been applied and we ex-
pect improved rate-distortion curves when using them in our
scheme. However, a thorough treatment of lifting schemes
on adaptive mesh hierarchies is still lacking. Empirical re-
sults of [DSM∗10] further show that there are correlations
between sign bits that can be exploited. Furthermore, we ob-
served that the components of vector-valued wavelet coeffi-
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cients are also correlated, making them suitable for further
context modeling.

Extending the context model based on the significance of
a coefficient in a prior time frame also enables us to take
advantage of correlation in animated sequences. We expect
similar gains for the geometry code as for our connectivity
part.
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