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Hexagonal Global Parameterization of
Arbitrary Surfaces

Matthias Nieser, Jonathan Palacios, Konrad Polthier, and Eugene Zhang

Abstract—We introduce hexagonal global parameterizations, a new
type of surface parameterizations in which parameter lines respect
six-fold rotational symmetries (6-RoSy). Such parameterizations en-
able the tiling of surfaces with nearly regular hexagonal or triangular
patterns, and can be used for triangular remeshing.

To construct a hexagonal parameterization on a surface, we provide
an automatic algorithm to generate a 6-RoSy field that respects
directional and singularity features of the surface. This field is then
used to direct a hexagonal global parameterization. The framework,
called HEXCOVER, extends the QUADCOVER algorithm and formu-
lates necessary conditions for hexagonal parameterization.

We demonstrate the usefulness of our geometry-aware global pa-
rameterization with applications such as surface tiling with nearly
regular textures and geometry patterns, as well as triangular and
hexagonal remeshing.

Index Terms—Surface parameterization, rotational symmetry,
hexagonal tiling, triangular remeshing, pattern synthesis on surfaces,
texture synthesis, geometry synthesis, regular patterns.

1 INTRODUCTION

patterns in nature, such as honeycombs, insect eyes, fish
eggs, and snow and water crystals, as well as in man-made
objects such as floor tiling, carpet patterns, and architatt
decorations (Figure 1).

Tiling a surface with regular texture and geometry patterns
is an important yet challenging problem in pattern synthe-
sis [2], [1]. Methods based on some local parameterization
of the surface often lead to visible breakup of the patterns
along seams, i.e., where the surface is cut open during
parameterization. Global parameterizations can alleviat
this problem when the translational and rotational discon-
tinuity in the parameterization is compatible with thenti
pattern in the input texture and geometry. For example,
a quadrangular global parameterization is designed to be
compatible with square patterns (Figure 2 (a)). On the other
hand, it is incompatible with hexagonal patterns (Figure 2
(b)). In contrast, a hexagonal global parameterization is
compatible with hexagonal or triangular patterns (Figure 2
(c)). The hexagonal global parameterizations we introduce
in this article are designed to facilitate the tiling of auoés
with hexagonal texture and geometry patterns.

I N this article we introducéexagonal global parameteri- emeshing. Another motivation of our work is triangular
zations a new type of global parameterizations that map neshing, which refers to generating a triangular mesh
a surface into the two-dimensional plane while respectingyy an input triangular mesh to improve its quality. (Note

the symmetries of a regular hexagonal grid. A hexagon@y; triangular and hexagonal meshes are dual to each
global parameterization is equivalent to a texture map f@fher and triangular remeshing can also be used to perform
tileable t_exture images with _addltlonal six-fold rotatibn hexagonal remeshing.) In triangular remeshing, it is often
symmetries, e.g. a regular triangular or hexagonal pattefusirable to have all the triangles in the mesh being nearly
Such a parameterization is ideal for tiling surfaces Wit jjateral and of uniform sizes, and the edges following
hexagonal and triangular patterns in texture and geomeffk inrinsic curvature and feature directions in the sefa
synthesis, as well as for triangular remeshing. In addition, special treatment is needed for irregularigest

Tiling. Regular hexagonal patterns are one of the thré@hose valence is not equal to six) since they impact the
regular patterns that can seamlessly tile a plane. They pRyerall appearance and quality of the mesh.

vide an optimal approximation to circle packings [1] whichy hexagonal parameterization transforms these challenges
have been linked to the wide appearances of hexagopdlihat of control over the singularities in the parameter-

ization as well as the spacing and direction of parameter
lines. Smooth parameter lines and a reduced number of
singularities leads to highly regular meshes. Such meshes
are desirable for subdivision surface applications [3].
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Fig. 2. A quadrangular parameterization ensures that
the discontinuity along the cut is invisible (a). The same
parameterization is incompatible with a hexagonal pat-
tern (b), which leads to seams (yellow). In this case a
hexagonal parameterization is needed (c).
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to regions of high Gaussian curvature regions. Moreover,
we introduce an automatic singularity clustering algamth
that allows nearby singularities to be either canceled or
merged into a higher-order singularity, thus reducing the
total number of singularities in the field.

Fig. 1. Hexagonal patterns in nature (top): honey-
combs, insect eyes, snowflakes. Appearance in design
(bottom): star of David, Islamic pattern, floor tiling.

N ith | q | dal In the second step of the pipeline, we generate a global
set of N vectors with evenly-spaced angles, and a 1-, 25, ., neterization which is aligned to the 6-Rosy field as
and 4-RoSy can represent a vector, a line segment, o

. i ) 8l as possible. The @D CoVEeR algorithm [5] is adapted
cross, respectively. While a 1-, 2-, and 4-RoSy field ¢33 handling the symmetries of a hexagonal parameteri-

each be US?d to compute a quadrangulla.r.parameterizat ion. We minimize a quadratic energy which measures
a 4-R(_)Sy field prow_des the most flexibility in te_rms Ohe L2 distance of the parameter lines to the field. During
modeling branch points, and thus the types of irregul inimization, some variables are constrained to an integer

verticels in a guad mesh.dSpecificaIIy, al- ofr. %&ROS% ﬁf} id. We point out that in the hexagonal parameterization
can always be converted into a 4-RoSy field with t is grid is the set oEisenstein integersvhich is different

unfortunate constraint that a first-order singularity i th_from the Gauss integeraised in the quadrangular case.

1-or 2-R_oSy field be_comes a higher-order singularity_uilhis leads to a parameterization method that we refer to
the resulting 4-RoSy field. Consequently, when performi HEXCOVER. The resulting parameters can then be used

quadrangular rgmeshmg W.'th a 1- or 2-RoSy f|e|_d, Itis i, generate triangular meshes free of T-junctions as well to
general impossible to obtain a valence three or five Vertes o surface seamless with a hexagonal pattern

Similarly, while 1-, 2-, 3-, and 6-RoSy fields can all beC

. . ' ontributions. In summary, our contributions in this article
used for triangular remeshing, only 6-RoSy fields can bq, ) Y
- . are as follows:
used to model fundamental irregular vertices that have a

valence of either five or seven. 1) We introduce hexagonal global parameterization and

Parameterization. Automatic generation of a hexagonal
parameterization from an input surface faces a number
of challenges. First, unlike quadrangular parameteonati
whose parameter lines are parallel to either the major
or the minor principal curvature directions, in hexagonal
parameterizations only one of the two directions can be
used at each point on the surface. One must decide which
direction to choose, and how to propagate such choices
from a relatively small set of points to the whole surface to
maintain the smoothness of the resulting parameterization
Second, existing techniques to explicitly control the sing
larities in a parameterization are user-driven, and it is no
an easy task to provide automatic control over the number
and location of such singularities. Third, the continuity
conditions developed for quadrangular parameterizations
are not appropriate for hexagonal parameterizations.

demonstrate its uses with applications such as trian-
gular remeshing and pattern synthesis on surfaces.
For remeshing we point out the need for a geometry-
aware 6-RoSy field when generating a hexagonal
global parameterization.

2) We present the first technique to construct a hexag-

onal global parameterization given an input surface
with a guidance 6-RoSy field. We formulate the
energy term as well as the continuity condition for
hexagonal global parameterizations.

) We propose an automated pipeline for generat-

ing geometry-aware 6-RoSy fields. As part of the
pipeline, we point out how to align the field with
principal curvature directions as well as develop a
way of automatically clustering singularities.

The remainder of this article is organized as follows. We
Pipeline. To address these challenges, we present a twiost cover work in relevant research areas in Section 2.
step pipeline to generate a geometry-aware hexagohxt, we describe our pipeline for generating a geometry-
global parameterization. First, we automatically selbet t aware 6-RoSy field given an input surface in Section 3, and
most appropriate principal direction with which we aligrour parameterization technique in Section 4. In Section 5,
our 6-RoSy field. The singularities in the field are relatedle demonstrate the usefulness of our techniques with
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Fig. 3. Hexagonal global parameterization (a), used for regular texture (b) and geometry pattern synthesis (c)
with hexagonal patterns and for geometry-aware triangular remeshing (d).

applications in triangular remeshing and surface tilinthwi idea for parameterization but create the quadrilaterahmet
regular texture and geometry patterns. Lastly, we close layout automatically from the Morse-Smale complex of
Section 6 with future work. Eigenfunctions of the mesh Laplacian.

2 RELATED WORK Tong et al. [16] use singularities at the vertices of a hand-
picked quadrilateral meta layout on the surface. The patche

Surface Parameterization. Surface parameterization is aof the meta layout are then parameterized by solving for
well-explored research area. We will not attempt a complegeglobal harmonic one-form. Ray et al. [4] parameterize
review of the literature but instead refer the reader @rfaces of arbitrary genus with periodic potential fumiesi
surveys by Floater and Hormann [8] and Hormann et al. [g§uided by two orthogonal input vector fields, or a 4-RoSy

o ield. This leads to a continuous parameterization except in
Early global parameterization methods focus on conformgle yicinity of singularities on the surface. These singula
parameterizations [10], [11], [12], which are aimed at @1glegions are detected and reparameterized afterwards.
preservation at the cost of length distortion. To reduce

length distortion, Kharevych et al. [13] use cone singular- . . -
ities for conformal parameterization, which relax the conli--he QABCOVER algorithm [5] builds upon this idea by

straint of a flat domain at few isolated points. Singula:r;itieUSIng the input 4-RoSy field to generate a global parameter-

) ) . 2 ization, based on a quadratic energy formulation. Also the
have proven essential for high quality parameterizations a___ . . ) : X
i L nqtion of covering spaces is used to describe a 4-RoSy field
have been used in other parameterization schemes as well. ) . . X
as Vector field and to provide a clear theoretical setting. Ou
Dong et al. [14] perform quadrangulation based on haadgorithm to generate a parameterization from a 6-RoSy

monics functions. Later, Dong et al. [15] use a similafield is an adaptation of the QuadCover method.
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Bommes et al. [6] propose a method similar to the aforéramework but automatically generate the input constsaint

mentioned techniques based on the same energy formwidnich relieves the user from labor-intensive manual design
tion as in [5], but provides several advancements. Besidd-arthermore, we introduce to our knowledge the first auto-
robust generation of 4-Rosy fields, they propose to useratic singularity clustering algorithm to reduce the numbe

mixed-integer-solver for improving the rounding of integeof singularities in the field.

variables. They also add constraints that force parameter

lines to capture sharp edges.

GEOMETRY-AWARE 6-ROSY FIELD GEN-

. : .3
Field ProcessingMuch work has been done on the subjec RATION

of vector (1-RoSy) and tensor (2-RoSy) field analysis:

Note that a line .field is equiyalent t(_) a symmetric eNSQh this section, we describe our pipeline for generating a
field [17]. To review all of this work is beyond the scop eometry-aware 6-RoSy field given an input surfacs

of this article; here we refer to only the most releva his field will then be used to guide the parameterization
work. Helman and Hesselink [18] propose a method %f[age of our algorithm (Section 4)

vector field visualization based on topological analysid an

provide methods of extracting vector field singularitiesl anWe first review some relevant properties of 6-RoSy
separatrices. Topological analysis techniques for symenetfields [7], [31]. An N-RoSy field F has a set ofN
second-order tensor fields are later introduced in [19]. Hirections at each poinp in the domain of the field:
the context of vector field design, numerous systems havép) = {Ryv(p)}, i€ {0,...,N—1}. where the vector
been developed for the purpose of vector field, most 8fp) =p(p)(cosB(p),sinB(p))" is one of theN directions,
which have been for specific graphics applications such @a8d Ry, is the linear operator that rotates a given vector by
texture synthesis [20], [21], [22], fluid simulation [23pa 47 in the corresponding tangent plane.sigularity is a
vector field visualization [24]. Fisher et al. [25] propos@oint po such thaip(po) =0 and8(po) is undefinedpo is

a vector field design system based on discrete one-forrigglatedif the value ofp # O for all points in a sufficiently
Note that the above systems do not employ any methogi®all neighborhood ofy, except atpo. An isolated N-

of topological analysis, and do not extract singulariti€BoSy singularity can be measured by iitglex which is
and separatrices. Systems providing topological analysigfined in terms of the Gauss map [7] and has an index
include [26], [27] and [28]. The last has also been extendefi i;, Where | € Z. A singularity po is of first-order if

to design tensor fields [17], [29]. In contrast, relatively = =1. When|l| > 1, po is referred to as igher-order
little work has been done oN-RoSy fields wherN > 2.  singularity. A higher-order singularity with an index Qf
Hertzmann and Zorin [30] utilizerossor 4-RoSy fields in can be realized by merginigfirst-order singularities.

their work on non-photorealistic pen-and-ink sketching] a
provide a method for smoothing such fields. Ray et al. [3
extend the surface vector field representation propose
in [27] into a design system fdX-RoSy fields of arbitrary First, we wish to control the number, location, and type of
N. Palacios and Zhang [7] propose &hRoSy design the singularities in the field. When performing quadrangular
system that allows initialization using design elements asd triangular remeshing using global parameterizations,
well as topological editing of existing fields. They alsdhe singularities in the guiding 4- or 6-RoSy field corre-
provide analysis techniques for the purpose of locating botpond to the irregular vertices in the mesh. Such singular-
singularities and separatrices, and a visualization fgcien ities can also lead to the breakup of texture and geometry
in [32]. Lai et al. [33] propose a design method based gratterns during pattern synthesis on surfaces. Consdguent
a Riemannian metric, that gives the user control over titke ability to control the number, location, and type of
number and locations of singularities. Their system alsingularities in the field can improve quality of the remesshe
allows for mixedN-RoSy fields, with different values of and surface tilings.

N in different regions of the mesh. However, this methogecond, the field needs to be smooth, or distortion can occur

is based on user design Wh'le we focus on automaﬁlrzl: the resulting parameterizations that have undesirable
and geometry-aware generation. Bommes et al. [6] off

a method of producing a smooth 4-RoSy field from sparsgifeCtS for triangular remeshing and surface tiling.

constraints, formulated as a mixed-integer problem. Zhafdird, we need the parameter lines in the parameterization
et al. introduce a quadrangulation method based on the to-be aligned with the feature lines in the surfaces, such as
tion of waves. Their method can also be used to generateridige and valley lines (see Figure 4). In addition, it hasbee
RoSy fields [34]. Krane et al. [35] handle cone singularitiedocumented that having texture directions aligned with the
by using the notion oftrrivial connectionin the surface. feature lines in the mesh can improve the visual perception
These singularities include those seen in 6-RoSy fields. of the texture synthesis [37].

equirements and Pipeline.There are a number of goals
(?t we wish to achieve with our automatic field generation.

Ray et al. [36] propose a framework to generatéNaRoSy Note that these requirements may conflict with each other.
field that follows the natural directions in the surface andor example, excessive reduction of singularities can lead
has a reduced number of singularities which tends to fadi high distortion in the field, and an overly-smoothed field

into natural locations. In this article, we make use of thisiay deviate from feature lines. To deal with this we adopt
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Fig. 4. For remeshing, edges should follow principal
curvature directions (right). Edges ignoring surface
features (right) cause "twisting” artifacts (on the ears).

Fig. 5. Surface classification scheme to determine

directional constraints. ¢ € [—11/2, 11/2] is color mapped

the framework of Ray et al. [36]. In their framework, %0 the [BLUE,RED] arc in HSV color space: Left top:
set of user-specified constraints and a modified Gauss tinuous n,1apping Bottom: binned classification

curvatureK defined at the vertices are used to generaterq . legend (right) shows surfaces patches which are
sparse linear system whose solution (after several icgrsii locally similar to points with given values
is the RoSy field that matches the constraints Knid the '

least square sense. Each constraint represents a disired

RoSy value, i.e.N directions, at a given point. In our casegec| that we wish to align the parameter lines with feature
we wish to have our field aligned with principal cuvaturgneq g ch as ridges and valleys, i.e., the principal divect
dlrgctlons. The user-specifigd is a vertex-based function in which the least bending occurs. Note that the directions
defined on the mesh, whose value at a vertex represepigpe g Rosy field is the gradient of the parametrization
the desired discrete Gauss curvature at this vertex to &eection 4). Consequently, we will choose the principal
reflected by resulting field curvature. The integrakobver irction that has the most bending, i.e., maximum absolute
Smust be equal to x(S) wherex(S) is the Euler char-  pincinal curvature, as one of the directions in the 6-RoSy.
acteristicof the surfaceS. It allows the user to specify the\y,s astimate the curvature tensor of the mesh using the
location and type of singularities in the field. For examplqnethod of Meyer et al. [38]

a vertex with aK value of% should have a singularity

of index & in the resulting field. We would like to note Principal curvature directions are most meaningful inreyli
that other field generations systems that allow directiondfical and hyperbolic regions due to the strong anisotropy
constraints the specification of singularities of indexagee there. Hovyever, while purely hyper.bol.lc regions possess
than# can also be used (such as the one described in [35ffong anisotropy, the absolute principal curvatures are

We use the method of Ray et al. because it gives additiomgarly indistinguishable, thus making both principal cur-
control over the initial number singularities if desired.  vature directions candidates. Moreover, the two bisectors
between the major and minor principal curvature directions
Given a surface with complex geometry and topology, dan also provide viable choices for the edge directions
can be labor intensive to provide all necessary constraimts hyperbolic regions. Due to the excessive choices of
through a lengthy trial-and-error process. Consequently, directions in hyperbolic regions and insufficient choice of
automatically generate the directional constraints ad welirections in planar and spherical regions, we only geeerat
as K, which is at the core of our algorithm for fielddirectional constraints in cylindrical regions. Note that
generation. Our algorithm consists of two stages. Firsising the asymptotic directions could result in neighbgrin
we identify a set of directional constraints based on theangles being constrained with directions that differ by
curvature and solve for an initial 6-RoSy field using thesetations of Z; while this causes no problems in 4-RoSy
constraints only. Second, we extract all the singularitigild generation, such constraints conflict in the case of 6-
in the initial field and perform iterative singularity pairRoSy field generation.
clustering until the distance between any singularity pair ,
is above a given threshold. The remaining singularities wive make use of a representan_on of the curvature te.n_sor.that
be used to generate new values for the vertex fundtion readily exposes vyhere on this spectru'm of classification
which will be used to generate the final RoSy field witfRY Point on a given surface falls. Using the trace-and-

reduced singularities. We describe each of these stagedIfyiator decomposition similar to those employed in [39],
more detail next. the curvature tensoF at a pointp € Scan be rewritten as:

. : e . K1—Kz (cosdD sin20 K1+K
Automatic Constraint Identification. To automatically T = MY + 1129
. . L . 2 sin20 —cos® 2

identify directional constraints, we need to answer the i

questions of where to place constraints and what direction _— _P <cos<p[ cosd  sinH } +sing- Id> 1)
is assigned to each constraint. V2 sin28  —cos®
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where K1 and kK, are the principal curvatures @, p =

.:K12+K22, ¢ € [-1/2,m/2] = arctar1522), 6 € [0,m) is
the angular component of the maximum principal direction
measured in the local frame a, and Id denotes the
identity map. Note that the first component in the sum is
traceless and symmetric, while the second is a multiple
of the identity matrix.T(p) can now be classified using
(p(p),©(p)), which spans a half plane. There are six
special configurations on this half plane, the first satigfyi
p(p) =0, i.e., the local geometry negris planar. For the
remaining five configurations we haygp) > 0. Respec-
tively, they correspond tep(p) = 5 (spherical),@(p) =
(cylindrical), @(p) = 0 (purely hyperbolic),@(p) = —%

Fig. 6. Selection of constraints. Left: Color mapping of
p. Middle: Highest 35% of values; colors are based on
@ as in Figure 5. We use maximum curvature directions

. LT _ o : where ¢ > 0 (yellow) and minimum directions where
(inverted cylindrical), andp(p) = —% (inverted spherical). © < 0 (cyan) as being orthogonal to the direction in

With this representation, we can classify any pgaip) ) ) .
as being planar ifp(p) is smaller than a given thresholdwhICh the 'surface IS bendmg th? mo?t (see close-up,
5, elliptical if @(p) > & and |@(p)| > %n, hyperbolic if right). Notice that chosen directions in nearby yellow

L .. and cyan regions agree as they would not if we had se-
@(p) > & and |(p)| < §, and cylindrical otherwise, i.e., ST
o(p) > 5 and I < ()| < %n. We wish to point out the lected only one of the curvature directions everywhere.

tensor-based decomposition is equivalent to the concept of
shape index40]. topological noise, which makes them more suitable for our

Given the classification, we propagate the directions Rprameterization algorithm.

the cylindrical regions into non-cylindrical regions (p&&, Automatic Singularity Clustering. Our initial field was
spherical, hyperbolic) using energy minimization, an agbtained from directional constraints only. Consequently
proach taken in [6]. To accomplish this, we pick the pointg typically consists of only first-order singularities. \@h
wherep (the tensor magnitude) is above certain a thresholdsurface with rather complex geometry and topology, the
to, and label these points as having “strong” curvature (in dumber of singularities can be rather large. Furthermore,
of our examples, we have chosigrso that 35 percent of the whijle the location of the singularities tend to be appragria
area ofSis So—labeled). From this set of points, we use Oan h|gh curvature regions), many of them form dense
the directions of the cylindrical points as constraintsitth clusters. Having singularities in closer proximity candea
is, the points for whichp € [-3m1/8,—11/8| U [r1/8,31m/8] 1o difficulties in the resulting parameterization. This is
(Figure 6). Finally, we select the maximum directiéh pecause the singularities will be constrained to be on a
as the constraint direction at points whepe> 0 and the |attice in the parameter space as typically required by most
minimum direction6 + /2 where ¢ < 0. Recall that the global parameterization methods [5], [6]. Consequently,
directions in the output field specify the gradients in ouhe smallest distance between any singularity pair will be
resulting parameterizations, and we wish one of the isslinfyapped to a unit in the parameter space. If the smallest
of the parameters to be orthogonal to the direction ifistance is too small, the two involved singularities may
which the surface is bending the most. Clearly, the abO% mapped to the same point on the lattice, |eading to a

directions satisfy this requirement (See the shapes on {Bgally infinite stretching in the parameterization. Figur5
right side of the right image in Figure 5). Finally, thejystrates this.

constraints are used to set up a linear system [36] whose ] . . ) )
solution gives rise to our initial RoSy field. To address this, many field generation techniques constrain

the number of singularities to be as few as possible [31], but
For our solver, we use the geometry-awiteRoSy field this represents another extreme, where the field directions
generation technique proposed by [36], as it allows us @n become highly distorted in some regions. Furthermore,
control the level of geometric detail that is reflected bynany of the aforementioned approaches require much user
singularities, and also plays a role in the implementatidnteraction [7], [31], [36], which can be time-consuming
of our singularity clustering technique. This system, blaséor models with complex geometry and topology.
on discrete exterior calculus (DEC) [41], filters (locall

Your goal is to automatically reduce the number of sin-
averages) the Gauss Curvatref Sto produceK and then ur 9 I y cally . . :

computes a target field curvatu@ using the difference gularities in the field while retaining the locations of the
a . . remaining singularities inside high curvature regions. To
betweenK and K. C! is then used to modify the angles g sing g g

) . achieve this we employ the following process.
by which directions rotate when parallel transported along ploy gp

mesh edges. This compensates for the actual curvatkiest, we extract the singularities in the initial RoSy field
of S and directional fields computed dB under these (using the method described in [36]) which we use to build
conditions behave as thoughhas a Gauss curvature ofa graph embedded in the surface. The nodes of this graph
K. SinceK is smoother tharK, such fields have reducedare the singularities in the field, and the edges represgentin
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a) b) c) d)

Fig. 7. Clustering pipeline: (a) Initial field. (b) Singularity graph G. (c) Reduced graph obtained by performing
edge-collapses. The region R is shown in green. (d) Reduced field generated by resolving in R with singular
constraints at the nodes of G and directional constraints at the boundary of R.

proximity information between singularity pairs. We refer
to this graph as thsingularity graph G To construct, we
compute a Voronoi diagram with the singularities as sites.
The dual graph gives rise to the singularity graph [42].

Second, we iteratively perform edge collapses on this graph
which is equivalent to performing singularity pair cluster
ing (merging or cancellation), until the minimal surface
distance between any singularity pair is above a given
threshold. Every time a singularity pair is clustered, we
compute the sum of the singularity indexes and place &
singular constraint with the sum as its desired index. Note
that we do this even if the sum is zero, i.e., singularity
pair cancellation. The singularity constraint is placed on
the path between the two original singularities, closer to
the one with the Gaussian curvature of highest magnitude
This is an attempt to keep singularities near the featumgs th
caused them to originally appear during initialization and
is accomplished by interpolating along the geodesic from
Po to p1 using the valugK (p1)|/(|K(po) +K(p1)|, where

K(p) is the Gaussian curvature pte S. We continue to

collapse edges in the order of increasing edge-lengtts on
until no edge of length less thalyjng remains. At the end

of this process, we will have generated a set of singularifésive for the updated field everywhere on the surface.

_constraints, i.e., the remaining_ vert.ices in theT graph,dn/hi Instead, we generate a regia= {p|d(p, Veoliapsd < sing}

is then _u_sed to update the.fleld in the vicinity of the_s'ﬁlherchonapse is the set of vertices that were members

singularities. In the case of fields generated for remeshing collapsed edges i, and resolve for the field only in

dsing can be selected based on the edge-length of the outputthyt is; the field values are fixed in the complement

mesh. We choosésing to be 01B whereB is the size of ¢ R and the values on the boundary & will serve

the bounding box for the model. For a visual summary ofs the houndary conditions when resolving; the original

the algorithm, see Figure 7. directional constraints are ignored in this step. In this
. I . . . __way, we largely preserve the results of the field generated

Third, we modify K based on the singularity Consnalmsfr0|¥n the dﬁegtignal constraints, but force the gmerging

Recall that theK is simply a smoothed version of the : . L )
. . . —~and cancelation of singularities in the regions where large
discrete Gauss curvature during the generation of thalniti . .
. . . . . . clusters had appeared before. The field values for vertices
field. The singularity constraints, produced in the presiou__. :
; . : nsjde R are then updated. We have found this to be fast
step, consists of a set of vertices in the mesh and a desire

singularity indext(p)for each such singularity constraipt Eol?gir?g:ﬁ;?titelg controlling the location, type, and number
We modify K such that it is zero everywhere on the surface '
except at singularity constraints where the valueKofs We wish to point out that our automatic field generation
ZW"t(p). Notice that such assignment satisfies the constrainethod can be applied td-RoSy field generation for any
that the integral oK over Sis equal to 21x(S). We now N that is even, in particular 4-RoSy fields. Figure 8 shows
modify the 6-RoSy field by solving the same system useth example generated using our method. The only change in

to generate the initial field, with one difference: we do ndhe whole field generation pipeline occurs during automatic

Fig. 8. Geometry-aware 4-RoSy field and correspond-
ing texture tiling.
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identification of directional constraints. Instead of chiog 0 * /3 *

6 or 6+ 7 as one of the six directions for constraints, we v

choose both for the case of 4-RoSy fields. 1 . .
V3 Al

4 HEXCOVER PARAMETERIZATION Fig. 9. Left: Texture with hexagonal rotational symme-

In this section we describe the second stage of our pipelifi€S- Right: Eisenstein integer lattice Ge.
which constructs a hexagonal global parameterizatiomgive

an input triangular mesh surface along with a 6-RoSy field. — , o ,
defined on it. We will first introduce the notion of hexag-"’lllgnment inL°-sense. Specially, we minimize the quadratic
onal parameterizations before describing ouEXCOVER energy-
parameterization technique which is an extension of the

_ 2 B2
QuADCoVER method for quad remeshing. E(uy) = _/S(HDU Full -+ [|0v = Ri[l)*dA, )

Hexagonal Parameterization and EnergyGiven a trian- where F,(p) is one of the six vectors of atp € S and
gular mesh surfac& with [T| triangles, aglobal parame- F,(p) := RiF,(p) is perpendicular to it.

terization ¢ : S— RR? respecting arN-RoSy symmetry is
a collection of linear mapg¢;|1 <i < |T|} where each
¢ :t — R? pr— (u,v;)T maps triangld; € S onto R? with
the following property. For any pair of adjacent triangles
andt; we have:

The parameterization must fulfill the integer constraimts i
Equation (2), whereas the valugg encode which of the
6-RoSy vectors in adjacent trianglgsandt; are paired,
i.e. Ry in t; is paired with jo Fu in t;. Ther;; are held
) fixed during energy minimization, whereasv andw;j are
¢i(p) =RUGi(p)+wij, Vpetint, (2) optimized.

wherer;; € {0,1,...,N—1} andw; € R? are the rotational Notice that the energy is independent of the choicd-pf
and translational discontinuities, respectively. Redhlit (there are six choices per triangle) due to the rotational
RK is the linear operator that rotates a vectorgﬁy in its symmetries of¢ from Equation (2). A different choice of
tangent plane (Section 3). The mafysare restricted to be Fy in one triangle will result in the same change in thés
linear on each triangle. They are defined by their values along all adjacent edges. The resulting minimizer of the
vertices, whilerjj andw;; are defined on edges. energy (Equation (4)) is then locally rotated by a multiple

. of T in this triangle, resulting in the same pattern.
In quadrangular case wheke= 4, the parameter lines can~ 3 g g P

be visualized by treatingd—! as the map that texturesA key observation in QADCOVER [5] is that the opti-
the surface with a 2D regular unit grid. To ensure thmization can be divided into two subproblems and solved
continuity in parameter lines, the translational discmmti independently:

ities wij are required to be on the set Gfauss integers

Gs:={(ab)T|abeZ)}. 1) Local step. Minimize energy (Equation (4)) for
o ) ui,vi,Wwij € R, ignoring the integer constraint am;.
A hexagonal parameterizatioN = 6 can be considered In QUADCOVER the minimizer is computed by re-

similarly, except that in this case the texture image needs  moving the curl ofF, making it locally integrable,
to respect hexagonal rotational symmetries. A canonical  and definingu;,v; as its potential. This leads to a
choice is a hexagonal or triangular pattern as shown in  |ocal parameterization’.

Figure 9 (left). The texture image has an aspect ratio of2) Global step. Convert ¢’ into a global parameteri-

1:V3 and tiles the plane seamlessly. It is furthermore ~ zation by incorporating the aforementioned integer
invariant under rotations of around the center of each constraints.

hexagon. The set of these center points is known as
Eisenstein integelattice, shown in Figure 9 (right): HEXCoVER and Covering SpacesWhile possible, solv-

1 1/2 ing Equation (4) directly presents some challenges due to
Gs = {a(o) +b<\@/2) a,beZ}. (3) the fact thatk, and F, are both multi-valued (there are
six values per triangle). Here we make use the notion of
Beside the rotational invariance, the hexagonal grid alsovering spacewhich transforms the problem of comput-
remains invariant under translations by any vectoiGgi ing a global parameterization éunder a guiding 6-RoSy
While a hexagonal parameterization is a discontinuous mdigld F to generating a global parameterization ori\afold
the discontinuities are not visible if all;j are inGg because coverS of Sunder a guiding vector fiel&’. The benefit of

of the repeating structure of the texture image (Figure 2yoing this is that we can use standard vector field calculus

- ithout having to deal with aN-RoSy field.
A hexagonal parameterization can be generated accordWllg ut-having w yH

to a guidance 6-RoSy field. Given a pointp, the edges of In fact, the covering is just used as theoretical foundation
the hexagons are aligned with the 6 vectord=ah p. We and is not explicitly computed in either b CovER or
generate a hexagonal parameterization which optimizes tHEXCOVER. The covering is implicitly represented by the
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valuesr;; resulting in additional constraints (Equation (2))ninimizes the energy
during optimization. Note that covering spaces are used
implicitly by other approaches optimizing a piecewise-E*(u",v") 1:/(||R4115U**Fu||2+||RiDVK*FvH)2dA (5)
linear global parameterization [16], [6]. s

Here,u* andv* are scalar non-conforming finite element
In the hexagonal casé, can be lifted toF’ on a six-fold functions, which are linear in each triangle and defined by
covering surfac& of S, which is defined as follows: every values on edge midpoints. At boundary edgesand v*
trianglet; in Swill have six corresponding triangles B: are fixed to 0. The constraints (Equation (2)) simplify to
tio,...,ti5. The vector fieldF’ distributes the six vectors of i
F onto the six copies, i.eF'(tj) = R'éFo(ti) whereFo(ti) is U\*ti _ jo U, 6)
one of the six directions df in tj. For adjacent triangles V‘*ti Vﬁj
ti, tj in S the corresponding copies are combinatoriall
connected, depending on the rotational discontinuify
The triangled; x, ke {0,...,5} are thereby connected wit
tjkirymode Note thatS is a Riemannian surface with Equation (6) directly relates the values of and v* in
branch points at those positions where the original oth adjacent triangles of each edge, therefore only ore fre
RoSy field has singularities. All six copies of a triangly-variable and one*-variable remains left per edge. We
are geometrically identical, so there is not necessarily &Qild up a system of linear equations by setting all partial
embedding without self-intersections. This does not presejerivatives of Energy (5) for the free variables to 0. The
any difficulty for us, however, since the algorithm does n@hatrix of this system has dimensiofE2 x 2|E|, where|E|
rely on an explicit embedding &. is the number of edges in the mesh. We solve this system
and obtain(u*,v*) from which we computeu, Dv).

¥or adjacent triangles;, t;. Notice that the translational
pdiscontinuitiesw;j do not appear in this formulation.

t/ F\; ’
- E The parameterizatiofu,v) is computed by first cutting the
L t' mesh open to a simply connected disk and then directly
t/, integrate the gradients. We cut the surface at the shortest
/ homotopy generators similar to [44]. The result is a graph
';3 G on edges, such that the complemeit G is simply
1 14 connected. We also need to connect all singularities with

i,5 the cut graph, since they can be seen as infinitesimal small
holes. For this purpose, the method was adapted allowing
Fig. 10. Left: Triangle t; with 6-RoSy field. Right: 6-fold  also surface boundary and singularities by [45].

covering of t; with vector fields F/, F,. . i . .
goth wv The gradient fields(Ou,0v) are integrated by setting

i o _(u,v) = (0,0) in an arbitrary root vertexy in triangle
The problem now turns into minimizing the energy iR ang directly integrating the piecewise constant vectors
Equation (4) on the covering spa&, using F; :=F', iy t; and adjacent triangles until the whole surface is
F, := RiF’ (see Figure 10). Due to the symmetry of the COVsovered. When passing an edge, the valugsi.of) must be

ering surface and the symmetric behavior of the algorithipyiateq according to Equation (2). Note that the trangtatio

the resulting texture images on different copies of eagfiscontinuities are set to 0 in the inner®G. The solution

triangle are congruent and their projection onto the domai@ ¢onsistent and does not depend on the traversal of the
Sis a global parameterization which satisfies Equation (Qt}iangles, as long as the edges in the cut grépare not
Again, the use of coverings is only a theoretical viewnqved in this propagation.

the algorithm itself will not compute the covering, but

represents it implicitly by storing the valueg. They must Global Step. While the obtained parameterizati¢n,v) is

be considered when minimizing the energy. a minimizer of Equation (4), it may be discontinuous along
the edges ofG. For a global hexagonal parameterization,

Local Step. In the local step, Energy (4) is minimizedsuch discontinuity will lead to seams in the parameter lines

for values of the parameterizatian(p;), vi(p;j) at each if the w;j’s are not in the set 06s (the Eisenstein integer

vertexp; in all incident triangleg;, and for the translational lattice). However, when performing local integration ireth

discontinuitiesw;j € R?. Due the high number of variablesprevious step we only require thetj € R. In this section

and additional constraints (Equation (2)),uURPCOVER we discuss how to modify the initial parameterization to
proposes to solve an alternative energy providing the sagforce the integer constraints.

result but with a much smaller system of equations and no _ i o
constraints. We use a similar reduction foexCover, ~ © €an be considered as union of paghseach of which is
either a closed loop or starts and ends at a singularity. An

Let ¢ = (u,v)" be the minimizer of Energy (4). A key important property of the solution of Energy (4) is that the
observation is derived from the discrete Hodge-Helmholtzanslational discontinuityy; is constant for all edges on
decomposition of vector fields [43]: The fie{ff,, — Ju,R,— the same patly. Let w; be the constant for path, which
Ov) is exactly aco-gradient field(RiOu*,Ri0v*) which can be computed from the coordinategafv) at both sides
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graphG. It appears that the shorter the patkis are, the
more local the influence ofi’s are and the more accurate
a direct rounding of all integer variables is.

Another aspect is computing time. In MIQ, the number
of linear systems of equations need to be solved is equal
to the number of pathg; in G. Note that the matrix
Fig. 11. Minimal surfaces. Left: Schwarz surface with 8 in the system is different every time due to the variable
singularities of index —1/2. Right: Neovius surface with  reduction when rounding. The rounding technique from
8 index —1/2 and 6 index —1 singularities. QuADCoVER only needs to solve two systems of equations
in total. We therefore decided to use the direct rounding.
However, we do not anticipate any difficulty in adapting

of an edge ofy. Note that the translational discontinuitiegshe MIQ solver to hexagonal parameterizations.
can add up if two paths partially overlap.

To enforce the integer constraints, we modify the transla-
tional discontinuityw;; for every edge inG by rounding 5§ RESULTS AND APPLICATIONS
them to the nearest integer iBg. Then, Energy (4) is

minimized, holding all discontinuitiess; fixed. Here, we apply hexagonal parameterization to two graphics

The coordinates of a singularity are uniquely determined [@pplications: pattern synthesis, and triangular remegshin
the w; of all of its incident paths4. For a singular vertex
with valencev. There arev constraints (Equation (2))
that relate thev coordinate vectors of the vertex in its
adjacent triangles. Thus, rounding the valugds similar
to prescribing the coordinates of singularities.

Pattern Synthesis on Surfaces=xample-based texture and
geometry synthesis on surfaces has received much attention
from the Graphics community in recent years. We refer
to [46] for a complete survey. Here we will refer to most
relevant work.

For each regular vertex of valenee one of thev relations . . )

(Equation (2)) is redundant since the total discontinuitjél and Levoy [22] are the first who point out thhit
adds up to zero, reflecting a zero Poiricardex. Therefore, ROSY fields of N > 1 are suitable for specification of
its coordinates are determined by the coordinates in oneSReCial symmetries in textures. Liu et al. [47] propose
its incident triangles, we therefore obtain one free vaeiabt€chniques for the analysis, manipulation, and synthesis
for u and one forv per vertex. Energy (4) is minimized of nea_r-regulartextur_es (i.e. very structured textures Wlth
by setting all partial derivatives to 0 resulting in a spard€Peating patterns) in the plane. Kaplan and Salesin [2]

linear system. The matrix has dimensiolVPx 2[V| with address the design of Islamic star patterns in the plane.
V| being the number of regular vertices. There has been some recent work in constructing circle

_ o patterns from a triangular mesh for architectural moddls [1
Figure 11 shows the hexagonal parameterization of two

minimal surfaces using our technique. Generating regular patterns on a surface can be greatly

. . . . facilitated given an appropriate global parameterization
Rounding Technique. The presented rounding techniquesjen a regular hexagonal texture or geometry pattern,

for thew; is just a heuristic for the problem of finding an; s simply tiled in the parameter-space of the mesh

optimal parameterization yielding the integer conditidns 5, the texture should stitch (relatively) seamlesslyyever
ge_n_erz_il,_ this problem_|s NP-hard, since 1t is equ_lvalent Bhere (Figure 12). For example, to achieve circle packing
minimizing a quadratic function on a given lattice (alsqy 5rchitectural patterns, our hexagonal parametedati
called theclosest vector problejn allows nice hexagonal patterns to be generated from a
The rounding technique used inJ@> CoveR [5] where all - surface, which can be used as input to such algorithms as
integer variables are rounded at once compares to that fréRwn in Figure 12 (right). Our method provides necessary
Mixed Integer Quadrangulation (MIQ) [6], which iteratessmoothness and feature alignment, thus leading to a high-
between rounding the integer variables and solving tifgiality model, even in the case of relatively high geometric
system with the new boundary condition. In@bCover, and topological complexity. Figure 3 (b, ) provides some
the translational discontinuitiess; are used as integeradditional examples in which regular hexagonal texture and
variables, whereas MIQ uses the coordinates of singul@eometry patterns are placed on the dragon.

ities. S_ince the coordinates of singularities are unique{xle also comment that quadrangular global parameteriza-
determined by thaN” (up t_o global transiation), bp th tiops can be used to synthesis square patterns on surfaces.
approacheg consujer a similar space, but use a dlﬁer%rﬂgure 8 provides one such example. To the best of our
representation basis. knowledge this realization has not been published. Notice
In all our tests, both rounding techniques (direct and mixdtat our field generation algorithm can also automatically
integer rounding) give nearly similar results. We conjeetu generate geometry-aware 4-RoSy fields, which lead to co-
that the reason behind this is our use of the shortest dwdrent synthesized patterns that align with surface featur
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Triangular Remeshing. There has been much work in
triangular remeshing. To review all past work is beyond
the scope of this article. We refer the reader to [48]§
for a complete survey of triangular remeshing literature,
and review only the most relevant work here. Common
methods of mesh triangulation are typically based on eithe 5

a parameterization [49], [50], [51], [52], local optimikai N N
methods [53], [54], [55], or Delaunay triangulations and ‘ ‘“ﬁg’? “{%ﬁ%‘k\‘ﬁggﬂ?z?‘;

i - i pada
centroidal Voronoi tessellations [56], [57]. A“A‘Wﬂﬂ”nm
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The focus of triangular remeshing is on shape preservation, ‘
good triangle aspect ratio, feature-aware triangle sjang Fig. 13. Adaptive sizing of triangles. Left: Linear scal-
control of irregular vertices (valence not equal to six)e3é@ ing along the y-axis. Right: Scaling by the absolute
object functions are often conflicting with one anothemaximal principle curvature value.

and the output mesh is a result of compromise among

these factors. For example, many parameterization-basegpdel name szstdmﬁ miln maIX S'ID i"e%_ulaf
. . . . IStance | angle angie angie vertices

meth.ods suffer from artlfacts_ in the tnang_ulatlon at the w5 03373 282 173881 11.92 146
locations of the chart boundaries (though this problem camtgot 57 0.0004 | 26.92 | 115.85| 7.40 3287
be alleviated by using a global parameterization as in [52])Foot 0.0129 [ 22.65] 125.09| 5.11 13
Direct and local optimization methods suffer from a lack gf Yenus [50] 0.1005] 0.42| 178.99] 17.48 38
lobal | P h f the tri lati venus [57] 0.0439 | 19.89 | 121.13 | 10.37 1449
global control over the structure of the triangulation suchyzgn;s 00543 [ 2487 1 114801 684 36
as the location and number of irregular vertices. Max Planckrigiz | 0.00263| 12.44 | 145.79| 5.00 44
BUNNy Fig 14, fet 0.6581 | 22.43 | 128.08| 8.23 23

In this article, we perform triangular remeshing using {aBunny Fig.14, midde 0.0198| 18.03 | 138.54| 7.54 65
hexagonal global parameterization derived a shape-awgf&Nn o1 i 00309 | 1699 | 1338 850 151
; . L ] Felinergre 0.02695| 5.75 | 167.34 | 11.09 121

6-RoSy field. There are a number of benefits to this. F.IIZ tBragonries 0.00762 280 | 15188 9.10 181
such an approach can lead to overall better aspect ratio [f@laderig1s 0.84233| 067 | 178.18 | 26.41 55

triangles in the remesh (equilateral). Second, the number
of irregular vertices can be reduced and their locations ¢
be controlled as these vertices correspond exactly to t
set of singularities in the 6-RoSy field. Third, we have
incorporated the ability to match the orientations of the
RoSy field based on natural anisotropy in the surfaces. ) ] ) ) . ]
Fourth, the size of the triangles can be controlled throud#rgularity clustering as described in Section 3. Figure 14
a scalar sizing function. The frames are just scaled lﬂ;mws that the distances of_ th(_—:- smg_ularltleS |_mpact_t_he
the corresponding sizing value. A smaller scaling resuff§noothness of the parameterization, with more singugariti

in bigger triangles whereas a high value generates a fiféProducing more feature details of the surface. However,
triangle mesh (Figure 13). metric distortion also increases when more singularities a

used as can be represented with the actual mesh resolution
We can influence the number of singularities in the mesh see Figure 15). Choosing the number of singularities can

TABLE 1

uality of meshes: Hausdorff distance (% of bounding
0X); minimum, maximum, and standard deviation
(SD) of angles, and number of irregular vertices.
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be considered as a tradeoff between smoothness of mestn a dual-core CPU of BGHz CPU and 4GB RAM.
elements and feature preservation. In Table 1, we compdiee time to generate the parameterization is approximately
the statistics for the three bunny remeshing results. Motit20 seconds per model, measured on a PC witBGHz

that the Hausdorff error and the standard deviation in angl®ur-core CPU with 8GB RAM. The running time of both

of the triangles in the remesh is the lowest for the case whstages are impacted by the mesh size as well as the number
there are 65 singularities, corresponding to the parametdrsingularities in the RoSy field. The computation time
values that we used to generate all our models. The otlier both the field generation and parameterization stages is
two models have 23 and 151 singularities, respectiveljominated by solving linear systems whose siz®(E|)
They were the results of more and less aggressive singulahere |[E| is the number of edges in the mesh. We solve
ity clustering. Figure 14 compares the three models vigualthese systems using a biconjugate gradient solver, whose
Notice that features such as ridges along the ears are yisuatimplexity is sub-quadratic.

less preserved when there are too few singularities.

6 FUTURE WORK

There are a number of possible future research directions.
First, we plan to add the capability to have parameter lines
passing through sharp edges in the model, as concerned
in the quadrangulation case by [6]. Second, we wish to
study objects that are close t¢-RoSy, which we refer

to as near-regular RoSy’s. In these objects khenember
vectors do not have identical magnitude nor even angular
spacings. Such objects can allow more flexibility in both
guadrangular and triangular remeshing. Third, pentagonal
symmetry appears in many natural objects such as flowers.

. We wish to pursue graphics applications that deal with
Figure 16 compares the results of the foot and Venﬁ%ntagonal symmetry. While atrgon can tile a plane only

modgls using our method yvi?h that of [50] and [57]. Table } § — 3, 4, and 6, it can tile a hyperbolic surface for any
provides the quality statistics of all tested models ang .. » consequently, pentagonal patterns have the potential
the comparison. Notice that our method has better overgil j)aing ysed to tile hyperbolic regions in a surface or for
aspect ratios of triangles in the mesh (larger minimum pyherholic parameterization. Notice our parametenzati
angle, smaller maximum angle, and small standard deyicpnique can actually handle a parameterization based on
ation of angles) than [50]. All three methods capture thg, N-RoSy field for anyN > 2. In another direction we plan
underlying geometry well (comparable Hausdorff distancgg jestigate appropriate mathematical representathuats

to the original input mesh) but our method tends t0 haye, e other types of wallpaper textures which may contain
the fewest irregular vertices among all three methods. Thisiections and gliding reflections. Surface tiling with at

Fig. 14. Remeshing with 23, 65, and 151 singularities.

is a direct result of our automatic singularity clusteringsaq; 1o different types of rotational symmetries is agoth
in the field generation (Section 3) while achieving goofqtential future direction. Such patterns have applicatio

triangle aspect ratios is due to the nature of the hexagori}rfllcycnc weaving over surfaces [58] and remeshing [33].
parameterization. In addition, our method tends to produce

edge directions that better align with the features in the
mesh, such as along Venus’ nose ridge than [50]. AdditionAICKNOWLEDGEMENTS
remeshing results can be found in Figure 3.

The authors wish to thank Felix &berer and Ulrich
Reitebuch for fruitful discussions on parameterizatiod an
help on remeshing. Craig Anderson helped with the video
production. Many thanks to all reviewers for their helpful
comments which have led to significant improvements of
y the article. The 3D models used in this article are courtesy
of Marc Levoy and the Stanford graphics group, and
Fig. 15. Singularities which are closer than the grid the AlMshape repository. The work is partially sponsored
size may force the parameterization to degenerate by the DFG research center AVHEON and the US Na-
locally (left). It can be avoided by either choosing a finer tional Science Foundation (NSF) grants 11S-0546881, CCF-
grid size (middle) or by merging nearby singularities 0830808 and 11S-0917308.
with our clustering approach (right).

Performance. The amount of time to automatically gen-REFERENCES
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seconds for a model of 40K triangles, measured on a PC circles and spheres on surfaces,"Siggraph Asia2009, pp. 1-8.
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Fig. 16.

0

o

%

9

o
R

i

RN
7
KN
XD
Vv TAvAYAYS g7
XK

00K
X

%
5 K
KRR

SRR

SRR

0

5
NRRIRKE
KRERIRE

B0,
X
&

"y,

KT

avavaras
N
i

&

3
o
g
5
AN
0

o
%,

|
s
a
3
AVAY,
5

RELY
5
&
=
S
"AVAV,

TETATAY o
EERSIERS

SRR

N

e

KX

X

LR

s

K

5L
A
Seses

LR
KIS
WIS
PRSIROG
BRI K
R
e
X
i

K
=
LR
RO
g
%

X
R

PRt
)
i, SR
I

VWK
TAVAVAVAViT

AVWRRARKRARN
-
5
5

7
i
Vi
5%
K

iy

1K

ML
FELRELS
s,
LR
SERX
S
CEEREY

") ]

£H

avay
P
s

s
0
o
v

TuAATATATAY
WYV
A
5
s
00
EE

Vavas,

SR

RS
XS

DRI

ATAVAVAVAWLS 6T S AN

AVAVAVAV. STavear

S

s
i
o

]

R
SRR

S
A0
i,
O

K%Y

5
o

XX
TAVATaY
)

V)
vy

X
RELE

e
s
K
B

&
S
S

LA
XORCAE
PR
S
0
R

0
v
s
o
o
vy

S avavara
TAATA AT
R
T
XA
Yargy
v
AR

£

i

“ai
%
v
b

ECR

VaVava

S

s

SRS
5
LOORARS

avava

SRR

SRR

ROOA]
R

20

0

KEX
b
X

RO
KR PO
SRR
R0
500
;
0

=
s
sy
SELRRX RS
X0 J
X

v
AV yAvaava
AN A

a
R

"

o
S

ey,

2
SR
sy

Rvavas

CAREELo

NS

DT
o

Sl OO0y

SNNXIS
COOCKRIANZ

13

B SN

=
X
00
R OPPTToSN
o aPPooos
Pooo0cessss
BLO00B000OSISS

LTAYATAS
AADOXLA L
ONBRRIL IR
DA vAVAYSS vava
QORI PR R
ORI LA TR
DO,

KN ATATAS

N

AEE

S
N
5

ST

S
S

SE
R
SRS

e

PR
AAvava,
PO
BAROK

Q0

YAY

AV
XY
&

e

5
=

v
v,

SEEK]
oS

z
—
=

s

QAAK

iy
avio,

ol
PO

any

g
i
£l
Kl
K
&
X

&

sy araas,

POSKRERE
 avava

0K

‘...m.
S
s
X
C

A7
7

550
TavaraesravATs

[

K

Comparison of our method (right) to those from [50] (left) and [57] (middle). The histograms show

occurring inner angles (on the X-axis from 0 to 71/3. For each model, the scale on the Y-axis is the same.
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