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Abstract—We introduce hexagonal global parameterizations, a new
type of surface parameterizations in which parameter lines respect
six-fold rotational symmetries (6-RoSy). Such parameterizations en-
able the tiling of surfaces with nearly regular hexagonal or triangular
patterns, and can be used for triangular remeshing.

To construct a hexagonal parameterization on a surface, we provide
an automatic algorithm to generate a 6-RoSy field that respects
directional and singularity features of the surface. This field is then
used to direct a hexagonal global parameterization. The framework,
called HEXCOVER, extends the QUADCOVER algorithm and formu-
lates necessary conditions for hexagonal parameterization.

We demonstrate the usefulness of our geometry-aware global pa-
rameterization with applications such as surface tiling with nearly
regular textures and geometry patterns, as well as triangular and
hexagonal remeshing.

Index Terms—Surface parameterization, rotational symmetry,
hexagonal tiling, triangular remeshing, pattern synthesis on surfaces,
texture synthesis, geometry synthesis, regular patterns.

1 INTRODUCTION

I N this article we introducehexagonal global parameteri-
zations, a new type of global parameterizations that map

a surface into the two-dimensional plane while respecting
the symmetries of a regular hexagonal grid. A hexagonal
global parameterization is equivalent to a texture map for
tileable texture images with additional six-fold rotational
symmetries, e.g. a regular triangular or hexagonal pattern.
Such a parameterization is ideal for tiling surfaces with
hexagonal and triangular patterns in texture and geometry
synthesis, as well as for triangular remeshing.

Tiling. Regular hexagonal patterns are one of the three
regular patterns that can seamlessly tile a plane. They pro-
vide an optimal approximation to circle packings [1] which
have been linked to the wide appearances of hexagonal

M. Nieser is with the Institute of Mathematics, Freie Universität Berlin,
Arnimallee 6, D-14195 Berlin, Germany. Email: matthias.nieser@fu-
berlin.de.
J. Palacios is with the School of Electrical Engineering andComputer Sci-
ence, Oregon State University, 1148 Kelley Engineering Center, Corvallis,
OR 97331. Email: palacijo@eecs.oregonstate.edu.
K. Polthier is MATHEON-Professor with the Institute of Mathematics,
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patterns in nature, such as honeycombs, insect eyes, fish
eggs, and snow and water crystals, as well as in man-made
objects such as floor tiling, carpet patterns, and architectural
decorations (Figure 1).

Tiling a surface with regular texture and geometry patterns
is an important yet challenging problem in pattern synthe-
sis [2], [1]. Methods based on some local parameterization
of the surface often lead to visible breakup of the patterns
along seams, i.e., where the surface is cut open during
parameterization. Global parameterizations can alleviate
this problem when the translational and rotational discon-
tinuity in the parameterization is compatible with the tiling
pattern in the input texture and geometry. For example,
a quadrangular global parameterization is designed to be
compatible with square patterns (Figure 2 (a)). On the other
hand, it is incompatible with hexagonal patterns (Figure 2
(b)). In contrast, a hexagonal global parameterization is
compatible with hexagonal or triangular patterns (Figure 2
(c)). The hexagonal global parameterizations we introduce
in this article are designed to facilitate the tiling of surfaces
with hexagonal texture and geometry patterns.

Remeshing.Another motivation of our work is triangular
remeshing, which refers to generating a triangular mesh
from an input triangular mesh to improve its quality. (Note
that triangular and hexagonal meshes are dual to each
other, and triangular remeshing can also be used to perform
hexagonal remeshing.) In triangular remeshing, it is often
desirable to have all the triangles in the mesh being nearly
equilateral and of uniform sizes, and the edges following
the intrinsic curvature and feature directions in the surface.
In addition, special treatment is needed for irregular vertices
(whose valence is not equal to six) since they impact the
overall appearance and quality of the mesh.

A hexagonal parameterization transforms these challenges
to that of control over the singularities in the parameter-
ization as well as the spacing and direction of parameter
lines. Smooth parameter lines and a reduced number of
singularities leads to highly regular meshes. Such meshes
are desirable for subdivision surface applications [3].

Rotational Symmetry. Inspired by recent developments
in constructing a quadrangular global parameterization [4],
[5], [6], we construct a global parameterization given
a 6-way rotational symmetry field, or 6-RoSy field, an
abbreviation introduced in [7]. AnN-RoSy refers to a



IEEE TVCG, VOL. ?,NO. ?, AUGUST 200? 2

Fig. 1. Hexagonal patterns in nature (top): honey-
combs, insect eyes, snowflakes. Appearance in design
(bottom): star of David, Islamic pattern, floor tiling.

set of N vectors with evenly-spaced angles, and a 1-, 2-,
and 4-RoSy can represent a vector, a line segment, or a
cross, respectively. While a 1-, 2-, and 4-RoSy field can
each be used to compute a quadrangular parameterization,
a 4-RoSy field provides the most flexibility in terms of
modeling branch points, and thus the types of irregular
vertices in a quad mesh. Specifically, a 1- or 2-RoSy field
can always be converted into a 4-RoSy field with the
unfortunate constraint that a first-order singularity in the
1- or 2-RoSy field becomes a higher-order singularity in
the resulting 4-RoSy field. Consequently, when performing
quadrangular remeshing with a 1- or 2-RoSy field, it is in
general impossible to obtain a valence three or five vertex.

Similarly, while 1-, 2-, 3-, and 6-RoSy fields can all be
used for triangular remeshing, only 6-RoSy fields can be
used to model fundamental irregular vertices that have a
valence of either five or seven.

Parameterization. Automatic generation of a hexagonal
parameterization from an input surface faces a number
of challenges. First, unlike quadrangular parameterizations
whose parameter lines are parallel to either the major
or the minor principal curvature directions, in hexagonal
parameterizations only one of the two directions can be
used at each point on the surface. One must decide which
direction to choose, and how to propagate such choices
from a relatively small set of points to the whole surface to
maintain the smoothness of the resulting parameterization.
Second, existing techniques to explicitly control the singu-
larities in a parameterization are user-driven, and it is not
an easy task to provide automatic control over the number
and location of such singularities. Third, the continuity
conditions developed for quadrangular parameterizations
are not appropriate for hexagonal parameterizations.

Pipeline. To address these challenges, we present a two-
step pipeline to generate a geometry-aware hexagonal
global parameterization. First, we automatically select the
most appropriate principal direction with which we align
our 6-RoSy field. The singularities in the field are related

a) b) c)

Fig. 2. A quadrangular parameterization ensures that
the discontinuity along the cut is invisible (a). The same
parameterization is incompatible with a hexagonal pat-
tern (b), which leads to seams (yellow). In this case a
hexagonal parameterization is needed (c).

to regions of high Gaussian curvature regions. Moreover,
we introduce an automatic singularity clustering algorithm
that allows nearby singularities to be either canceled or
merged into a higher-order singularity, thus reducing the
total number of singularities in the field.

In the second step of the pipeline, we generate a global
parameterization which is aligned to the 6-Rosy field as
well as possible. The QUADCOVER algorithm [5] is adapted
for handling the symmetries of a hexagonal parameteri-
zation. We minimize a quadratic energy which measures
the L2 distance of the parameter lines to the field. During
minimization, some variables are constrained to an integer
grid. We point out that in the hexagonal parameterization
this grid is the set ofEisenstein integers, which is different
from the Gauss integersused in the quadrangular case.
This leads to a parameterization method that we refer to
as HEXCOVER. The resulting parameters can then be used
to generate triangular meshes free of T-junctions as well to
tile a surface seamless with a hexagonal pattern.

Contributions. In summary, our contributions in this article
are as follows:

1) We introduce hexagonal global parameterization and
demonstrate its uses with applications such as trian-
gular remeshing and pattern synthesis on surfaces.
For remeshing we point out the need for a geometry-
aware 6-RoSy field when generating a hexagonal
global parameterization.

2) We present the first technique to construct a hexag-
onal global parameterization given an input surface
with a guidance 6-RoSy field. We formulate the
energy term as well as the continuity condition for
hexagonal global parameterizations.

3) We propose an automated pipeline for generat-
ing geometry-aware 6-RoSy fields. As part of the
pipeline, we point out how to align the field with
principal curvature directions as well as develop a
way of automatically clustering singularities.

The remainder of this article is organized as follows. We
first cover work in relevant research areas in Section 2.
Next, we describe our pipeline for generating a geometry-
aware 6-RoSy field given an input surface in Section 3, and
our parameterization technique in Section 4. In Section 5,
we demonstrate the usefulness of our techniques with



IEEE TVCG, VOL. ?,NO. ?, AUGUST 200? 3

a) b)

c) d)

Fig. 3. Hexagonal global parameterization (a), used for regular texture (b) and geometry pattern synthesis (c)
with hexagonal patterns and for geometry-aware triangular remeshing (d).

applications in triangular remeshing and surface tiling with
regular texture and geometry patterns. Lastly, we close in
Section 6 with future work.

2 RELATED WORK

Surface Parameterization.Surface parameterization is a
well-explored research area. We will not attempt a complete
review of the literature but instead refer the reader to
surveys by Floater and Hormann [8] and Hormann et al. [9].

Early global parameterization methods focus on conformal
parameterizations [10], [11], [12], which are aimed at angle
preservation at the cost of length distortion. To reduce
length distortion, Kharevych et al. [13] use cone singular-
ities for conformal parameterization, which relax the con-
straint of a flat domain at few isolated points. Singularities
have proven essential for high quality parameterizations and
have been used in other parameterization schemes as well.

Dong et al. [14] perform quadrangulation based on har-
monics functions. Later, Dong et al. [15] use a similar

idea for parameterization but create the quadrilateral meta
layout automatically from the Morse-Smale complex of
Eigenfunctions of the mesh Laplacian.

Tong et al. [16] use singularities at the vertices of a hand-
picked quadrilateral meta layout on the surface. The patches
of the meta layout are then parameterized by solving for
a global harmonic one-form. Ray et al. [4] parameterize
surfaces of arbitrary genus with periodic potential functions
guided by two orthogonal input vector fields, or a 4-RoSy
field. This leads to a continuous parameterization except in
the vicinity of singularities on the surface. These singular
regions are detected and reparameterized afterwards.

The QUADCOVER algorithm [5] builds upon this idea by
using the input 4-RoSy field to generate a global parameter-
ization, based on a quadratic energy formulation. Also the
notion of covering spaces is used to describe a 4-RoSy field
as vector field and to provide a clear theoretical setting. Our
algorithm to generate a parameterization from a 6-RoSy
field is an adaptation of the QuadCover method.
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Bommes et al. [6] propose a method similar to the afore-
mentioned techniques based on the same energy formula-
tion as in [5], but provides several advancements. Beside a
robust generation of 4-Rosy fields, they propose to use a
mixed-integer-solver for improving the rounding of integer
variables. They also add constraints that force parameter
lines to capture sharp edges.

Field Processing.Much work has been done on the subject
of vector (1-RoSy) and tensor (2-RoSy) field analysis.
Note that a line field is equivalent to a symmetric tensor
field [17]. To review all of this work is beyond the scope
of this article; here we refer to only the most relevant
work. Helman and Hesselink [18] propose a method of
vector field visualization based on topological analysis and
provide methods of extracting vector field singularities and
separatrices. Topological analysis techniques for symmetric
second-order tensor fields are later introduced in [19]. In
the context of vector field design, numerous systems have
been developed for the purpose of vector field, most of
which have been for specific graphics applications such as
texture synthesis [20], [21], [22], fluid simulation [23], and
vector field visualization [24]. Fisher et al. [25] propose
a vector field design system based on discrete one-forms.
Note that the above systems do not employ any methods
of topological analysis, and do not extract singularities
and separatrices. Systems providing topological analysis
include [26], [27] and [28]. The last has also been extended
to design tensor fields [17], [29]. In contrast, relatively
little work has been done onN-RoSy fields whenN > 2.
Hertzmann and Zorin [30] utilizecrossor 4-RoSy fields in
their work on non-photorealistic pen-and-ink sketching, and
provide a method for smoothing such fields. Ray et al. [31]
extend the surface vector field representation proposed
in [27] into a design system forN-RoSy fields of arbitrary
N. Palacios and Zhang [7] propose anN-RoSy design
system that allows initialization using design elements as
well as topological editing of existing fields. They also
provide analysis techniques for the purpose of locating both
singularities and separatrices, and a visualization technique
in [32]. Lai et al. [33] propose a design method based on
a Riemannian metric, that gives the user control over the
number and locations of singularities. Their system also
allows for mixedN-RoSy fields, with different values of
N in different regions of the mesh. However, this method
is based on user design while we focus on automatic
and geometry-aware generation. Bommes et al. [6] offer
a method of producing a smooth 4-RoSy field from sparse
constraints, formulated as a mixed-integer problem. Zhang
et al. introduce a quadrangulation method based on the no-
tion of waves. Their method can also be used to generate 4-
RoSy fields [34]. Krane et al. [35] handle cone singularities
by using the notion oftrivial connection in the surface.
These singularities include those seen in 6-RoSy fields.

Ray et al. [36] propose a framework to generate anN-RoSy
field that follows the natural directions in the surface and
has a reduced number of singularities which tends to fall
into natural locations. In this article, we make use of this

framework but automatically generate the input constraints,
which relieves the user from labor-intensive manual design.
Furthermore, we introduce to our knowledge the first auto-
matic singularity clustering algorithm to reduce the number
of singularities in the field.

3 GEOMETRY-AWARE 6-ROSY FIELD GEN-
ERATION

In this section, we describe our pipeline for generating a
geometry-aware 6-RoSy fieldF given an input surfaceS.
This field will then be used to guide the parameterization
stage of our algorithm (Section 4).

We first review some relevant properties of 6-RoSy
fields [7], [31]. An N-RoSy field F has a set ofN
directions at each pointp in the domain of the field:
F(p) = {Ri

Nv(p)}, i ∈ {0, . . . ,N− 1}. where the vector
v(p) = ρ(p)(cosθ(p),sinθ(p))T is one of theN directions,
andRi

N is the linear operator that rotates a given vector by
2iπ
N in the corresponding tangent plane. Asingularity is a

point p0 such thatρ(p0) = 0 andθ(p0) is undefined;p0 is
isolatedif the value ofρ 6= 0 for all points in a sufficiently
small neighborhood ofp0, except atp0. An isolated N-
RoSy singularity can be measured by itsindex, which is
defined in terms of the Gauss map [7] and has an index
of I

N , where I ∈ Z. A singularity p0 is of first-order if
I = ±1. When|I | > 1, p0 is referred to as ahigher-order
singularity. A higher-order singularity with an index ofIN
can be realized by mergingI first-order singularities.

Requirements and Pipeline.There are a number of goals
that we wish to achieve with our automatic field generation.

First, we wish to control the number, location, and type of
the singularities in the field. When performing quadrangular
and triangular remeshing using global parameterizations,
the singularities in the guiding 4- or 6-RoSy field corre-
spond to the irregular vertices in the mesh. Such singular-
ities can also lead to the breakup of texture and geometry
patterns during pattern synthesis on surfaces. Consequently,
the ability to control the number, location, and type of
singularities in the field can improve quality of the remeshes
and surface tilings.

Second, the field needs to be smooth, or distortion can occur
in the resulting parameterizations that have undesirable
effects for triangular remeshing and surface tiling.

Third, we need the parameter lines in the parameterization
to be aligned with the feature lines in the surfaces, such as
ridge and valley lines (see Figure 4). In addition, it has been
documented that having texture directions aligned with the
feature lines in the mesh can improve the visual perception
of the texture synthesis [37].

Note that these requirements may conflict with each other.
For example, excessive reduction of singularities can lead
to high distortion in the field, and an overly-smoothed field
may deviate from feature lines. To deal with this we adopt
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Fig. 4. For remeshing, edges should follow principal
curvature directions (right). Edges ignoring surface
features (right) cause ”twisting” artifacts (on the ears).

the framework of Ray et al. [36]. In their framework, a
set of user-specified constraints and a modified Gaussian
curvatureK̄ defined at the vertices are used to generate a
sparse linear system whose solution (after several iterations)
is the RoSy field that matches the constraints andK̄ in the
least square sense. Each constraint represents a desiredN-
RoSy value, i.e.,N directions, at a given point. In our case
we wish to have our field aligned with principal curvature
directions. The user-specified̄K is a vertex-based function
defined on the mesh, whose value at a vertex represents
the desired discrete Gauss curvature at this vertex to be
reflected by resulting field curvature. The integral ofK̄ over
S must be equal to 2πχ(S) whereχ(S) is theEuler char-
acteristicof the surfaceS. It allows the user to specify the
location and type of singularities in the field. For example,
a vertex with aK̄ value of 2kπ

N should have a singularity
of index k

N in the resulting field. We would like to note
that other field generations systems that allow directional
constraints the specification of singularities of index greater
than 1

N can also be used (such as the one described in [35]).
We use the method of Ray et al. because it gives additional
control over the initial number singularities if desired.

Given a surface with complex geometry and topology, it
can be labor intensive to provide all necessary constraints
through a lengthy trial-and-error process. Consequently,we
automatically generate the directional constraints as well
as K̄, which is at the core of our algorithm for field
generation. Our algorithm consists of two stages. First,
we identify a set of directional constraints based on the
curvature and solve for an initial 6-RoSy field using these
constraints only. Second, we extract all the singularities
in the initial field and perform iterative singularity pair
clustering until the distance between any singularity pair
is above a given threshold. The remaining singularities will
be used to generate new values for the vertex functionK̄,
which will be used to generate the final RoSy field with
reduced singularities. We describe each of these stages in
more detail next.

Automatic Constraint Identification. To automatically
identify directional constraints, we need to answer the
questions of where to place constraints and what direction
is assigned to each constraint.

Fig. 5. Surface classification scheme to determine
directional constraints. φ ∈ [−π/2,π/2] is color mapped
to the [BLUE,RED] arc in HSV color space: Left top:
continuous mapping. Bottom: binned classification.
The legend (right) shows surfaces patches which are
locally similar to points with given values.

Recall that we wish to align the parameter lines with feature
lines such as ridges and valleys, i.e., the principal direction
in which the least bending occurs. Note that the directions
in the 6-RoSy field is the gradient of the parametrization
(Section 4). Consequently, we will choose the principal
direction that has the most bending, i.e., maximum absolute
principal curvature, as one of the directions in the 6-RoSy.
We estimate the curvature tensor of the mesh using the
method of Meyer et al. [38].

Principal curvature directions are most meaningful in cylin-
drical and hyperbolic regions due to the strong anisotropy
there. However, while purely hyperbolic regions possess
strong anisotropy, the absolute principal curvatures are
nearly indistinguishable, thus making both principal cur-
vature directions candidates. Moreover, the two bisectors
between the major and minor principal curvature directions
can also provide viable choices for the edge directions
in hyperbolic regions. Due to the excessive choices of
directions in hyperbolic regions and insufficient choice of
directions in planar and spherical regions, we only generate
directional constraints in cylindrical regions. Note that
using the asymptotic directions could result in neighboring
triangles being constrained with directions that differ by
rotations of π

2 ; while this causes no problems in 4-RoSy
field generation, such constraints conflict in the case of 6-
RoSy field generation.

We make use of a representation of the curvature tensor that
readily exposes where on this spectrum of classification
any point on a given surface falls. Using the trace-and-
deviator decomposition similar to those employed in [39],
the curvature tensorT at a pointp ∈ S can be rewritten as:

T =

(

κ1−κ2

2

(

cos2θ sin2θ
sin2θ −cos2θ

)

+
κ1+κ2

2
Id

)

=
ρ√
2

(

cosφ
[

cos2θ sin2θ
sin2θ −cos2θ

]

+sinφ · Id
)

(1)
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where κ1 and κ2 are the principal curvatures atp, ρ =
√

κ2
1 +κ2

2 , φ ∈ [−π/2,π/2] = arctan(κ1+κ2
κ1−κ2

), θ ∈ [0,π) is
the angular component of the maximum principal direction
measured in the local frame atp, and Id denotes the
identity map. Note that the first component in the sum is
traceless and symmetric, while the second is a multiple
of the identity matrix.T(p) can now be classified using
(ρ(p),φ(p)), which spans a half plane. There are six
special configurations on this half plane, the first satisfying
ρ(p) = 0, i.e., the local geometry nearp is planar. For the
remaining five configurations we haveρ(p) > 0. Respec-
tively, they correspond toφ(p) = π

2 (spherical),φ(p) = π
4

(cylindrical), φ(p) = 0 (purely hyperbolic),φ(p) = −π
4

(inverted cylindrical), andφ(p) =−π
2 (inverted spherical).

With this representation, we can classify any pointρ(p)
as being planar ifφ(p) is smaller than a given threshold
δ , elliptical if φ(p) ≥ δ and |φ(p)| > 3π

8 , hyperbolic if
φ(p) ≥ δ and |φ(p)| < π

8 , and cylindrical otherwise, i.e.,
φ(p) ≥ δ and π

8 ≤ |φ(p)| ≤ 3π
8 . We wish to point out the

tensor-based decomposition is equivalent to the concept of
shape index[40].

Given the classification, we propagate the directions in
the cylindrical regions into non-cylindrical regions (planar,
spherical, hyperbolic) using energy minimization, an ap-
proach taken in [6]. To accomplish this, we pick the points
whereρ (the tensor magnitude) is above certain a threshold
tρ , and label these points as having “strong” curvature (in all
of our examples, we have chosentρ so that 35 percent of the
area ofS is so-labeled). From this set of points, we use only
the directions of the cylindrical points as constraints; that
is, the points for whichφ ∈ [−3π/8,−π/8]∪ [π/8,3π/8]
(Figure 6). Finally, we select the maximum directionθ
as the constraint direction at points whereφ > 0 and the
minimum directionθ +π/2 whereφ < 0. Recall that the
directions in the output field specify the gradients in our
resulting parameterizations, and we wish one of the isolines
of the parameters to be orthogonal to the direction in
which the surface is bending the most. Clearly, the above
directions satisfy this requirement (See the shapes on the
right side of the right image in Figure 5). Finally, the
constraints are used to set up a linear system [36] whose
solution gives rise to our initial RoSy field.

For our solver, we use the geometry-awareN-RoSy field
generation technique proposed by [36], as it allows us to
control the level of geometric detail that is reflected by
singularities, and also plays a role in the implementation
of our singularity clustering technique. This system, based
on discrete exterior calculus (DEC) [41], filters (locally
averages) the Gauss CurvatureK of Sto produceK̄ and then
computes a target field curvatureCt using the difference
betweenK and K̄. Ct is then used to modify the angles
by which directions rotate when parallel transported along
mesh edges. This compensates for the actual curvature
of S, and directional fields computed onS under these
conditions behave as thoughS has a Gauss curvature of
K̄. SinceK̄ is smoother thanK, such fields have reduced

Fig. 6. Selection of constraints. Left: Color mapping of
ρ . Middle: Highest 35% of values; colors are based on
φ as in Figure 5. We use maximum curvature directions
where φ > 0 (yellow) and minimum directions where
φ < 0 (cyan) as being orthogonal to the direction in
which the surface is bending the most (see close-up,
right). Notice that chosen directions in nearby yellow
and cyan regions agree as they would not if we had se-
lected only one of the curvature directions everywhere.

topological noise, which makes them more suitable for our
parameterization algorithm.

Automatic Singularity Clustering. Our initial field was
obtained from directional constraints only. Consequently,
it typically consists of only first-order singularities. Given
a surface with rather complex geometry and topology, the
number of singularities can be rather large. Furthermore,
while the location of the singularities tend to be appropriate
(in high curvature regions), many of them form dense
clusters. Having singularities in closer proximity can lead
to difficulties in the resulting parameterization. This is
because the singularities will be constrained to be on a
lattice in the parameter space as typically required by most
global parameterization methods [5], [6]. Consequently,
the smallest distance between any singularity pair will be
mapped to a unit in the parameter space. If the smallest
distance is too small, the two involved singularities may
be mapped to the same point on the lattice, leading to a
locally infinite stretching in the parameterization. Figure 15
illustrates this.

To address this, many field generation techniques constrain
the number of singularities to be as few as possible [31], but
this represents another extreme, where the field directions
can become highly distorted in some regions. Furthermore,
many of the aforementioned approaches require much user
interaction [7], [31], [36], which can be time-consuming
for models with complex geometry and topology.

Our goal is to automatically reduce the number of sin-
gularities in the field while retaining the locations of the
remaining singularities inside high curvature regions. To
achieve this we employ the following process.

First, we extract the singularities in the initial RoSy field
(using the method described in [36]) which we use to build
a graph embedded in the surface. The nodes of this graph
are the singularities in the field, and the edges representing
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a) b) c) d)

Fig. 7. Clustering pipeline: (a) Initial field. (b) Singularity graph G. (c) Reduced graph obtained by performing
edge-collapses. The region R is shown in green. (d) Reduced field generated by resolving in R with singular
constraints at the nodes of G and directional constraints at the boundary of R.

proximity information between singularity pairs. We refer
to this graph as thesingularity graph G. To constructG, we
compute a Voronoi diagram with the singularities as sites.
The dual graph gives rise to the singularity graph [42].

Second, we iteratively perform edge collapses on this graph,
which is equivalent to performing singularity pair cluster-
ing (merging or cancellation), until the minimal surface
distance between any singularity pair is above a given
threshold. Every time a singularity pair is clustered, we
compute the sum of the singularity indexes and place a
singular constraint with the sum as its desired index. Note
that we do this even if the sum is zero, i.e., singularity
pair cancellation. The singularity constraint is placed on
the path between the two original singularities, closer to
the one with the Gaussian curvature of highest magnitude.
This is an attempt to keep singularities near the features that
caused them to originally appear during initialization and
is accomplished by interpolating along the geodesic from
p0 to p1 using the value|K(p1)|/(|K(p0)+K(p1)|, where
K(p) is the Gaussian curvature atp ∈ S. We continue to
collapse edges in the order of increasing edge-length onG
until no edge of length less thandsing remains. At the end
of this process, we will have generated a set of singularity
constraints, i.e., the remaining vertices in the graph, which
is then used to update the field in the vicinity of these
singularities. In the case of fields generated for remeshing,
dsing can be selected based on the edge-length of the output
mesh. We choosedsing to be 0.1B whereB is the size of
the bounding box for the model. For a visual summary of
the algorithm, see Figure 7.

Third, we modify K̄ based on the singularity constraints.
Recall that theK̄ is simply a smoothed version of the
discrete Gauss curvature during the generation of the initial
field. The singularity constraints, produced in the previous
step, consists of a set of vertices in the mesh and a desired
singularity indext(p)for each such singularity constraintp.
We modify K̄ such that it is zero everywhere on the surface
except at singularity constraints where the value ofK̄ is
2π
N t(p). Notice that such assignment satisfies the constraint
that the integral ofK̄ over S is equal to 2πχ(S). We now
modify the 6-RoSy field by solving the same system used
to generate the initial field, with one difference: we do not

Fig. 8. Geometry-aware 4-RoSy field and correspond-
ing texture tiling.

resolve for the updated field everywhere on the surface.
Instead, we generate a regionR= {p|d(p,Vcollapse)< dsing},
where Vcollapse is the set of vertices that were members
of collapsed edges inG, and resolve for the field only in
R. That is, the field values are fixed in the complement
of R and the values on the boundary ofR will serve
as the boundary conditions when resolving; the original
directional constraints are ignored in this step. In this
way, we largely preserve the results of the field generated
from the directional constraints, but force the merging
and cancelation of singularities in the regions where large
clusters had appeared before. The field values for vertices
inside R are then updated. We have found this to be fast
and efficient in controlling the location, type, and number
of singularities.

We wish to point out that our automatic field generation
method can be applied toN-RoSy field generation for any
N that is even, in particular 4-RoSy fields. Figure 8 shows
an example generated using our method. The only change in
the whole field generation pipeline occurs during automatic
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identification of directional constraints. Instead of choosing
θ or θ + π

2 as one of the six directions for constraints, we
choose both for the case of 4-RoSy fields.

4 HEXCOVER PARAMETERIZATION

In this section we describe the second stage of our pipeline,
which constructs a hexagonal global parameterization given
an input triangular mesh surface along with a 6-RoSy field
defined on it. We will first introduce the notion of hexag-
onal parameterizations before describing our HEXCOVER

parameterization technique which is an extension of the
QUADCOVER method for quad remeshing.

Hexagonal Parameterization and Energy.Given a trian-
gular mesh surfaceS with |T| triangles, aglobal parame-
terization ϕ : S 7→ R

2 respecting anN-RoSy symmetry is
a collection of linear maps{ϕi |1 ≤ i ≤ |T|} where each
ϕi : ti →R

2, p 7→ (ui ,vi)
T maps triangleti ∈ S ontoR

2 with
the following property. For any pair of adjacent trianglesti
and t j we have:

ϕ j(p) = R
r i j
N ϕi(p)+wi j , ∀p ∈ ti ∩ t j , (2)

wherer i j ∈ {0,1, . . . ,N−1} andwi j ∈R
2 are the rotational

and translational discontinuities, respectively. Recallthat
Rk

N is the linear operator that rotates a vector by2kπ
N in its

tangent plane (Section 3). The mapsϕi are restricted to be
linear on each triangle. They are defined by their values at
vertices, whiler i j andwi j are defined on edges.

In quadrangular case whereN = 4, the parameter lines can
be visualized by treatingϕ−1 as the map that textures
the surface with a 2D regular unit grid. To ensure the
continuity in parameter lines, the translational discontinu-
ities wi j are required to be on the set ofGauss integers
G4 := {(a,b)T |a,b∈ Z}.

A hexagonal parameterizationN = 6 can be considered
similarly, except that in this case the texture image needs
to respect hexagonal rotational symmetries. A canonical
choice is a hexagonal or triangular pattern as shown in
Figure 9 (left). The texture image has an aspect ratio of
1 :

√
3 and tiles the plane seamlessly. It is furthermore

invariant under rotations ofπ3 around the center of each
hexagon. The set of these center points is known as
Eisenstein integerlattice, shown in Figure 9 (right):

G6 :=

{

a

(

1
0

)

+b

(

1/2√
3/2

)∣

∣

∣

∣

a,b∈ Z

}

. (3)

Beside the rotational invariance, the hexagonal grid also
remains invariant under translations by any vector inG6.
While a hexagonal parameterization is a discontinuous map,
the discontinuities are not visible if allwi j are inG6 because
of the repeating structure of the texture image (Figure 2).

A hexagonal parameterization can be generated according
to a guidance 6-RoSy fieldF . Given a pointp, the edges of
the hexagons are aligned with the 6 vectors ofF in p. We
generate a hexagonal parameterization which optimizes this

1
√

3
1

√
30

v

u

Fig. 9. Left: Texture with hexagonal rotational symme-
tries. Right: Eisenstein integer lattice G6.

alignment inL2-sense. Specially, we minimize the quadratic
energy:

E(u,v) :=
∫

S
(‖∇u−Fu‖2+‖∇v−Fv‖)2dA, (4)

where Fu(p) is one of the six vectors ofF at p ∈ S and
Fv(p) := R1

4Fu(p) is perpendicular to it.

The parameterization must fulfill the integer constraints in
Equation (2), whereas the valuesr i j encode which of the
6-RoSy vectors in adjacent trianglesti and t j are paired,
i.e. Fu in ti is paired withR

r i j
6 Fu in t j . The r i j are held

fixed during energy minimization, whereasu, v andwi j are
optimized.

Notice that the energy is independent of the choice ofFu

(there are six choices per triangle) due to the rotational
symmetries ofϕ from Equation (2). A different choice of
Fu in one triangle will result in the same change in ther i j ’s
along all adjacent edges. The resulting minimizer of the
energy (Equation (4)) is then locally rotated by a multiple
of π

3 in this triangle, resulting in the same pattern.

A key observation in QUADCOVER [5] is that the opti-
mization can be divided into two subproblems and solved
independently:

1) Local step. Minimize energy (Equation (4)) for
ui ,vi ,wi j ∈ R, ignoring the integer constraint onwi j .
In QUADCOVER the minimizer is computed by re-
moving the curl ofF , making it locally integrable,
and definingui ,vi as its potential. This leads to a
local parameterizationϕ ′.

2) Global step. Convert ϕ ′ into a global parameteri-
zation by incorporating the aforementioned integer
constraints.

HEXCOVER and Covering Spaces.While possible, solv-
ing Equation (4) directly presents some challenges due to
the fact thatFu and Fv are both multi-valued (there are
six values per triangle). Here we make use the notion of
covering space, which transforms the problem of comput-
ing a global parameterization onS under a guiding 6-RoSy
field F to generating a global parameterization on anN-fold
coverS′ of Sunder a guiding vector fieldF ′. The benefit of
doing this is that we can use standard vector field calculus
without having to deal with anN-RoSy field.

In fact, the covering is just used as theoretical foundation
and is not explicitly computed in either QUADCOVER or
HEXCOVER. The covering is implicitly represented by the



IEEE TVCG, VOL. ?,NO. ?, AUGUST 200? 9

valuesr i j resulting in additional constraints (Equation (2))
during optimization. Note that covering spaces are used
implicitly by other approaches optimizing a piecewise-
linear global parameterization [16], [6].

In the hexagonal case,F can be lifted toF ′ on a six-fold
covering surfaceS′ of S, which is defined as follows: every
triangle ti in S will have six corresponding triangles inS′:
ti,0, . . . , ti,5. The vector fieldF ′ distributes the six vectors of
F onto the six copies, i.e.,F ′(ti) = Ri

6F0(ti) whereF0(ti) is
one of the six directions ofF in ti . For adjacent triangles
ti , t j in S, the corresponding copies are combinatorially
connected, depending on the rotational discontinuityr i j .
The trianglesti,k, k∈ {0, . . . ,5} are thereby connected with
t j,k+r i j mod 6. Note that S′ is a Riemannian surface with
branch points at those positions where the original 6-
RoSy field has singularities. All six copies of a triangle
are geometrically identical, so there is not necessarily an
embedding without self-intersections. This does not present
any difficulty for us, however, since the algorithm does not
rely on an explicit embedding ofS′.

ti

F ′
u

F ′
vt ′i,0

t ′i,1
t ′i,2
t ′i,3
t ′i,4
t ′i,5

Fig. 10. Left: Triangle ti with 6-RoSy field. Right: 6-fold
covering of ti with vector fields F ′

u, F ′
v.

The problem now turns into minimizing the energy in
Equation (4) on the covering spaceS′, using F ′

u := F ′,
F ′

v :=R1
4F ′ (see Figure 10). Due to the symmetry of the cov-

ering surface and the symmetric behavior of the algorithm,
the resulting texture images on different copies of each
triangle are congruent and their projection onto the domain
S is a global parameterization which satisfies Equation (2).
Again, the use of coverings is only a theoretical view,
the algorithm itself will not compute the covering, but
represents it implicitly by storing the valuesr i j . They must
be considered when minimizing the energy.

Local Step. In the local step, Energy (4) is minimized
for values of the parameterizationui(p j), vi(p j) at each
vertexp j in all incident trianglesti , and for the translational
discontinuitieswi j ∈R

2. Due the high number of variables
and additional constraints (Equation (2)), QUADCOVER

proposes to solve an alternative energy providing the same
result but with a much smaller system of equations and no
constraints. We use a similar reduction for HEXCOVER.

Let ϕ = (u,v)T be the minimizer of Energy (4). A key
observation is derived from the discrete Hodge-Helmholtz
decomposition of vector fields [43]: The field(Fu−∇u,Fv−
∇v) is exactly aco-gradient field(R1

4∇u∗,R1
4∇v∗) which

minimizes the energy

E∗(u∗,v∗) :=
∫

S
(‖R1

4∇u∗−Fu‖2+‖R1
4∇v∗−Fv‖)2dA. (5)

Here, u∗ and v∗ are scalar non-conforming finite element
functions, which are linear in each triangle and defined by
values on edge midpoints. At boundary edges,u∗ and v∗

are fixed to 0. The constraints (Equation (2)) simplify to
(

u∗|ti
v∗|ti

)

= R
r i j
6

(

u∗|t j

v∗|t j

)

(6)

for adjacent trianglesti , t j . Notice that the translational
discontinuitieswi j do not appear in this formulation.

Equation (6) directly relates the values ofu∗ and v∗ in
both adjacent triangles of each edge, therefore only one free
u∗-variable and onev∗-variable remains left per edge. We
build up a system of linear equations by setting all partial
derivatives of Energy (5) for the free variables to 0. The
matrix of this system has dimension 2|E|×2|E|, where|E|
is the number of edges in the mesh. We solve this system
and obtain(u∗,v∗) from which we compute(∇u,∇v).

The parameterization(u,v) is computed by first cutting the
mesh open to a simply connected disk and then directly
integrate the gradients. We cut the surface at the shortest
homotopy generators similar to [44]. The result is a graph
G on edges, such that the complementS\ G is simply
connected. We also need to connect all singularities with
the cut graph, since they can be seen as infinitesimal small
holes. For this purpose, the method was adapted allowing
also surface boundary and singularities by [45].

The gradient fields(∇u,∇v) are integrated by setting
(u,v) = (0,0) in an arbitrary root vertexv0 in triangle
t0 and directly integrating the piecewise constant vectors
in t0 and adjacent triangles until the whole surface is
covered. When passing an edge, the values of(u,v) must be
rotated according to Equation (2). Note that the translational
discontinuities are set to 0 in the inner ofS\G. The solution
is consistent and does not depend on the traversal of the
triangles, as long as the edges in the cut graphG are not
involved in this propagation.

Global Step. While the obtained parameterization(u,v) is
a minimizer of Equation (4), it may be discontinuous along
the edges ofG. For a global hexagonal parameterization,
such discontinuity will lead to seams in the parameter lines
if the wi j ’s are not in the set ofG6 (the Eisenstein integer
lattice). However, when performing local integration in the
previous step we only require thatwi j ∈ R. In this section
we discuss how to modify the initial parameterization to
enforce the integer constraints.

G can be considered as union of pathsγi , each of which is
either a closed loop or starts and ends at a singularity. An
important property of the solution of Energy (4) is that the
translational discontinuitywi j is constant for all edges on
the same pathγi . Let wi be the constant for pathγi , which
can be computed from the coordinates of(u,v) at both sides
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Fig. 11. Minimal surfaces. Left: Schwarz surface with 8
singularities of index −1/2. Right: Neovius surface with
8 index −1/2 and 6 index −1 singularities.

of an edge ofγi . Note that the translational discontinuities
can add up if two paths partially overlap.

To enforce the integer constraints, we modify the transla-
tional discontinuitywi j for every edge inG by rounding
them to the nearest integer inG6. Then, Energy (4) is
minimized, holding all discontinuitieswi j fixed.

The coordinates of a singularity are uniquely determined by
the wi of all of its incident pathsγi . For a singular vertex
with valence ν . There areν constraints (Equation (2))
that relate theν coordinate vectors of the vertex in its
adjacent triangles. Thus, rounding the valueswi is similar
to prescribing the coordinates of singularities.

For each regular vertex of valenceν , one of theν relations
(Equation (2)) is redundant since the total discontinuity
adds up to zero, reflecting a zero Poincaré index. Therefore,
its coordinates are determined by the coordinates in one of
its incident triangles, we therefore obtain one free variable
for u and one forv per vertex. Energy (4) is minimized
by setting all partial derivatives to 0 resulting in a sparse
linear system. The matrix has dimension 2|V|×2|V| with
|V| being the number of regular vertices.

Figure 11 shows the hexagonal parameterization of two
minimal surfaces using our technique.

Rounding Technique. The presented rounding technique
for the wi is just a heuristic for the problem of finding an
optimal parameterization yielding the integer conditions. In
general, this problem is NP-hard, since it is equivalent to
minimizing a quadratic function on a given lattice (also
called theclosest vector problem).

The rounding technique used in QUADCOVER [5] where all
integer variables are rounded at once compares to that from
Mixed Integer Quadrangulation (MIQ) [6], which iterates
between rounding the integer variables and solving the
system with the new boundary condition. In QUADCOVER,
the translational discontinuitieswi j are used as integer
variables, whereas MIQ uses the coordinates of singular-
ities. Since the coordinates of singularities are uniquely
determined by thewi j (up to global translation), both
approaches consider a similar space, but use a different
representation basis.

In all our tests, both rounding techniques (direct and mixed
integer rounding) give nearly similar results. We conjecture
that the reason behind this is our use of the shortest cut

graphG. It appears that the shorter the pathsγi ’s are, the
more local the influence ofwi ’s are and the more accurate
a direct rounding of all integer variables is.

Another aspect is computing time. In MIQ, the number
of linear systems of equations need to be solved is equal
to the number of pathsγi in G. Note that the matrix
in the system is different every time due to the variable
reduction when rounding. The rounding technique from
QUADCOVER only needs to solve two systems of equations
in total. We therefore decided to use the direct rounding.
However, we do not anticipate any difficulty in adapting
the MIQ solver to hexagonal parameterizations.

5 RESULTS AND APPLICATIONS

Here, we apply hexagonal parameterization to two graphics
applications: pattern synthesis, and triangular remeshing.

Pattern Synthesis on Surfaces.Example-based texture and
geometry synthesis on surfaces has received much attention
from the Graphics community in recent years. We refer
to [46] for a complete survey. Here we will refer to most
relevant work.

Wei and Levoy [22] are the first who point out thatN-
RoSy fields of N > 1 are suitable for specification of
special symmetries in textures. Liu et al. [47] propose
techniques for the analysis, manipulation, and synthesis
of near-regular textures (i.e. very structured textures with
repeating patterns) in the plane. Kaplan and Salesin [2]
address the design of Islamic star patterns in the plane.
There has been some recent work in constructing circle
patterns from a triangular mesh for architectural models [1].

Generating regular patterns on a surface can be greatly
facilitated given an appropriate global parameterization.
Given a regular hexagonal texture or geometry pattern,
it is simply tiled in the parameter-space of the mesh
and the texture should stitch (relatively) seamlessly every-
where (Figure 12). For example, to achieve circle packing
for architectural patterns, our hexagonal parameterization
allows nice hexagonal patterns to be generated from a
surface, which can be used as input to such algorithms as
shown in Figure 12 (right). Our method provides necessary
smoothness and feature alignment, thus leading to a high-
quality model, even in the case of relatively high geometric
and topological complexity. Figure 3 (b, c) provides some
additional examples in which regular hexagonal texture and
geometry patterns are placed on the dragon.

We also comment that quadrangular global parameteriza-
tions can be used to synthesis square patterns on surfaces.
Figure 8 provides one such example. To the best of our
knowledge this realization has not been published. Notice
that our field generation algorithm can also automatically
generate geometry-aware 4-RoSy fields, which lead to co-
herent synthesized patterns that align with surface features.
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Fig. 12. Seamless tiling of hexagonal textures (left, middle) and geometry patterns (right).

Triangular Remeshing. There has been much work in
triangular remeshing. To review all past work is beyond
the scope of this article. We refer the reader to [48]
for a complete survey of triangular remeshing literature,
and review only the most relevant work here. Common
methods of mesh triangulation are typically based on either
a parameterization [49], [50], [51], [52], local optimization
methods [53], [54], [55], or Delaunay triangulations and
centroidal Voronoi tessellations [56], [57].

The focus of triangular remeshing is on shape preservation,
good triangle aspect ratio, feature-aware triangle sizing, and
control of irregular vertices (valence not equal to six). These
object functions are often conflicting with one another,
and the output mesh is a result of compromise among
these factors. For example, many parameterization-based
methods suffer from artifacts in the triangulation at the
locations of the chart boundaries (though this problem can
be alleviated by using a global parameterization as in [52]).
Direct and local optimization methods suffer from a lack of
global control over the structure of the triangulation such
as the location and number of irregular vertices.

In this article, we perform triangular remeshing using a
hexagonal global parameterization derived a shape-aware
6-RoSy field. There are a number of benefits to this. First,
such an approach can lead to overall better aspect ratio for
triangles in the remesh (equilateral). Second, the number
of irregular vertices can be reduced and their locations can
be controlled as these vertices correspond exactly to the
set of singularities in the 6-RoSy field. Third, we have
incorporated the ability to match the orientations of the
RoSy field based on natural anisotropy in the surfaces.
Fourth, the size of the triangles can be controlled through
a scalar sizing function. The frames are just scaled by
the corresponding sizing value. A smaller scaling results
in bigger triangles whereas a high value generates a finer
triangle mesh (Figure 13).

We can influence the number of singularities in the mesh by

Fig. 13. Adaptive sizing of triangles. Left: Linear scal-
ing along the y-axis. Right: Scaling by the absolute
maximal principle curvature value.

model name Hausdorff min max SD irregular
distance angle angle angle vertices

Foot [50] 0.3373 2.82 173.88 11.92 146
Foot [57] 0.0094 26.92 115.85 7.40 3287
Foot 0.0129 22.65 125.09 5.11 13
Venus [50] 0.1005 0.42 178.99 17.48 38
Venus [57] 0.0439 19.89 121.13 10.37 1449
Venus 0.0543 24.87 114.80 6.84 36
Max PlanckFig.12 0.00263 12.44 145.79 5.00 44
Bunny Fig.14, left 0.6581 22.43 128.08 8.23 23
Bunny Fig.14, middle 0.0198 18.03 138.54 7.54 65
Bunny Fig.14, right 0.0309 16.99 133.8 8.50 151
Feline Fig.12 0.02695 5.75 167.34 11.09 121
DragonFig.3 0.00762 4.80 151.88 9.10 181
Blade Fig.13 0.84233 0.67 178.18 26.41 55

TABLE 1
Quality of meshes: Hausdorff distance (% of bounding

box); minimum, maximum, and standard deviation
(SD) of angles, and number of irregular vertices.

singularity clustering as described in Section 3. Figure 14
shows that the distances of the singularities impact the
smoothness of the parameterization, with more singularities
reproducing more feature details of the surface. However,
metric distortion also increases when more singularities are
used as can be represented with the actual mesh resolution
(see Figure 15). Choosing the number of singularities can
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be considered as a tradeoff between smoothness of mesh
elements and feature preservation. In Table 1, we compare
the statistics for the three bunny remeshing results. Notice
that the Hausdorff error and the standard deviation in angles
of the triangles in the remesh is the lowest for the case when
there are 65 singularities, corresponding to the parameter
values that we used to generate all our models. The other
two models have 23 and 151 singularities, respectively.
They were the results of more and less aggressive singular-
ity clustering. Figure 14 compares the three models visually.
Notice that features such as ridges along the ears are usually
less preserved when there are too few singularities.

Fig. 14. Remeshing with 23, 65, and 151singularities.

Figure 16 compares the results of the foot and Venus
models using our method with that of [50] and [57]. Table 1
provides the quality statistics of all tested models and
the comparison. Notice that our method has better overall
aspect ratios of triangles in the mesh (larger minimum
angle, smaller maximum angle, and small standard devi-
ation of angles) than [50]. All three methods capture the
underlying geometry well (comparable Hausdorff distances
to the original input mesh) but our method tends to have
the fewest irregular vertices among all three methods. This
is a direct result of our automatic singularity clustering
in the field generation (Section 3) while achieving good
triangle aspect ratios is due to the nature of the hexagonal
parameterization. In addition, our method tends to produce
edge directions that better align with the features in the
mesh, such as along Venus’ nose ridge than [50]. Additional
remeshing results can be found in Figure 3.

Fig. 15. Singularities which are closer than the grid
size may force the parameterization to degenerate
locally (left). It can be avoided by either choosing a finer
grid size (middle) or by merging nearby singularities
with our clustering approach (right).

Performance. The amount of time to automatically gen-
erate a geometry-aware 6-RoSy field is on average 40
seconds for a model of 40K triangles, measured on a PC

with a dual-core CPU of 2.8GHz CPU and 4GB RAM.
The time to generate the parameterization is approximately
120 seconds per model, measured on a PC with 2.13GHz
four-core CPU with 8GB RAM. The running time of both
stages are impacted by the mesh size as well as the number
of singularities in the RoSy field. The computation time
for both the field generation and parameterization stages is
dominated by solving linear systems whose size isO(|E|)
where |E| is the number of edges in the mesh. We solve
these systems using a biconjugate gradient solver, whose
complexity is sub-quadratic.

6 FUTURE WORK

There are a number of possible future research directions.
First, we plan to add the capability to have parameter lines
passing through sharp edges in the model, as concerned
in the quadrangulation case by [6]. Second, we wish to
study objects that are close toN-RoSy, which we refer
to as near-regular RoSy’s. In these objects theN member
vectors do not have identical magnitude nor even angular
spacings. Such objects can allow more flexibility in both
quadrangular and triangular remeshing. Third, pentagonal
symmetry appears in many natural objects such as flowers.
We wish to pursue graphics applications that deal with
pentagonal symmetry. While anN-gon can tile a plane only
if N = 3, 4, and 6, it can tile a hyperbolic surface for any
N> 2. Consequently, pentagonal patterns have the potential
of being used to tile hyperbolic regions in a surface or for
a hyperbolic parameterization. Notice our parameterization
technique can actually handle a parameterization based on
anN-RoSy field for anyN≥ 2. In another direction we plan
to investigate appropriate mathematical representationsthat
handle other types of wallpaper textures which may contain
reflections and gliding reflections. Surface tiling with at
least two different types of rotational symmetries is another
potential future direction. Such patterns have applications
in cyclic weaving over surfaces [58] and remeshing [33].
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mappings via circle patterns,”Trans. Graphics, vol. 25, no. 2, 2006.

[14] S. Dong, S. Kircher, and M. Garland, “Harmonic functionsfor
quadrilateral remeshing of arbitrary manifolds,”Comput. Aided
Geom. Des., vol. 22, pp. 392–423, 2005.

[15] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart,
“Spectral surface quadrangulation,” inSiggraph ’06, pp. 1057–1066.

[16] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun, “Designing
quadrangulations with discrete harmonic forms,”SGP, 2006.

[17] E. Zhang, J. Hays, and G. Turk, “Interactive tensor fielddesign and
visualization on surfaces,”Trans. Vis. Comp. Graph., vol. 13, no. 1,
pp. 94–107, 2007.

[18] J. L. Helman and L. Hesselink, “Visualizing vector field topology
in fluid flows,” Comp. Graph. Appl., vol. 11, pp. 36–46, 1991.

[19] T. Delmarcelle and L. Hesselink, “The topology of symmetric,
second-order tensor fields,”Comp. Graph. Appl., pp. 140–147, 1994.

[20] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped textures,” Siggraph,
pp. 465–470, 2000.

[21] G. Turk, “Texture synthesis on surfaces,”Siggraph, 2001.

[22] L. Y. Wei and M. Levoy, “Texture synthesis over arbitrary manifold
surfaces,”Siggraph, pp. 355–360, 2001.

[23] J. Stam, “Flows on surfaces of arbitrary topology,”Siggraph, 2003.

[24] J. J. van Wijk, “Image based flow visualization for curvedsurfaces,”
IEEE Visualization, pp. 123–130, 2003.

[25] M. Fisher, P. Schr̈oder, M. Desbrun, and H. Hoppe, “Design of
tangent vector fields,” inSiggraph, 2007, p. 56.

[26] H. Theisel, “Designing 2d vector fields of arbitrary topology,” in
Eurographics, vol. 21, 2002, pp. 595–604.

[27] W.-C. Li, B. Vallet, N. Ray, and B. Ĺevy, “Representing higher-order
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