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Abstract

We analyze an interactive model of credit ratings where external shocks, initially
affecting only a small number of firms, spread by a contagious chain reaction to the
entire economy. Counterparty relationships along with discrete adjustments of credit
ratings generate a transition mechanism that allows the financial distress of one firm
to spill over to its business partners. Such a contagious infectious of financial distress
constitutes a source of intrinsic risk for large portfolios of credit sensitive securities that
cannot be “diversified away.” We provide a complete characterization of the fluctuations
of credit ratings in large economies when adjustments follow a threshold rule. We also
analyze the effects of downgrading cascades on aggregate losses of credit portfolios. We
show that the loss distribution has a power-law tail if the interaction between different
companies is strong enough.
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1 Introduction

It has been well documented by, e.g., Duffee (1998) and Keenan (2000) that the number of

defaults and credit rating downgrades are strongly correlated with the business cycle. The

dependence of aggregate default rates on macroeconomic quantities like short term interest

rates, GDP growth rates, or equity returns has motivated reduced form models such as Duffie

and Singleton (1999), Lando (1998) or Frey and McNeil (2001), where the default intensity

depends on an underlying set of state variables. This approach has the convenient feature that

defaults of individual companies and the associated losses of a portfolio of credit sensitive

securities are conditionally independent given the state variables. However, it has been

argued by, for instance, Hull and White (2001) and Schönbucher and Schubert (2001) that

the default correlation obtainable in reduced form models is typically quite low. Jarrow and

Yu (2001) write that “a default intensity that depends linearly on a set of smoothly varying

macroeconomic variables is unlikely to account for the (degree of) clustering of defaults

around an economic recession.”

A more direct form of default dependence arises from counterparty relations. Interactive

links between different corporations allow for a spillover of financial distress from one com-

pany to another. Lang and Stulz (1992) have shown that bankruptcy filing have an impact

on stock returns, and most likely also on default probabilities of non-defaulted companies.

An “infectious” propagation of defaults can in fact generate an autonomous dynamics as

documented by the recent financial crises in East Asia. The prevalence of financial crises has

led many researchers to conclude that the financial sector is unusually susceptible to shocks.

One theory is that small shocks, which initially only affect a few institutions or a particular

region of the economy, spread by contagious credit quality deterioration to the rest of the fi-

nancial sector. But credit contagion phenomena are not limited to the financial sector. They

are also a concern in manufacturing where trade credits link suppliers and buyers of goods

through a chain of borrowing obligations. If firms are highly interdependent, the default of a

single customer can trigger an entire cascade of additional bankruptcies; see, e.g., Kiyotaki

and Moore (1997). Since the likelihood of default is higher during a recession, this cascading

effect is much more likely to be observed then.

Credit contagion rests upon a proper transmission mechanism through which shocks,

initially affecting only a small number of firms can infect the whole economy. Counterparty
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relations in the form of borrowing and lending contracts constitute a typical distress propaga-

tion channel as shown by, e.g., Allen and Gale (2000). These authors consider an equilibrium

model where different sectors in the banking system have overlapping claims on one another

in order to buffer external shocks. The arrangement, however, is quite fragile. Depending on

the degree of connectedness of the buffer system a small shock to one institution can spread

through the entire banking sector causing other institutions to default. Freixas, Parigi, and

Rochet (2000) study the stability of the financial system and the coordination role of su-

pervising authorities if an insolvent institution affects the system in various ways depending

on the cross-payment pattern in the interbank market. Jarrow and Yu (2001) introduced a

“primary-secondary” approach in order to price defaultable bonds in the presence of counter-

party risk. Here, firms split into one of two mutually exclusive types: Primary firms’ default

intensities only depend on some economy-wide macrovariables, whereas secondary firms’ de-

fault processes depend on both macrovariables and the credit rating of primary firms.

Chain reactions of credit rating downgrades pose a thread to portfolios of credit sensitive

securities as the market value of defaultable claims is particularly vulnerable to excessive fluc-

tuations in default rates. This has important implications for the management of credit risk

portfolios, where default correlations need to be explicitly modelled. Infectious defaults were

first analyzed by Davis and Lo (1999); see also Hammarlid (2004). However, there are only few

theoretical approaches that analyze the resulting portfolio risk in a mathematically rigorous

manner. Recently, Dembo, Deuschel and Duffie (2003) provided a large-deviations approx-

imation of the tail distribution of total financial losses on large portfolios of heterogenous

credit securities. Under the assumption that individual losses are conditionally independent

given some common “correlating factor,” these authors showed how to estimate the expected

loss on different positions in the event of a large loss, and how to restructure the portfolio

so as to “balance the effects of each type of position on the total financial distress costs.”

Giesecke and Weber (2003) used methods and techniques from the theory of interacting par-

ticle systems in order to study a model with homogeneous locally interacting firms that can

be in one of two possible states: “high” or “low”. The joint dynamics of credit qualities is

then modelled by means of an interacting Markov process that allows for multiple limiting

distributions. Despite the strong correlations between individual ratings, the per-capita loss

associated to a downgrade of individual firms converges almost surely to the expected loss of

a single position. For finite portfolios, though, the contagion effect increases the fluctuations
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around average losses. Frey and Backhaus (2003) consider an extension of Jarrow and Yu

(2001) where default intensities depend on the average rating throughout the whole economy.

The aforementioned approaches are analytically very convenient. However, they have the

unsatisfactory feature that the additional uncertainty arising from the interaction of firms

can be eliminated by means of simple diversification. Similar to the case of independent

defaults, the uncertainty about aggregate losses is small whenever a financial institution holds

sufficiently many positions. Recently, Egloff, Leippold and Vanini (2004) proposed a model

of credit contagion with a rich interaction structure which is more tailored towards business

needs. These authors do not obtain analytical results, but numerical simulations suggest that

microstructural dependencies have significant effects on the tails of the loss distribution.

This paper suggests an equilibrium model of credit ratings where the risk to large port-

folios is intrinsic in that it cannot be “diversified away.” The distribution of credit rating

downgrades can be given in closed form; we do not need to rely on a numerical analysis. Our

focus is on the interplay between counterparty relations and “lumpy” adjustments of credit

ratings. Like many microeconomic problems, credit quality adjustments occur in a discrete

manner. This raises the question whether the threshold rules followed by rating agencies

when evaluating the credit quality of defaultable bonds can generate a channel of contagious

downgrade dynamics. The role of thresholds in individual behavior on the dynamics of ag-

gregate quantities has been extensively investigated in the microeconomic literature on (S, s)

economies. Caplin (1985) was the first to develop a general framework to study the implica-

tions of an (S, s) inventory policy on the fluctuations of aggregate variables. For economies

with an uncountable set of agents, subsequent research by Caballero and Engle (1991) and

Caplin and Lehay (1997) has shown that the average behavior throughout the entire popula-

tion does not differ from that of its frictionless counterpart. This neutrality result, however,

rests upon the assumption of an infinite number of market participants. Recent work of Nirei

(2003) showed that the picture changes if we consider finite economies. The latter paper very

much inspired our own research.

We provide a simple probabilistic framework to study credit contagion phenomena arising

from lumpy adjustments of credit ratings in economies with heterogeneous interacting firms.

Specifically, we consider an equilibrium model of credit ratings

• where dependencies between different firms generate an intrinsic risk for credit sensitive

portfolios that cannot be “diversified away,”
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• where small shocks, initially affecting only a small number of firms, spread by a conta-

gious chain reaction to the rest of the economy,

• where the additional risk arising from counterparty relations can be quantified, and

• where the sources of large portfolio losses can a-priori be identified.

Firms are characterized by pairs (xi, θi). The random variable xi takes values in a finite

set. It denotes the credit rating of firm i. The quantity θi summarizes idiosyncratic factors

that influence the company’s financial situation, but credit ratings will be the only observable

quantities. This assumption is justified if we think of firms as being small or medium-sized.

An investment bank holding financial positions with medium-sized corporations does typically

not have full access to all the internal, company specific factors that affect a firm’s financial

state. Following Allen and Gale (2000), we finally introduce buffer variables si describing the

firm’s ability to absorb additional financial distress without getting downgraded by a rating

agency. A downgrade only occurs if a shock exceeds a certain threshold.

In a first step we assume that individual ratings depend on the ratings of all the other

firms only through the average rating. Such an interaction of mean-field type makes sense

in the context of portfolio credit risk: if a financial institution has incurred unusually many

losses in its loan portfolio, then its credit quality is likely to be downgraded by a rating

agency. Unusually many defaults may also have a negative impact on the overall business

climate. This favors additional defaults. In a subsequent step we introduce an additional

local component into the interaction. It turns out that the results are quantitatively very

similar to the results of the mean-field model. This suggests that it is the global interaction

that generates a transition channel for the infectious spread of financial distress.

The cascade is initiated by downgrades of those firms whose shock exceeds their respective

threshold levels. In the limit of an infinite economy, the number of initial downgrades is

Poisson distributed. This captures the idea that the shock initially affects only a small

number of firms. Nonetheless the distribution of the total number of defaults has slowly

decaying tails. The interactive structure of credit ratings generates a feedback that may

trigger a chain reaction of additional downgrades. A firm might well be able to absorb its

shock. But it might not be able to absorb both the shock and the resulting deterioration

in the average rating. The initial downgrades may thus trigger additional defaults which, in

turn further deteriorate the average rating, and so on. In a large economy, this cascade can
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be described by a branching process. Under the assumption that the interaction between

different firms is weak enough the distribution of the total number of defaults can be given in

closed form. Our proof uses modifications of arguments given in Nirei (2003) and a decoupling

argument for economies with local and global interactions that has previously been applied

in the context of social interaction models by Horst and Scheinkman (2003).

The market value of a financial institution’s position hold with a firm can be severely

reduced by adverse changes in the counterparty’s credit quality. This calls for an analysis

of aggregate portfolio losses due to contagious cascades of credit rating downgrades. To this

end, we associate to each firm a random variable describing the loss a bank suffers in case of a

downgrade. Following Dembo, Deuschel and Duffie (2003), we assume that individual losses

are independent and identically distributed according to some exogenous distribution. The

aggregate portfolio losses then take the form of a compound sum where the compounding

distribution is generated in an endogenous manner by means of a cascade process. We

characterize the tail structure of the distribution of aggregate losses. It turns out that the

distribution has fat tails if the interaction between different firms is too strong. In this case

large portfolio losses are typically due to an unusually large number of individual downgrades.

The rest of this paper is organized as follows. In Section 2 we introduce our interactive

model of credit ratings. Section 3 analyzes the effects of counterparty relationships on the

distribution of aggregate losses. The proofs are given in Section 4. An extended mathematical

appendix summarizes some results about branching processes and compound distributions.

2 Stochastic cascade models of credit contagion

This section introduces an interactive equilibrium model of credit ratings. We identify dis-

crete adjustments of credit qualities as a source of intrinsic risk to credit portfolios. Lumpy

adjustments of credit ratings along with counterparty relationships generate a propagation

channel through which external shocks, initially affecting only a small number of firms, can

spread to the rest of the economy, thereby triggering a cascade of credit rating downgrades.

Using results form the theory of branching processes, we show that the distribution of the

total number of downgrades can be given in closed form.1

1The setup in Section 2 closely follows Nirei (2003). This author considers a propagation mechanism in an

economy where many individuals follow a threshold rule and interact with a positive feedback. However, as we

shall see, his arguments hold only for symmetric equilibria for which we are unaware of any general existence
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We consider an economy with N companies. Associated to each firm i ∈ {1, 2, . . . , N} is

a credit rating xN,i from a finite set Λ. Firms are heterogeneous. Ratings depend on firm

specific parameters such as the number of outstanding loans or its debt structure, and on the

average credit rating throughout the whole economy. Specifically, firm i ∈ {1, 2, . . . , N} is

characterized by a pair

(xN,i, θi) (1)

where the random variable θi summarizes idiosyncratic parameters affecting company i’s

financial situation. Credit ratings downgrades occur in a discrete manner. The set of possible

credit ratings is given by a finite subset of {0,±λ,±2λ, . . . , }. The quantity λ measures the

degree of “lumpiness” of credit rating adjustments. The smaller λ, the finer the classification

scheme, and the more information about a firm’s financial health is encoded in its rating.

2.1 A mean-field model of credit ratings

Our goal is to derive a closed from solution for the distribution of the total number of

downgrades in an interactive model of credit contagion. Therefore, we consider the simplest

possible form of interaction where individual ratings only depend on the average rating,

xN :=
1
N

N∑

i=1

xN,i, (2)

throughout the whole set of firms. A mean field interaction captures the idea that defaults

or downgrades of firms negatively influence the overall business climate. An usually large

number of defaults typically deepens an economic recession. It may also prompt banks to

call in outstanding loans – either having a negative impact on a firm’s financial situation.2

Assuming a simple linear dependence of individual ratings on both average ratings and firm

specific quantities, and taking into account that the set of possible ratings is discrete, we are

lead to the following equilibrium condition of credit rating configurations:

xN,i = αxN + θi − (
αxN + θi

)
mod λ (3)

result.
2Nonetheless, an interaction of mean-field type should only be viewed as a first step towards more general

networks of interacting companies. However, since our goal is clarify the role of counterparty relations along

with discrete adjustments of credit qualities as a transmission channel for the spread of financial distress,

we restrict ourselves to the simplest possible form of interaction. An extension to more general interaction

structures is left for future research.
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where y mod λ denotes the remainder on division of y by λ, and α ∈ [0, 1] specifies the

strength of interactions between different firms. The modulo-λ-arithmetic implies that equi-

librium ratings are positive multiples of λ. The special case α = 0 corresponds to a situation

where credit ratings are independent of each other.

We assume that the idiosyncratic quantities θi are uniformly bounded. This allows us to

choose a finite set of possible credit ratings. It further simplifies our analysis if we assume

that the random variables θi are independent and uniformly distributed.

Assumption 2.1 The random variables {θi}i∈N are independent and uniformly distributed

on the interval [0, θ] := [0, nλ] for some n ∈ N.

We are now ready to prove existence of equilibrium configurations of credit ratings; see

also Nirei (2003), Lemma 1.

Lemma 2.2 Suppose that the interaction between different firms is weak enough in the sense

that α < 1. If Assumption 2.1 is satisfied, then there exists a finite set

Λ ⊂ {0,±λ,±2λ, . . .}

and a configuration of credit ratings {xN,i(θ)}i∈I ∈ ΛN that satisfies (3).

Proof: Since α < 1, there exist y, y ∈ R such that

y = αy − λ and y = αy + θ.

Let us put S :=
∏N

i=1[y, y] and define functions gi(·, θ) : [y, y] → R by

gi(y, θ) = αy + θi − (αy + θi) mod λ.

For yi ∈ [y, y] we obtain

gi(yi, θ) ≥ αyi + θi − λ ≥ αy − λ = y and gi(yi, θ) ≤ αyi + θi ≤ αy + θ = y.

Hence, g(·, θ) := (g1(·, θ), . . . gN (·, θ)) maps the complete lattice S into itself. Since g(·, θ) is

increasing, it has a fixed point xN (θ), due to Tarski’s theorem. 2

The set of possible ratings can be chosen independently of the number of firms and

independently of the realizations of the random variables θi. Throughout,

xN (θ) = {xN,i(θ)}N
i=1 ∈ ΛN (4)
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denotes an equilibrium configuration of credit ratings and ymin := min{y : y ∈ Λ} and

ymax := max{y : y ∈ Λ} are the best and the worst possible rating, respectively. We assume

that credit ratings are the only observable quantities. This assumption is justified if we think

of firms as being small or medium-sized. A financial institution holding positions which small

companies typically does not have complete information about all the firm specific factors

encoded in the random variable θi. In particular, the buffer variables are unobservable. A

risk manager has only incomplete information about a company’s ability to absorb additional

distress. The ability of firm i to absorb external shocks is measured by its buffer variable or

threshold level

sN,i :=
(
αxN + θi

)
mod λ. (5)

The impact of buffer systems on the stability of financial systems has also been analyzed by

Allen and Gale (2000).

The actual realization of the firm specific parameters θi are unobservable, but their dis-

tribution its known. Hence we can calculate the conditional distribution of si, given an

equilibrium configuration of credit ratings (xN,i)N
i=1.

Example 2.3 Suppose that λ = 1 and that θi is uniformly distributed on the unit interval.

In this case,

P[xN,i = 0 for all i = 1, 2 . . . , N ] = 1,

and so the equilibrium is almost surely unique. In particular,

P[si = θi for all i = 1, 2, . . . , N ] = 1,

and so the buffer variables are conditionally independent and identically distributed on (0, λ).

The case λ = 1 and θi ∈ (0, 1) may be viewed as a situation where a financial institution

only knows whether or not a firm is bankrupt. In such a “binary choice model” the random

variables si are independent and identically distributed. But we want to allow for a finer

classification scheme in order to study the impact of the “grid size” λ on the distribution of

portfolio losses. In the more general case λ < 1 the buffer variables are no longer conditionally

identically distributed. The following example shows that Assumption 1 in Nirei (2003) only

holds for symmetric equilibria. For non-symmetric equilibria, the entire analysis turns out to

be much more involved.
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Example 2.4 Let us assume that α = 3
4 , that λ = 1

2 , that N = 2, that θi ∈ (0, 1), and that

a risk manager observes credit ratings (x1, x2) =
(
1, 3

2

)
. Then (θ1, θ2) satisfies

1 =
15
16

+ θ1 −
(

15
16

+ θ1

)
mod

1
2

and
3
2

=
15
16

+ θ2 −
(

15
16

+ θ2

)
mod

1
2
.

A-priori θi ∈ (0, 1), and so all pairs (θ1, θ2) with

θ1 ∈
(

1
16

,
9
16

)
and θ2 ∈

(
9
16

, 1
)

support (x1, x2) as an equilibrium configuration. In view of Assumption 2.1 the random

variables θ1 and θ2 are independent and conditionally uniformly distributed on ( 1
16 , 9

16) and

( 9
19 , 1), given (x1, x2). Thus, the buffer variables

s1 =
(

15
16

+ θ1

)
mod

1
2

= θi − 1
16

and s2 =
(

15
16

+ θ2

)
mod

1
2

= θ2 − 9
16

are conditionally independent and uniformly distributed on (0, 1
2) and (0, 7

16), respectively.

Suppose now that firm i is subject to a small external shock of size yi < 1
2 which deteriorates

its financial standing by yi. This means that θi is to be replaced by θ̂i := θi + yi. If y2 < 1
16 ,

then (x1, x2) is still an equilibrium provided that firm 1 is not downgraded. The second

company is able to absorb small shocks.

2.2 Thresholds and downgrade cascades in mean-field models

We are now going to study the impact of external shocks on the equilibrium configuration of

credit ratings. The impact of an economy wide shock of size Y on company i is given by

yN,i :=
εi

N
(6)

for a sequence of bounded and independent and identically distributed non-negative random

variables εi with law Q(Y ; ·) and Eεi = Y . Hence different firms are affected in different ways

by shocks. By the law of large numbers

Y = Eεi = lim
N→∞

N∑

i=1

yN,i P-a.s.

In a large economy the actual shock is given by the accumulated impact of many small,

conditionally independent shocks.3

3In the context of our interactive equilibrium model of credit ratings, the quantity Y plays the role the

macrovariables play in the Bernoulii mixture models studied in Lando (1998) or Frey and McNeil (2001).
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Assumption 2.5 The random variables εi are non-negative, bounded, and, conditioned on

the macrovariable Y , independent and identically distributed with E[εi|Y ] = Y

Initially, firm i is downgraded only if the impact of the external shock exceeds its ability

to absorb exogenous distress. This ability is measured by the buffer variable sN,i defined in

(5). A downgrade occurs if

sN,i + yN,i > λ.

In a large economy the number of initial downgrades will approximately be Poisson dis-

tributed. This captures the idea that a shock initially affects only few firms. But counter-

party relationships generate a transmission mechanism through which the shock can spread

throughout the whole economy. Individual downgrades deteriorate the average situation and

the feedback effect generated by the interactive dependence of credit ratings favors additional

defaults.

2.2.1 The cascade process

Let us now be more specific about the dynamics of the cascade of credit rating downgrades.

Following Nirei (2003), we define a stochastic process {(xN
t , sN

t )}t∈N = {(xN,i
t , sN,i

t )N
i=1}t∈N as

follows: The starting point (xN
0 , sN

0 ) is given by an equilibrium configuration of credit ratings

and by the corresponding vector of sensitivity parameters:

xN
0 = (xN,i

0 )N
i=1 is a random configuration that satisfies (3) and sN,i

0 = (xN
0 + θi) mod λ.

If a shock hits the economy, the first companies to get downgraded are those who are not

able to absorb their respective shocks yN,i. But even if a company is not downgraded, the

shock leads to a deterioration of its financial standing, and so its buffer variable has to be

adjusted accordingly. Thus, we put

xN,i
1 =





xN,i
0 + λ if sN,i

0 + yN,i > λ

xX,i
0 otherwise

and sN,i
1 = sN,i

0 + yN,i + xN,i
1 − xN,i

0 . (7)

Taking into account the feedback effect through the average rating, we define for t ≥ 2:

xN,i
t =





xN,i
t−1 + λ if sN,i

t−1 + α∆t−1 ≥ λ

xN,i
t−1 otherwise

and sN,i
t = sN,i

t−1 + α∆t−1 − xN,i
t + xN,i

t−1 (8)
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where ∆t−1 = xN
t−1−xN

t−2 denotes the increase in the average rating in period t−1. This way,

a company is downgraded at most once per period. We shall see that no firm is downgraded

twice if N is large enough. This is in accordance with empirical observations; downgrades by

more than one class are rather exceptional.

Remark 2.6 Our cascade process should be viewed as an equilibrium selection procedure as

in, e.g., Cooper (1994). Initially, the firms’ financial situation is described by the vector θ,

and the corresponding equilibrium configuration is x(θ). After a shock hits the economy, a

firm’s credit quality is revalued. The new equilibrium is given by the limiting configuration a

sequential “best reply” dynamics.

2.2.2 The distribution of the number of downgrades

Introducing the stopping time

τN := inf{t : xN
t = xN

t+1}, (9)

we see that xN,i
t = xN,i

t+1 = . . . for all i ∈ {1, 2, . . . , N} and each t ≥ τN . The total number

DN
τN of downgrades is then given by

DN
τN =

1
λ

N∑

i=1

(
xN,i

τN − xN,i
0

)
and DN

t =
1
λ

N∑

i=1

(
xN,i

t − xN,i
t−1

)

is the number of downgrades in period t. We are interested in the distribution of the total

number of defaults in a large economy. To this end, we show that the dynamics of the pro-

cess {DN
t }t∈N can asymptotically be described by a branching process where the population

reproduces from generation to generation in a Poisson manner.4 The proof of the following

result requires some preparation and will be carried out in Section 4.

Theorem 2.7 Suppose that Assumptions 2.1 and 2.5 are satisfied. Conditioned on the shock

size Y , the following holds:

(i) As N →∞, the sequence of downgrade processes {DN
t }t∈N (N ∈ N) converges in distri-

bution to a branching process {Dt}t∈N where the population reproduces from generation

to generation in a Poisson manner, and where D0 is Poisson distributed:5

Dt
D= Dt,1 + Dt,2 + . . . + Dt,Dt−1

4Basic properties of branching processes are summarized in a mathematical appendix.
5For two random variables X and Y defined on a common probability space we write X

D
= Y if X and Y

have the same distribution.
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where the independent random variables Dt,i are Poisson distributed.

(ii) The sequence of the total number of downgrades {DN
τN }N∈N converges in distribution to

a random variable Dτ which follows a compound Poisson distribution. More precisely,

there exists a random variable Π that is Poisson distributed with some parameter Y π1(λ)

such that

Dτ
D=

Π∑

t=1

Zt (10)

where {Zt}i∈N is a sequence of independent and identically distributed random variables

following a Borel-Tanner distribution with parameter ν := απ2(λ) ≤ 1,

P[Zt = k] =
1
k!

(kν)k−1e−kν , (11)

and independent of Π. Conditioned on {Π = l} we have that

P[Dτ = k|Π = l] =
l

k

(kν)k−le−kν

(k − l)!
for k ≥ l, (12)

and there exists a multiplicative constant C > 0 such that

P[Dτ = k|Π = l] = Cνkek(1−ν)k−
3
2 as k →∞. (13)

Moreover, limλ→0 λ2π1(λ) = limλ→0 π2(λ) = 0.

(iii) The mean and the variance of Dτ are given by, respectively

EDτ =
Y π1(λ)

1− π2(λ)
and VDτ =

Y π1(λ)
(1− π2(λ))3

. (14)

(iv) If θi is uniformly distributed on (0, λ), then π1(λ) = 1 and π2(λ) = λ. In this case the

distribution of Dτ only depends on the strength of interaction between different firms.

Some comments about the previous result are in order. The number of firms initially hit by

the shock is approximately Poisson distributed. This captures the idea that a shock initially

affects only a small number of firms. The interaction between individual companies generates

a propagation mechanism for shocks to spread through the whole economy. Each initial

default triggers additional downgrades through a chain reaction. The number of additional

downgrades resulting from an “initial default” follows a Borel-Tanner distribution. This

explains (10). In view of (13), the law of Dτ is given as a mixture of distributions with slowly
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decaying tails. As such it has considerably fatter tails than the standard normal distribution.

The stronger the interaction between individual firms, the fatter the tails. For the limiting

case ν = 1, we obtain the Pareto tail

P[Dτ = k] = Ck−
3
2 as k →∞.

In this case Dτ has infinite variance. In Section 3 we study the impact of credit contagion on

aggregate portfolio losses under the simplifying assumption that Π = 1. This can be viewed as

a situation where the downgrade cascade is triggered by the default of some major enterprize.

In such a situation the total number of defaults follows a Borel-Tanner-distribution, and the

distribution of aggregate portfolio losses is heavy-tailed if the interaction between different

firms is too strong.

Remark 2.8 (i) The number of firms initially hit by the shock is increasing both in the

shock size Y and the strength of interaction, α. The number of subsequent defaults in

periods t = 1, 2, . . . also increases with the strength of interactions,but depends on Y

only through D0. The quantities D1, D2, . . . are increasing in the strength of interaction,

but decrease with λ. The smaller λ, the smaller the impact of an individual default on

the average credit rating and the fewer downgrades are triggered per initial default.

(ii) The proof of Theorem 2.7 is based on the approximation of the binomial distribution

with small success probability by a Poisson distribution. Convergence usually takes place

at an exponential rate. Since we do not restrict ourselves to the tail of the distribution

of Dτ but obtain a representation of the entire distribution, the number of firms does

not need to be “too large” for our the approximation to be accurate.

The grid size λ may be viewed as a simple measure for the loss a financial institution

associates to a position in case of a downgrade. Aggregate portfolio losses are then given by

DN
λ :=

∑

i=1

(xN,i
τN − xN,i

0 ).

In view of our Theorem 2.7 the random variable DN
λ converges in distribution to λD and the

mean and the variance of λD are given by

λ
Y π1(λ)

1− π2(λ)
and λ2 Y π1(λ)

(1− π2(λ))3
,
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respectively. By Theorem 2.7 (ii) the random variables Dλ converge in distribution to some

multiple of Y as λ → 0. The limiting case λ → 0 may be viewed as a frictionless counterpart

to our model with lumpy adjustments. In a model with continuous adjustments, there is no

uncertainty about the financial distress shocks cause to credit portfolios. The risk is entirely

determined by the shock size. If ratings are discrete, the feedback effect generates an intrinsic

risk to credit portfolios..

2.3 Credit contagion in a model of local interactions

In this section we extend our interactive model of credit contagion by introducing an addi-

tional local component into the interaction. Models of local interactions have been extensively

analyzed in the microeconomic literature on non-market interactions by, e.g., Durlauf (1993),

Glaeser, Sacerdote, and Scheinkman (1996) or Horst and Scheinkman (2003). These models

are capable of displaying large multipliers that transform small changes in exogenous variables

into large changes in endogenous quantities. The existence of “social multipliers” provides

a possible explanation for the observation of large fluctuations in aggregate behavior in the

absence of corresponding changes in economic fundamentals.

Our goal is to further clarify the role of mean-field interactions as a transition channel

for infectious spreads of financial distress. We show that a purely local interaction cannot

generate a heavy tailed distribution of defaults. In this sense credit contagion rests upon

global interaction. For mathematical reasons we need to restrict ourselves to “binary choice”

models where the random variables θi are uniformly distributed on the unit interval (0, 1),

and where λ = 1. Associated to each company i ∈ {1, 2, . . . , N} is the set N(i) := {i + 1}
of its business partner where we apply modulo-N -arithmetic.6 We fix positive interaction

parameters α1 and α2 specifying the strength of the global and the local component in the

interaction. For binary choice models the symmetric configuration xN,i ≡ 0 satisfies the

equilibrium condition

xN,i = α1x
N + α2x

N,i+1 + θi − (
α1x

N + α2x
N,i+1 + θi

)
mod λ. (15)

In a large economy the impact of the default of a firm’s neighbor on its own rating is much
6The assumption of a one-sided interaction is made merely for analytical convenience. Our results carry

over to the case N(i) := {i − 1, i + 1}. The analysis, however, becomes much more cumbersome, and we do

not really gain additional insight from this more general interaction pattern.
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stronger than the impact of any other corporation. The special case α2 = 0 corresponds to

the mean-field interaction studied in the previous section.

2.3.1 Default cascades in a model of local and global interactions

In a model with locally and globally interacting companies a downgrade of an individual

firm is now felt both through the deterioration of the average rating throughout the entire

economy, and through its impact on the credit quality of its immediate business partners. In

the sequel it will be convenient to distinguish between local and global defaults.

Definition 2.9 We say that company i defaults locally, if it gets downgraded because of

the insolvency of its business partner, firm i + 1. The corporation defaults globally, if the

defaults is due to a deterioration of the overall business climate described by the average

rating throughout the whole economy.

In the presence of local interactions there are various possibilities to specify the dynamics

of the contagious spread of financial distress. We suggest to describe the chain reaction of

bankruptcies by an alternating sequence of global and local defaults.7 The global defaults

are described by means of a stochastic process {(xN
t , sN

t )}t∈N with initial values

xN
0 = (xN,i

0 )N
i=1 where xN,i = 0, and sN

0 = (sN,i
0 )N

i=1 where sN,i
0 = θi. (16)

As in the mean-field case the cascade is again triggered by an external shock, and the first

companies to default are those who are not able to absorb additional financial distress:

xN,i
1 =





1 if sN,i
0 + δi > 1

0 otherwise
and sN,i

1 = sN,i
0 + δi − xN,i

1 . (17)

Due to the local dependencies in credit ratings a default of an individual company has a

negative impact of the financial health of its business partner. A global default may trigger

local insolvencies. The chain reaction of bankruptcies resulting from global insolvencies of

business partners is now specified in an inductive manner. Specifically, we suppose that the

pair (xN
r , sN

r ) is already defined and denote by HN
r := {i : xN

r = 1} the set of all firms that

have defaulted by and up to period r ∈ N. Next, we define a stochastic process {(yN
t , qN

t )}t∈N
7This way of modelling default cascades guarantees that our techniques carry over to interaction patterns

that are more general than the simple one-sided interaction used for analytical convenience.
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starting in (xN
r , sN

r ) by yN,i
t ≡ qN,i

t ≡ 1 for i ∈ HN
r . Thus, there is no recovery of defaulted

firms. A firm i /∈ HN
r defaults because of an insolvent business partner if it is unable to

absorb the additional financial distress. Thus, for i /∈ HN
r we put

yN,i
t =





1 if qN,i
t−1 + α2y

N,i+1
t−1 ≥ 1

0 otherwise,
and qN,i

t =





1 if yN,i
t = 1

qN,i
t−1 + α2y

N,i+1
t otherwise.

This way, the limits yN,i∞ := limt→∞ yN,i
t and qN,i∞ := limt→∞ qN,i

t exist, and the set of firms

that defaulted due to a default of a business partner in period r is thus given by H
N
r := {1 ≤

i ≤ N : i /∈ HN
r and yN,i∞ = 1}. The local defaults further deteriorate the overall economic

conditions and we define (xN
r+1, s

N
r+1) by xN,i

r = sN,1
t = 1 if i ∈ HN

r ∪H
N
r and

xN,i
r+1 =





1 if qN,i∞ + α1
|H|Nr

N ≥ 1

0 otherwise
and sN,i

r+1 =





qN,i∞ + α1
|H|Nr

N if xN,i
r+1 = 0

1 otherwise

for those companies i that have not been defaulted by period r. We denote the number of

defaults “in period r” by D̂N
r , and

τ̂N := inf{t : xN
t = xN

t+1}

is the time of extinction of the downgrade process {D̂N
t }t∈N. The total number of defaults

triggered by an external shock in a model with locally and globally interacting companies is

then given by

D̂N
τ̂N :=

τ̂N∑

t=0

D̂N
t =

N∑

i=1

xN,i
τ̂N .

2.3.2 The distribution of downgrades in the presence of local interactions

By analogy to the case of a simple mean-field interaction the sequence {D̂N
t }t∈N can be

approximated in law by a branching process. If we limit the strength of interactions in our

economy, then the probability of a large number of defaults can be obtained from a seminal

paper by Otter (1949). An explicit representation for the distribution of DN
τN , however, is

not available. The proof of the following result is given in Appendix A.

Theorem 2.10 Suppose that λ = 1, that the random variables θi are uniformly distributed

on the unit interval and that the following weak interaction condition holds:

α1

1− α2
≤ 1.
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(i) The sequence of downgrades can be approximated in law by a branching process {D̂t}t∈N:

D̂t
D= D̂t,1 + D̂t,2 + . . . + D̂t,D̂t−1

where the independent random variables D̂t,i follows a compound Poisson distribution.

(ii) The sequence{D̂N
τ̂N }N∈N converges in distribution to an almost surely finite random

variable D̂. If, in addition, the equation

α∗ =
1
α1

(1− α2α
∗)2

1− α2
has a solution α∗ ∈ (

0, α−1
2

)
,

then

P[D̂ = k|D̂0 = l] = Cr−k− 1
2 k−

3
2 as k →∞ where r := α∗e−α1

α∗−1
1−α2α∗ .

In the case of a simple mean field interaction, we obtained an exponentially truncated

power law of the distribution of the total number of downgrades. In the presence of an

additional local interaction we derived a qualitatively similar result. In both cases such a

distribution emerges naturally from the approximation of the cascade process by branching

processes. The rate of decay of the tail of the distribution of the total number of defaults is

inversely related to the strength of interaction as the following example illustrates.

Example 2.11 (i) For α1 = α2 = 1
5 we obtain α∗ ≈ 2.1 and r ≈ 2.2. In this case

the interaction is very weak, and so the tail of the distribution of the total number of

downgrades decays rather rapidly.

(ii) For α1 = 2
3 and α2 = 1

4 we have α∗ = 1.072 and r ≈ 1.14. The interaction is much

stronger than in the previous example and the tails decay much slower.

3 Large portfolio losses

Consider a financial institution holding a portfolio of financial positions whose market value is

subject to the credit rating of the issuer or counterparty. Such positions include loans, bonds

and other debt instruments as well as derivatives written by default-prone business partners.

Due to adverse changes in the credit qualities of counterparties, for instance credit rating

downgrades, the market value of the corresponding portfolio can be severely reduced. At

times where the portfolio is revalued, position i ∈ {1, 2, . . . , N} experiences a random loss of
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Ci if its credit quality has been downgraded in reaction to an external shock. An investment

bank holding a portfolio of positions with firms i ∈ {1, 2, . . . , N} then suffers from a loss

LN :=
D

τN∑

i=1

Ci.

In this section our focus on the effects of downgrade cascades on aggregate portfolio losses.

Following Dembo, Deuschel and Duffie (2003) we assume that individual exposures are in-

dependent and identically distributed according to some exogenously specified distribution.

The actual number of downgrades or defaults, however, is specified by an endogenously gen-

erated branching process. In view of our Theorem 2.7, it is straightforward to show that the

distribution of aggregate losses follows a compound distribution as N →∞.

Proposition 3.1 For N → ∞, the random variables LN converge in distribution to the

random variable

L =
Dτ∑

i=1

Ci (18)

Compound random sums of the form (18) are of major interest in insurance theory; see,

e.g., Embrechts, Klüppelberg and Mikosch (1997) for a detailed discussion of random sums

in the context of ruin theory. In an insurance context Dτ typically denotes the number of

claims over a certain period of time, and C1, . . . , CDτ are the claim-sizes. In the context

of credit contagion the quantity L describes the loss suffered by a bank from a series of

credit rating downgrades. A risk manager aiming at evaluating the possibilities of large

portfolio losses induced by credit quality deterioration is then interested in the tail structure

of the random variable L. For this it is essential to locate the sources of large losses. Large

aggregate losses may result from (i) a rather small number of large individual losses, or (ii) a

large number of average losses. The latter case corresponds to a situation where Dτ is large

whereas the quantities C1, . . . , CDτ take values close to their expected values. This case is of

particular interest for financial institutions because an active risk management can somewhat

control the distribution of individual losses. But one can typically not control the degree of

interrelationships between firms. Hence risk management cannot affect the distribution of

the random variable Dτ . In this sense, the possibility of cascades of credit rating downgrades

poses a considerable intrinsic risk to credit portfolios that cannot be “diversified away”.

In order to analyze the distribution of aggregate portfolio losses it will be convenient to

classify the random variables Ci according to the tail structure of their distribution.
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Definition 3.2 Let (Ci)i∈N be a sequence of non-negative iid random variables defined on a

probability space (Ω,F ,P) with distribution function F .

(i) We say that the random variables Ci have an exponential tail if the moment generating

function

M(s) := E
(
esCi

)

exists for small enough s.

(ii) Let F̄ (x) = 1− F (x) (x ≥ 0) be the tail of the distribution function F and denote by

F̄ ∗n(x) := 1− F ∗n(x) = P[C1 + · · ·+ Cn ≥ x]

the tail of the n-fold convolution of F . Following Embrechts, Klüppelberg and Mikosch

(1997) we say that F has a sub-exponential tail if

lim
x→∞

F̄ ∗n(x)
F̄ (x)

= n for some (all) n ≥ 2. (19)

As shown by Embrechts and Goldie (1982), the random variables Ci have sub-exponential

tails if and only if

P[C1 + · · ·+ Cn ≥ x] = P[max{C1, . . . , Cn}] as x →∞.

The sum of independent and identically distributed sub-exponential random variables is likely

to be large if and only if the maximum is likely to be large.

Example 3.3 (i) Suppose that there exist α ∈ (0, 2) and M > 0 such that

P[C > c] = Mc−α as c →∞.

Then Ci has a sub-exponential distribution; we refer the interested reader to the textbook

by Embrechts, Klüppelberg and Mikosch (1997) for details.

(ii) If individual losses follow an exponential distribution with parameter β, then

M(s) =
β

β − s
for s < β.

In this case the random variables Ci have an exponential moment because P[Ci ≥ c] ≤
Me−rc implies E[esC ] < ∞ for s < r.
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Exponential bounds on the tail probabilities of compound distributions including the

classical Lundberg inequality for the ruin probability of an insurance company have been es-

tablished by various authors; see, e.g., Lin (1996), Willmot and Lin (1994), or Willmot (1997).

Upper bounds for the tail probabilities of the random variable L are of particular interest

for supervising institutions because they may be used to determine the capital requirements

imposed on an investment bank holding a large portfolio of defaultable securities.

In order to simplify the analysis we restrict ourselves to a mean field interaction where

the shock initially affects only one firm. More precisely, we assume that Π = 1, and so the

random variable Dτ has a Borel-Tanner distribution (pk)k∈N. We denote the associated tail

distribution by

qk :=
∑

l≥k

pl (k ∈ N).

3.1 Large individual losses and the tail structure of portfolio losses

Let us first consider the situation where individual loss distributions are fat tailed. Heavy

tailed individual loss distributions translate into a heavy tailed distribution of aggregate

losses. In such a situation, large portfolio losses result from large individual losses. More pre-

cisely, we have the following result about the tail structure of compound sums of heavy tailed

random variables. Its proof is an immediate consequence of Theorem A3.20 in Embrechts,

Klüppelberg and Mikosch (1997) and the explicit representation (41) of the Borel-Tanner

distribution.

Theorem 3.4 Suppose that the random variables Ci have sub-exponential tails. In the sub-

critical case ν < 1 where, on average, each downgrade triggers less than one default,

P[L > x] = P[max{C1, C2, . . . , CDτ } > x] as x →∞

and

P[L > x] = E[Dτ ] · P[C1 > x] as x →∞.

An active risk manager can control the risk arising from large individual losses by elim-

inating positions from its portfolio that have heavy tailed loss distributions. In this sense

a situation with heavy tailed individual losses may serve as a benchmark model. But for

practical purposes, it seems more desirable to have bounds for the tails of compound sums

where the compound distribution is light tailed.

20



3.2 Small individual losses and the tail structure of portfolio losses

Although risk management can control the distribution of individual losses, it can typically

not affect the degree of dependencies between different firms. Losses resulting from cascade

phenomena pose a considerable intrinsic risk to a financial institution holding large portfolios

of defaultable securities.

3.2.1 The subcritical case

In the subcritical case ν < 1 a downgrade triggers on average less than one additional default.

In this case the sequence {qk}k∈N converges to zero at an exponential rate. Indeed, by

Theorem 2.7 we have
pk+1

pk
= φ :=

eν−1

ν
as k →∞.

This yields

qk =
∑

l≥k

pl ≤ (1 + ε)
pk

1− φ
and so

qk+1

qk
=

pk+1

pk
= φ as k →∞. (20)

The tail structure of the aggregate loss distribution is now specified in terms of the tails of

Ci and the average number of downgrades triggered by a single default. For the random

variable L to have an exponential tail, the probability of large individual have to decreases

at a sufficiently fast rate. This rate is inversely related to the strength of interaction between

companies.

Theorem 3.5 Suppose that the random variables Ci have a continuous distribution function

F and that there exists a constant r > 0 such that

φ =
∫ ∞

0
erxdF (x). (21)

Then there exists δ < 1 such that

δφe−rx ≤ P[L ≥ x] ≤ φe−rx as x →∞. (22)

Thus, for large x > 0, the quantity P[L ≥ x] is approximately proportional to e−rx and L has

an exponential tail distribution.

Proof: In order to establish the upper bound in (22) we modify a martingale argument

given in Gerber (1994); see also Willmot and Lin (1994). For a fixed ε > 0 we can choose
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K ∈ N such that
qk+1

qk
≤ φ(1 + ε) < 1 for all k ≥ K,

and so continuity of the distribution function along with (22) yields

φ(1 + ε)−1 =
∫ ∞

0
er̂xdF (x)

for some r̂ ≤ r − ε. We put

L̂ := L−
K∧Dτ∑

i=1

Ci and L̂k := CK+1 + · · ·+ CK+k,

and introduce the random variables Ŷk and X̂k by

Ŷk :=





er̂L̂k if Dτ ≥ k

0 otherwise.
and X̂k :=





er̂Ck if Dτ ≥ k

0 otherwise

respectively. This yields the recursive relation Ŷk = X̂kŶk−1 and

E[X̂k+1|Dτ ≥ k] = Eer̂Ck
P[Dτ ≥ k + 1]
P[Dτ ≥ k]

≤ 1.

Thus, the sequence {Ŷk}k∈N is a supermartingale. Introducing the stopping time

σ := inf{k : L̂k ≥ x or Dτ < k}

we obtain

Ŷ1 ≥ E[Ŷσ|Dτ , C1] or er̂C1 ≥ E[er̂L̂σ1{L̂≥x}|Dτ , C1] ≥ er̂xP[L̂ ≥ x|Dτ , C1].

This yields

P[L̂ ≥ x] = E[P[L̂ ≥ x]|Dτ , C1] ≤ E[er̂C1e−r̂x] ≤ φ

(1 + ε)
e−r̂x.

Hence the upper bound in (22) follows from P[L̂ ≥ x] = P[L ≥ x] as x → ∞ because ε > 0

is arbitrary. The lower bound follows from straightforward modifications of arguments given

in the proof of Corollary 2.3 in Lin (1996). 2

The previous theorem shows that the tail structure of the distribution of individual losses

along with the strength of interactions between different companies completely specifies the

tails of the distribution of portfolio losses. Theorem 3.5 also confirms our intuition that the

tails of the aggregate loss distribution is the fatter, the slower the decay of the tail of the

distribution of individual losses. We further illustrate this by means of the following simple

example.
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Example 3.6 Suppose that the random variables Ci are distributed exponentially with pa-

rameter β > 0. Thus, Ci is absolutely continuous with density

fβ(x) :=
1
β

e−βx and distribution function F (x) = e−βx (x ≥ 0).

In such a situation (21) translates into

φ =
1
β

∫ ∞

0
e−(β−r)xdx =

β − r

β
, that is, into r = β(1− φ).

The slower the decay of the tail of the distribution of individual loss sizes, i.e., the smaller

β, the fatter the tails of the law of aggregate portfolio losses.

3.2.2 The critical case

In the critical case ν = 1 each downgrade triggers, on average, another downgrade, and the

distribution of the total number of downgrades is fat tailed; see Corollary B.5. Under mild

technical assumptions on the distribution of the individual losses one can then show that

the distribution of aggregate losses has sub-exponential tails and that large portfolio losses

typically result from an unusually large number of individual defaults. More precisely we

have the following result. Its proof follows immediately from results given in Schmidli (1999)

along with the representation (42).

Theorem 3.7 Suppose that the distribution function F of the random variables Ci satisfies

lim inf
x→∞

F̄ ∗(n+1)(x)
F̄ ∗n(x)

≥ a for all n ∈ N and some a > 1. (23)

If ν = 1, then the random variable L has a sub-exponential distribution. More precisely

P[L ≥ x] = P
[
Dτ ≥ x

ECi

]
as x →∞.

All light tailed distribution functions of practical interest satisfy (23). For instance,

if F has a Gamma tail, i.e., if F̄ (x) = cxγ−1e−ax for some γ ≥ 0 as x → ∞, then F

satisfies (23), due to Lemma 1 in Schmidli (1999). But even if the distribution of individual

losses is light tailed, the portfolio loss distribution can be heavy tailed. If the dependencies

between individual credit ratings are too strong, then the distribution of Dτ is fat tailed.

This translates into a heavy-tailed distribution of aggregate losses.
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4 Approximation of cascade processes in the mean field case

In this section we prove the approximation result for the process of credit rating downgrades

for the case of a mean field interaction. Our proof is based on modifications of arguments

that already appeared in Nirei (2003). In a first step we prove that average ratings converges

almost surely to some deterministic limit as N → ∞. In a second step we show that the

sequence {DN
t }t∈N can be approximated in law by a simple Galton-Watson process {Dt}t∈N.

Using general results about the long run behavior of branching processes we finally show that

a shock triggers only a finite number of downgrades.

4.1 Ergodicity of equilibria

The following three sections prepare the proof of the approximation result stated in Theorem

2.7. In a first step we show that the average rating converges almost surely to a unique

deterministic limit. From this we will deduce that individual ratings will be conditionally

independent in the limit of an infinite economy given the average rating.

Lemma 4.1 For any N ∈ N, let xN (θ) = {xN,i(θ)}N
i=1 ∈ ΛN be a configuration of credit

ratings that satisfies (3). The associated sequence of average ratings {xN (θ)}N∈N converges

almost surely. More precisely,

lim
N→∞

xN (θ) =
θ − λ

2− 2α
P-a.s.

Proof: Let {xN (θ)}N∈N be a sequence of configurations of equilibrium credit ratings. Indi-

vidual ratings take values in a finite set, and so the sequences

{xN (θ)}N∈N and

{
1
N

N∑

i=1

(αxN + θi) mod λ

}

N∈N

are bounded. Hence there is a subsequence (Nk)k∈N possibly depending on θ such that

x := lim
k→∞

xNk(θ) and lim
k→∞

1
Nk

Nk∑

i=1

(αxNk + θi) mod λ (24)
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exist. In view of (3) and because the random variable θi are independent and identically

distributed,

x =
1

1− α

(
lim

k→∞
1

Nk

Nk∑

i=1

θi − lim
k→∞

1
Nk

Nk∑

i=1

(αxNk + θi) mod λ

)

=
1

1− α

(
θ

2
− lim

k→∞
1

Nk

Nk∑

i=1

(αxNk + θi) mod λ

)
.

Thus, it suffices to prove that

lim
k→∞

1
Nk

Nk∑

i=1

(αxNk + θi) =
λ

2
P-a.s.

To this end, observe first that the bounded random variables (x+ θi) mod λ are independent

and uniformly distributed on (0, λ) due to the modulo-λ-arithmetic and because the random

variables θi are iid. Thus, the law of large numbers yields

lim
k→∞

1
Nk

Nk∑

i=1

(αx + θi) mod λ =
λ

2
P-a.s.

and so it is enough to show

lim
k→R

1
Nk

Nk∑

i=1

{
(αx + θi) mod λ− (αxNk + θi) mod λ

}
= 0 P-a.s.

Since xN is an equilibrium configuration,

(αxNk + θi) mod λ = (αx + θi) mod λ

whenever there exists ni ∈ N such that

(ni − 1)λ ≤ αxNk + θi < niλ and (ni − 1)λ ≤ αx + θi < niλ. (25)

We may with no loss of generality assume xNk ≤ x. In view of (24), for each ε > 0 there

exists K such that condition (25) is violated for k ≥ K if and only if

θi ∈ ((ni − 1)λ− αx, (ni − 1)λ− αxNk) ∪ (niλ− αx, niλ− αxNk)

⊂ ((ni − 1)λ− αx, (ni − 1)λ− αx + ε) ∪ (niλ− αx, niλ− αx + ε) =: Bi
ε.

Because the random variables xN,i takes values in a finite set, the law of large numbers for

independent and identically distributed random variables yields

lim
k→∞

1
Nk

Nk∑

i=1

1{(αxNk+θi) mod λ 6=(αx+θi) mod λ}(i) ≤ lim
k→∞

1
Nk

Nk∑

i=1

1Bi
ε
(θi) ≤ ε P-a.s. (26)

This proves our assertion. 2
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4.2 A benchmark model with infinitely many firms

The previous lemma showed that each sequence of equilibria {xN (θ)}N∈N converges almost

surely to a configuration x̂ = (x̂i)i∈N defined by

x̂i := αx + θi − (αx + θi) mod λ. (27)

The convergence takes place both locally, i.e., on the level of individual ratings and globally,

that is, on the level of average ratings because

lim
N→∞

1
N

N∑

i=1

x̂i = x P-a.s. (28)

In a finite economy the buffer variables sN,i are conditionally independent given the actual

configuration of credit ratings, but typically not identically distributed as shown by Example

2.4. The same applies to our benchmark model with infinitely many firms as illustrated by

the following example.

Example 4.2 Suppose that θi is uniformly distributed on (0, 3
2), that λ = 1

2 , and that α = 3
4 .

Then x = 1, and the equilibrium configuration x̂ = (x̂i)i∈N takes the form

x̂i =
3
4

+ θi −
(

3
4

+ θi

)
mod

1
2

=





1
2 if θi ∈ (0, 1

4)

1 if θi ∈ (1
4 , 3

4)
3
2 if θi ∈ (3

4 , 5
4)

2 if θi ∈ (5
4 , 3

2)

and ŝi ∈





(1
4 , 1

2) if x̂i = 1
2

(0, 1
4) if x̂i = 2

(0, 1
2) otherwise.

Under Assumption 2.1 the buffer variables ŝi are conditionally uniformly distributed on (0, 1
4),

(1
4 , 1

2) or (0, 1
2), depending on the observable value of x̂i. Since the random variables θi are

independent and uniformly distributed on (0, 3
2), we see that 1

6 -th of the buffer variables take

values in (0, 1
4) and (1

4 , 1
2), respectively, and 4

6 -th of the random variables si are conditionally

uniformly distributed on the interval (0, 1
2).

In the context of the previous example we were able to classify firms into different groups

such that, within these groups, the respective buffer variables are conditionally independent

and identically distributed. In order to formulate such a classification scheme in a general

framework we put

x̂min := αx− (αx+) mod λ and x̂max := αx + θ − (αx + θ) mod λ
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so that x̂i ∈ [x̂min, x̂max]. Now we introduce the following classes of firms:

M1 := {i : x̂i = x̂min}, M2 := {i : x̂i = x̂max} and M0 := N\(M1 ∪M2)

where we use the convention that M0 = N if M0 = M1 = M2. The set M1 may be viewed as

the class of firms with the best possible rating whereas M2 represents the companies with the

worst credit quality. For a given configuration xN , the sets MN
0 ,MN

1 and MN
2 are defined

accordingly.

Example 4.3 (i) Let us return to the situation studied in Example 2.4. In this case M1 =

{i : x̂i = 1
2} and M2 = {i : x̂i = 2}.

(ii) In the context of the binary choice model analyzed in Example 2.3 we have x̂i = 0 for

all i ∈ N, and by convention M0 = N.

The following lemma shows that the firms’ sensitivity parameters are conditionally iden-

tically distributed within the respective groups.

Lemma 4.4 For almost all equilibrium configurations of credit ratings x̂(θ) = {x̂i(θ)}i∈N
and xN (θ) = {xN,i(θ)}N

i=1 the following holds:

(i) For j = 0, 1, 2, the random variables {ŝi}i∈Mj and {sN,i}i∈MN
j

are conditionally in-

dependent and identically distributed given the respective equilibrium configurations of

credit ratings.

(ii) For j = 0, 1, 2, the following limits exist almost surely:

rj := lim
N→∞

|Mj |
N

= lim
N→∞

|MN
j |

N
(29)

Moreover, r0 = 1 if αx is a multiple of λ.

Proof:

(i) We prove the assertion for the benchmark case with infinitely many firms; the case of

finite economies follows accordingly. For i ∈ M0, the random variables ŝi are condi-

tionally uniformly distribution on the interval [0, λ] because of Assumption 2.1 and the

modulo-λ-arithmetic. If i ∈ M1, then

x̂i = αx− (αx) mod λ = αx + θi − (αx + θi) mod λ
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and so

θi ∈ (0, θ̂) where θ̂ := max{θ ∈ (0, λ) : −(αx) mod λ = θi − (αx + θi) mod λ}.

The the random variable θi is conditionally uniformly distributed on (0, θ̂) given x̂. This

implies that the random variables {ŝi}i∈M1 are conditionally identically distributed on

the interval ((αx) mod λ, λ). By analogy, the random variables {ŝi}i∈M2 are condition-

ally uniformly distributed on (0, (αx + θ) mod λ).

(ii) The first limit in (29) exists almost surely, because the random variables x̂i are indepen-

dent and identically distributed. The ergodicity result for sequences of finite economies

follows from Lemma 4.1 and (26) because P-a.s.

lim
N→∞

1
N

N∑

i=1

|xN,i − x̂i|

≤ lim
N→∞

1
N

N∑

i=1

{|αxN − αx|+ |(αxN + θi) mod λ− (αx + θi) mod λ|} = 0

If αx is a multiple of λ, then x̂i − αx is a multiple of λ. In this case Assumption 2.1

guarantees that all the random variables ŝi are uniformly distributed on (0, λ).

2

4.3 Downgrade cascades and branching processes in the mean-field case

We are now ready to show that the initial number of downgrades, DN
0 , asymptotically follows

a Poisson distribution, given the equilibrium xN .

Lemma 4.5 Let {xN} be a sequence of equilibrium credit ratings satisfying (3). For N →∞,

the random variable DN
0 is conditionally Poisson distributed given xN .

Proof: Let us fix a sequence of equilibrium configurations {xN}N∈N. After a shock hits the

economy, firm i will be downgraded if

sN,i +
εi

N
> λ. (30)

Let rN
j :=

|MN
j |

N . In view of Lemma 4.4, and because the random (εi)i∈N are independent

and identically distributed, downgrades within the groups MN
j correspond to the outcome
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of NrN
j independent Bernoulli experiments with a “success probabilities” πN

j . We need to

consider the different classes of firms separately.

(i) For j = 0 we obtain

πN
0 = P

[
sN,i +

εi

N
> λ

]
=

Y

λN

Since P[limN→∞ rN
0 = r0] = 1 this yields

lim
N→∞

πN
0 NrN

0 = r0
Y

λ
P-a.s.

Thus the number of downgrades of firms belonging to group MN
0 follows a Poisson

distribution with parameter r0
Y
λ as N →∞; see Appendix B.1.

(ii) For j = 1, we have

xN,i = αxN + θi − (αxN + θi) mod λ = αxN − (αxN ) mod λ,

and so the random variables {sN,i}i∈MN
1

are conditionally uniformly distributed on the

interval [(αxN ) mod λ, λ] given the configuration xN . This yields

πN
1 = P

[
sN,i +

εi

N
> λ

]
=

Y

(λ− (αxN ) mod λ)N
P-a.s.

Since xN → x as N →∞, it follows from Lemma 4.4 hat

lim
N→∞

πN
1 NrN

1 = r1
Y

λ− (αx) mod λ
P-a.s.

if r1 > 0. The number of downgrades of firms belonging to group MN
1 then follows a

Poisson distribution with parameter r1
Y

λ−(αx) mod λ as N →∞.

(iii) For j = 2, we have

xN,i = αxN + θi − (αxN + θi) mod λ = αxN + θ − (αxN + θ) mod λ,

and so the buffer variables {sN,i}i∈MN
2

are conditionally uniformly distributed on the

interval [0, (αxN + θ) mod λ] given the configuration xN . If r2 > 0, the quantities

{sN,i}i∈MN
2

are asymptotically uniformly distributed on [0, (αx + θ) mod λ]. Since

individual shocks are bounded, we see that firms belonging to group MN
2 will not be

further downgraded if N is large enough.8

8Loosely speaking, these firms are already bankrupt.
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Since the sum of independent Poisson distributed random variables follow a Poisson distribu-

tion it follows from (i)-(iii) that the total number of downgrades in period 1 follows a Poisson

distribution with parameter Y π1(λ) where

π1(λ) :=
(

r0

λ
+

r1

λ− (αx) mod λ

)
. (31)

2

If θi is uniformly distributed on (0, λ) as in the binary choice model studied in Example

2.3, then x = 0 and so r0 = 1. In such a situation all the buffer variables sN,i are condi-

tionally identically distributed. Moreover the random variable DN
0 is asymptotically Poisson

distributed with parameter Y . In this case the number of firms initially affected by the shock

only depends on the shock size.

Example 4.6 Let us return to the situation analyzed in Example 4.2. In this case r1 = r2 =
1
6 and r0 = 4

6 . Moreover, x = 1, and so π1(λ) = 2.

Let us now study the distribution of the number of downgrades in period t+1 conditioned

on the downgrades occurred so far.

Lemma 4.7 Given the number dj
1, d

j
2, . . . , d

j
t of downgrades of firms belonging to groups MN

j

for j ∈ {0, 1} up to time t, the random variable DN
t+1 is asymptotically Poisson distributed

with parameter

πt+1(α, λ, dt) := λdtα(r0 + r1) where dt := d1
t + d2

t .

In the limit of an infinite economy, the number of downgrades in the previous period t is thus

a sufficient statistic for the distribution of downgrades in period t + 1.

Proof: Firm i ∈ {1, 2, . . . , N} is downgraded in period u if

sN,i + λ
α

N

u−2∑

j=1

dj +
εi

N
< λ < sN,i + λ

α

N

u−1∑

j=1

dj +
εi

N
.

Because individual shocks are bounded, it is straightforward to show that a company is

downgraded at most once within a finite period of time if the economy is large enough. Let

Hj
s be the set of firms belonging to group MN

j that have been downgraded in period s. Given

dj
1, . . . , d

j
t , we can choose a large enough N such that Hj

s ∩ Hj
r = ∅. Downgrades of group
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MN
j -firms correspond to independent outcomes of NrN

j − ∑t
k=0 dj

k Bernoulli experiments

with success probability πN,j
t+1.

For i ∈ MN
0 and i /∈ ∪t

s=1H
1
s , the conditional probability of a downgrade in period t + 1

given dj
1, . . . , d

j
t takes the form

πN,0
t+1 =

∫ (
P[sN,i + εi

N + λ α
N

∑t
k=1 dk > λ]− P[sN,i + εi

N + λ α
N

∑t−1
k=1 dk < λ]

)
Q(Y ; dεi)

∫
P[sN,i + εi

N + λ α
N

∑t−1
k=1 dk < λ]Q(Y ; dεi)

Since the sensitivity parameter sN,i is conditionally uniformly distributed on (0, λ), the latter

expression simplifies to

πN,0
t+1 =

λdtα

N − Y +λα
Pt−1

k=1 dk

λ

and lim
N→∞

{
πN,0

t+1(r
N,0N −

t∑

k=1

d1
k)

}
= λr0αdt.

Thus, the number of defaults of firms belonging to MN
0 in period t+1 asymptotically follows

a Poisson distribution with parameter λr0αdt. Similar arguments yield

lim
N→∞

{
πN,1

t+1(r
N
1 N −

t∑

k=0

d1
k)

}
= lim

N→∞
dtα

N − λ
Y +α

Pt−1
k=1 dk

λ

{
πN,1

t+1(r
N,1N −

t∑

k=0

d1
k)

}
= λr1αdt.

Thus, conditioned on the number of downgrades in period t, the random variable DN
t+1 asymp-

totically follows a Poisson distribution with parameter λα(r0 + r1)dt. Thus, each downgrade

dt asymptotically generates a number of “descendants” which is Poisson distributed with

parameter απ2(λ) where

π2(λ) := λ(r0 + r1). (32)

2

We are now ready to prove the main results of this paper

Proof of Theorem 2.7:

(i) It follows from Lemma 4.5 that the random variable DN
0 is asymptotically Poisson

distributed. In order to show that our cascade process can be approximated in law by a

Galton-Watson, we denote by {Dt}t∈N a branching process with l sister anchors which

reproduces from generation to generation in a Poisson way. More precisely,

D0 = l and that Dt = Dt,1 + · · ·+ Dt,Dt−1
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where the independent random variables {Dt,j , t, j ∈ N} are Poisson distributed with

Parameter ν := λα(r0+r1) ≤ 1. Thus, given the size dt of the generation in period t, the

random variable Dt+1 is conditionally Poisson distributed with parameter αdt(r0 + r1).

For d(t) := (d1, d2, . . . , dt), let µN
t (·|d(t)) be the conditional distribution of DN

t+1 given

(DN
1 , . . . , DN

t ) = d(t) and µt(·|dt) the conditional distribution of Dt+1 given Dt = dt.

By Lemma 4.7 we have

µN
t (·|d(t)) w−→ µt(·|dt) as N →∞ (33)

where w−→ denotes weak convergence of probability measures.

We need to show that weak convergence of the conditional distributions implies weak

convergence of the unconditional distribution µN
t of DN

t+1 to the law µt of Dt, i.e., that

(33) yields

lim
n→∞

∫
fdµN

t =
∫

fdµt (t ∈ N) (34)

for each function f : Nt → R. To this end, we proceed by induction. Weak convergence

of the sequence {µN
1 } to µ1 as N →∞ follows from (33). The induction hypothesis is

µN
t

w−→ µt.

Since
∫

fdµN
t+1 =

∫ ∫
fdµN

t (·|d(t))dµN
t it follows from (33) that

fN
t (·) :=

∫
fdµN

t (·|d(t)) −→ ft(·) :=
∫

fdµt(·|d(t)) as N →∞

and the convergence is uniform on compact sets because the state space is countable.

Hence convergence of conditional finite dimensional distributions follows from the in-

duction hypothesis by a standard argument. This shows that, conditioned on {Π = l},
the finite dimensional distributions of the process {DN

t }t∈N converge to the finite di-

mensional distributions of the branching process {Dt}t∈N. In (ii) below we show that

the sequence {DN}N∈N is also tight, i.e., that

sup
N
P[DN

t ≤ c] → 0 as c → 0.

This proves convergence in law of the whole process.

(ii) Conditioned on {D0 = 1} the sum
∑∞

i=0 Dt follows a Borel Tanner distribution with

parameter ν, due to Theorem B.4. Since D0 is Poisson distributed with parameter

απ1(λ), the random variable Dτ =
∑∞

t=0 Dt coincides in distribution with (10).
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In order to show that the sequence {DN
τN }N∈N converges in distribution to Dτ we denote

by τ := min{t : Dt = 0} the time of extinction of the branching process {Dt}t∈N. Since

ν ≤ 1, this stopping time is almost surely finite. Thus, for each ε > 0 we can choose

Tε ∈ N such that

P[τ ≥ Tε] < ε and in view of (i) P[DN
Tε

> 0] ≤ 2ε for all sufficiently large N .

Thus, P[DN
τN 6= ∑Tε

t=1 DN
t ] ≤ 2ε. We obtain from (i) that

∣∣∣∣∣P[
Tε∑

t=1

Dt = k]− P[
Tε∑

t=1

DN
t = k]

∣∣∣∣∣ < ε for N large enough,

and a 3-ε-argument shows that
∣∣∣∣∣P[

∞∑

t=1

Dt = k]− P[
∞∑

t=1

DN
t = k]

∣∣∣∣∣ < ε for N large enough.

The representations of the conditional distributions follows from Theorem B.4.

Let us now prove tightness of the sequence of processes {DN
t }t∈N. To this end, we fix

K ∈ N. In view of (i) and because P[τ < ∞] = 1 we have that

lim
N→∞

P[DN
t ≤ K] = lim

N→∞
P[DN

t ≤ K]
K∑

k=0

P[DN
t = k] = P[Dt ≤ K] ≥ 1− ε

for all sufficiently large K.

(iii) The representations (14) follow from arguments given in Appendix B.2.

(iv) The quantities π1(λ) and π2(λ) are given by (31) and (32), respectively. A tedious but

straightforward calculation shows that limλ→0 λ2π1(λ) = 0.

2

5 Conclusion

Based on results from the theory of (S, s) economies we provided a unified probabilistic frame-

work within which to study the effects of discrete adjustments of credit qualities on the losses

associated to large portfolios of credit sensitive securities. We analyzed an interactive model

of credit ratings where, initially, external shocks trigger a certain number of downgrades. The
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interactive structure of credit ratings generates a feedback effect that allows a single firm’s

financial distress to propagate through the whole economy causing a cascade of downgrades

and defaults. In a large economy the dynamics of the cascade can be described by a simple

branching process where each generation reproduces in a Poisson manner. Assuming the

interaction between different firms is not too strong the distribution of the total number of

defaults is given by a uni-modal distribution with slowly decaying tails. We characterized the

tail behavior of the distribution of aggregate portfolio losses. If the interaction between firms

are too strong, then aggregate losses turned out to be heavy-tailed even if individual losses are

thin-tailed. This illustrates that counterparty relationships are in fact an additional source

of intrinsic risk that should be accounted for. However, the risk can be considerably reduced

if the firms’ financial standing is measured on a finer scale. In the limiting case of continuous

adjustments the additional risk is simply specified by the size of the external shock.

Several avenues are open for future research. The explicit representation of the distribu-

tion of the total number of defaults rests upon two simplifying assumption: (i) a mean-field

interaction and (ii) the independence of the firm specific quantities θi. Both assumptions

are quite restrictive and should be relaxed. An interaction of mean field type can only be

viewed as a first step towards a much richer interaction structure. Mathematical methods

and techniques from, e.g., random graph or percolation theory, or from the theory of branch-

ing processes in random environments, may allow us to work with more realistic networks of

interacting companies such as the one in Egloff, Leippold and Vanini (2004), or to embed the

“primary-secondary” approach by Jarrow and Yu (2001) into a general microeconomic model

of local interactions. However, for more general models there might be little hope to obtain

analytic solutions for aggregate loss distributions. Secondly, our approach awaits empirical

verification. It would clearly be desirable to introduce additional parameter into our model

and to try and fit the distribution of the random variable Dτ to empirical data. Embedded in

a dynamic framework, our model may also be used to price baskets of credit securities. For

instance, one could think about a financial institution that wants to hedge a large portfolio

against outside influences that affect the market values of credit sensitive securities. The

institution could then issue a bond whose coupon depends on aggregate portfolio losses in

case an external shock hits the economy. Pricing such a catastrophe bond, contagious down-

grading effects need to be explicitly modelled. Finally, following the financial literature, we

took credit ratings as given. It is clearly desirable and challenging to derive a microeconomic
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framework where ratings are the “output” rather than the ”input.”

A Proof of Theorem 2.10

Since we restrict ourselves to the case where xN,i = 0 for all i ∈ {1, 2, . . . , N}, the buffer

variables sN,i are conditionally independent and identically distributed given the initial equi-

librium xN . Thus, we can apply the same arguments as in the case of a simple mean field

interaction in order to show that the processes {D̂N
t }t∈N of defaults can be approximated in

law by a branching process {D̂t}t∈N where D̂0 follows a Poisson distribution.

In order to specify the dynamics of the sequence {D̂t}t∈N, we fix the number D̂N
t = dt of

global defaults in period t. Asymptotically, a global default triggers a local default with prob-

ability α2 because, for large N , the buffer variables are conditionally uniformly distributed

on the unit interval. A local default triggers an another local default with probability α2.

Thus, the total number of local defaults triggered by the dt global defaults corresponds to the

outcome of dt independent random variables Y t
1 , . . . , Y t

dt
following a geometric distribution

with parameter 1− α2 and moment generating function

F (x) =
1− α2

1− α2x
;

see Appendix B.2 for further details. We can then apply the same arguments as in the proof

of Lemma 4.7 in order to show that, given DN
t = dt

D̂N
t+1 ∼ P

(
α1

dt∑

i=1

(
1 + Y t

i

)
)

for N →∞.

Thus, for N → ∞, the dynamics of the process {D̂N
t }t∈N can be approximated in law by a

branching process {D̂t}t∈N of the form

D̂t+1 = Dt,1 + · · ·+ Dt,Dt−1 where Dt,1
D=

Πt∑

i=1

(1 + Xi).

The random variable Πt is Poisson distributed with parameter α1 and independent of the

sequence {Xi}i∈N. It is straightforward to show that Dt,1 has moment generating function

G(x) = exp
(

α1
x− 1

1− α2x

)
and G′(1) =

α1

1− α2
≤ 1. (35)
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Thus, the branching process {D̂t}t∈N becomes almost surely extinct. Under the assumptions

of the theorem there exists α∗ ∈ (0, α−1
2 ) that satisfies

G′(α∗) =
G(α∗)

α∗
.

With r = α
G(α) the assertion then follows from a seminal theorem by Otter (1949); see also

Theorem I.13.1 in Harris (1989) Appendix B.2. 2

B Poisson distribution, branching processes and random sums

In this appendix we summarize some properties of the Poisson distribution, branching pro-

cesses and simple compound distributions. For the proofs we refer the reader to Resnick

(1992), Chapter 1.

B.1 The Poisson distribution

A integer-valued random variable X defined on some probability space (Ω,F ,P) is Poisson

distributed with parameter ν, X ∼ P(ν), if

P[X = k] = πk(ν) =
νke−ν

k!
. (36)

Its moment generating function F (x) =
∑

k≥0 πk(ν)sk takes the form

F (x) = eν(x−1). (37)

If X1 ∼ P(νi) (i = 1, 2) are independent, then X1 + X2 ∼ P(ν1 + ν2).

The Poisson distribution can be viewed as an approximation of the binomial distribution

for large n and small success probabilities. More specifically, let b(n, p) be the distribution

of the number of successes in n Binomial trails when the success probability is p. If Xn ∼
b(n, p(n)) and

lim
n→∞np(n) = lim

n→∞EXn = ν ∈ (0,∞),

then the sequence {Xn} converges in distribution to a random variable X where X ∼ P(ν);

see, e.g., Resnick (1992), p. 29. This property of the binomial distribution is in fact the key

to the proof of our Theorem 2.7.
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B.2 Compound Poisson distributions

Let (Zi)i∈N be a sequence of independent and identically distributed random variables with

moment generating function F , and let N be independent of (Zi)i∈N and Poisson distributed

with parameter λ. The random sum

S = Z1 + · · ·+ ZN

follows a compound Poisson distribution. Its moment generating function takes the form

G(x) = exp (λ(F (x)− 1)

and so the mean and variance of SN are given by, respectively,

ES = λEZ1 and VS = λ
(
VZ1 + (EZ1)2

)
,

Remark B.1 If the compounding variables Zi are distributed according to a Borel Tanner

distribution with parameter ν, then an application of Lagrange’s theorem on the inversion of

series yields

EZ1 =
1

1− α
and VZ1 =

α

(1− α)3
.

In this case the mean and variance of the random sum S take the respective forms

ES =
λ

1− ν
and VS =

λ

(1− ν)3
.

A random variable X has a geometric distribution if for k = 0, 1, 2, . . .

P[X = k] = (1− p)kp (0 ≤ p ≤ 1)

which is the distribution of the number of failures before the first success in repeated Bernoulli

trials. The moment generating function takes the form

F (x) =
p

1− qx
for 0 < x <

1
q
.

If {Ẑt}t∈N is a sequence of independent geometrically distributed random variable and if

Zt := 1 + Ẑ, then S = Z1 + · · ·+ ZN has moment generating function

G(x) = exp
(

λ

[
px

1− (1− p)x
− 1

])
for N ∼ P(λ).
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B.3 Branching processes

The following definition recalls the notion of a branching process. For a detailed discussion

of branching processes we refer the interested reader to Harris (1989).

Definition B.2 Let {Zn,j , n, j ∈ N} be a family of independent and identically distributed

random variables defined on some probability space (Ω,F ,P). The sequence {Zn} defined

recursively by

Z0 = l and Zn = Zn,1 + · · ·+ Zn,Zn−1 (38)

is called a branching process with l sister ancestors.

The quantity Zn can be thought of as the size of a population starting out with a single

ancestor. The random variable Zn,j describes the number of members of the n-th generation

which are offsprings of the j-th member of the (n−1)-st generation, and the initial population

is size l. Clearly, the state 0 is an absorbing state, and we denote by

τ := inf{n : Zn = 0}

the time of extinction. It is well known that a simple branching process exhibits an instability:

either extinction occurs or the process explodes with positive probability. More specifically

P[τ < ∞] = 1− P[Zn ↑ ∞].

The following theorem states that a population dies out if, on average, each particle

produces at most one descendent.

Theorem B.3 Let {Zn} be a branching process in the sense of Definition B.2. If a parent

generation produces on average at most one offspring, i.e., if

E[Zn,j ] ≤ 1

then the population dies out almost surely:

P[τ < ∞] = 1.

If {Zn} is a branching process with an almost surely finite time of extinction, then the

total progeny

Z := l + Z1 + Z2 + · · ·+ Zτ
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is finite with probability 1. In this case the random variables Zk are independent, with the

same distribution as Z. The tail of the distribution of Z can be specified in terms of the

moment generating function F : (0, β) → R of Zn,j , due to a seminal result by Otter (1949).

If there exists x∗ ∈ (0, β∗) that satisfies

F ′(x∗) =
F (x∗)

x∗
(39)

then there is a multiplicative constant C < ∞ such that

P[Z = k] = Cr−k− 1
2 k−

3
2 as k →∞ (40)

where r := x∗
F (x∗) ; see also Harris (1989), Theorem I.13.1. For the special case where

Zn,j is Poisson distributed with parameter ν,

i.e., for a population that reproduces from generation to generation in a Poisson way,

P[τ < ∞] if and only if ν ≤ 1.

In such a situation Zn is conditionally Poisson distributed given Zn−1 with parameter νZn−1,

and the total number of offspring is known to follow a Borel-Tanner distribution. For a proof

of the following result, we refer the reader to Kingman (1993).

Theorem B.4 If the random variables Zn,j follows a Poisson distribution with parameter

ν ≤ 1, and if Z0 = l, then distribution of the total progeny satisfies

P[Z = k|Z0 = l] =
l

k
πk−l(kν) =

l

k

(kν)k−le−kν

(k − l)!
for k = l, l + 1, . . .. (41)

In particular, for l = 1 the random variable Z follows a Borel Tanner distribution. If Z0 ∼
P(µ), then

Z
D=

Z0∑

t=1

Zt

for a sequence {Zt}t∈N of independent random variables following a Borel-Tanner distribution.

If Zn,j ∼ P(ν), then the moment generating function is given by (37), and x∗ := ν−1

satisfies (39). In this case x∗
F (x∗) = 1

νe1−ν , and we obtain

P[Z = k|Z0] = C(νe1−ν)kk−
3
2 as k →∞.

Thus, for the limiting case ν = 1, the total population size has a power law distribution.

Corollary B.5 If ν = 1, then

P[Z = k] = Ck−
3
2 as k →∞. (42)
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Embrechts, E., and C.M. Goldie (1982): “On convolution tails,” Stochastic Processes

and their Applications, 13, 263–278.
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Schönbucher, P., and D. Schubert (2001): “Copula dependent default risk in intensity

models,” Working paper, Universität Bonn.

Willmot, G.E. (1997): “On the relationship between bounds on the tails of compound

distributions,” Insurnce: Mathematics & Economics, 19, 95–103.

Willmot, G.E. and X. Lin (1994): “Lundberg bounds on the tails of compound distribu-

tions,” Journal of Applied Probability, 31, 743–756.

42


