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ular traje
tories in systems of phase os
illators with non-lo
al 
ouplingthat display a spatio-temporal pattern of 
oherent and in
oherent motion. We present here a detailedanalysis of the spe
tral properties for su
h traje
tories. First, we study numeri
ally their Lyapunovspe
trum and its behavior for an in
reasing number of os
illators. The spe
tra demonstrate thehyper
haoti
 nature of the 
himera states and show a 
orresponden
e of the Lyapunov dimensionwith the number of in
oherent os
illators. Then, we pass to the thermodynami
 limit equation andpresent an analyti
 approa
h to the spe
trum of a 
orresponding linearized evolution operator. Weshow that in this setting, the 
himera state is neutrally stable and that the 
ontinuous spe
trum
oin
ides with the limit of the hyper
haoti
 Lyapunov spe
trum obtained for the �nite size systems.PACS numbers: 05.45.Xt, 89.75.KdChimera states (see Figure 1) are remarkablespatio-temporal patterns where regions of syn-
hrony 
oexist with regions of in
oherent motionin a spatially homogeneous system of 
oupled os-
illators. They 
onstitute a new paradigm of dy-nami
al behavior that 
an serve as a prototypefor various physi
al phenomena, e.g. 
oexisten
eof syn
hronous and asyn
hronous neural a
tiv-ity (so 
alled 'bump' states) [1�4℄ or turbulent-laminar �ow patterns [5℄. For their mathemati
aldes
ription one has to employ 
on
epts from the�elds of pattern formation, deterministi
 
haos,and statisti
al physi
s. Indeed, starting with thepioneering work of Kuramoto [6℄, the thermody-nami
 limit of a large number of os
illators hasbeen developed to a powerful tool for the in-vestigation of 
himera states. In this paper, weput our fo
us to the relation of 
himera states in�nite size systems to their thermodynami
 lim-its. After a 
areful numeri
al study of the Lya-punov spe
tra for 
himera traje
tories in �nitesize systems, we 
ompare our results with thespe
tral properties of the linearized evolution op-erator in the thermodynami
 limit. We show thatthere the 
himera states are neutrally stable andthat their 
ontinuous spe
trum 
oin
ides with thelimit of the hyper
haoti
 Lyapunov spe
trum ob-tained for the �nite size systems.I. INTRODUCTIONSystems of 
oupled phase os
illators have been widelyused to study the basi
 properties of 
olle
tive syn
hro-nization that 
an be observed in a huge variety of systemsfrom physi
s, 
hemistry, biology, or so
ial s
ien
es [7�

10℄. Re
ently, a new dynami
al phenomenon o

urringin su
h systems has attra
ted a lot of attention: Ku-ramoto e.a. [6, 11, 12℄ reported a new type of solutionsthat Strogatz e.a. [13, 14℄ later on 
alled "
himera states�(see Figure 1), where a spatially homogeneous system of
oupled identi
al os
illators displays self-organized pat-terns of regions with syn
hronous and asyn
hronous mo-tion. Sin
e then su
h solutions have been observed undervarious 
onditions, in
luding 1D and 2D arrays, inhomo-geneous systems and systems with delayed 
oupling [15�29℄. The main ingredients that are typi
ally needed toobserve 
himera states are(i) a dis
rete medium, typi
ally represented by a largenumber of os
illators distributed in spa
e;(ii) a non-lo
al 
oupling that provides an intera
tionbetween lo
al sub-populations with a 
oupling range thatis di�erent both from global and from lo
al next neighbor
oupling;(iii) a well tuned amount of repulsion between the os-
illators, that is typi
ally a
hieved by a Sakagu
hi phaselag parameter or a 
oupling delay.Trying to redu
e the numeri
al 
omplexity, we 
hoosefor our studies a simple system 
omprising a ringof N identi
al non-lo
ally 
oupled phase os
illators withphases Ψ1, . . . , ΨN that follow the evolution
Ψ̇k(t) = ω−

2

N

N
∑

j=1

G(xk−xj) sin(Ψk(t)−Ψj(t)+α). (1)Here ω denotes the natural frequen
y of the os
illatorsthat 
an be set to zero, and α ∈ (0, π/2) is a phaselag parameter. The os
illators are assumed to be uni-formly distributed over the interval [−1, 1] with positions
xk = −1 + 2k/N , k = 1, . . . , N and periodi
 boundary
onditions. Using these positions we 
an employ a 
ou-pling fun
tion G(x) to determine a non-lo
al 
oupling
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FIG. 1: (a) Phase snapshot of a 
himera state in system (1);(b) 
orresponding time averaged phase velo
ities ωeff(x). Pa-rameters: N = 200, r = 0.7, and α = 1.5.on a ma
ros
opi
 s
ale that is independent on the a
-tual number of os
illators. In parti
ular, throughout thispaper we 
hoose the simplest possible form of non-lo
al
oupling given by a step fun
tion
Gr(x) =

{

1/(2r), if |x| ≤ r,

0, if |x| > r,
(2)with r ∈ (0, 1) denoting the radius of 
oupling.Below, we put our fo
us to the spe
tral properties of
himera states both in �nite size systems and in the ther-modynami
 limit. To this end, we employ the Lyapunovspe
trum analysis, whi
h is a standard tool for studyingproperties of 
haoti
 systems [30, 31℄. Re
all that for N -dimensional system, there exists the set of N Lyapunovexponents, whi
h are measures of how qui
kly small ini-tial di�eren
es diverge or 
onverge as two near-equivalentsystems evolve. A positive exponent serves as a 
riterionfor 
haos, and hyper
haos is indi
ated by several positiveexponents. Moreover, Lyapunov exponents give insightinto many other dynami
al features of 
haoti
 traje
to-ries: The full Lyapunov spe
trum 
an be used to nu-meri
ally determine the dimensionality [32℄ of a 
haoti
attra
tor. The inverse Lyapunov exponent is a 
hara
-teristi
 time of mixing and of 
orrelation delay. In the


ase of 
oupled systems, the syn
hronization threshold
an be expressed in terms of the 
onditional Lyapunovexponents [33℄.Lyapunov exponents for extended systems, e.g. latti
esof 
oupled os
illators, have been studied in several pa-pers. In parti
ular, their statisti
s in disordered 
haoti
systems has been 
onsidered in [34℄, where an approxi-mate expression for the distribution of their spa
ings isobtained. In [35℄ an example is shown, where the Lya-punov dimension approa
hes almost the total dimensionof the phase spa
e and the exponents tend to zero withsystems size N → ∞. A similar weak form of 
haos wasalso reported in [36℄ with the s
aling behavior of the Lya-punov exponents of a periodi
ally os
illating 
olle
tivestate as N−2. In the 
ontext of spatio-temporal 
haos,the very existen
e of a well-de�ned Lyapunov spe
trumin the thermodynami
 limit is a proof of the extensivityof 
haos [31, 37, 38℄.The paper is organized as follows. In Se
tion II wepresent our numeri
al results for the Lyapunov spe
trumof 
himera states. In parti
ular, we study the depen-den
e on the parameters α and r, 
al
ulate the Lyapunovdimension, and analyze the s
aling behavior for an in-
reasing number N of os
illators at di�erent parts of thespe
trum.In the following se
tion, we shortly re
all the derivationof a thermodynami
 limit system for N → ∞. Then weuse its linearization to study the spe
tral properties of theevolution operator in the 
orresponding in�nite dimen-sional system. Similarly as in the results of Mirollo andStrogatz [10, 39℄ for lo
ked or partially lo
ked states inthe 
lassi
al Kuramoto system, we �nd 
ontinuous spe
-trum on the imaginary axis that indi
ates a neutral sta-bility of the 
orresponding states. We show that the realparts of this 
ontinuous spe
trum 
oin
ides with the limitfor N → ∞ of the Lyapunov spe
trum 
al
ulated before.II. LYAPUNOV SPECTRUMIn this se
tion, we present our numeri
al results for theLyapunov spe
trum of 
himera states and its dependen
eon various parameters. In parti
ular, we dis
uss the s
al-ing behavior for N → ∞ of the Lyapunov exponentsand of the Lyapunov dimension. Our numeri
al 
ompu-tations employed a 
ommonly used fourth-order Runge-Kutta s
heme (with �xed time step dt = 0.01) to in-tegrate system (1) together with the standard algorithmfor Lyapunov exponents using 
ontinuous Gram-S
hmidtorthonormalization [40℄. Simulations extend typi
allyover 60000 time units that seems to provide a stabiliza-tion of the Lyapunov exponents at a satisfa
tory level ofa

ura
y.To 
ompare the Lyapunov spe
tra for di�erent num-bers of os
illators N we represent the sequen
e λkof non-in
reasing Lyapunov exponents by the fun
tion
ΛN(ν), 0 ≤ ν ≤ 1 su
h that ΛN(ν) = λk if ν =
(k − 1)/(N − 1). Figure 2 shows the Lyapunov spe
tra



3for 
himera states in system (1) with N = 100, α = 1.44and three di�erent values of the 
oupling radius r. Ea
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r=0.73FIG. 2: (Color) Lyapunov spe
tra Λ100(ν) 
omputed for
himera traje
tories of (1) with 
oupling radius r = 0.63 (red
ir
les), 0.69 (green diamonds), and 0.73 (blue triangles), andphase lag α = 1.44.spe
trum 
ontains a 
onsiderable number of positive Lya-punov exponents indi
ating the hyper
haoti
 nature ofthe 
himera states. One exponent is exa
tly equal tozero (in our numeri
s ≤ 10−5) and re�e
ts the phaseshift symmetry of the system (1). Also the index shiftsymmetry of the system (1), whi
h is a dis
rete symme-try for �nite N and tends to a 
ontinuous symmetry inthe 
ase N → ∞, indu
es an exponent 
lose to zero.In Figure 3 we show the maximal Lyapunov expo-nent λmax = Λ100(0) for all values of parameters (r, α)where a 
himera state was dete
ted. The Figure shows
learly that the maximal Lyapunov exponent remainspositive and separated from zero for all parameters (r, α)in this region.

FIG. 3: (Color) Dependen
e of the maximal Lyapunov expo-nent λmax = Λ100(0) on the 
oupling radius r and the phaselag α. The gray region at the bottom indi
ates the parameterregion, where we found 
himera traje
tories for N = 100, thegreen line indi
ates the boundary of the existen
e region for
himera states in the thermodynami
 limit N = ∞.Varying the 
oupling radius r or, alternatively, thephase lag α, we obtain typi
ally 
himera states with dif-ferent sizes of the 
oherent and in
oherent regions. Thissize 
an be represented by the relative number of in
oher-

ent os
illators Sincoh = Nincoh/N that is a ma
ros
opi
quantity and 
an be obtained from Kuramoto's self-
onsisten
y equation in the thermodynami
 limit N → ∞(see [6℄).In Figure 2 we present the Lyapunov spe
tra for threedi�erent values of the 
oupling radius r that 
orrespondto di�erent sizes of the 
oherent region. One 
an observethat there is almost no di�eren
e for the positive Lya-punov exponents whereas the stable part of the spe
trumis shifted, leading to an in
reasing number of stronglystable exponents for larger r and 
orrespondingly largersize of the 
oherent region. Indeed, it is natural to as-sume that perturbations that are lo
alized in the 
oher-ent region 
ontribute to the stable part of the spe
trumwhereas perturbations lo
alized in the in
oherent region
an 
ontribute to the 
haoti
 part of the spe
trum.This observation 
an be made more pre
ise by 
om-paring the 
orresponding Lyapunov dimensions (see Fig-ure 4(a)). Re
all that for a given Lyapunov spe
-trum {λk} the Lyapunov dimension is given by
DL = K +

K
∑

j=1

λj

|λK+1|
,where K is the maximum integer su
h that the sum ofthe K largest Lyapunov exponents is still non-negative.Our numeri
al results show that the relative Lyapunovdimension dL = DL/N is slightly smaller, but followsthe 
hange of the size of the in
oherent region Sincoh, seeFigure 4(a). Based on our thermodynami
 limit analy-sis (see Se
tion III), we suppose that the observed gap

Sincoh − dL that has still a size of 5% is presumably a�nite N e�e
t that will vanish for larger numbers of N .However, our numeri
al results (see Figure 4(b)), dueto the enormous 
omputational 
omplexity 
overing onlythe range up to N = 120, do not show this trend very
learly. Besides the Lyapunov dimension DL, we also
onsider the point-wise s
aling properties of the Lya-punov spe
trum as the number of os
illators N in
reases(see Figure 5). As default parameters we use r = 0.7 and
α = 1.5. The maximum number for whi
h we were ableto 
al
ulate a full Lyapunov spe
trum is N = 120. Theleading part of the spe
trum has been 
al
ulated for Nup to 300. We 
ompare these spe
tra with the real part ofthe spe
trum, 
al
ulated analyti
ally by means of a ther-modynami
 limit analysis (see following se
tion). It turnsout that for 0 ≤ ν ≤ Sincoh the Lyapunov exponents 
on-verge to zero for N → ∞, whereas for Sincoh < ν ≤ 1they have a non-zero negative limit. Our numeri
al 
al-
ulations (
ompare Figure 6), show that there are threedi�erent types of s
aling behavior for di�erent parts ofthe spe
trum:(i) The maximal Lyapunov exponent λmax = ΛN (0)s
ales as N−1/2.(ii) For all ν ∈ (0, Sincoh) the Lyapunov expo-nents ΛN(ν) s
ale roughly as N−1
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N=FIG. 5: (Color) Lyapunov spe
tra Λ100(ν) 
omputed for
himera traje
tories of (1) with system size N = 60 (red 
ir-
les), 90 (green diamonds), and 120 (blue triangles). Otherparameters: r = 0.7, α = 1.5.(iii) For ν ∈ (Sincoh, 1] the Lyapunov exponents ΛN(ν)tend to some negative limit Λ∞(ν).The di�erent types of s
aling behavior apparently re�e
tthe di�erent nature of the 
orresponding Lyapunov ex-ponents. In parti
ular, the s
aling law ∼ N−1 has beensimilarly observed in the globally 
oupled Kuramoto sys-tem [35℄. In 
ontrary, the s
aling law of the maximal Lya-punov exponent indi
ates existen
e of a stronger ma
ro-s
opi
 mode that is pe
uliar to the 
himera state and hasnot been observed in a globally 
oupled system.
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r = 0.7, α = 1.5.III. THERMODYNAMIC LIMIT ANALYSISIn this se
tion we present an analyti
 approa
h to thestability properties and the spe
trum of a 
himera stateusing the thermodynami
 limit N → ∞. First, we willre
all brie�y the derivation of a dynami
al equation forthis limit, following the approa
h of Pikovsky and Rosen-blum [41℄. The 
himera states appear in this system as astationary state in a properly 
hosen 
o-rotating frame.Finally we will use the linearization at su
h a state inorder to study its spe
tral properties.A. The dynami
al equation for N = ∞System (1) 
an be rewritten in the equivalent form

Ψ̇k(t) = ω + Im(Zk(t)e−iΨk(t)
)

, (3)where
Zk(t) =

2

N

N
∑

j=1

G(xk − xj)e
iΨj(t)e−iα (4)



5is the e�e
tive for
e a
ting on the k-th os
illator. We
onsider now the os
illators in a small vi
inity of anypoint x and des
ribe them as a sub-population of glob-ally 
oupled os
illators. This is asymptoti
ally 
orre
tin a thermodynami
 limit where together with N → ∞also the number of sub-populations tends to in�nity. The
olle
tive behavior of the sub-populations is then 
har-a
terized by a lo
al 
omplex mean �eld z(x, t) de�neda

ording to
z(x, t) := lim

N→∞

1

|BN
δ (x)|

∑

j∈BN
δ

(x)

eiΨj(t), (5)where BN
δ (x) = {j : 1 ≤ j ≤ N, |x − xj | < δ} denotesa neighborhood of the point x. For the limit, we assume

δ = δ(N) → 0 for N → ∞ in a way that the numberof points |BN
δ (x)| in the neighborhood at the same timetends to in�nity. Note that (5) implies 0 ≤ |z(x, t)| ≤ 1for all x and t. For |z(x, t)| = 1 the os
illators aroundpoint x are syn
hronized in phase, while |z(x, t)| = 0 
or-responds to the lo
al absen
e of phase syn
hronization.For a 
himera state, |z(x, t)| = 1 identi�es the 
oherentdomain, while |z(x, t)| < 1 holds true in the in
oherentdomain.Interpreting now the spa
e variable x as a sub-population index and following the approa
h of Pikovskyand Rosenblum [41℄, we obtain an integro-di�erentialequation for the e�e
tive dynami
s of the lo
al mean�eld z(x, t)

∂z

∂t
= iωz(x, t) +

1

2
Z(x, t) −

z2(x, t)

2
Z∗(x, t), (6)where

Z(x, t) = e−iα

1
∫

−1

G(x − y)z(y, t)dy, (7)and the symbol ∗ denotes the 
omplex 
onjugate.The derivation of this system (for details see [41℄)is based mainly on the appli
ation of the Watanabe-Strogatz theory [42, 43℄. Alternatively, Eq. (6)-(7) 
analso be derived in a di�erent way, using the Ott-Antonsenmethod [44, 45℄ and a probabilisti
 interpretation of thefun
tion z(x, t). This approa
h, together with a varietyof examples, in
luding our system (1), has been reviewedre
ently in [20℄.It is assumed that all ma
ros
opi
 properties of the
himera states as well as the typi
al bifur
ation s
enariosinvolving them 
an be explained in terms of the solutionsof Eq. (6)-(7). However, there is a la
k of rigorous math-emati
al theory, telling in whi
h sense the solutions to(6)-(7) 
an be interpreted as an approximation of solu-tions to the original equation (1) for large N .Anyhow, Eq. (6)-(7) 
onstitutes a signi�
ant simpli-�
ation with respe
t to the original equation, sin
e weexpe
t that for any statisti
ally stationary solution ofsystem (1) whi
h might be very di�erent for neighboringindi
es k, the 
orresponding mean �eld solution z(x, t) ofEq. (6)-(7) is a 
ontinuous fun
tion of both x and t.

B. Standing wave solutionsIt is known [20℄ that a 
himera state in the origi-nal Eq. (1) 
orresponds to a standing wave solutions ofEq. (6)-(7). Re
alling the phase shift symmetry we trans-form system (6)-(7) into rotating 
oordinates
ẑ(x, t) = e−iΩtz(x, t) (8)and obtain

∂ẑ

∂t
= i∆ẑ(x, t) +

1

2
Ẑ(x, t) −

ẑ2(x, t)

2
Ẑ∗(x, t), (9)where we used the abbreviation ∆ := ω − Ω and the
o-rotating non-lo
al 
oupling for
e

Ẑ(x, t) = e−iα

1
∫

−1

G(x− y)ẑ(y, t)dy = Z(x, t)e−iΩt. (10)We seek now for stationary solutions
ẑ(x, t) ≡ ẑ(x) (11)of the resulting system together with their rotation fre-quen
y Ω. The time-independent pro�les ẑ(x) and Ẑ(x)satisfy the quadrati
 equation

Ẑ∗(x)ẑ2(x) − 2i∆ẑ(x) − Ẑ(x) = 0, (12)that 
an be solved by
ẑ1,2(x) =

i∆ ±

√

|Ẑ(x)|2 − ∆2

Ẑ∗(x)
. (13)Taking into a

ount (10), this is still an impli
it equationfor ẑ(x). Note that in formula (13) we have a 
hoi
ebetween two solution bran
hes 
orresponding to the plusand minus signs at the square root. The solution bran
h
an be 
hosen independently for the regions with positiveand negative arguments of the square root. As we willexplain below, we de
ide to 
hoose the positive bran
h

+

√

|Ẑ(x)|2 − ∆2 for |Ẑ(x)|2 − ∆2 > 0 and the negativebran
h −i

√

−|Ẑ(x)|2 + ∆2 for |Ẑ(x)|2 − ∆2 < 0.Inserting (13) into (10) we obtain �nally the self-
onsisten
y equation (
f. Eq. (5) in [13℄)
Ẑ(x) = e−iα

1
∫

−1

G(x − y)
i∆ +

√

|Ẑ(y)|2 − ∆2

Ẑ∗(y)
dy. (14)This nonlinear integral equation 
an be easily solved nu-meri
ally via an appropriate dis
retization, see e.g. [6,13℄. In order to obtain a uniquely solvable problem, onehas to �x the spatial position of the inhomogeneous pro-�le Ẑ(x). For this purpose, we require that the minimumof |Ẑ(x)| is attained at point x = 0. This implies that the
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orresponding non-lo
al 
ou-pling for
e Ẑ(x). Parameters: r = 0.7, α = 1.5.in
oherent region of a 
orresponding 
himera state is 
en-tered around zero. Under this additional assumption (14)has a solution pair (Ẑ(x), ∆) that is lo
ally unique up toa 
omplex phase shift of the fun
tion Ẑ(x).The boundaries x = ±Sincoh of the in
oherent region,that we assumed to be 
entered around x = 0, are deter-mined by the 
ondition
Sincoh = min{x ∈ [0, 1] : |ẑ(x)| = 1}.In terms of Ẑ(x) the 
ondition for the interfa
e Sincoh isgiven by |Ẑ(x)| = |∆|. Indeed, for

|Ẑ(x)| ≥ |∆|the expression under the square root in Eq. (13) is pos-itive and one 
an easily derive that |ẑ1,2(x)| = 1 there.Hen
e this 
ondition 
hara
terizes the 
oherent region.For |Ẑ(x)| < |∆|, we obtain from (13) that
|ẑ1,2(x)| =

2∆

(

∆ ±

√

∆2 − |Ẑ(x)|2
)

|Ẑ(x)|
.Con
luding from (12) that |ẑ1||ẑ2| = 1, we see that assoon as |ẑ1| 6= |ẑ2| only the bran
h ẑ2(x) that uses the

negative sign satis�es |ẑ2(x)| < 1 and allows for an in-terpretation as a lo
al mean �eld of 
oupled os
illators.This justi�es one part of our 
hoi
e for the bran
hes ofthe square root given above.C. Lyapunov spe
trum in the thermodynami
 limitWe are now going to analyze the stability propertiesof a stationary pro�le ẑ(x). To this end, we will lin-earize Eqs. (9)-(10) and study the spe
trum of the re-sulting linear operator. A similar spe
tral problem fora 
ontinuum limit of a 
oupled os
illator system has al-ready been 
onsidered in [10℄ and [39℄. The results in [10℄show that the stability of partially lo
ked states in the
lassi
al Kuramoto system 
an be analyzed by means ofthe spe
trum of the linearization in a suitable 
ontin-uum limit. The main result in that paper was that thepartially lo
ked states have a neutrally stable 
ontinuousspe
trum that 
an be attributed to the in
oherent mo-tion of the unlo
ked os
illators that are present in su
hsolutions. Additionally, stable 
ontinuous spe
trum onthe real axis as well as stable point spe
trum has beenfound for this state. A major a
hievement of Mirolloand Strogatz in [10℄ is also to 
larify the mathemati
alba
kground of their 
ontinuum limit in terms of proba-bility measure spa
es and fun
tional analyti
 propertiesof linearization operators a
ting on su
h spa
es.In the sequel, we will follow a similar approa
h for thestability properties in the 
himera problem. In parti
u-lar, we will analyti
ally 
al
ulate the neutral and stable
ontinuous spe
trum, in a similar way as in [10℄. How-ever, we will avoid mathemati
al details as mu
h as pos-sible and refer the reader to [10℄ for more mathemati
alba
kground. Instead, we �nally 
ompare the analyti
allyobtained spe
trum with the numeri
ally obtained Lya-punov spe
tra shown above.For the variations v̂(x, t) around a given stationary pro-�le ẑ(x) we obtain after linearizing system (9)-(10) thelinear equation
∂v̂

∂t
= µ(x)v̂(x, t) +

1

2
V̂ (x, t) −

ẑ2(x)

2
V̂ ∗(x, t), (15)where V̂ (x, t) is the non-lo
al 
oupling for
e for v̂(x, t) asin (10) and

µ(x) = i∆ − ẑ(x)Ẑ∗(x) = −

√

|Ẑ(x)|2 − ∆2. (16)Remark that the latter identity is a trivial 
onsequen
eof (13). Note that (15) together with (16) and the def-inition of the non-lo
al 
oupling for
e V̂ (x, t) a

ordingto (10) 
an be written as an operator equation
dv̂

dt
= (M + K)v̂(t). (17)where the multipli
ation operator M is de�ned as multi-pli
ation with µ(x) and K 
ontains the remaining terms



7of (15) that depend linearly on v̂ via the lo
al mean �eldintegral. In order to avoid 
ompli
ations 
aused by the
omplex 
onjugation, we reformulate this equation for
omplex v̂ now as a system for two real 
omponents
v̂(t) =

(

Re v̂(x, t)

Im v̂(x, t)

)

,where the ve
tor-fun
tion v̂(t) assumes values in thefun
tional spa
e
L2

per := {u ∈ L2((−1, 1); R2) : u is 2-periodi
}.Then, the multipli
ation operator M is given by
M =

(

Re µ(x) −Im µ(x)

Im µ(x) Re µ(x)

)and K is the integral operator
(Kv̂)(x) =











1
∫

−1

[K11(x, y)v̂1(y) + K12(x, y)v̂2(y)] dy

1
∫

−1

[K21(x, y)v̂1(y) + K22(x, y)v̂2(y)] dy









with the (2 × 2)-matrix kernel
K(x, y) =

1

2

[

Q − QT

(

Re ẑ2(x) Im ẑ2(x)

Im ẑ2(x) −Re ẑ2(x)

)]

G(x−y),where
Q =

(

cosα sin α

− sinα cosα

)and QT denotes the transpose of matrix Q.For any pie
ewise 
ontinuous 
oupling fun
tion G(x),as e.g. our default 
hoi
e G(x) = Gr(x), a 
orrespond-ing stationary pro�le Ẑ(x) of the self-
onsisten
y equa-tion (14) turns out to be 
ontinuous in x. Hen
e, both op-erators M and K are linear bounded operators from L2
perto L2

per . The stability properties of the stationary solu-tion to Eq. (6) 
an now be investigated by analyzing thespe
trum of the 
orresponding linearization given by theoperator M + K.Following the general spe
tral theory for a linear op-erator A, we distinguish between di�erent types of spe
-trum. The point spe
trum σp(A) 
ontains all 
omplexvalues λ where λI−A has a kernel and hen
e is not invert-ible. The 
ontinuous spe
trum σc(A) 
ontains values λfor whi
h λI−A has no kernel, but the inverse (λI−A)−1is an unbounded operator that is de�ned only on a densesubspa
e.Taking into a

ount the uniform boundedness of thekernel matrix K(x, y) we 
on
lude that the integral op-eratorK is a 
ompa
t operator from L2
per to L2

per . There-fore, a

ording to Weyl's result (see e.g. [46℄), the 
ontin-uous spe
trum σc(M + K) is given just by σc(M). The

-0.5
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i|µ(0)|(a)
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 0

 0  0.2  0.4  0.6  0.8  1

x

Λ∞(x)

SincohLE of incoherent oscillators

LE of coherent oscillators

-|µ(1)|

(b)

FIG. 8: (a) Continuous spe
trum σc(M) of a 
himera statein system (1) with r = 0.7 and α = 1.5. (b) CorrespondingLyapunov spe
trum fun
tion Λ∞(x) a

ording to (20).
ontinuous spe
trum σc(M) 
onsists of all 
omplex val-ues λ with
det

(

Re µ(x) − λ −Im µ(x)

Im µ(x) Re µ(x) − λ

)

= 0 (18)for some x ∈ [−1, 1]. Indeed, one 
an easily 
he
k thatin this 
ase the image of the operator λI − M is only adense subspa
e of L2
per. Hen
e, we obtain from (16) that

σc(M) =
{

µ(x)
∣

∣

∣ 0 ≤ x ≤ 1
}

∪ {c.c.}

=

{

−

√

|Ẑ(x)|2 − ∆2

∣

∣

∣

∣

0 ≤ x ≤ 1

}

∪ {c.c.} (19)A

ording to the 
onstru
tion of Ẑ(x) (see Figure 7(b))we know that for a 
himera solution of (14) we have
|Ẑ(x)| < |∆| for x ∈ [0, Sincoh), and |Ẑ(x)| > |∆| for
x ∈ (Sincoh, 1]. Correspondingly, the part of the spe
-trum (19) with x ∈ [0, Sincoh) 
onsists of purely imag-inary values, with their zero real parts 
orrespondingto the zero Lyapunov spe
trum (grey in Fig. 8). In-stead, for x ∈ (Sincoh, 1] the spe
trum (19) is real and
orresponds to the stable part of the Lyapunov spe
-trum (bla
k in Figure 8). The �rst part is the interval
[−|µ(1)|, 0] on the real axis, and the se
ond part is theinterval [−i|µ(0)|, i|µ(0)|] on the imaginary axis. At this
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ν=(k-1)/(N-1)

Λ100(ν)

r=0.63

r=0.69

r=0.73FIG. 9: (Color) Comparison of the Lyapunov spe
tra (
olordots) from Figure 2 with the 
orresponding Lyapunov spe
-trum fun
tions Λ∞(ν) (
olor lines) de�ned by (20).point we 
an also provide the missing argument for our
hoi
e of the solution bran
hes in (13): 
hoosing the op-posite sign there, the real bran
h of σc(M) is lo
atedin the positive half plane and the 
orresponding 
himerawould be unstable.We 
ompare now the real parts of the 
ontinuousspe
trum parameterized by x ∈ [0, 1] a

ording to for-mula (19), with the Lyapunov spe
trum fun
tions ΛN(x)of the 
orresponding 
himera state (see Figure 5). Re-
alling our numeri
al results about the limit behavior for
N → ∞, we observe for 0 ≤ x ≤ Sincoh a 
onvergen
e ofthe Lyapunov spe
trum to the 
orresponding neutral partof the 
ontinuous spe
trum. At the same time, we ob-serve for Sincoh < x ≤ 1 a good 
oin
iden
e of the stableLyapunov spe
trum with the stable 
ontinuous spe
trum.Hen
e we 
on
lude that the spe
trum in the thermody-nami
 limit

Λ∞(x) :=

{

0, if 0 ≤ x ≤ Sincoh,

−

√

|Ẑ(x)|2 − ∆2, if Sincoh < x ≤ 1,(20)
an be 
onsidered as the limit of the spe
tra ΛN(x) for
N → ∞. Additional eviden
es for this 
laim 
an be

obtained if we 
ompare the Lyapunov spe
tra on Fig-ure 2 with the 
orresponding Lyapunov spe
trum fun
-tions Λ∞(ν) as it is shown on Figure 9.It is 
lear that the 
omposed operator M + K shouldalso have a point spe
trum. However, for the 
himerastates we studied, there seems to be no point spe
truma�e
ting strongly their stability properties. But we pre-sume that at the boundary of existen
e of stable 
himerastates, 
riti
al point spe
trum might be responsible forindu
ing an instability with respe
t to a 
olle
tive mode.IV. CONCLUSIONSStarting with the pioneering works of Kuramoto, the
himera states are known as a pe
uliar dynami
al regimewith an apparently 
haoti
 behavior, whi
h neverthelessallows for a deterministi
 des
ription in the thermody-nami
 limit. In the present work, we tried to 
larify therelation of the deterministi
 
haos in the �nite size systemand the spe
tral properties of the 
orresponding thermo-dynami
 evolution equation. By a 
areful study of theLyapunov spe
tra, we have demonstrated that 
himerastates are weakly hyper
haoti
 traje
tories in the sensethat their Lyapunov spe
tra 
ontain a 
onsiderable num-ber of positive Lyapunov exponents. When the systemsize grows, the hyper
haoti
 part of the spe
trum tendsto zero. We also have found that for N → ∞ the wholeLyapunov spe
trum has a well-de�ned limiting behavior,whi
h 
an be asso
iated with the spe
tral properties ofthe thermodynami
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