
Spetral properties of himera statesM. Wolfrum1, O. E. Omel'henko1,2, S. Yanhuk3, and Y. L. Maistrenko2,4

1Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
2Institute of Mathematis, National Aademy of Sienes of Ukraine, Tereshhenkivska Str. 3, 01601 Kyiv, Ukraine

3Institute of Mathematis, Humboldt University of Berlin,Unter den Linden 6, 10099 Berlin, Germany and
4National Center for Medial and Biotehnial Researh,National Aademy of Sienes of Ukraine, 01601 Kyiv, Ukraine(Dated: February 11, 2011)Chimera states are partiular trajetories in systems of phase osillators with non-loal ouplingthat display a spatio-temporal pattern of oherent and inoherent motion. We present here a detailedanalysis of the spetral properties for suh trajetories. First, we study numerially their Lyapunovspetrum and its behavior for an inreasing number of osillators. The spetra demonstrate thehyperhaoti nature of the himera states and show a orrespondene of the Lyapunov dimensionwith the number of inoherent osillators. Then, we pass to the thermodynami limit equation andpresent an analyti approah to the spetrum of a orresponding linearized evolution operator. Weshow that in this setting, the himera state is neutrally stable and that the ontinuous spetrumoinides with the limit of the hyperhaoti Lyapunov spetrum obtained for the �nite size systems.PACS numbers: 05.45.Xt, 89.75.KdChimera states (see Figure 1) are remarkablespatio-temporal patterns where regions of syn-hrony oexist with regions of inoherent motionin a spatially homogeneous system of oupled os-illators. They onstitute a new paradigm of dy-namial behavior that an serve as a prototypefor various physial phenomena, e.g. oexisteneof synhronous and asynhronous neural ativ-ity (so alled 'bump' states) [1�4℄ or turbulent-laminar �ow patterns [5℄. For their mathematialdesription one has to employ onepts from the�elds of pattern formation, deterministi haos,and statistial physis. Indeed, starting with thepioneering work of Kuramoto [6℄, the thermody-nami limit of a large number of osillators hasbeen developed to a powerful tool for the in-vestigation of himera states. In this paper, weput our fous to the relation of himera states in�nite size systems to their thermodynami lim-its. After a areful numerial study of the Lya-punov spetra for himera trajetories in �nitesize systems, we ompare our results with thespetral properties of the linearized evolution op-erator in the thermodynami limit. We show thatthere the himera states are neutrally stable andthat their ontinuous spetrum oinides with thelimit of the hyperhaoti Lyapunov spetrum ob-tained for the �nite size systems.I. INTRODUCTIONSystems of oupled phase osillators have been widelyused to study the basi properties of olletive synhro-nization that an be observed in a huge variety of systemsfrom physis, hemistry, biology, or soial sienes [7�

10℄. Reently, a new dynamial phenomenon ourringin suh systems has attrated a lot of attention: Ku-ramoto e.a. [6, 11, 12℄ reported a new type of solutionsthat Strogatz e.a. [13, 14℄ later on alled "himera states�(see Figure 1), where a spatially homogeneous system ofoupled idential osillators displays self-organized pat-terns of regions with synhronous and asynhronous mo-tion. Sine then suh solutions have been observed undervarious onditions, inluding 1D and 2D arrays, inhomo-geneous systems and systems with delayed oupling [15�29℄. The main ingredients that are typially needed toobserve himera states are(i) a disrete medium, typially represented by a largenumber of osillators distributed in spae;(ii) a non-loal oupling that provides an interationbetween loal sub-populations with a oupling range thatis di�erent both from global and from loal next neighboroupling;(iii) a well tuned amount of repulsion between the os-illators, that is typially ahieved by a Sakaguhi phaselag parameter or a oupling delay.Trying to redue the numerial omplexity, we hoosefor our studies a simple system omprising a ringof N idential non-loally oupled phase osillators withphases Ψ1, . . . , ΨN that follow the evolution
Ψ̇k(t) = ω−

2

N

N
∑

j=1

G(xk−xj) sin(Ψk(t)−Ψj(t)+α). (1)Here ω denotes the natural frequeny of the osillatorsthat an be set to zero, and α ∈ (0, π/2) is a phaselag parameter. The osillators are assumed to be uni-formly distributed over the interval [−1, 1] with positions
xk = −1 + 2k/N , k = 1, . . . , N and periodi boundaryonditions. Using these positions we an employ a ou-pling funtion G(x) to determine a non-loal oupling
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FIG. 1: (a) Phase snapshot of a himera state in system (1);(b) orresponding time averaged phase veloities ωeff(x). Pa-rameters: N = 200, r = 0.7, and α = 1.5.on a marosopi sale that is independent on the a-tual number of osillators. In partiular, throughout thispaper we hoose the simplest possible form of non-loaloupling given by a step funtion
Gr(x) =

{

1/(2r), if |x| ≤ r,

0, if |x| > r,
(2)with r ∈ (0, 1) denoting the radius of oupling.Below, we put our fous to the spetral properties ofhimera states both in �nite size systems and in the ther-modynami limit. To this end, we employ the Lyapunovspetrum analysis, whih is a standard tool for studyingproperties of haoti systems [30, 31℄. Reall that for N -dimensional system, there exists the set of N Lyapunovexponents, whih are measures of how quikly small ini-tial di�erenes diverge or onverge as two near-equivalentsystems evolve. A positive exponent serves as a riterionfor haos, and hyperhaos is indiated by several positiveexponents. Moreover, Lyapunov exponents give insightinto many other dynamial features of haoti trajeto-ries: The full Lyapunov spetrum an be used to nu-merially determine the dimensionality [32℄ of a haotiattrator. The inverse Lyapunov exponent is a hara-teristi time of mixing and of orrelation delay. In the

ase of oupled systems, the synhronization thresholdan be expressed in terms of the onditional Lyapunovexponents [33℄.Lyapunov exponents for extended systems, e.g. lattiesof oupled osillators, have been studied in several pa-pers. In partiular, their statistis in disordered haotisystems has been onsidered in [34℄, where an approxi-mate expression for the distribution of their spaings isobtained. In [35℄ an example is shown, where the Lya-punov dimension approahes almost the total dimensionof the phase spae and the exponents tend to zero withsystems size N → ∞. A similar weak form of haos wasalso reported in [36℄ with the saling behavior of the Lya-punov exponents of a periodially osillating olletivestate as N−2. In the ontext of spatio-temporal haos,the very existene of a well-de�ned Lyapunov spetrumin the thermodynami limit is a proof of the extensivityof haos [31, 37, 38℄.The paper is organized as follows. In Setion II wepresent our numerial results for the Lyapunov spetrumof himera states. In partiular, we study the depen-dene on the parameters α and r, alulate the Lyapunovdimension, and analyze the saling behavior for an in-reasing number N of osillators at di�erent parts of thespetrum.In the following setion, we shortly reall the derivationof a thermodynami limit system for N → ∞. Then weuse its linearization to study the spetral properties of theevolution operator in the orresponding in�nite dimen-sional system. Similarly as in the results of Mirollo andStrogatz [10, 39℄ for loked or partially loked states inthe lassial Kuramoto system, we �nd ontinuous spe-trum on the imaginary axis that indiates a neutral sta-bility of the orresponding states. We show that the realparts of this ontinuous spetrum oinides with the limitfor N → ∞ of the Lyapunov spetrum alulated before.II. LYAPUNOV SPECTRUMIn this setion, we present our numerial results for theLyapunov spetrum of himera states and its dependeneon various parameters. In partiular, we disuss the sal-ing behavior for N → ∞ of the Lyapunov exponentsand of the Lyapunov dimension. Our numerial ompu-tations employed a ommonly used fourth-order Runge-Kutta sheme (with �xed time step dt = 0.01) to in-tegrate system (1) together with the standard algorithmfor Lyapunov exponents using ontinuous Gram-Shmidtorthonormalization [40℄. Simulations extend typiallyover 60000 time units that seems to provide a stabiliza-tion of the Lyapunov exponents at a satisfatory level ofauray.To ompare the Lyapunov spetra for di�erent num-bers of osillators N we represent the sequene λkof non-inreasing Lyapunov exponents by the funtion
ΛN(ν), 0 ≤ ν ≤ 1 suh that ΛN(ν) = λk if ν =
(k − 1)/(N − 1). Figure 2 shows the Lyapunov spetra
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r=0.73FIG. 2: (Color) Lyapunov spetra Λ100(ν) omputed forhimera trajetories of (1) with oupling radius r = 0.63 (redirles), 0.69 (green diamonds), and 0.73 (blue triangles), andphase lag α = 1.44.spetrum ontains a onsiderable number of positive Lya-punov exponents indiating the hyperhaoti nature ofthe himera states. One exponent is exatly equal tozero (in our numeris ≤ 10−5) and re�ets the phaseshift symmetry of the system (1). Also the index shiftsymmetry of the system (1), whih is a disrete symme-try for �nite N and tends to a ontinuous symmetry inthe ase N → ∞, indues an exponent lose to zero.In Figure 3 we show the maximal Lyapunov expo-nent λmax = Λ100(0) for all values of parameters (r, α)where a himera state was deteted. The Figure showslearly that the maximal Lyapunov exponent remainspositive and separated from zero for all parameters (r, α)in this region.

FIG. 3: (Color) Dependene of the maximal Lyapunov expo-nent λmax = Λ100(0) on the oupling radius r and the phaselag α. The gray region at the bottom indiates the parameterregion, where we found himera trajetories for N = 100, thegreen line indiates the boundary of the existene region forhimera states in the thermodynami limit N = ∞.Varying the oupling radius r or, alternatively, thephase lag α, we obtain typially himera states with dif-ferent sizes of the oherent and inoherent regions. Thissize an be represented by the relative number of inoher-

ent osillators Sincoh = Nincoh/N that is a marosopiquantity and an be obtained from Kuramoto's self-onsisteny equation in the thermodynami limit N → ∞(see [6℄).In Figure 2 we present the Lyapunov spetra for threedi�erent values of the oupling radius r that orrespondto di�erent sizes of the oherent region. One an observethat there is almost no di�erene for the positive Lya-punov exponents whereas the stable part of the spetrumis shifted, leading to an inreasing number of stronglystable exponents for larger r and orrespondingly largersize of the oherent region. Indeed, it is natural to as-sume that perturbations that are loalized in the oher-ent region ontribute to the stable part of the spetrumwhereas perturbations loalized in the inoherent regionan ontribute to the haoti part of the spetrum.This observation an be made more preise by om-paring the orresponding Lyapunov dimensions (see Fig-ure 4(a)). Reall that for a given Lyapunov spe-trum {λk} the Lyapunov dimension is given by
DL = K +

K
∑

j=1

λj

|λK+1|
,where K is the maximum integer suh that the sum ofthe K largest Lyapunov exponents is still non-negative.Our numerial results show that the relative Lyapunovdimension dL = DL/N is slightly smaller, but followsthe hange of the size of the inoherent region Sincoh, seeFigure 4(a). Based on our thermodynami limit analy-sis (see Setion III), we suppose that the observed gap

Sincoh − dL that has still a size of 5% is presumably a�nite N e�et that will vanish for larger numbers of N .However, our numerial results (see Figure 4(b)), dueto the enormous omputational omplexity overing onlythe range up to N = 120, do not show this trend verylearly. Besides the Lyapunov dimension DL, we alsoonsider the point-wise saling properties of the Lya-punov spetrum as the number of osillators N inreases(see Figure 5). As default parameters we use r = 0.7 and
α = 1.5. The maximum number for whih we were ableto alulate a full Lyapunov spetrum is N = 120. Theleading part of the spetrum has been alulated for Nup to 300. We ompare these spetra with the real part ofthe spetrum, alulated analytially by means of a ther-modynami limit analysis (see following setion). It turnsout that for 0 ≤ ν ≤ Sincoh the Lyapunov exponents on-verge to zero for N → ∞, whereas for Sincoh < ν ≤ 1they have a non-zero negative limit. Our numerial al-ulations (ompare Figure 6), show that there are threedi�erent types of saling behavior for di�erent parts ofthe spetrum:(i) The maximal Lyapunov exponent λmax = ΛN (0)sales as N−1/2.(ii) For all ν ∈ (0, Sincoh) the Lyapunov expo-nents ΛN(ν) sale roughly as N−1
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−1.2. Parameters:
r = 0.7, α = 1.5.III. THERMODYNAMIC LIMIT ANALYSISIn this setion we present an analyti approah to thestability properties and the spetrum of a himera stateusing the thermodynami limit N → ∞. First, we willreall brie�y the derivation of a dynamial equation forthis limit, following the approah of Pikovsky and Rosen-blum [41℄. The himera states appear in this system as astationary state in a properly hosen o-rotating frame.Finally we will use the linearization at suh a state inorder to study its spetral properties.A. The dynamial equation for N = ∞System (1) an be rewritten in the equivalent form

Ψ̇k(t) = ω + Im(Zk(t)e−iΨk(t)
)

, (3)where
Zk(t) =

2

N

N
∑

j=1

G(xk − xj)e
iΨj(t)e−iα (4)



5is the e�etive fore ating on the k-th osillator. Weonsider now the osillators in a small viinity of anypoint x and desribe them as a sub-population of glob-ally oupled osillators. This is asymptotially orretin a thermodynami limit where together with N → ∞also the number of sub-populations tends to in�nity. Theolletive behavior of the sub-populations is then har-aterized by a loal omplex mean �eld z(x, t) de�nedaording to
z(x, t) := lim

N→∞

1

|BN
δ (x)|

∑

j∈BN
δ

(x)

eiΨj(t), (5)where BN
δ (x) = {j : 1 ≤ j ≤ N, |x − xj | < δ} denotesa neighborhood of the point x. For the limit, we assume

δ = δ(N) → 0 for N → ∞ in a way that the numberof points |BN
δ (x)| in the neighborhood at the same timetends to in�nity. Note that (5) implies 0 ≤ |z(x, t)| ≤ 1for all x and t. For |z(x, t)| = 1 the osillators aroundpoint x are synhronized in phase, while |z(x, t)| = 0 or-responds to the loal absene of phase synhronization.For a himera state, |z(x, t)| = 1 identi�es the oherentdomain, while |z(x, t)| < 1 holds true in the inoherentdomain.Interpreting now the spae variable x as a sub-population index and following the approah of Pikovskyand Rosenblum [41℄, we obtain an integro-di�erentialequation for the e�etive dynamis of the loal mean�eld z(x, t)

∂z

∂t
= iωz(x, t) +

1

2
Z(x, t) −

z2(x, t)

2
Z∗(x, t), (6)where

Z(x, t) = e−iα

1
∫

−1

G(x − y)z(y, t)dy, (7)and the symbol ∗ denotes the omplex onjugate.The derivation of this system (for details see [41℄)is based mainly on the appliation of the Watanabe-Strogatz theory [42, 43℄. Alternatively, Eq. (6)-(7) analso be derived in a di�erent way, using the Ott-Antonsenmethod [44, 45℄ and a probabilisti interpretation of thefuntion z(x, t). This approah, together with a varietyof examples, inluding our system (1), has been reviewedreently in [20℄.It is assumed that all marosopi properties of thehimera states as well as the typial bifuration senariosinvolving them an be explained in terms of the solutionsof Eq. (6)-(7). However, there is a lak of rigorous math-ematial theory, telling in whih sense the solutions to(6)-(7) an be interpreted as an approximation of solu-tions to the original equation (1) for large N .Anyhow, Eq. (6)-(7) onstitutes a signi�ant simpli-�ation with respet to the original equation, sine weexpet that for any statistially stationary solution ofsystem (1) whih might be very di�erent for neighboringindies k, the orresponding mean �eld solution z(x, t) ofEq. (6)-(7) is a ontinuous funtion of both x and t.

B. Standing wave solutionsIt is known [20℄ that a himera state in the origi-nal Eq. (1) orresponds to a standing wave solutions ofEq. (6)-(7). Realling the phase shift symmetry we trans-form system (6)-(7) into rotating oordinates
ẑ(x, t) = e−iΩtz(x, t) (8)and obtain

∂ẑ

∂t
= i∆ẑ(x, t) +

1

2
Ẑ(x, t) −

ẑ2(x, t)

2
Ẑ∗(x, t), (9)where we used the abbreviation ∆ := ω − Ω and theo-rotating non-loal oupling fore

Ẑ(x, t) = e−iα

1
∫

−1

G(x− y)ẑ(y, t)dy = Z(x, t)e−iΩt. (10)We seek now for stationary solutions
ẑ(x, t) ≡ ẑ(x) (11)of the resulting system together with their rotation fre-queny Ω. The time-independent pro�les ẑ(x) and Ẑ(x)satisfy the quadrati equation

Ẑ∗(x)ẑ2(x) − 2i∆ẑ(x) − Ẑ(x) = 0, (12)that an be solved by
ẑ1,2(x) =

i∆ ±

√

|Ẑ(x)|2 − ∆2

Ẑ∗(x)
. (13)Taking into aount (10), this is still an impliit equationfor ẑ(x). Note that in formula (13) we have a hoiebetween two solution branhes orresponding to the plusand minus signs at the square root. The solution branhan be hosen independently for the regions with positiveand negative arguments of the square root. As we willexplain below, we deide to hoose the positive branh

+

√

|Ẑ(x)|2 − ∆2 for |Ẑ(x)|2 − ∆2 > 0 and the negativebranh −i

√

−|Ẑ(x)|2 + ∆2 for |Ẑ(x)|2 − ∆2 < 0.Inserting (13) into (10) we obtain �nally the self-onsisteny equation (f. Eq. (5) in [13℄)
Ẑ(x) = e−iα

1
∫

−1

G(x − y)
i∆ +

√

|Ẑ(y)|2 − ∆2

Ẑ∗(y)
dy. (14)This nonlinear integral equation an be easily solved nu-merially via an appropriate disretization, see e.g. [6,13℄. In order to obtain a uniquely solvable problem, onehas to �x the spatial position of the inhomogeneous pro-�le Ẑ(x). For this purpose, we require that the minimumof |Ẑ(x)| is attained at point x = 0. This implies that the
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FIG. 7: Solutions of self-onsisteny equation (13), (14).(a) Loal mean �eld ẑ(x), (b) orresponding non-loal ou-pling fore Ẑ(x). Parameters: r = 0.7, α = 1.5.inoherent region of a orresponding himera state is en-tered around zero. Under this additional assumption (14)has a solution pair (Ẑ(x), ∆) that is loally unique up toa omplex phase shift of the funtion Ẑ(x).The boundaries x = ±Sincoh of the inoherent region,that we assumed to be entered around x = 0, are deter-mined by the ondition
Sincoh = min{x ∈ [0, 1] : |ẑ(x)| = 1}.In terms of Ẑ(x) the ondition for the interfae Sincoh isgiven by |Ẑ(x)| = |∆|. Indeed, for

|Ẑ(x)| ≥ |∆|the expression under the square root in Eq. (13) is pos-itive and one an easily derive that |ẑ1,2(x)| = 1 there.Hene this ondition haraterizes the oherent region.For |Ẑ(x)| < |∆|, we obtain from (13) that
|ẑ1,2(x)| =

2∆

(

∆ ±

√

∆2 − |Ẑ(x)|2
)

|Ẑ(x)|
.Conluding from (12) that |ẑ1||ẑ2| = 1, we see that assoon as |ẑ1| 6= |ẑ2| only the branh ẑ2(x) that uses the

negative sign satis�es |ẑ2(x)| < 1 and allows for an in-terpretation as a loal mean �eld of oupled osillators.This justi�es one part of our hoie for the branhes ofthe square root given above.C. Lyapunov spetrum in the thermodynami limitWe are now going to analyze the stability propertiesof a stationary pro�le ẑ(x). To this end, we will lin-earize Eqs. (9)-(10) and study the spetrum of the re-sulting linear operator. A similar spetral problem fora ontinuum limit of a oupled osillator system has al-ready been onsidered in [10℄ and [39℄. The results in [10℄show that the stability of partially loked states in thelassial Kuramoto system an be analyzed by means ofthe spetrum of the linearization in a suitable ontin-uum limit. The main result in that paper was that thepartially loked states have a neutrally stable ontinuousspetrum that an be attributed to the inoherent mo-tion of the unloked osillators that are present in suhsolutions. Additionally, stable ontinuous spetrum onthe real axis as well as stable point spetrum has beenfound for this state. A major ahievement of Mirolloand Strogatz in [10℄ is also to larify the mathematialbakground of their ontinuum limit in terms of proba-bility measure spaes and funtional analyti propertiesof linearization operators ating on suh spaes.In the sequel, we will follow a similar approah for thestability properties in the himera problem. In partiu-lar, we will analytially alulate the neutral and stableontinuous spetrum, in a similar way as in [10℄. How-ever, we will avoid mathematial details as muh as pos-sible and refer the reader to [10℄ for more mathematialbakground. Instead, we �nally ompare the analytiallyobtained spetrum with the numerially obtained Lya-punov spetra shown above.For the variations v̂(x, t) around a given stationary pro-�le ẑ(x) we obtain after linearizing system (9)-(10) thelinear equation
∂v̂

∂t
= µ(x)v̂(x, t) +

1

2
V̂ (x, t) −

ẑ2(x)

2
V̂ ∗(x, t), (15)where V̂ (x, t) is the non-loal oupling fore for v̂(x, t) asin (10) and

µ(x) = i∆ − ẑ(x)Ẑ∗(x) = −

√

|Ẑ(x)|2 − ∆2. (16)Remark that the latter identity is a trivial onsequeneof (13). Note that (15) together with (16) and the def-inition of the non-loal oupling fore V̂ (x, t) aordingto (10) an be written as an operator equation
dv̂

dt
= (M + K)v̂(t). (17)where the multipliation operator M is de�ned as multi-pliation with µ(x) and K ontains the remaining terms



7of (15) that depend linearly on v̂ via the loal mean �eldintegral. In order to avoid ompliations aused by theomplex onjugation, we reformulate this equation foromplex v̂ now as a system for two real omponents
v̂(t) =

(

Re v̂(x, t)

Im v̂(x, t)

)

,where the vetor-funtion v̂(t) assumes values in thefuntional spae
L2

per := {u ∈ L2((−1, 1); R2) : u is 2-periodi}.Then, the multipliation operator M is given by
M =

(

Re µ(x) −Im µ(x)

Im µ(x) Re µ(x)

)and K is the integral operator
(Kv̂)(x) =











1
∫

−1

[K11(x, y)v̂1(y) + K12(x, y)v̂2(y)] dy

1
∫

−1

[K21(x, y)v̂1(y) + K22(x, y)v̂2(y)] dy









with the (2 × 2)-matrix kernel
K(x, y) =

1

2

[

Q − QT

(

Re ẑ2(x) Im ẑ2(x)

Im ẑ2(x) −Re ẑ2(x)

)]

G(x−y),where
Q =

(

cosα sin α

− sinα cosα

)and QT denotes the transpose of matrix Q.For any pieewise ontinuous oupling funtion G(x),as e.g. our default hoie G(x) = Gr(x), a orrespond-ing stationary pro�le Ẑ(x) of the self-onsisteny equa-tion (14) turns out to be ontinuous in x. Hene, both op-erators M and K are linear bounded operators from L2
perto L2

per . The stability properties of the stationary solu-tion to Eq. (6) an now be investigated by analyzing thespetrum of the orresponding linearization given by theoperator M + K.Following the general spetral theory for a linear op-erator A, we distinguish between di�erent types of spe-trum. The point spetrum σp(A) ontains all omplexvalues λ where λI−A has a kernel and hene is not invert-ible. The ontinuous spetrum σc(A) ontains values λfor whih λI−A has no kernel, but the inverse (λI−A)−1is an unbounded operator that is de�ned only on a densesubspae.Taking into aount the uniform boundedness of thekernel matrix K(x, y) we onlude that the integral op-eratorK is a ompat operator from L2
per to L2

per . There-fore, aording to Weyl's result (see e.g. [46℄), the ontin-uous spetrum σc(M + K) is given just by σc(M). The
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FIG. 8: (a) Continuous spetrum σc(M) of a himera statein system (1) with r = 0.7 and α = 1.5. (b) CorrespondingLyapunov spetrum funtion Λ∞(x) aording to (20).ontinuous spetrum σc(M) onsists of all omplex val-ues λ with
det

(

Re µ(x) − λ −Im µ(x)

Im µ(x) Re µ(x) − λ

)

= 0 (18)for some x ∈ [−1, 1]. Indeed, one an easily hek thatin this ase the image of the operator λI − M is only adense subspae of L2
per. Hene, we obtain from (16) that

σc(M) =
{

µ(x)
∣

∣

∣ 0 ≤ x ≤ 1
}

∪ {c.c.}

=

{

−

√

|Ẑ(x)|2 − ∆2

∣

∣

∣

∣

0 ≤ x ≤ 1

}

∪ {c.c.} (19)Aording to the onstrution of Ẑ(x) (see Figure 7(b))we know that for a himera solution of (14) we have
|Ẑ(x)| < |∆| for x ∈ [0, Sincoh), and |Ẑ(x)| > |∆| for
x ∈ (Sincoh, 1]. Correspondingly, the part of the spe-trum (19) with x ∈ [0, Sincoh) onsists of purely imag-inary values, with their zero real parts orrespondingto the zero Lyapunov spetrum (grey in Fig. 8). In-stead, for x ∈ (Sincoh, 1] the spetrum (19) is real andorresponds to the stable part of the Lyapunov spe-trum (blak in Figure 8). The �rst part is the interval
[−|µ(1)|, 0] on the real axis, and the seond part is theinterval [−i|µ(0)|, i|µ(0)|] on the imaginary axis. At this
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r=0.73FIG. 9: (Color) Comparison of the Lyapunov spetra (olordots) from Figure 2 with the orresponding Lyapunov spe-trum funtions Λ∞(ν) (olor lines) de�ned by (20).point we an also provide the missing argument for ourhoie of the solution branhes in (13): hoosing the op-posite sign there, the real branh of σc(M) is loatedin the positive half plane and the orresponding himerawould be unstable.We ompare now the real parts of the ontinuousspetrum parameterized by x ∈ [0, 1] aording to for-mula (19), with the Lyapunov spetrum funtions ΛN(x)of the orresponding himera state (see Figure 5). Re-alling our numerial results about the limit behavior for
N → ∞, we observe for 0 ≤ x ≤ Sincoh a onvergene ofthe Lyapunov spetrum to the orresponding neutral partof the ontinuous spetrum. At the same time, we ob-serve for Sincoh < x ≤ 1 a good oinidene of the stableLyapunov spetrum with the stable ontinuous spetrum.Hene we onlude that the spetrum in the thermody-nami limit

Λ∞(x) :=

{

0, if 0 ≤ x ≤ Sincoh,

−

√

|Ẑ(x)|2 − ∆2, if Sincoh < x ≤ 1,(20)an be onsidered as the limit of the spetra ΛN(x) for
N → ∞. Additional evidenes for this laim an be

obtained if we ompare the Lyapunov spetra on Fig-ure 2 with the orresponding Lyapunov spetrum fun-tions Λ∞(ν) as it is shown on Figure 9.It is lear that the omposed operator M + K shouldalso have a point spetrum. However, for the himerastates we studied, there seems to be no point spetruma�eting strongly their stability properties. But we pre-sume that at the boundary of existene of stable himerastates, ritial point spetrum might be responsible forinduing an instability with respet to a olletive mode.IV. CONCLUSIONSStarting with the pioneering works of Kuramoto, thehimera states are known as a peuliar dynamial regimewith an apparently haoti behavior, whih neverthelessallows for a deterministi desription in the thermody-nami limit. In the present work, we tried to larify therelation of the deterministi haos in the �nite size systemand the spetral properties of the orresponding thermo-dynami evolution equation. By a areful study of theLyapunov spetra, we have demonstrated that himerastates are weakly hyperhaoti trajetories in the sensethat their Lyapunov spetra ontain a onsiderable num-ber of positive Lyapunov exponents. When the systemsize grows, the hyperhaoti part of the spetrum tendsto zero. We also have found that for N → ∞ the wholeLyapunov spetrum has a well-de�ned limiting behavior,whih an be assoiated with the spetral properties ofthe thermodynami limit equation.V. ACKNOWLEDGMENTS. Yanhuk aknowledges the support by DFG Re-searh Center Matheon, Yu. L. Maistrenko aknowl-edges the support from the DFG ooperation grantWO 891/3-1.[1℄ A. Compte, N. Brunel, P. S. Goldman-Raki, and X.-J.Wang, Cerebral Cortex 10, 910 (2000).[2℄ A. Renart, P. Song, and X.-J. Wang, Neuron 38, 473(2003).[3℄ C. C. Chow and S. Coombes, SIAM J. Appl. Dynam.Syst. 5, 552 (2006).[4℄ H. Sakaguhi, Phys. Rev. E 73, 031907 (2006).[5℄ D. Barkley and L. S. Tukerman, Phys. Rev. Lett. 94,014502 (2005).[6℄ Y. Kuramoto and D. Battogtokh, Nonlinear Phenom.Complex Syst. 5, 380 (2002).[7℄ Y. Kuramoto, Chemial Osillations, Waves, and Turbu-lene (Springer, Berlin Heidelberg New York, 1984).[8℄ S. H. Strogatz, Physia D 143, 1 (2000).[9℄ J. A. Aerbrón, L. L. Bonilla, C. J. Pérez-Viente, F. Ri-
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