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Abstract

Three families of transmission conditions of different order are proposed for thin conducting sheets in the
eddy current model. Resolving the thin sheet by a finite element mesh is often not possible. With these
transmission conditions only the middle curve, but not the thin sheet itself, has not to be resolved by a
finite element mesh. The families of transmission conditions are derived by an asymptotic expansion for
small sheet thicknesses ε, where each family results from a different asymptotic framework. In the first
asymptotic framework the conductivity remains constant, scales with 1/ε in the second and with 1/ε2 in the
third. The different asymptotics lead to different limit conditions, namely the vanishing sheet, a non-trivial
borderline case, and the impermeable sheet, as well as different transmission conditions of higher orders.
We investigated the stability, the convergence of the transmission conditions as well as their robustness.
We call transmission conditions robust, if they provide accurate approximation for a wide range of sheet
thicknesses and conductivities. We introduce an ordering of transmission conditions for the same sheet
with respect to the robustness, and observe that the condition derived for the 1/ε asymptotics is the most
robust limit condition, contrary to order 1 and higher, where the transmission conditions derived for the
1/ε2 asymptotics turn out to be most robust.
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Introduction

The investigated time-harmonic (like e−iωt) eddy current problem for the electric field e(x) in the com-
putational domain Ω ⊂ R2 reads

−∆e(x) + iωµ0σe(x) = 0, in Ωint, (0.1a)

−∆e(x) = −iωµ0j0(x), in Ωext, (0.1b)

where the sheet of thickness d is denoted by Ωint and the remaining exterior domain is Ωext (see Fig. 1(a)).
The angular frequency is ω and positive, µ0 > 0 is the permeability of air, σ > 0 the conductivity of sheet
and j0 alternating currents which flow outside the sheet and which are extended by 0 inside the sheet. In
Fig. 1 (b) one solution is examplarily shown.

The eddy current problem (0.1) is completed by suitable boundary conditions providing a unique solution
in H1(Ω). For simplicity we restrict us in this work to “electric” boundary conditions (Dirichlet) on Γe ⊂
∂Ω of the Lipschitz boundary ∂Ω and generalised “impedance” boundary conditions (including Neumann
boundary conditions) on Γi = ∂Ω\Γe,

e = eimp on Γe,

∇e · n− βe = ιimp on Γi.
(0.2)

The effective conductivity of the sheet

c := iωµ0σ (0.3a)
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Figure 1: (a) Geometrical setting for the eddy current problem, with two live wires supporting the flux j0 of angular frequency
ω. (b) The magnitude and the flux lines of the in-plane magnetic field for an elliptic shin sheet with semi-major axis a = 1.2,
semi-minor axis b =

√
0.6, thickness d = 1/16, effective conductivity c = 64i and f = 1 in the left wire and f = −1 in the right

one – corresponding to an alternating currents j0 with opposite direction. The flux lines of the magnetic field compass the
wires and are almost trapped in the interior area enclosed by the thin sheet.

leads to a shielding effect due to induced currents in the thin sheet, which can be measured by the power
loss [10]

P := |c| ‖e‖2L2(Ωint)
∼ |c|d, (0.3b)

which is for small enough thicknesses approximately proportional to |c| and d (see Lemma 1.1). These
induced currents flow mainly in a boundary layer of the sheet, i. e., on its skin. This effect is called skin
effect where for thin sheets the relevant quantity is

δ :=
dskin

d
=

1

d

√
2

ωµ0σ
=

√
2

|c|d2
, (0.3c)

the ratio of the skin depth [10] of solid conductors dskin :=
√

2/ωµσ =
√

2
|c| and the sheet thickness.

For simulations of the eddy current problem with thin sheets by standard methods, like the finite element
method, the smallness of the thin sheet is first a challenge for automatic mesh generators, which nowadays
hardly support anisotropic cells. If anyhow anisotropic simplicies (triangles or tetrahedra in 3D) in the
sheet are used, the condition number of the (whole) system matrix [31] increase significantly. The thin sheet
might be meshed by tensor-product cells (quadrilaterals or hexahedrons in 3D) with almost right angles,
and we will use those meshes with high-order polynomial basis functions to obtain reference solutions. For
this we create the mesh by hand rather by a mesh generator. Additional refinement inside the sheet, mesh
refinement or polynomial degree enlargement, is necessary due to the boundary layer behaviour (or skin
effect), especially pronounced for not that small frequencies and sheet thicknesses.

Replacing the thin sheet by an interface and its behaviour by transmission conditions is attractive, as the
interface can easily (and usally automatic) be resolved by edges in the finite element mesh, and anisotropic
cells with their drawbacks are omitted. These transmission conditions are also known as impedance boundary
conditions [15] (the interface is considered as two-sided boundary), as shielding elements [22], as shell
models [18], or as shell elements [13].

However, impedance boundary conditions (IBCs) are traditionally called approximative conditions on
an artifical boundary which replaces a subdomain of a solid conductor. They have been first proposed
by Shchukin [30] and Leontovich [19], and improved by several authors [29, 1, 17, 11]. More similar to
transmission conditions for thin sheets are generalised impedance boundary conditions for conducting bodies
with dielectric coatings which are derived for high orders [12, 3, 2, 16, 4] and for coatings with a kink [8].
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Figure 2: (a) Limit geometry for Ωεext for varying thickness ε is Ω0
ext and Ωεint gets in the limit ε → 0 the midline Γ. The

transmission conditions are set on Γ. The local coordinate system determines the direction of the jumps, here the difference of
left and right trace when viewing in direction t. (b) The magnitude and the flux lines of the (exterior) in-plane magnetic field
for the transmissions conditions of α = 2 and order 1 (same parameter as in Fig. 1. The field is defined up to the midline Γ,
and its restriction to Ωext approximates there the exact solution for ε = d. The field in the two stripes Ω0

ext\Ωext = Ωint\Γ is
auxilliary and can be used to compute an approximation of the fields in the sheet.

Transmission conditions for thin conducting sheets have mainly be derived by using special functions
in thickness direction which are multiplied by (macroscropic) functions along the sheet. Assuming no
variation in thickness direction results in a surface quantity [22, 5] and integrals over the interface. Taking
two hyberbolic functions in thickness direction which respects the boundary layer behavior an improved
transmission condition was derived by Krähenbühl and Muller [18], by Mayergoyz and Bedrosian [20] and
other authors [13, 15]. In time domain conditions which extends the Krähenbühl-Mayergoyz conditions
have been derived in [21, 7].

The problems for thin conducting sheets differ by the fact that they are in the interior of the domain of
interest and can not be approximated together with boundary conditions for solid bodies. As a consequence
there are two interfaces of the thin sheet with the surrounding domain and setting a transmission derived
for the two distinct interfaces on a single one, e. g., the midline, a modelling error proportional to the
thickness [26] is achieved. Thus, those transmission conditions with even more than the two functions
underlying the Krähenbühl-Mayergoyz conditions, e. g., in [14], are of order 0.

An asymptotic expansion of the solution for thin (and smooth) conducting sheets in an asymptotic
framework in which the conductivity is scaled reciprocically with the thickness is shown for any order by
Schmidt and Tordeux [27]. This particular asymptotics was motivated by their non-trivial limit solution.
Asymptotic expansion for thin isolating sheets with slowly or fastly varying thickness of order 1 have been
derived in [24, 9]. In these asymptotic expansions the solution is the sheet is expanded in scaled coordinates,
and the continuity conditions at the two interfaces of the sheet are expanded around its midline to obtain
problems for the limit solution and corrector functions on the domain where the sheet is replaced by an
interface. For the thin conducting sheets the asymptotic expansions of [27] have been used to derive and
verify transmission conditions up to order 3 in this framework [28].

For the thin isolating sheet different asymptotically varying thicknesses are investigated [24, 9]. A similar
example is that of two close inclusions for the Laplace equation [6] where different asymptotics of the distance
of the inclusions is studied.

Analog to these different asymptotics, we will investigate in this article the complete (i. e., to any order
N ∈ N0) asymptotic expansion for three different asymptotics of the (effective) conductivity c(ε) 1/εα

for α ∈ {0, 1, 2} of the thin conducting sheet of varying thickness ε. In the framework of [28] we derive
three different families of transmission conditions, to any order. Transmission conditions, even so derived
by asymptotic expansion in a certain asymptotic framework, are used to approximate sheets of a certain
thickness d and a certain (effective) conductivity c. We compare the derived transmission conditions related
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ε = d
|c(ε)| = |c| = ωµ0σ

α = 2 : c(ε) = c2
ε2

α = 1 : c(ε) = c1
ε

α = 0 : c(ε) = c0
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Figure 3: Illustration of the considered asymptotics for the eddy current model. The thickness and the effective conductivity
are both in logarithmic scales. A sheet of a particular thickness d and effective conductivity c is highlighted with a circle. The
three lines corresponds to c(ε) ∼ 1, c(ε) ∼ 1/ε and c(ε) ∼ 1/ε2, and where c(d) = iωµ0σ. The asymptotic expansion is taken
around the point when the lines are taken in the limit ε→ 0.

to their robustness, where we call a method robuster than another if it provides accurate approximations
for a wide range of thicknesses and conductivities.

In the remainder of the Introduction we will introduce the three asymptotic frameworks more in detail
and give the transmission conditions in an abstract form with operators Gα

j , Hα
j , and Jαj . In Section 1 we

derive the asymptotic expansion of the solution up to any order, where the solution in the sheet and outside
are coupled. The respective limit problems, which lead to transmission conditions of order 0, are discussed
in Section 3. The decoupled asymptotic expansion for any order is given with the operators Gα

j , Hα
j , and Jαj

in Section 4. Then, in Section 5 we derive the respective transmission conditions including their variational
formulations, which are then compared with respect to their robustness.

The asymptotic frameworks for the transmission conditions

In this article we will propose three families of transmission conditions indicated by a parameter α ∈
{0, 1, 2} and their order N ∈ N0. To obtain the approximations to the electric field, first, an exterior field

eα,Next is defined in the domain Ω0
ext, which is the exterior domain extended up to the midline Γ of the sheet

(see Fig. 2(a)). This exterior field satisfies the original equation (0.1b), i. e.,

−∆eα,Next (x) = −iωµ0j0(x), in Ω0
ext, (0.4a)

together with the transmission conditions on the midline(
Gα,N(d, c = iωµ0σ) eα,Next

)
(t) = 0, on Γ, (0.4b)(

Hα,N(d, c = iωµ0σ) eα,Next

)
(t) = 0, on Γ, (0.4c)

which are completed by the boundary conditions (0.2). The function eα,Next restricted to Ωext serves here as
an approximation to the exact solution of (0.1). Often, the field inside the sheet is of no practical interest.
If anyhow needed, it can be approximated by

eα,Nint (x) =
(
Jα,N(d, c = iωµ0σ)eα,Next

)
(x). (0.4d)

The transmission conditions are hierarchic meaning that the operators Gα,N , Hα,N , and Jα,N by which
they are represented incorporate only new terms when the order is increased, but all previous terms remain.
The conditions and the respective operators will be derived by asymptotic expansions, in which the original
problem (0.1) and the original geometry setting (i. e., Ωint and Ωext) are replaced by families of problems
and geometries. These families of problems and geometries are characterised by a parameter ε which stands
for the thickness of the sheet. So, Ωint is replaced by a similar sheet Ωεint of thickness ε and Ωext is replaced

by Ωεext = Ω\Ωεext. The original problem and geometry is member of each of the families, for α = 0, 1, 2, with
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(a) α = 0 (Conductivity is constant).
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(b) α = 1 (Conductivity like 1/ε).
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Figure 4: Solutions for different asymptotics for ε→ 0 for a sheet of ring shape (inner radius 1− ε
2

, outer radius 1 + ε
2

) inside
a circular domain of radius 2. The Dirichlet data at the boundary is 1. Thus, the solutions are radial-symmetric, computed
analytically and drawn along the radial coordinate. For this illustration we have chosen an (effective) conductivity c = 200i
for d = 10−2, where the skin depth dskin = 0.1 is ten times larger than d. For different thicknesses ε we scale c(ε) like 1/εα.
For α = 1 the solution does not change much when ε is decreased, a clipping illustrate this small changes in the vicinity of the
sheet.

ε = d. The transmission conditions are called of order N if their error is O(εN+1) (in the L2- or H1-norm in
the exterior of the sheet), where the error is meant to be the difference to the exact solution in the particular
asymptotics.

We will consider three families of asymptotics (see Fig. 3):

• α = 0, the case of constant conductivity c (see (0.3a)),

• α = 1, the case of asymptotically constant shielding (and so power loss P , see (0.3b)), and i. e., c ε is
constant,

• α = 2, the case of asymptotically constant relative skin depth δ (see (0.3c)), i. e., c ε2 is constant.

The case α = 0, where the conductivity (and so the material) is not touched when performing the
asymptotic expansion, is the choice one would probably think first on. One is familar with statements about
the error in this asymptotics, like “the error decreases by a factor of 2 or 4 when the thickness is halved”.
Deriving an accurate transmission condition this choice might not be the best, and changing (increasing)
the conductivity (and so virtually the material) when the thickness ε is decreased, may pay off. Motivated
by the fact, that α = 1 represents a borderline case where for the limit problem for ε→ 0 shielding is neither
vanishing (α < 1) nor the sheet gets impermeable (α > 1), in [27, 28] the case α = 1 , i. e., the conductivity
is inverse proportional to ε, have been considered. A numerical comparison of the limit problems of the
three asymptotics are shown in Fig. 4. We will discuss these limit problems for ε → 0 more in detail in
Section 3. In this article, we will introduce transmission conditions for all the above asymptotics α = 0, 1, 2
together, whose operators have the following representations as a power series in the thickness

Gα,N (d, c) =

N∑
j=0

djGα
j (c dα), Hα,N (d, c) =

N∑
j=0

djHα
j (c dα), Jα,N (d, c) =

N∑
j=0

djJαj (c dα),

with some operators Gα
j , Hα

j , and Jαj of order j.
To do so, the asymptotic problems for α = 0, 1, 2 will be discussed in Sect. 1. The respective terms of the

asymptotic expansions will be derived in Sect. 2, leading to transmission conditions in Sect. 5. The relation
of these transmission conditions derived for three different asymptotics will be discussed as well in Sect. 5,
on one side by the terms of their expression, and on the other side by numerical experiments. These will
eventually enable us to highlight differences in their usability and their areas of validity and optimality.

In this article we deal with three cases α = 0 (asymptotically vanishing shielding), α = 1 (borderline
case) and α = 2 (asymptotically impermeable sheet), for all which we will derive the asymptotic expansion
and corresponding transmission conditions. This direct comparison enables us to find optimal transmission
conditions (α = 0, 1 or 2 and order N) for different ranges/magnitudes of conductivity or frequency, and
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to compare the models also concerning their usability. In this article we will deal with three cases α = 0
(asymptotically vanishing shielding), α = 1 (borderline case) and α = 2 (asymptotically impermeable sheet),
for all which we will derive the asymptotic expansion and corresponding transmission conditions. This direct
comparison enables us to find optimal transmission conditions (α = 0, 1 or 2 and order N) for different
ranges/magnitudes of conductivity or frequency, and to compare the models also concerning their usability.
The collective derivation of the asymptotic expansions is in Section 2, where also the well-posedness of the
problems for the terms of the expansion and estimates for the modelling error of the truncated series are
shown. In Section 5 we define corresponding transmission conditions for up to order 3 for α = 0 and α = 1
and for up to order 1 for α = 2, propose stable variational formulations, and compare in Section 5.6 the
transmission conditions by their region of stability, their usability and their optimality regions, for which
we use numerical experiments.

1. Asymptotic models

Asymptotic model by introducing the parameter ε for the thickness and scaling the product of conduc-
tivity and frequency with ε−α:

−∆eε(x) +
cα
εα
eε(x) = 0, in Ωεint, (1.1a)

−∆eε(x) = f(x), in Ωεext, (1.1b)

eε = eimp on Γe, (1.1c)

∇eε · n− βeε = ιimp on Γi. (1.1d)

where the real parameter α ∈ [0, 2], cα := idαωµ0σ for a particular thickness d and so independent of
the varying thickness ε, and f = −iωµ0j0. Here, ω is the angular frequency, σ the conductivity, µ0 the
permeability and j0 the injected current whose support is bounded in Ωεext for all ε < εmax for some εmax > d.
We assume the sheet Ωεext of constant thickness ε, which can be described by the mapping xΓ(t)+sn, with the
local coordinates (s, t) ∈ [− ε2 , ε2 ]× Γ̂, xΓ(t) the function describing the mean line Γ ∈ C∞ with |x′Γ(t)| = 1,

Γ̂ ⊂ R the ring domain of length |Γ|, and n the left normalised normal vector to Γ. The curvature κ(t) is
bounded as ε|κ(t)| < 2 for all ε < εmax such that Ωεint is C∞ regular as well. Furthermore, we assume the
β of the generalised impedance boundary condition to fulfill

Re
〈
βe, e

〉
Γi
≥ 0, Im

〈
βe, e

〉
Γi
≥ 0

for all e in appropriate function spaces V (Γi) (e. g., L2(Γi) if β is a multiplicative factor).
Different values of α lead to different asymptotics for ε→ 0, and also statements of the modelling error

of approximations to eε(x) in terms of ε are only meaningful when fixing a particular α-asymptotics. The
different asymptotic behaviour can be seen exemplarily for the power loss in the sheet [25], which represents
the strength of the shielding.

Lemma 1.1. Let α ∈ [0, 2], cα ∈ C, c(ε) = cα
εα , Γ to be C1,1 continuous and eε ∈ H1(Ω) the unique solution

of (1.1). Then, there exists a constant C > 0 independent of ε such that

|(c(ε)eε, eε)L2(Ωεint)
| ≤ C ε|1−α|.

For α < 1 the sheet has asymptotically no shielding for ε → 0. For α > 1 the sheets gets completely
impermeable for ε → 0 which corresponds to the perfect electric conductor (PEC) boundary condition on
both sides of the limit interface Γ. The case α = 1 is a borderline case for which a non-trivial limit exists,
where the power loss tends to a positive value. As so the limit solution is expected to be already close to
the solution for a particular value ε an asymptotic expansion with few corrector terms should describe the
solution to a very high precision. The asymptotic expansion for this borderline case has been derived in [27],
and was then used in [28] to define transmission conditions up to order 3. We observed well-posedness of
the appropiate variational formulations including stability for thicknesses ε which are at the order of the
skin depth dskin :=

√
2/ωµσ or smaller.
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2. Formal definition of the asymptotic expansions

Analogously to the derivation in [27] we expand the field in the exterior of the sheet in a power series in
ε

eεext(x) := eε
∣∣
Ωεext

(x) =

N∑
j=0

εjujext(x) + rε,Next (x), ∀N ∈ N, (2.1)

where the functions ujext(x) are defined on the limit domain Ω0
ext = Ω \ Γ and should not depend on ε. The

asymptotic expansion will be constructed such that the external resiual rε,Next (x) is of order O(εN+1) in the
H1(Ω0

ext)-norm. The field in the interior of the sheet is expanded in a power series in ε with ε-independent
functions U jint(S, t) defined on a normalised domain, which is the product of [− 1

2 ,
1
2 ] and the parameter

domain Γ̂ of the midline,

eεint(x) := eε
∣∣
Ωεint

(x) =

N∑
j=0

εjU jint

(
t,
s

ε

)
, ∀N ∈ N. (2.2)

Inserting the exterior and interior expansion into the conditions for continuity of eε(x) on ∂Ωε and its
normal derivative would lead to the equality of ujext(± ε2 , t) and U jint(± 1

2 , t), and of ∂su
j
ext(± ε2 , t) and

ε−1∂SU
j
int(± 1

2 , t). These conditions are set on an ε-dependent locus. To obtain conditions independently

of ε, we first expand ujext(± ε2 , t) with Taylor around s = ±0 and insert these expansions then into the
continuity conditions. Collecting terms of the same order in ε we get

U jint(t,± 1
2 )− ujext(t,±0) =

j∑
`=1

(
±1

2

)`
1

` !
∂`su

j−`
ext (t,±0) on Γ, (2.3a)

∂SU
j
int(t,± 1

2 ) =

j∑
`=1

(
±1

2

)`−1
1

(`− 1)!
∂`su

j−`
ext (t,±0), on Γ. (2.3b)

Inserting the far field expansion (2.1) into the equations (1.1b)–(1.1d) in the exterior of the sheet

−∆ujext(x) = δj=0f, in Ωεint, (2.3c)

ujext = δj=0eimp on Γe, (2.3d)

∇ujext · n− βujext = δj=0ιimp on Γi. (2.3e)

We use the Kronecker delta where δt(j) = 1 if t(j) is true and δt(j) = 0 otherwise. Inserting the near field
expansion (2.2) into (1.1a) and using the expansion of the Laplace operator in curvilinear coordinates (S, t)
in powers of ε we get the recurrence relation

−∂2
SU

j
int(t, S) + δα=2c2U

j
int(t, S) = −δα<2cαU

j+α−2
int (t, S) +

j∑
`=1

∆`U
j−`
int (t, S), (2.3f)

where we used the operators

∆`(t, S) = −∆̂0
`(t)S

`−2 − ∆̂1
`S

`−1∂S

and (for later simplifications with different sign as in [27])

∆̂0
`(t) := −(−κ(t))`−2(`− 1)

(
∂2
t +

`− 2

2

κ′(t)

κ(t)
∂t

)
, ∆̂1

`(t) := (−κ(t)) `. (2.4)

In (2.3f) the term cαU
j+α−2
int is of lower order than j for α = 0, 1 where it therefore appears on the right

hand side. For α = 2 it is c2U
j
int, and so of order j and written on the left hand side. Written like it is, the

system (2.3) collects conditions for ujint and U jint depending on lower order terms. In the following, we first

define the interior field U jint by lower order terms and {ujext} for α = 0, 1. This will be then used to define
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equations for the exterior fields ujext only. Before doing so we first introduce notations for the mean and the
jump of the near field and the far field terms:

[V ](t) := V (t, 1
2 )− V (t,− 1

2 ), {V } (t) :=
1

2

(
V (t, 1

2 ) + V (t,− 1
2 )
)
,

[v](t) := v(t, 0+)− v(t, 0−), {v} (t) :=
1

2

(
v(t, 0+) + v(t, 0−)

)
, [v]

n
(t) :=

{
[v](t), for n even,

2 {v}(t), for n odd.

(2.5)

As one result of the asymptotic expansions just defined above are the limit solution u0
ext, U

0
int for ε→ 0

for α = 0, 1, 2 and the limits models of which they are solutions. This will be discussed in Sec. 3. Second,
the asymptotic expansions will be used in Sec. 4 to define transmission conditions on the midline Γ which
together with the original equation in the exterior of the sheet provide approximative solutions of order 1
and higher in the respective α-asymptotics.

Remark 2.1 (Asymptotics with α > 2 and α ∈ R). For α = 3 the equation in the interior gets

c3U
j+1
int (t, S) = ∂2

SU
j
int(t, S) +

j∑
`=1

∆`U
j−`
int (t, S),

meaning that the interior field is determined by previous terms of the interior field only, and not through
boundary data by the exterior field as well. This leads to U0

int ≡ 0 and by induction U jint ≡ 0 for all j ∈ N0.
Evaluating (2.3a) for j = 0 and (2.3b) for j = 1 we get

u0
ext(t,±0) = ∂su

0
ext(t,±0) = 0,

which are boundary conditions together impossible to satisfy by the exterior field. Similar holds for 3 < α ∈ N.
For α ∈ R, α ≥ 0 the ansatz of the asymptotic expansion would be

eεext(x) =
∑

j∈N0∪αN0

εjujext(x) + rε,Next (x), eεint(x) =
∑

j∈N0⊗{1,α},j≤N

εjU jint

(
t,
s

ε

)
+ rε,Nint (x),

for which the factorisation might be hardly feasible for higher orders.
We conject that the limit problems (see Sec. 3) for α < 1 coincide with that for α = 0 and those for

α > 1 coincide with that for α = 2, meaning that α = 1 is a borderline case.

3. The limit problems and the transmission conditions of order 0

3.1. The limit problems

Lemma 3.1. The limit solutions for ε→ 0 satisfy for α = 0, 1, 2

α = 0 α = 1 α = 2

[u0
ext](t) = 0, [u0

ext](t) = 0, [u0
ext](t) = 0, (3.1a)

[∂su
0
ext](t) = 0, [∂su

0
ext](t)− c1{u0

ext}(t) = 0, {u0
ext}(t) = 0, (3.1b)

U0
int(t, S) = {u0

ext}(t), U0
int(t, S) = {u0

ext}(t), U0
int(t, S) = 0. (3.1c)

Proof. For j = 0 all the terms on the right hand side of (2.3a), (2.3b) and (2.3f) vanish. For α = 0, 1
the internal field U0

int is by (2.3f) polynomial of at most degree 1 in S, and by (2.3b) and (2.3a) it fol-
lows (3.1a) and (3.1c). Now, evaluating (2.3f) and (2.3b) for j = 1 and using the Neumann compatibility
condition

∫(
− 1

2 ,
1
2

) ∂2
SU

1
int(t, S) dS = [∂SU

1
int](t) we conclude (3.1b). For α = 2 it holds (3.1c) by (2.3f), and

consequently (3.1a) and (3.1b) by (2.3a).

Corollary 3.2. The point, around which the asymptotic expansions are performed is, for

• α = 0, the sheet without shielding (which vanishes into “thin air”),

• α = 1, the sheet of a non-trivial shielding,

8



• α = 2, the impermeable (or perfectly shielding) sheet.

Lemma 3.3 (Stability of the limit problems). Let for α = 0, β = 0 and Γi = ∂Ω (pure Neumann problem)
hold the Neumann compatibility condition∫

∂Ω

ιimp ds =

∫
Ω

iωµ0j0(x) dx.

Then, the problems (2.3c), (2.3d), (2.3e) with the transmission conditions defined by Tab. 1 for α = 0, 1, 2
provide unique solutions u0

ext ∈ H1(Ω) or H1(Ω)\C for α = 0, β = 0 and Γi = ∂Ω.

Proof. With the conditions [u0
ext](t) = 0 the solution is C0(Ω)-continuous. For α = 2 there holds additionally

{u0
ext}(t) = 0 and the solution satisfy a homogeneous Dirichlet condition on Γ. Thus, the variational

formulations can be stated in V α0 for the ansatz and V αj,0 for the test functions, where

V α0,0 = H1
Γe(Ω), for α = 0, 1, and V 2

0,0 = H1
Γe∪Γ(Ω0),

and

V α0 = V α0,0 + EΓeeimp ⊂ H1(Ω0),

except for the pure Neumann problem, where it is stated in V 0
0 \C and V 0

0,0\C. Here, we used an arbitrary

continuous extension operator for the Dirichlet boundary data EΓe : H1/2(Γe)→ H1(Ω).
For α = 1 the variational problem is: Seek u0

ext ∈ V 1
0 such that for all v ∈ V 1

0,0∫
Ω0

ext

∇u0
ext · ∇v dx+ c1

∫
Γ

u0
ext v dt+

∫
Γi

βu0
ext v dσ(x) =

∫
Ω0

ext

f v +

∫
Γi

ιimpen dσ(x) =: l(v). (3.2)

For α = 0 and α = 2 a similar formulation as (3.2) holds without the second term in the left-hand side
and for the respective spaces V α0 and V α0,0. By Poincaré-Friedrichs inequalities the problems provide unique
solutions under assumptions of the lemma.

Lemma 3.4 (Modelling error of the limit problems). There exists a constant C > 0 such that for α = 0, 1, 2
it holds

‖eε − u0
ext‖H1(Ωεext)

+
√
ε‖eε − {u0

ext}‖H1(Ωεint)
≤ C ε.

The lemma justifies that the limit solutions is an approximation of order 0 in the respective asymptotics.
It is proved for α = 1 in [27]. The proof can be easily adapted for α = 0 and α = 2.

α = 0 α = 1 α = 2

(Gα
0 (cdα)u)(t) [u](t) [u](t) [u](t)

(Hα
0 (cdα)u)(t) [∂su](t) [∂su](t)− cd{u}(t) −{u}(t) 2

√
cd sinh(

√
cd2 )

cosh(
√
cd2 )−√cd2 sinh(

√
cd2 )

(Jα0 (cdα)u)(t, S) {u}(t) {u}(t) {u}(t) cosh(
√
cs)

cosh(
√
cd2 )−√cd2 sinh(

√
cd2 )

Table 1: Operators representing the limit transmission conditions.

3.2. Transmission conditions of order 0

The conditions defined in Lemma 3.1 can be used as the simplest approximative transmission conditions,
where for α = 1 we have to replace c1 by cd with d the concrete sheet thickness. These transmission
conditions can be written in the form (0.4) with the operators in Tab. 1. The condition (3.1b) ({u0}(t) = 0)
for α = 2 could be written with a simpler operator than H2

0 introduced in Tab. 1. We have chosen this

9



operator H2
0 for the transmission condition as it will be needed to write the transmission conditions for

order 1 and higher in Sec. 4 (cf. (4.5c)). Furthermore, this choice these higher order transmission conditions
for α = 2 will be visibly related to those of the asymptotics α = 0 and α = 1. With the same reason the
operator J2

0 is chosen in Tab. 1.
As the functions in H2

0 and J2
0 are bounded away from zero and with its real and imaginary part from

infinity for any fixed c2 ∈ iR+ the solution u0
ext fulfills (3.1b) and U0

int (3.1c), and the conditions are
equivalent.

As consequence of the uniqueness and existence of u0
ext by Lemma 3.3 the following corollary holds.

Corollary 3.5 (Stability of the transmission conditions of order 0). Let the assumption of Lemma 3.3
fulfilled. Then, the problems (0.4) with the transmission conditions defined by Tab. 1 for α = 0, 1, 2 provide
unique solutions eα,0ext ∈ H1(Ω) and e0,0

ext ∈ H1(Ω)\C for α = 0, β = 0 and Γi = ∂Ω.

With Lemma 3.4 and Corollary 3.5 the following corollary about the modelling error follows.

Corollary 3.6 (Modelling error of the transmission conditions of order 0). For the solution of a sequence
of problems (1.1) with thickness ε and conductivity c ∼ ε−α it holds for α = 0, 1, 2

‖eε − eα,0ext‖H1(Ωεext)
+
√
ε‖eε − {eα,0ext}‖H1(Ωεint)

= O(ε).

3.3. The robustness of the transmission conditions of order 0

As the transmission conditions have been derived by asymptotic expansion, they provide the more
accurate results the closer the sheet is at the asymptotic limit, this means for sheets with almost no shielding
for α = 0 (c very small) and almost permeable shielding for α = 2 (c very large). But the transmission
condition for α = 0 fail for almost permeable sheets, and conversely those for α = 2 fail for almost vanishing
sheets (see first and third row of first column in Fig. 5). As a positive surprise, using the transmission
conditions for α = 1 we get accurate results for both regions, where the sheet is almost vanishing or where
it is almost permeable (see second row of first column in Fig. 5). Note, that the asymptotic limit solution
for α = 1 is as a border line case non-trivial.

This property of a transmission condition, that can be employed in a wide range of problem parameters,
which are here the thickness d and the effective conductivity c, will be called robustness.

To compare the robustness of the three families of transmission condition we apply them for a series of
sheets with thickness ε and an asymptotics of the conductivity c(ε) = cα?/ε

α? , where α? ∈ {0, 1, 2}, i. e.,
we analyse the transmission conditions derived for asymptotics α ∈ {0, 1, 2} for any (other) asymptotics
α? ∈ {0, 1, 2}. By derivation, the transmission condition derived for α ∈ {0, 1, 2} are of order 0 (Corollary 3.6)
in the asymptotics α? = α.

If we use the transmission condition for α = 1 for a series of sheets with α? = 0, i. e., it is used for
sheets of vanishing shielding and we have to replace c1 → c0ε, and for ε → 0 the term responsible for the
shielding vanishes and we obtain in the limit the transmission conditions for α = 0. When using the same
transmission condition for α? = 2, i. e., for the asymptotics versus perfectly shielding sheets, we have to
replace c1 → c2/ε. For ε → 0 the term

∫
Γ
u0

extv dt has to vanish such that it stays bounded when weighed
with 1/ε. This implies that u0 → 0 and we obtain in the limit for ε→ 0 the transmission condition of α = 2.
Consequently, this transmission condition of α = 1 is robust. It will obtain for sheets with very small and
very large shielding the same asymptotic accuracy as the for this constructed transmission conditions.

Contrary, the transmission conditions for α = 0 and α = 2 do not depend on the effective conductivity
and consequently do not tend to one of the other limit models. These conditions are less robust, and obtain
therefore a reduced accuracy in the respective other asymptotic framework, which we observed in numerical
experiments.

α = 0 α = 1 α = 2

α? = 0 robust robust

α? = 1 robust

α? = 2 robust robust

Table 2: Robustness of the transmission conditions of order 0.
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Figure 5: The (decadic logarithmic of the) L2-error outside the sheet ‖e − eα,Next ‖L2(Ωext)
for the limit model (N = 0) and

the model of order 1 (N = 1) for α = 0, α = 1 and α = 2. At the abscissa is the thickness d and at the ordinate the skin

depth dskin =
√

2/|c|. The (diagonal) dash-dotted line is where the skin depth coincides with the thickness (α? = 2). The
horizontal dashed line represents constant conductivity (α? = 0), whereas along the dotted line where the conductivity times
the thickness is a constant (α? = 1). The best model for each point is highlighted with a coloured mark, this is for α = 1
and for α = 2, and the difference between the limit models of α = 1 and α = 2 is shown with contour lines.
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Figure 6: The (decadic logarithmic of the) L2-error outside the sheet for the model of order 2 for α = 0, α = 1 and α = 2
(first column), similarly presented as in Fig. 5. The best model related to each α-framework for each point is highlighted with
a coloured mark, this is for order 0, for order 1, and for order 2, and the difference between the model of order 2 and
the model of order 1 is shown with contour lines (except for α = 2 where the difference is between order 1 and order 0).
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Figure 7: The L2-error outside the sheet for the limit model and the model of order 1 for α = 0, α = 1 and α = 2, evaluated
along the dashed, dotted and dash-dotted lines in Fig. 5, i. e., in the asymptotics c(ε) = cα?/ε

α? for α? = 0 (constant
conductivity), α? = 1 (asymptotically constant shielding) and α? = 2 (asymptotically constant skin depth). The dashed,
dotted and dash-dotted on the left side indicate the relation to the corresponding lines in Fig. 5. The convergence in the sheet
thickness depends notably if one compares sheets of constant conductivity, or conductivities scaled with the inverse or squared
inverse of the thickness. The two red dashed lines in second column of the last row are for the transmission conditions of
order 2 and order 3 for α = 1. Increasing the order of these transmission conditions leads for sheets of asymptotically constant
skin depth only lowers the convergence curves, but does not increase their rates.
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For the geometrical setting and source terms of Fig. 1 with Neumann boundary conditions on ∂Ω we
performed numerical experiments to compare the exact solution, computed with high-order FEM on a curved
mesh, which resolves the geometry exactly, with the solutions of the three transmission conditions of order
0. For the transmission conditions of α = 0, where the sheet vanishes, a vanishing mean condition is added.
The experiments have been realised for d = 2−12, 2−11, . . . , 2−3 and c = 26i, 27i, . . . , 224i. The results for
the L2-error in the exterior Ωext of the sheet are shown in Fig. 5 (left column), where on the ordinate the
effective conductivity is represented by the skin depth. At the diagonal line the skin depth and the thickness
coincide. The accuracy of the transmission condition of α = 1 outperforms the very poor results of those
of α = 0 in the whole parameter domain. It also outperforms the results of the transmission conditions of
α = 2 when the skin depth is not exceeding the sheet thickness. Anyhow, if the skin depth exceeds the sheet
thickness the transmission conditions for α = 1 are only slightly inferior, as shown in the direct comparison
in the last row of Fig. 5, and justifying the robustness of this model.

It is visible when following the dashed lines in the Fig. 5 (first column in first row) that for α? = 1
no convergence is obtained, and for α? = 2 the error for decreasing d even increases. For the transmission
condition of α = 2 (see Fig. 5) convergence for α? = 0, 1 is obtained only for larger d, asymptotically there
is no convergence for α? = 1 and the error even increases for α? = 0. For the transmission condition of
α = 1 the error decreases for α? = 0 and 2, also asymptotically.

Fig. 7 shows the error along the dashed lines Fig. 5, the convergence rate of 1 of each of the transmission
condition in their own asymptotics. The transmission condition for α = 1 converge in the asymptotics
α? = 0 with a rate of 3, and for α? = 2 at least with a rate 1.

4. Deriving the asymptotic expansion of higher orders

The transmission conditions we are going to derive are based on the asymptotic expansion of Sect. 2. To
do so, we will solve for the terms (ujext, U

j
int) of the asymptotic expansion where the internal solution and

the conditions on Γ are written in operator form

j∑
`=0

(Gα
` u

j−`
ext )(t) = 0 on Γ, (4.1a)

j∑
`=0

(Hα
` u

j−`
ext )(t) = 0 on Γ, (4.1b)

U jint(t, S) =

j∑
`=0

(Jα` u
j−`
ext )(t) in Γ× (− 1

2 ,
1
2 ). (4.1c)

The families of operators {Gα
` }∞`=0, {Hα

` }∞`=0, and {Jα` }∞`=0 to be consistent with the asymptotic expansion
of Sect. 2 are not unique and, consequently not the transmission conditions. The reason for this ambiguity
is, that the same condition for the asymptotic expansion terms can be written in several forms, e. g., one
may add always a function of [u0

ext] which equals zero by (3.1a). Transmission conditions for those two
choices of operators would differ by O(εM ) where M > N with N is the order of the condition. Another
example is related to the second normal derivative ∂2

su
j
ext to Γ which can be written in terms of tangential

derivatives if ujext is harmonic in the neighbourhood of Γ. This change of the operators and so of the
transmission condition is practically useful when dealing with variational methods (e. g., discretisation by
the finite element method) or boundary integral formulations. When using numerical methods based on
the strong form of the PDE, like the finite difference method, the change of (higher) normal to tangential
derivatives might be not urgent/stringent.

We will define a particular choice of the operators Gα
` , Hα

` , and Jα` . Order by order we will

(A) define the operator Jα` of the internal field, and then

(B) the operators Gα
` and Hα

` using Jα` ,

where in each of the steps (A) and (B)

(C) the jumps [umext], m = 0, . . . , `− 1 in the conditions are replaced using (4.1a) and Tab. 1, and

(D) the jumps [∂su
m
ext], m = 0, . . . , `− 1 in the conditions are replaced using (4.1b) and Tab. 1.

(E) the mean or the jump of normal derivatives ∂ksu
m
ext, with k ≥ 2 are replaced by means or jumps of

tangential derivatives where the expressions derived in steps (C) and (D) are used.
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The step (E) is essential for variational formulations, and the steps (C) and (D) will potentially simplify
the concrete expressions of the operators (less terms to implement) while the complexity of their abstract
definitions increase. The possibility of the replacement of [umext] and of [∂su

m
ext] for α = 0, 1 is obvious by

Tab. 1, while that of [∂su
m
ext] for α = 2 will use counterintuitively terms of higher order. This procedure

corresponds to the derivations for α = 1 in [27] and [28].
A major result of the article is the transformation of the system (2.3) for the terms of the asymptotic

expansions ujext, U
j
int in the form (4.1) of a discrete convolution, where we introduce in the following of this

section a procedure to obtain the involved operators Gα
` , Hα

` , and Jα` to any order. The equivalence of the
transformed system is stated in the following theorem.

Theorem 4.1. The system (4.1), (2.3c), (2.3d), (2.3e), where the operators Gα
` , Hα

` , and Jα` are defined
in Tab. 1, Def. 4.9, Def. 4.10, and Def. 4.11 is equivalent to the problem (2.3).

The proof uses the definition of the operators and will be given in Sec. 4.7.

Lemma 4.2 (Convolution of a convolution). It holds for two sequences of operators A`, B` and the sequence
of functions vm that

j∑
`=`0

A`

j−∑̀
m=m0

Bmv
j−`−m =

j∑
`=`0+m0

(

`−m0∑
m=`0

AmB`−m)vj−` =

j∑
`=`0+m0

(

`−`0∑
m=m0

A`−mBm)vj−`.

4.1. Variational problem for the exterior expansion functions

With the conditions (4.1b) and (4.1c) we are in the position to collect the problems for the exterior
expansion functions only. Taking (2.3c), (2.3d), (2.3e), and the defintions for Gα

0 and Hα
0 (see Tab. 1) we

obtain the following system, written in general from for all three asymptotic frameworks.

−∆ujext(x) = δj=0f, in Ω0
ext,

ujext = δj=0eimp on Γe,

∇ujext · n− βujext = δj=0ιimp on Γi,

[ujext](t) = −
j∑
`=1

(Gα
` u

j−`
ext )(t) on Γ,

for α = 0, [∂su
j
ext](t)

for α = 1, [∂su
j
ext](t)− c1{ujext}(t)

for α = 2, {ujext}(t)

 = −
j∑
`=1

(Hα
` u

j−`
ext )(t) on Γ.

(4.2)

For the variational formulation we incorporate the essential condition for the jumps [ujext] and the mean
value {ujext} (for α = 2) in the solution space, similarily to the Dirichlet boundary condition at Γe. Let the
vector spaces V αj,0 for the test functions are

V αj,0 = H1
Γe(Ω), for α = 0, 1, and V 2

j,0 = H1
Γe∪Γ(Ω0),

where the subscript denotes the part of the boundary with homogeneous Dirichlet data. The affine solution
spaces V αj for the ansatz functions are

V αj = V αj,0 − EΓeδj=0eimp − E[Γ]

j∑
`=1

(Gα
` u

j−`
ext )(t) + δα=2E{Γ}

j∑
`=1

(Hα
` u

j−`
ext )(t) ⊂ H1(Ω0).

Here, we used besides the extension operator for the Dirichlet boundary data EΓe arbitrary continuous jump
and mean extension operators E[Γ], E{Γ} : Hk−1/2(Γ)→ Hk(Ω0), for any k ∈ N. As the framework for α = 2
has two essential conditions (Dirichlet condition from both sides of Γ), the solution in the sub-domains
separated by Γ decouples.

In contrast, the conditions, in which the jump of the normal derivative [∂su
j
ext] is involved (α = 0, 1),

are natural, i. e., they are taken in weak form, so by inserting in the formulation. The natural condition for
α = 0, 1 leads to a coupling between both sides of Γ.

15



The variational formulation for (4.2) reads as follows: Seek ujext ∈ V αj such that for all v ∈ V αj,0 it holds

aαext(u
j
ext, v) =

∫
Ω

∇ujext · ∇vdx+

∫
Γi

βujextv dσ(x) + c1δα=1

∫
Γ

{ujext}vdt

= δj=0

(∫
Γi

ιimpv dσ(x) +

∫
Ω

fvdx

)
− δα<2

∫
Γ

j∑
`=1

(Hα
` u

j−`
ext )(t)vdt = `αj (v). (4.3)

It is not difficult to prove that under proper assumptions on β and c1 the bilinear form (see e. g. [28]) is
aαext is V αj,0-elliptic and continuous in V αj,0. The continuity of `αj in V αj,0 requires the assumption of bounded

ιimp and f as well as sufficient regularity of u0
ext, . . . , u

j−1
ext . The latter can be shown for α = 0, 1, 2 under

the assumption of a smooth sheet Γ as it has been done in [27] for α = 1.

Lemma 4.3 (Well-posedness of the exterior problem). Let Γ be C∞, |(βv, v)L2(Γi)| ≥ 0 for all v ∈ C∞(Γi),
and for α = 0 no pure Neumann boundary conditions, i. e., |Γe| > 0 or |(βv, v)L2(Γi)| > 0. Then, the

variational formulation (4.3) of the systems (4.2) provide unique solutions ujext ∈ V αj (Ω).

Lemma 4.4 (Modelling error of the asymptotic expansion of higher orders). Let the assumption of Lemma 4.3
hold. Then, there exists a constant C > 0 such that for α = 0, 1, 2 it holds

‖eε −
N∑
j=0

εjujext‖H1(Ωεext)
+
√
ε‖eε(t, s)−

N∑
j=0

εj
j∑
`=0

(Jα` u
j−`
ext )(t,

s

ε
)‖H1(Ωεint)

≤ C εN+1.

The proof is given for α = 1 in [27], where the proof for α = 0, 2 differs only in the position of the relative
conductivity in the interior equations.

4.2. Replacing the jumps [ujext] and [∂su
j
ext]

Using (4.1a) and (Gα
0u)(t) = [u](t) (see Tab. 1) we can write

[ujext](t) = −
j∑
`=1

(Gα
` u

j−`
ext )(t) (4.4)

We can replace [∂su
j
ext] for α = 0 with (H0

0u)(t) = [∂su](t) (see Tab. 1) by

[∂su
j
ext](t) = −

j∑
`=1

(H0
`u
j−`
ext )(t), (4.5a)

which are all terms of lower order. For α = 1 it is (H1
0u)(t) = [∂su](t)− c1{u}(t) and so

[∂su
j
ext](t) = c1{ujext}(t)−

j∑
`=1

(H1
`u
j−`
ext )(t). (4.5b)

The replacement (4.5b) includes besides terms of lower order with a single term of the same order.
For α = 2 it seems to be natural to replace {ujext} as this correspond to H2

0. We prefer to apply
replace as for α = 0 and α = 1 the term [∂su

j
ext], such that the derived transmission conditions take

similar forms. To do so we have to anticipate that the H-operator of order 1 is (H2
1u)(t) = [∂su](t). With

(H2
0u)(t) = −h(c2){u}(t) (see Tab. 1) we can therefore write

[∂su
j
ext](t) = h(c2){uj+1

ext }(t)−
j∑
`=1

(H2
`+1u

j−`
ext )(t). (4.5c)

Here, we use the function (cf. Fig. 8).

h(c2) =
2
√
c2 sinh(

√
c2

1
2 )

cosh(
√
c2

1
2 )− 1

2

√
c2 sinh(

√
c2

1
2 )
. (4.5d)
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Figure 8: The function h(c2) defined in (4.5d) with its real ( ) and imaginary ( ) part for c2 ∈ iR+.

The replacement (4.5c) includes besides terms of lower order also a term of an order higher. As we will
use this replacement only for the source terms on the right hand sides of at least two orders lower, the
asymptotic expansion is still iteratively (cf. Lemma 4.12).

The reader may note, that

h(c2) = c2 +
1

6
c22 +O(c32).

4.3. Writing higher normal traces in terms of Dirichlet and Neumann traces

The higher normal traces ∂jsu, which appear in the approximate Dirichlet (2.3a) and Neumann transmis-
sion condition (2.3b) are unfavourable in variational formulations where we would like to deal with Sobolev
spaces with bounded first weak derivatives where only Dirichlet and Neumann traces can be incorporated.
These Dirichlet or Neumann traces may even be stated with higher tangential derivatives where the Sobolev
space may be enriched with Dirichlet traces of higher regularity. We therefore will rewrite the higher nor-
mal traces in terms of Dirichlet and Neumann traces using the fact that the far field terms are harmonic
(cf. (2.3c)). This will be then used in Section 5 to derive the variational formulation of the transmission
conditions.

Lemma 4.5 (Higher normal traces of harmonic functions). Let ∆u = 0 in a neighbourhood of Γ. Then, we
can write for ` ≥ 2 the recurrence relation

∂`su(t,±0) = (`− 2)!

`−1∑
m=0

(
∆̂0
`−m
m!

δm<`−1 +
∆̂1
`−m

(m− 1)!
δm>0

)
∂ms u(t,±0), (4.6)

with the operators ∆̂0
` and ∆̂1

` defined in (2.4).

Proof. First, we observe that the Laplace operator can be written in a neighbourhood of Γ in curvilinear
coordinates as [27]

∆ = ∂2
s −

∞∑
k=1

sk−1∆̂1
k(t) ∂s −

∞∑
k=2

sk−2∆̂0
k(t).

Applying this expression to the harmonic function u and taking the (`− 2)-th derivative in s we get

∂`su = ∂`−2
s ∂2

su = ∂`−2
s

∑
σ=0,1

∞∑
k=2−σ

sk−2+σ∆̂σ
k(t) ∂σs u
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and with the Leibniz rule of differentiation we obtain

∂`su =
∑
σ=0,1

∞∑
k=2−σ

∆̂σ
k(t)

`−2∑
m=0

(
`− 2

m

)
∂`−2−m
s (sk−2+σ)∂m+σ

s u.

Taking the limit s → ±0 we have ∂`−2−m
s (sk−2+σ) → δk=`−m−σ(` − 2 − m)!, i. e., only terms for which

k = `−m− σ are non-zero. Thus, we get

∂`su(t,±0) =
∑
σ=0,1

`−2∑
m=0

(
`− 2

m

)
(`− 2−m)! ∆̂σ

`−m−σ(t)∂m+σ
s u(t,±0)

which easily simplifies to the expression in the statement of the lemma.

Resolving the recurrence relation given by Lemma 4.5 we get the following corollary (cf. [23]).

Corollary 4.6 (Higher normal traces of harmonic functions). Let u like in Lemma 4.5. Then, we can write

∂`su(t,±0) = `!
(
R`
N (∂su(t,±0)) + R`

D(u(t,±0))
)

(4.7)

with R0
D = R1

N = Id, R0
N = R1

D = 0 and for all ` ≥ 2

R`
D/N =

1

`(`− 1)

`−1∑
m=0

(
∆̂0
`−mδm<`−1 +m∆̂1

`−mδm>0

)
Rm
D/N . (4.8)

The same holds by linearity for the mean and jumps of higher derivatives. Hence, we can write

1

`!
[∂`su]m(t) = R`

N ([∂su]m(t)) + R`
D([u]m(t)). (4.9)

4.4. Replacing sums of alternating means and jumps of the increasing normal derivatives

In the Dirichlet continuity (2.3a) between external and internal and the Neumann continuity (2.3b)
appear terms of the Taylor expansion of the external fields around the midline of the sheet Γ. Thus, there
are sums of alternating means and jumps of the increasing normal derivatives of terms of the external
expansion of decreasing order. Using the above derived RD- and RN -operators for replacing the higher
normal derivatives and using the conditions for the jumps of the Dirichlet and Neumann trace we can
simplify these sums, or more precisely their mean and jumps. This simplification will be expressed T-
operators which we will define in the following.

Definition 4.7. Let the operators Tα,a,b,c
`,`0

with `0 ∈ {1, 2}, a + 1 ∈ N0, b ∈ N0, c ∈ Z, b = 0 for c odd be
defined for ` = 0 by

(Tα,a,b,c
0,`0

u)(t) = δa=2δ1+c is evenδ`0=1h(c2)
1

2(1 + a)!
{u}(t), (4.10)

and for ` > 0 by

(Tα,a,b,c
`,`0

u)(t) = δ`+c is odd

(
1

2

)`−1
(`+ b)!

(`+ a)!

(
R`+b
N {∂su}(t) + R`+b

D {u}(t)
)

(4.11)

−
`−1∑
m=`0

δm+c is even

(
1

2

)m
(m+ b)!

(m+ a)!
(Rm+b

D Gα
`−mu)(t)

+ δα=1δ`+c is even

(
1

2

)`
(`+ b)!

(`+ a)!
c1R

`+b
N {u}(t)

+ δα=2δ`+1+c is evenh(c2)

(
1

2

)`+1
(`+ 1 + b)!

(`+ 1 + a)!
R`+1+b
N {u}(t)

− δα<2

`−1∑
m=`0

δm+c is even

(
1

2

)m
(m+ b)!

(m+ a)!
(Rm+b

N Hα
`−mu)(t)

− δα=2

`−2∑
m=`0−1

δm+1+c is even

(
1

2

)m+1
(m+ 1 + b)!

(m+ 1 + a)!
(Rm+1+b

N H2
`−mu)(t).
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Note, that all operators Tα,a,b,c
`,`0

contain no term Hα
0u, no term Gα

0u and for α = 2 even no term H2
1u.

This is important as they are or will be defined explicitely and not in this iterative derivation.
For ` = 0 we have the following operators

(T2,−1,0,−1
0,1 u)(t) = (T2,0,0,1

0,1 u)(t) = 1
2h(c2){u}(t).

For ` = 1 we have the operators

(T0,0,0,1
1,1 u)(t) = 0, (T1,0,0,1

1,1 u)(t) = c1
2 {u}(t), (T2,−1,0,±1

1,`0
u)(t) = (T2,0,0,1

1,`0
u)(t) = 0, for `0 = 1, 2.

Furthermore, for α = 0, 1 we have

(Tα,−1,0,0
1,1 u)(t) = (Tα,0,0,0

1,1 u)(t) = {∂su}(t), (Tα,0,1,0
1,1 u)(t) = −κ(t){∂su}(t)− ∂2

t {u}.

and for α = 2

(T2,−1,0,0
1,1 u)(t) = {∂su}(t)− 1

4h(c2)κ(t){u}(t), (T2,0,0,0
1,1 u)(t) = {∂su}(t)− 1

8h(c2)κ(t){u}(t).

The operators Tα,a,b,c
`,`0

, `0 = 1, 2 are constructed such that they fulfill the following lemma.

Lemma 4.8. Let α = 0, 1, 2, j ∈ N. Then, it holds for a sequence of functions (v`ext)
j
`=1 being harmonic

in a neighbourhood of Γ, fulfilling (4.4) and (4.5) for some operators Gα
` and Hα

` , ` = 1, . . . , j − 1 and
{v0

ext}(t) = 0 for α = 2, that

j∑
`=1

(
1

2

)`
1

(`+ a)!
[∂`+bs vj−`ext ]`+c(t) =

j∑
`=0

(Tα,a,b,c
`,1 vj−`ext )(t), (4.12)

and for c odd

j∑
`=2

(
1

2

)`
1

(`+ a)!
[∂`+bs vj−`ext ]`+c(t) =

j∑
`=2

(Tα,a,b,c
`,2 vj−`ext )(t). (4.13)

Proof. With the notation (2.5) and as v`ext are harmonic we can write with (4.9)

j∑
`=`0

(
1

2

)`
1

(`+ a)!
[∂`+bs vj−`ext ]`+c(t) =

j∑
`=`0

(
1

2

)`
(`+ b)!

(`+ a)!

(
2δ`+c is odd(R`+b

N {∂svj−`ext }(t) + R`+b
D {vj−`ext }(t))+

δ`+c is even(R`+b
N [∂sv

j−`
ext ](t) + R`+b

D [vj−`ext ](t))

)
.

(4.14)

Using (4.4) and Lemma 4.2 we can replace the last term in (4.14)

j∑
`=`0

δ`+c is even

(
1

2

)`
(`+ b)!

(`+ a)!
R`+b
D [vj−`ext ](t)) = −

j∑
`=`0+1

`−1∑
m=`0

δm+c is even

(
1

2

)m
(m+ b)!

(m+ a)!
(Rm+b

D Gα
`−mv

j−`
ext )(t).

The latter expression does not change when the first index of the sum over ` is replaced by 0 for `0 = 1 and
2 for `0 = 2 (instead `0 + 1).

To replace the second last term in (4.14) we consider the following cases:

(i) Let α = 0, 1. Then, with (4.5a), (4.5b), and Lemma 4.2 we get

j∑
`=`0

δ`+c is even

(
1

2

)`
(`+ b)!

(`+ a)!
R`+b
N [∂sv

j−`
ext ](t) =

j∑
`=`0

δ`+c is evenδα=1

(
1

2

)`
(`+ b)!

(`+ a)!
c1R

`+b
N {∂svj−`ext }(t)

−
j∑

`=`0+1

`−1∑
m=`0

δm+c is even

(
1

2

)m
(m+ b)!

(m+ a)!
(Rm+b

N Hα
`−mv

j−`
ext )(t).

Once again, the first index of the sum over ` can be replaced by 0 for `0 = 1 and 2 for `0 = 2.
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(ii) Let α = 2. Then, with (4.5c), Lemma 4.2 and {v0
ext}(t) = 0 by assumption

j∑
`=`0

δ`+c is even

(
1

2

)`
(`+ b)!

(`+ a)!
R`+b
N [∂sv

j−`
ext ](t)

=

j∑
`=`0

δ`+c is evenh(c2)

(
1

2

)`
(`+ b)!

(`+ a)!
R`+b
N {vj+1−`

ext }(t)

−
j∑

`=`0+1

`−1∑
m=`0

δm+c is even

(
1

2

)m
(m+ b)!

(m+ a)!
(Rm+b

N H2
`+1−mv

j−`
ext )(t).

=

j∑
`=`0−1

δ`+1+c is evenh(c2)

(
1

2

)`
(`+ 1 + b)!

(`+ 1 + a)!
R`+1+b
N {vj−`ext }(t)

−
j∑

`=`0+1

`−2∑
m=`0−1

δm+1+c is even

(
1

2

)m+1
(m+ 1 + b)!

(m+ 1 + a)!
(Rm+1+b

N H2
`−mv

j−`
ext )(t).

The sum over ` in the second line can be started at 0 for `0 = 1 and 2 for `0 = 2 without changing
anything. For `0 = 2 and c odd the first term in the first sum vanishes and the sum can be started at
` = 2 as well.

With the definition of the Tα,a,b,c
`,`0

the lemma holds for the two cases `0 = 1 and `0 = 2.

4.5. Definition of the interior field operators of the asymptotic expansion

Definition 4.9. Let for ` ∈ N0 the operators Jα` with (Jα` u)(t, ·) ∈ P(α+1)` for α = 0, 1 and (J2
`u)(t, ·) ∈ V`−1

for any u smooth enough in a neighbourhood of Γ be defined as the solution of the following differential
equations in S, for α = 0, 1

∂2
S(Jα` u)(t, S) =

∑̀
m=1

(δm=2−αcα −∆m)(Jα`−mu)(t, S),

{∂S(Jα` u)}(t) = (Tα,−1,0,0
`,1 u)(t),

{Jα` u}(t) = 1
2 (Tα,0,0,1

`,1 u)(t),

(4.15a)

and for α = 2 

(−∂2
S + c2)(J2

`u)(t, S) =
∑̀
m=1

∆m(J2
`−mu)(t, S),

{∂S(J2
`u)}(t) = (T2,−1,0,0

`,1 u)(t),

{J2
`u}(t)− 1

4 [∂S(J2
`u)](t) = δ`=0{u}(t) +

1

2
((T2,0,0,−1

`,2 −T2,−1,0,−1
`,2 )u)(t).

(4.15b)

For α = 0, 1, 2 the systems (4.15) are recurrence relations in `, beginning with ` = 0. The existence and
uniqueness of the operators due to ellipticity for α = 0, 1 (with assumed c2 ∈ iR) and due to Fredholm’s
alternative for α = 2, for which the bilinear form of the respective weak formulation is∫ 1

2

− 1
2

∂Su∂Sv + c2uv dS − 4{u}{v},

follows by induction in `. Concurrently, by induction in ` it results the mapping of the operators to P(α+1)`

for α = 0, 1 and to V`−1 for α = 2. When applying Jα` regularity in t is lost due to the higher normal
derivatives and the operators ∆m. The solutions are even so defined as we assumed enough regularity of
the sheet which results in higher regularity of the right hand sides. When resolving these recurrences we
can define (Jα` u)(t, S) in terms of cα, ∆̂0

m and ∆̂1
m (within ∆m) applied to {u}(t) and {∂su}(t).

It is important to note, that the operators J2
` depend through T

2,−1/0,0,−1
`,2 on H2

2, . . . ,H
2
`−2 only.
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The operators for ` = 0 introduced in Tab. 1 fulfill Def. 4.9 and those for ` = 1 are given by

(Jα1u)(t, S) =


{∂su}(t)S, for α = 0,

{∂su}(t)S + c1
2 {u}(t)(S2 + 1

4 ) for α = 1,(
{∂su}(t) + κ(t)

2 {u}(t)
)

sinh(
√
c2S)√

c2 cosh(
√
c2

1
2 )
− κ(t)

2 {u}(t)
cosh(

√
c2S)S

cosh(
√
c2

1
2 )− 1

2

√
c2 sinh(

√
c2

1
2 )

for α = 2.

4.6. Definition of the exterior fields

Definition 4.10. Let for ` ∈ N the operators Gα
` for any u smooth enough in a neighbourhood of Γ be

defined for α = 0, 1, 2 as

(Gα
` u)(t) = −[Jα` u](t) + (Tα,0,0,0

`,1 u)(t). (4.16)

The operators for ` = 1 are

(Gα
1u)(t) =

 0, for α = 0, 1,(
{∂su}(t) + κ(t)

2 {u}(t)
)(

1− 2 sinh(
√
c2

1
2 )

√
c2 cosh(

√
c2

1
2 )

)
for α = 2.

Definition 4.11. Let for ` ∈ N the operators Hα
` for any u smooth enough in a neighbourhood of Γ be

defined for α = 0, 1 as

(Hα
` u)(t) = (Tα,0,1,0

`,1 u)(t)−
∑̀
m=0

∫ 1
2

− 1
2

(δm=1−αcα −∆m+1)(Jα`−mu)(t, S) dS, (4.17a)

for α = 2 and for ` = 1

(H2
1u)(t) = [∂su](t). (4.17b)

` > 1 as

(H2
`u)(t) = −4{J2

`u}(t) + 2(T2,0,0,1
`,2 u)(t). (4.17c)

It is important to note, that the definition for α = 2 and ` = 1 is that was we have used in Sec. 4.2. No
other of the defined operators T2,a,b,c

`,`0
, G2

` , H2
` , or J2

` depend on H2
1 such that none of them possess a term

[∂su].
The operators H2

` for ` > 1 are well defined by (4.17c) as J2
` and T2,0,0,1

`,2 depend only on H2
m, m < `−1.

The remaining operators for ` = 1 are

(Hα
1u)(t) =


−c0{u}(t), for α = 0,

−c
2
1

6
{u}(t), for α = 1.

(4.18)

Lemma 4.12. Let α = 0, 1, 2, ` ∈ N0 and u any smooth enough function in Ω0
ext. The following functions

in u are well-defined linear functions in {u} and {∂su} only:

1. Jα` u as defined in Def. 4.9 for all ` ≥ 0,

2. Gα
` u as defined in Def. 4.10 for all ` ≥ 1,

3. Hα
` u as defined in Def. 4.11 for all ` ≥ 1 in case of α < 2 and for all ` ≥ 2 in case of α = 2.

Proof. We first note by their respective definitions, that

• Tα,a,b,c
`,`0

u is for α < 2 a linear function in {u}, {∂su}, Gα
1u, . . . ,G

α
`−`0u, and Hα

1u, . . . ,H
α
`−`0u.

• T2,a,b,0
`,1 u and T2,a,b,c

`,2 u are linear functions in {u}, {∂su}, G2
1u, . . . ,G

2
`−1u, and H2

2u, . . . ,H
2
`−1u,
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and consequently

• Jα` u, Gα
` u, and Hα

` u are linear functions in {u}, {∂su}, Jα0u, . . . ,J
α
`−1u, Gα

1u, . . . ,G
α
`−1u, and

Hα
1+δα=2

u, . . . ,Hα
`−1u.

Now, it is easy to verify that under the assumption that the statement of the Lemma is true for all `′ < `
that it is true for ` as well, and so by complete induction in ` the lemma is proved.

As a consequence of Lemma 4.12 the function Tα,a,b,c
`,`0

u as defined in Def. 4.7 is also a linear function in
{u} and {∂su} only.

4.7. Proof of Theorem 4.1

Proof of Theorem 4.1. The conditions (2.3c), (2.3d), (2.3e) are included in both problems, and we will use
out of these conditions only that all the function ujext are harmonic in a neighourbhood of Γ.

The proof is by complete induction in j. For some order j > 0, we assume the equivalence for all orders
till j − 1 including for α = 0, 1 the Neumann compability condition for U jint. We show that the same holds
order j.

Since (4.1c) and the respective first equation of (4.15a) and (4.15b) hold up to order j − 1, using
Lemma 4.2 and (−∂2

S + δα=2c2)(Jα0u
j
ext)(t) = 0 (see Tab. 1) it follows

(∂2
S − δα=2c2)U jint(t, S)

(2.3f)
=

j∑
`=1

(δ`=2−αcα −∆`)U
j−`
int )(t, S)

(4.1c)
=

j∑
`=1

(δ`=2−αcα −∆`)

j−∑̀
m=0

(Jαmu
j−`−m
ext )(t, S)

=

j∑
`=1

∑̀
m=1

(δm=2−αcα −∆m)(Jα`−mu
j−`
ext )(t, S) = (∂2

S − δα=2c2)

j∑
`=0

(Jα` u
j−`
ext )(t, S).

Applying the mean operator to (2.3b), using subsequently Lemma 4.8 due to the harmonicity of uj−`ext ,
` = 1, . . . , j in a neighbourhood of Γ, and using the respective second equations in (4.15a), (4.15b) together
with {∂SJα0u

j
ext} = 0 by definition (see Tab. 1) we get

{∂SU jint}(t)
(2.3b)

=

j∑
`=1

(
1

2

)`
1

(`− 1)!
[∂`su

j−`
ext ]`(t) =

j∑
`=1

(Tα,−1,0,0
` uj−`ext )(t) = {∂S

j∑
`=0

(Jα` u
j−`
ext )}(t).

For α = 0, 1, applying the mean operator to (2.3a), using {Jα0ujext}(t) = Jα0u
j
ext(t) = {ujext}(t) by

definition (see Tab. 1), Lemma 4.8 and the first equation in (4.15a) we get

{U jint}(t)
(2.3a)

= {ujext}(t) +

j∑
`=1

(
1

2

)`+1
1

` !
[∂`su

j−`
ext ]`+1(t)

= {Jα0ujext}(t) +
1

2

j∑
`=1

(Tα,0,0,1
` uj−`ext )(t) = {

j∑
`=0

(Jα` u
j−`
ext )}(t).

Applying the jump operator to (2.3b) for α = 2 we get

[∂SU
j
int](t)

(2.3b)
=

j∑
`=1

(
1

2

)`−1
1

(`− 1)!
[∂`su

j−`
ext ]`−1(t) = 2

j∑
`=0

(T2,−1,0,−1
` uj−`ext )(t)

= h(c2){ujext}(t) + [∂S

j∑
`=1

(J2
`u
j−`
ext )](t) = [∂S

j∑
`=1

(J2
`u
j−`
ext )](t),

where we used Lemma 4.8, the last equation in (4.15b) and [∂SJ2
0u
j
ext](t) = h(c2){ujext}(t) by definition (see

Tab. 1).
Due to the unique definition of U jint(t, S) by the above four equations for all cases α = 0, 1, 2 it fol-

lows (4.1c) for order j from (2.3a), (2.3b) and (2.3f). We have also shown that given (4.1c) it follows (2.3f),
the mean operator applied to (2.3b), the mean operator applied to (2.3a) for α = 0, 1 and the jump operator
applied to (2.3b) for α = 2.
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Applying the jump operator to (2.3a), using Lemma 4.8, and the definition of Gα
` by (4.16) and Tab. 1

we get

[U jint](t)
(2.3a)

= [ujext](t) +

j∑
`=1

(
1

2

)`
1

`!
[∂`su

j−`
ext ]`(t) = (Gα

0u
j
ext)(t) +

j∑
`=1

(Tα,0,0,0
` uj−`ext )(t)

= (Gα
0u

j
ext)(t) +

j∑
`=1

(Gα
` u

j−`
ext )(t) + [Jα` u

j−`
ext ](t) =

j∑
`=0

(Gα
` u

j−`
ext )(t) + [Jα` u

j−`
ext ](t),

where we used [Jα0u
j
ext] = 0 by definition. So, (2.3) entails with (4.1c) and so [U jint](t) =

∑j
`=0[Jα` u

j−`
ext ](t)

in (4.1a) for order j. Contrary, if (4.1) is fulfilled up to order j then it follow that (2.3a) for order j holds
when the jump operator is applied.

For α = 2, applying the mean operator to (2.3a), using Lemma 4.8, and the definition of Hα
` by (4.16)

and Tab. 1 and {J2
0u
j
ext} = (1 + 1

4h(c2)){ujext}, {J2
1u
j−1
ext } = 0 by definition we get

{U jint}(t)
(2.3a)

= {ujext}(t) +

j∑
`=1

(
1

2

)`+1
1

`!
[∂`su

j−`
ext ]`+1(t)

= {J2
0u
j
ext}(t) + {J2

1u
j−1
ext } − 1

4h(c2){ujext}(t) + 1
4 [∂su

j−1
ext ](t) +

j∑
`=2

(
1

2

)`+1
1

`!
[∂`su

j−`
ext ]`+1(t)

(4.5c)
= {J2

0u
j
ext}(t) + {J2

1u
j−1
ext } − 1

4

j∑
`=2

(H2
`u
j
ext)(t) +

1

2

j∑
`=2

(T2,0,0,1
`,2 uj−`ext )(t) =

j∑
`=0

{J2
`u
j−`
ext }(t).

Thus, (2.3) for α = 2 entails with (4.1c) and so {U jint}(t) =
∑j
`=0{J2

`u
j−`
ext }(t) in (4.1b) for order j. Contrary,

if (4.1) is fulfilled up to order j then it follow that (2.3a) for order j holds for α = 2 when the mean operator
is applied.

For α = 0, 1, using (2.3f), Lemma 4.8, (Jα0u
j
ext)(t, S) = {ujext}(t) by definition, and ∆1{ujext}(t) = 0 we

have∫ 1
2

− 1
2

∂2
SU

j+1
int (t, S), dS

(2.3f)
=

j+1∑
`=1

∫ 1
2

− 1
2

(δ`=2−αcα −∆`)U
j+1−`
int (t, S) dS

(4.1c)
=

j+1∑
`=1

∫ 1
2

− 1
2

(δ`=2−αcα −∆`)

j+1∑
m=0

(Jα` u
j+1−`−m
ext )(t, S) dS

=

j+1∑
`=1

∑̀
m=1

∫ 1
2

− 1
2

(δm=2−αcα −∆m)(Jα`−mu
j+1−`
ext )(t, S) dS

= δα=1c1{ujext}(t) +

j∑
`=1

∑̀
m=0

∫ 1
2

− 1
2

(δm=1−αcα −∆m+1)(Jα`−mu
j−`
ext )(t, S) dS.

With (2.3b) we have

[∂SU
j+1
int ](t) =

j+1∑
`=1

(
1

2

)`−1
1

(`− 1)!
[∂`su

j+1−`
ext ]`−1(t) = [∂su

j
ext](t) +

j∑
`=1

(
1

2

)`
1

`!
[∂`+1
s uj−`ext ]`(t)

and so with Lemma 4.8 and the definition of Hα
` in Tab. 1 and in (4.17a)

0 = [∂SU
j+1
int ](t)−

∫ 1
2

− 1
2

∂2
SU

j+1
int (t, S) dS

= [∂su
j
ext](t)− δα=1c1{ujext}(t) +

j∑
`=1

(Tα,0,1,0
` uj−`ext )(t)−

∑̀
m=0

∫ 1
2

− 1
2

(δm=1−αcα −∆m+1)(Jα`−mu
j−`
ext )(t, S) dS

= (Hα
0u

j
ext)(t) +

j∑
`=1

(Hα
` u

j−`
ext )(t).
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Thus, the Neumann compatibility condition of (2.3) for U j+1
int in case of α = 0, 1 and (2.3b) entails with (4.1c)

in (4.1b) for order j. Contrary, if (4.1) is fulfilled up to order j then it follow that (2.3b) holds for order j
if the jump operator is applied. Additionally, the Neumann compatibility condition of (2.3) holds for U j+1

int .
We have shown that the remaining equations are equivalent for order j and the Neumann compatibility

condition for order j + 1. This completes the induction step, and the statement of the lemma holds.

5. The transmission conditions of higher orders

5.1. Derivation of the transmission conditions

To derive the transmission conditions of higher orders we write the formal Taylor series of eεext by (2.1)
and eεint by (2.2),

eεext(x) ∼
+∞∑
j=0

εjujext(x) eεint(t, s) ∼
+∞∑
j=0

εjU jint(t,
s

ε
).

We use the symbol “∼” to highlight that these series’ converge for ε→ 0, but they may diverge or converge
not to eεext and eεint, when ε is fixed and the order N tends to infinity.

We multiply for all j ∈ N the conditions (4.1) by εj and summing we get

+∞∑
j=0

εj
j∑
`=0

(Gα
` uext)(t) = 0 on Γ, (5.1a)

+∞∑
j=0

εj
j∑
`=0

(Hα
` uext)(t) = 0 on Γ, (5.1b)

+∞∑
j=0

εjU jint(t, S) =

+∞∑
j=0

εj
j∑
`=0

(Jα` uext)(t, S) in Γ× (− 1
2 ,

1
2 ). (5.1c)

Interchanging the sums in j and ` and identifying eεext and eεint, we get

Gα,εeεext(t) ∼ 0 on Γ, (5.2a)

Hα,εeεext(t) ∼ 0 on Γ, (5.2b)

eεint(t) ∼ Jα,εeεext(t) in Γ× (− 1
2 ,

1
2 ), (5.2c)

with the formal operator series’ Gα,ε := limN→∞Gα,ε,N , Hα,ε := limN→∞Hα,ε,N and Hα,ε := limN→∞ Jα,ε,N

given by

Gα,ε,N =

N∑
j=0

εjGα
j , Hα,ε,N =

N∑
j=0

εjHα
j , Jα,ε,N =

N∑
j=0

εjJαj . (5.3)

Although, the conditions (5.1) seem to be perfect, the question of convergence of the operator series’ (5.3)
for N → ∞ remains. We are in doubt that they converge for all combinations of α, cα, and ε, as some
some combination the modelling error in numerical experiments increase when increasing the order N of the
transmission condition.

The limit operators Gα,ε, Hα,ε, and Jα,ε for N →∞ seem not to be possible to write in a simple form,
by what we are using truncated series’ at a certain order N .

We use the transmission conditions derived for varying and small sheet thicknesses ε for sheets of a
particular of thickness d and conductivity c. This means first that we replace cα by cdα and S by s/d.
Then, we omit the superscript ε in the operators (5.3) which even so depend on c and d. We also omit ε
as superscript in the approximative solutions, while keeping the superscripts α for the asymptotics in which
the transmission conditions have been derived and the approximation order N .
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Thus, the problems for the approximative solutions eα,Next and eα,Nint reads

−∆eα,Next (x) = f(x), in Ω0
ext, (5.4a)

(Gα,Neα,Next )(t) = 0, on Γ, (5.4b)

(Hα,Neα,Next )(t) = 0, on Γ, (5.4c)

eα,Next (x) = eimp(x) on Γe, (5.4d)

∇eα,Next (x) · n− βeα,Next (x) = ιimp(x) on Γi, (5.4e)

eα,Nint (t, s) = (Jα,Neα,Next )(t,
s

d
). (5.4f)

5.2. Variational formulation

The derived transmission conditions (5.4) for the eddy current model can be used in different represen-
tations. We will discuss variational formulations which can discretised by finite elements. Alternatively,
the transmission conditions can be represented by boundary integral formulations or discretised by finite
difference methods.

The variational formulations in Sec. 4.1, where for each of exterior expansion function is solved, have
all the same structure and prescribed jumps [ujext](t) and mean values {ujext}(t) on the interface Γ are
incorporated in the solution space. The transmission conditions (5.4) have no source terms on Γ and are not
the same for all orders. These conditions are natural, i. e., they are incorporated in weak form by inserting
the conditions into the variational problems. After multiplying (5.4a) by a test function e′, integrating over
Ω0

ext and applying Green’s theorem we get∫
Ω0

ext

∇eα,Next · ∇e′ dx+

∫
Γi

βeα,Next e′ dσ(x) +

∫
Γ

[∂se
α,N
ext ]{e′}+ {∂seα,Next }[e′] dt =

∫
Ω0

ext

fe′ dx+

∫
Γi

ιimpe
′ dσ(x)

We may obtain variational formulations of the same form for all orders and α-asymptotics when [∂se
α,N
ext ]

and {∂seα,Next } are replaced by Lagrange multiplyers and both conditions (5.4b) and (5.4c) are taken as addi-
tional equations in their respective weak forms. In contrast, we will prefer to introduce simpler variational
formulations where [∂se

α,N
ext ] is replaced using (5.4c). This is possible for all transmission conditions except

for that of order 0 for α = 2. An varational formulation for this transmission condition of α = 2 coincides
with (4.3) for the limit solution u0

ext.

The mean functions {∂seα,Next } in the variational formulation as well as in the operators Gα,ε,N and
Hα,ε,N will be replaced by Lagrange multiplyers λε,N .

By Lemma 4.12 and with Gα
0u = [u], Hα

δα=2
u = [∂su]− δα=1c1{u} we write similarly to [28, Sec. 4.3]

0 = (Gα,Neα,Next )(t) := (Gα,N
0 {eα,Next })(t) + (Gα,N

1 {∂seα,Next })(t) + [eα,Next ](t),

0 = (Hα,Neα,Next )(t) := (Hα,N
0 {eα,Next })(t) + (Hα,N

1 {∂seα,Next })(t) + [∂se
α,N
ext ](t),

(5.5)

In Gα,N
0 and Hα,N

0 the part of the respective operators acting on {eα,Next } is collected, and Gα,N
1 and Hα,N

1

are the parts acting on {∂seα,Next }.
The solution space V N for eα,Next is a subspace of H1(Ω0

ext) with Dirichlet data eimp(x) on Γe, whose

trace to Γi is in the domain V (Γi) of β and exhibits bounded k-th tangential derivatives when Gα,N
0 and

Hα,N
0 involves at most 2k-th tangential derivatives. The respective space for test functions V N0 have a

homogeneous Dirichlet condition on Γe. The solution space WN for the Lagrange multiplyer λε,N is Hk(Γ)

when Gα,N
1 and Hα,N

1 are differential operators of degree 2k − 1 or 2k with k ∈ N0.
Then, the variational formulations for (5.4) reads: Seek (eε,N , λε,N ) ∈ V N ×WN such that

∫
Ω0

ext

∇eα,Next · ∇e′ dx+

∫
Γi

βeα,Next e′ dσ(x) +

∫
Γ

(Hα,N
0 {eα,Next }+ Hα,N

1 λε,Next ){e′}+ λε,Next [e′] dt

=

∫
Ω0

ext

fe′ dx+

∫
Γi

ιimpe
′ dσ(x) ∀ e′ ∈ V N0 ,∫

Γ

([eα,Next ] + Gα,N
0 {eα,Next }+ Gα,N

1 λε,Next )λ′ dt = 0. ∀λ′ ∈WN ,

(5.6)
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in which all 2k- and (2k+ 1)-tangential derivatives are meant to be replaced by k-times integration by parts
along Γ. Then, by definition the bilinear forms are continuous in the respective spaces, and the linear form
on the right hand side as well.

5.3. Explicit determination of the first transmission conditions

With the operators Gα
` and Hα

` , which are specified in Appendix A.3 we can now give the transmission
conditions of order 1 and higher, and with Jα` the respective interior solution. They are extend the limit
conditions (3.1) to higher orders.

For a comparison let us write the conditions for the particular sheet of thickness d and conductivity c,
i. e., we replace cα by cdα and S by s/d.

The transmission conditions for α = 0 up to order 2 and the respective interior field can be written by

0 = [eα,Next ](t)

0 = [∂se
α,N
ext ](t) − cd{eα,Next }(t)

eα,Nint (t, s) = {eα,Next }(t)︸ ︷︷ ︸
order 0

+{∂seα,Next }(t) s︸ ︷︷ ︸
order 1

+ 1
2{e

α,N
ext }(t)(s2 + d2/4)− 1

2 (κ(t){∂seα,Next }(t) + ∂2
t {eα,Next }(t))s2︸ ︷︷ ︸

order 2

where for order N the respective terms up to this order have to be considered. For α = 1 the respective
equations are

0 = [eα,Next ](t)

0 = [∂se
α,N
ext ](t)− cd{eα,Next }(t) − 1

6c
2d3{eα,Next }(t)

eα,Nint (t, s) = {eα,Next }(t)︸ ︷︷ ︸
order 0

+{∂seα,Next }(t) s+ 1
2{e

α,N
ext }(t)(s2 + d2/4)︸ ︷︷ ︸

order 1

,

and for α = 2

0 = [eα,Next ](t) + d
(
{∂seα,Next }(t) + κ(t)

2 {e
α,N
ext }(t)

)(
1− sinh(

√
c d2 )√

c d2 cosh(
√
c d2 )

)
0 = − 2

√
c sinh(

√
cd2 )

cosh(
√
cd2 )−√cd2 sinh(

√
cd2 )
{eα,Next }(t) + [∂se

α,N
ext ](t)

eα,Nint (t, s) =
cosh(

√
cs)

cosh(
√
cd2 )−√cd2 sinh(

√
cd2 )
{eα,Next }(t)︸ ︷︷ ︸

order 0

+
(
{∂seα,Next }(t) + κ(t)

2 {e
α,N
ext }(t)

)
sinh(

√
cs)√

c cosh(
√
c d2 )

−κ(t)
2 {e

α,N
ext }(t) cosh(

√
cs)s

cosh(
√
c d2 )−

√
c d2 sinh(

√
c d2 )︸ ︷︷ ︸

order 1

,

where we divided the second equation by d. Applying the Taylor expansion in ε before replacing ε by d, we
get

0 = [eα,Next ](t) + ( 1
24cd

3(κ(t){eα,Next }(t) + 2{∂seα,Next }(t)) + . . .)

0 = (−cd− 1
6c

2d3 + ...){eα,Next }(t) + [∂se
α,N
ext ](t)

eα,Nint (t, s) = (1 + c
2 (s2 + d2/4) + . . .){eα,Next }(t)︸ ︷︷ ︸

order 0

+({∂seα,Next }(t) s+ . . .)︸ ︷︷ ︸
order 1

,

where higher order terms in
√
cd (or

√
cs) are indicated by dots. Nevertheless, we will apply the transmission

conditions for α = 2 always directly, their presentation after application of the Taylor expansion is here
convenient for the comparison of the models.

Comparing the terms of the models, we observe that the same terms appear for all asymptotics, but
mostly at different orders. In general the same terms appear for α = 1 at smaller or equal order than for
α = 0. From order 1 on also the same terms appear for α = 2 at smaller or equal order than for α = 1 (and

so for α = 0). An exception is the term [∂se
α,N
ext ] which appear for α = 2 not before order 1 where already at

order 0 for α = 1 (and α = 0). This signifies that (from order 1 on) transmission conditions with higher α
(and also the respective approximation of the interior field) are in many situations of higher accuracy and
more robust.
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5.4. Stability of the transmission conditions

We will analyse the stability inside the own asymptotics in the sheet thickness ε for each transmission
condition, and will indicate this by using the varying thickness ε instead the particular thickness d.

Lemma 5.1 (Stability of the problems of higher orders). The problems (5.6) provide for α = 0 and 0 <

N ≤ 3, α = 1 and 0 < N ≤ 3 unique solutions (eε,Next , λ
ε,N
ext ) ∈ V N ×WN for all ε < ε0 for some ε0 > 0, and

for |c2| < 63.74 the problem for α = 2 and N = 1 has unique solutions (eε,Next , λ
ε,N
ext ) ∈ V ε.N ×WN , where

‖eε,Next ‖H1(Ω0
ext)

is bounded by the right hand side with a constant independent of ε.

Proof. For α = 1 the lemma has been proven in [28, Lemma 4.10, Corollary 5.2]. The proof for α = 0 is
unessentially different, and will be let to the reader. Although the proofs for α = 2 have similarities too, we
detail them in the following for the sake of completeness and for later comparison. For simplicity we use for
the rest of the proof e and λ instead of eε,Next and λε,Next .

In all cases the linear form is

`(e′) =

∫
Ω0

ext

fe′ dx+

∫
Γi

ιimpe
′ dσ(x)

which is bounded in (all subspaces of) H1(Ω0
ext).

For simplicity we assume β to be a multiplicative factor, and so for α = 2 and N = 0, 1 we have
V N0 = H1

Γe
(Ω0

ext) and V N = H1
Γe

(Ω0
ext) + EΓeeimp, both with the H1(Ω0

ext)-norm. The space for the

Lagrange multiplicator is WN = L2(Γ).
The model for α = 2 of order N = 0 is trivially bounded independent of ε and provides a unique solution,

as both Dirichlet traces are zero on Γ.
For α = 2 of order N = 1 the problem (5.6) reads: Seek (e, λ) ∈ V 1 ×W 1 such that

∫
Ω0

ext

∇e · ∇e′ dx+

∫
Γi

βe e′ dσ(x) +

∫
Γ

1

ε
h(c2){e}{e′}+ λ[e′] dt = `(e′), ∀ e′ ∈ V 1

0 ,∫
Γ

([e]− 1
2εκ(t)j(c2){e} − εj(c2)λ)λ′ dt = 0, ∀λ′ ∈W 1,

(5.7)

in which we used the function j(c2) :=
sinh(

√
c2

1
2 )

√
c2

1
2 cosh(

√
c2

1
2 )
− 1. Summing the two equations for e′ = e and

λ′ = ε−1j−1(c2)[e] we get

|e|2H1(Ω0
ext)

+
〈
βe, e

〉
Γi

+
1

ε
h(c2)‖{e}‖2L2(Γ) +

1

ε
j−1(c2)‖[e]‖2L2(Γ) −

〈κ(t)
2 {e}, [e]

〉
Γ

= `(e). (5.8)

Using ε|κ(t)| < 2, the Cauchy-Schwarz and Youngs inequality we can bound the last term of the left hand
side as

|
〈κ(t)

2 {e}, [e]
〉

Γ
| ≤ 1

ε
‖{e}‖L2(Γ)‖[e]‖L2(Γ) ≤

1

ε

(
(1− a)Imh(c2)‖{e}‖2L2(Γ) +

1

4(1− a)Imh(c2)
‖[e]‖2L2(Γ)

)
,

where a < 1 is some real constant we will fix later.
Since Im

〈
βe, e

〉
Γi

is non-negative by assumption, we get for the imaginary part of (5.8) the bound

a

ε
Imh(c2)‖{e}‖2L2(Γ) +

1

ε
̃a(c2)‖[e]‖2L2(Γ) ≤ Im `(e),

with ̃a(c2) = Im(j−1(c2)) − (4(1 − a)Imh(c2))−1. The continuous functions Im(j−1(c2)) and (Imh(c2))−1

are positive and for any |c2| ≤ 63.74 it is ̃a=0(c2) > 0. For each c2 with |c2| < 63.74 we can fix a constant
1 > a > 0 such that ̃a(c2) > 0, where all terms on the left hand side are positive. Thus, both the mean and
the jump are bounded by the right hand side, namely with a constant C independent of ε

‖{e}‖L2(Γ) + ‖[e]‖L2(Γ) ≤ C
√
ε‖`‖(V N )′ . (5.9)

Now, taking the real part of (5.8) we find the boundness of |e|H1(Ω0
ext)

by the right hand side with a constant

independent of ε. As the traces from both sides on Γ are bounded and the H1(Ω0
ext)-seminorm as well,

applying Poincaré-Friedrichs inequality leads to the boundness of ‖e‖H1(Ω0
ext)

as well.
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Choosing λ′ = λ in (5.7), taking the imaginary part, using the Cauchy-Schwartz inequality and (5.9) the
Lagrange multiplier is bounded as well.

Hence, it holds uniqueness and stability of the model.
To prove existence, we have to show that e′ = 0 and λ′ = 0 is the only solution of

a(e, λ; e′, λ′) = 0 ∀(e, λ) ∈WN × V N , (5.10)

with the bilinear form on the product space V N ×WN associated to the variational formulation (5.7)

a(e, λ; e′, λ′) :=

∫
Ω0

ext

∇e · ∇e′ dx+

∫
Γi

βe e′ dσ(x)

+

∫
Γ

1

ε
h(c2){e}{e′}+ λ[e′] + [e]λ′ + (− 1

2εκ(t)j(c2){e} − εj(c2)λ)λ′ dt,

Choosing e = e′ and λ = ε−1j−1(c2)[e′]− κ
2 {e′} in (5.10) we get

|e′|2H1(Ω0
ext)

+
〈
βe′, e′

〉
Γi

+
1

ε
h(c2)‖{e′}‖L2(Γ) +

1

ε
j−1(c2)‖[e′]‖2L2(Γ) −

〈κ(t)
2 {e′}, [e′]

〉
Γ

= 0,

which is (5.8) with vanishing right hand side and where e is replaced by e′. Consequently, e′ = 0. Now,
choosing e = 0 and λ = λ′ in (5.10) we get λ′ = 0 as well, and a solution of (5.7) exists.

5.5. Estimates of the modelling error

As for Corollary 3.6 the modelling error for higher orders follow from the stability result, here by
Lemma 5.1, and the construction of the terms of asymptotic expansion ujext, U

j
int.

Lemma 5.2. Let the assumptions for stability of Lemma 5.1 be fulfilled for the problems (5.6) for α = 0
and 0 < N ≤ 3, α = 1 and 0 < N ≤ 3, α = 2 and N = 1. Then, the modelling error can be bounded as

‖eεext − eε,Next ‖H1(Ωεext)
≤ C(cα) εN+1,

where the constant C(cα) does not depend on ε.

For α = 1 the lemma has been proven in [28, Lemma 5.1, Theorem 5.3]. The proof for α = 0, and the
original models for α = 2 are unessentially different.

5.6. The robustness of the transmission conditions of higher orders

Similarly to Sec. 3.3 for the transmission conditions of order 0 we investigate here the robustness of the
transmission conditions of higher orders, i. e., their accuracy for a range of the problem parameters thickness
d and effective conductivity c.

To illustrate the approximation properties and their robustness, we first show the results of numerical
experiments similarly to those described in Sec. 3.3, but now also for order 1 and 2. In Fig. 5 on page 11
the L2-error outside the sheet is shown for the models of order 0 and order 1, and in Fig. 6 on page 12 for
order 2.

α = 0 α = 1 α = 2

α? = 0 robust robust robust

α? = 1 robust robust robust

α? = 2 robust robust robust

Table 3: Robustness of the transmission conditions of order 1 and higher.
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What changes when going to higher orders?. The first observation when going within the transmission
conditions for a particular α first order is a remarkable decrease of the error, which is apparent for α = 0
and α = 2 in the whole investigated range of parameters. We have noticed already in Sec. 3.3 that the limit
models for α = 0 and α = 2 are only robust in their own asymptotics, in contrast to α = 1. At order 1 the
transmission conditions for α = 0 and α = 2 lead also to a change to a robustness in all other α?-asymptotics
(Tab. 3). This gets visible when following the dashed lines, for all of them the error decreases for smaller
sheet thickness d. The convergence is for all transmission conditions for α = 0, 1, 2 fastest in the asymptotics
α? = 0, then within α? = 1, and slowest convergence is within α? = 2 (cf. Fig. 7). The transmission condition
for α = 0 are the same for order 1 and order 2 (as G0

2 = 0 and H0
2 = 0, see Appendix A.3), and for α = 2 we

have implemented up to order 1. For transmission condition for α = 1, which is the only non-trivial one for
order 0, gets more accurate at order 1 and even more for order 2, but not in the whole investigated range
of thicknesses d and skin depths dskin. The model of order 1 gets almost no improvement for very small
relative skin depths dskin/d, where for the model of order 2 the error even increases in this region. This is
exactly why the expansion is called asymptotic, and not convergent. It converges in the small parameter
ε, but not necessarily in the order N . We conject that there is a parameter region where the transmission
conditions for α = 0, 1 are convergent, and that they are convergent for α = 2.

In this example the model of order 0 is the best for dskin � d, for dskin ≈ d all three orders give about the
same results, and for dskin � d it is counterproductive to go to order 1 or 2, here the limit model performs
best.

What changes with transmission conditions of different α ?. The model of order 0 and α = 0
provides virtually for no set of parameters a decent error. The model of order 1 improves the accuracy
clearly, but is equivalent to the model of order 0 for α = 1 (at least for the exterior field), as well as to the
model of order 2 and α = 0 (at least for the exterior field). The transmission condition of order 2 for α = 0
stays at the accuracy of that order 0 for α = 1, whereas for α = 1 the accuracy is improved notably for
order 1 and even more for order 2 (for smaller skin depth). This shows that the choice in [28] to use the
non-trivial asymptotics α = 1 for transmission conditions pays off. As already mentioned, the accuracy is
not improved for larger skin depths. Here, only the model for α = 2 — it was yet derived for asymptotically
constant relative skin depth — obtains an improvement at order 1. In comparison to the model for α = 1
the error is virtually identical for very small relative skin depth, and in almost all configurations the model
of α = 2 is better. The model of order 2 for α = 1 has already a substantial number of terms, however, even
higher orders for α = 1 does not achieve better results in case of small relative skin depths (cf. second row
in first column in Fig 6).

Convergence rates for higher orders. In the second column of Fig. 7 the L2-error is shown along the
different contour lines for the transmission conditions of order 1. In the asymptotics of an asymptotically
constant skin depth (α? = 2) with the respective transmission condition a convergence rate of 2 is obtained,
for the transmission condition for α = 0 and α = 1 it is only 1, even for order 2 and 3 for α = 1 (dashed
lines). In the latter case only the constant is improved, but the optimal convergence rate is not obtained.
The picture for α? = 0 is different. All three transmission conditions lead asymptotically to a convergence
rate of (about) 3. This rate is higher as expected for α = 0 as the models of order 1 and 2 coincide in the
exterior field (see Sec. 5.3). Furthermore, we observe that the transmission conditions for α = 1 and α = 2
get identically for smaller sheet thicknesses. As in the asymptotics of α? = 1 the transmission condition for
α = 0 of order 1 and order 2 (due to coincidence) results as well in a lower convergence rate, namely 1, we
can conclude in the following conjecture about ordering the models with respect to their of robustness.

Definition 5.3 (Ordering with respect to the robustness). We call a transmission condition for α = αR
more robust than another derived for α = αL, if it results asymptotically in all asymptotics with α? 6= αR at
least the same convergence rates, and the other has a lower convergence rate for α? = αR.

Conjecture 5.4 (Ordering the derived transmission conditions with respect to their robustness). The
transmission condition for α = 2 of order 1 is more robust than transmission conditions of any order for
α = 1. The transmission condition for α = 1 of order 1 is more robust that the transmission condition for
α = 0 of order 1 and 2.

Concluding remarks

In the article the asymptotic expansion for thin conducting sheets for varying thickness ε for the time-
harmonic eddy current model have been derived to arbitrary order for three different asymptotic frameworks,
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the constant conductivity (scaled like 1), the conductivity scaled like 1/ε and like 1/ε2. To these asymptotics
a parameter α has been assigned which take the values 0, 1 and 2 for conductivities scaled like 1/εα. We
have seen, that these different asymptotical frameworks possess different limit solutions for ε → 0, namely
the vanishing sheet for α = 0, a non-trivial limit for α = 1 and the impermeable sheet for α = 2. The
expansion of the solution inside the sheet is in scaled coordinates, the solution in its exterior in original
coordinates, and the continuity conditions between both are expanded around the midline. This leads to
iterative definition of the terms of the expansion, where the problems for the exterior terms are stated on the
domain without the thin sheet. For a particular sheet of thickness d and effective conductivity c the terms
of the expansion multiplied with powers of d are added. A main achievement of the article is the explicit
derivation of operators for any order which define as a discrete convolution conditions for the expansion
terms of any order of the midline Γ. We have derived for each α = 0, 1, 2 the respective first operators.

The asymptotic expansion for the three asymptotic frameworks serve as a starting point for the derivation
of three families of transmission conditions, where a solution of an arbitrary order N is computed in one
step, contrary to the iterative definition of the N + 1 individual terms of the asymptotic expansion. The
transmission conditions are hierarchic, meaning that terms are added when increasing the order. The
transmission conditions for the three α-asymptotics and for different orders are compared with each other
with respect to their robustness. The model is robust if it has a high accuracy for a wide range of sheet
thicknesses d and conductivities c. We assess the robustness by inserting a transmission conditions for a
certain α into an asymptotic framework related to α? and by numerical experiments for a rather general
geometrical configuration and where ratios of skin depth and thickness take very small up to very large
values. For the limit models (order 0) that for α = 1 turns out to be the only robust. For higher orders the
transmission conditions for all α-asymptotics are robust, where those of higher α are robuster than those of
smaller α. Those higher α-transmission conditions turn out to be generalisations of the lower α ones which
coincide for small relative skin depth.

We expect that the results related to the α-asymptotics transfer to the eddy current model for smooth
sheets in 3D, where however the derivation will be for vectorial electromagnetic fields and similar transmission
conditions will incorporate the curvatures and tangential derivatives of a 2D surface.

We have shown the stability of the transmission conditions for each α up to a certain order, partly under
assumption on the relative skin depth. Although transmission conditions of higher orders differ only by
small terms (they are weighted by powers of the small thickness) there is no general procedure to proof of
stability to any order. Such a general procedure is wanted also as stability is necessary for the estimates of
the modeling error.

The transmission conditions of high orders will not provide the same accuracy for thin sheets with kinks
or ends. A consideration of these corners in the asymptotic expansion, as derived for example for thin layers
on the boundary in [8], is in that case needed.
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A. Appendix

A.1. The operators of the development of the Laplace operator

By (2.4) we can evaluate the first operators

∆̂0
1 = 0, ∆̂1

1 = −κ(t),

∆̂0
2 = −∂2

t , ∆̂1
2 = κ2(t),

∆̂0
3 = 2κ(t)∂2

t + κ′(t)∂t, ∆̂1
3 = −κ3(t),

∆̂0
4 = −3κ2(t)∂2

t − 3κ(t)κ′(t)∂t, ∆̂1
4 = κ4(t),

∆̂0
5 = 4κ3(t)∂2

t + 6κ2(t)κ′(t)∂t, ∆̂1
5 = −κ5(t),

∆̂0
6 = −5κ4(t)∂2

t − 10κ3(t)κ′(t)∂t, ∆̂1
6 = κ6(t).

(A.1)
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A.2. The operators for higher normal derivatives

Inserting (A.1) into the recurrence relation (4.8) for R`
D/N we get

R0
D = Id, R0

N = 0,

R1
D = 0, R1

N = Id,

R2
D = − 1

2∂
2
t , R2

N = − 1
2κ(t)

R3
D = 1

2κ(t)∂2
t + 1

6κ
′(t)∂t, R3

N = 1
6

(
−∂2

t + 2κ2(t)
)
,

R4
D = 1

24

(
∂4
t − 11κ2(t)∂2

t − 7κ(t)κ′(t)∂t
)
, R4

N = 1
24

(
6κ(t)∂2

t + 4κ′(t)∂t − 6κ3(t) + κ′′(t)
)
.

A.3. The operators of the transmission conditions

For α = 0. The non-zero operators up to order 3 are

(G0
0u)(t) = [u](t), (G0

3u)(t) =
c0
24

(κ(t)u(t) + 2{∂su}(t)),

(H0
0u)(t) = [∂su](t), (H0

1u)(t) = −c0{u}(t), (H0
3u)(t) =

c0
24

(∂2
t {u}(t)− κ(t){∂su}(t))−

c20
6
{u}(t),

(J0
0u)(t, S) = {u}(t), (J0

1u)(t, S) = {∂su}(t)S,

(J0
2u)(t, S) = 1

2{u}(t)(S2 + 1
4 )− 1

2 (κ(t){∂su}(t) + ∂2
t {u}(t))S2,

(J0
3u)(t, S) = −c0

6
(S2 + 4

3 )Sκ(t){u}(t) + 1
6S

3(3κ(t)∂2
t + κ′(t)∂t){∂su}(t)

+
c0
6

(S2 − 4
3 )S{∂su}(t) + 1

6S
3(2κ2(t)− ∂2

t ){∂su}(t)

For α = 1. The operators are (up to different definition of the sign) equivalent to those given up to order 3
in [28, Appendix], for completeness we affiliate the non-zero operators up to order 2

(G1
0u)(t) = [u](t), (G1

2u)(t) =
c1
24

(
κ(t){u}(t) + 2{∂su}(t)

)
,

(H1
0u)(t) = [∂su](t)− c1{u}(t), (H1

1u)(t) =
c21
6
{u}(t),

(H1
2u)(t) =

c1
12

(
7

20
c21 − ∂2

t

)
{u}(t) +

c1
24
κ(t){∂su}(t),

(J1
0u)(t) = {u}(t), (J1

1u)(t) =
c1
2
{u}(t)

(
S2 + 1

4

)
+ {∂su}(t)S,

(J1
2u)(t) =

c1
2
{u}(t)

(
S2 + 1

4

)
+ {∂su}(t)S

(
S2 + 3

4

)2
+
c0
6
{∂nu}(t)

(
S3 − 3

4S
)
− c0

6
κ(t) {u}(t)

(
S3 + 3

4S
)

− 1

2

(
κ(t) {∂nu}(t) + ∂2

t {u}(t)
)
S2.

For α = 2. The non-zero operators up to order 1 are

(G2
0u)(t) = [u](t), (G2

1u)(t) =
(
{∂su}(t) + κ(t)

2 {u}(t)
)(

1− sinh(
√
c d2 )√

c d2 cosh(
√
c d2 )

)
,

(H2
0u)(t) = − 2

√
c sinh(

√
cd2 )

cosh(
√
cd2 )−√cd2 sinh(

√
cd2 )
{u}(t), (H2

1u)(t) = [∂su](t),

(J2
0u)(t, S) =

cosh(
√
cs)

cosh(
√
cd2 )−√cd2 sinh(

√
cd2 )
{u}(t)

(J2
1u)(t, S) =

(
{∂su}(t) + κ(t)

2 {u}(t)
)

sinh(
√
cs)√

c cosh(
√
c d2 )
− κ(t)

2 {u}(t)
cosh(

√
cs)s

cosh(
√
c d2 )−

√
c d2 sinh(

√
c d2 )

.
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