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Abstract

We prove a necessary and sufficient criterion for the exponential stability
of periodic solutions of delay differential equations with large delay. We
show that for sufficiently large delay the Floquet spectrum near criticality
is characterized by a set of curves, which we call asymptotic continuous
spectrum, that is independent on the delay.
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1. Introduction

Delay-differential equations (DDEs) are similar to ordinary differential
equations (ODEs) except that the right-hand side may depend on the past,
for example they could be of the form

ẋ(t) = f(x(t), x(t − τ)) (1)

where x(t) is a vector in Rn and the delay τ > 0 decides how far one looks
into the past. When studying DDEs as dynamical systems one notices that
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equilibria do not depend on the delay τ . More precisely, their location and
number is independent of τ . However, their stability changes significantly
when one varies τ , an effect that is well known and of practical importance in
engineering and control [1, 2]. Exponential stability is given by the spectrum
of the linearization of the DDE in its equilibrium. This spectrum, in turn, can
be expressed as roots of an analytic function (a polynomial of exponentials
λ 7→ exp(−λτ)). Lichtner et al [3] classified rigorously which types of limits
this spectrum can have as τ approaches infinity. Roughly, for sufficiently large
τ all except maximally n eigenvalues form bands near the imaginary axis.
After rescaling their real part by 1/τ one finds that these bands converge
to curves, called asymptotic continuous spectrum. They are given as root
curves of parametric polynomials, and, thus, much easier to compute than
the eigenvalues of the singularly perturbed large-delay problem. Of practical
relevance are then stability criteria based entirely on the asymptotic spectra
that guarantee the stability of an equilibrium for sufficiently large delays τ .

This paper gives a similar result for periodic orbits of (1). In contrast to
equilibria, periodic orbits change as the delay τ varies. However, as Yanchuk
and Perlikowski [4] observed, a family of periodic orbits parametrized by the
delay τ repeats itself for every integer N , then parametrized by NT (τ) + τ
(where T (τ) is the period of the orbit at delay τ). Let us look at the two-
dimensional example

ẋ(t) = αx(t) − 2πy(t) − x(t)
[
x(t)2 + y(t)2

]
(2)

ẏ(t) = 2πx(t) + αy(t) − y(t)
[
x(t)2 + y(t)2

]
+ y(t − τ) (3)

where we fix α ≈ −0.1 and vary τ . System (2)–(3) consists of the normal
form for the supercritical Hopf bifurcation with an additional delayed term
y(t− τ) in the second equation, which breaks the rotational symmetry of the
instantaneous terms. Numerically, one can observe that the system has a
family of periodic orbits for delays between τ ≈ 0.7 and τ ≈ 1.3. The period
and the phase portrait projected onto the (x, y)-plane of these orbits are
shown in Figure 1(a) and (b). The family repeats, the orbits keeping their
shape, for every integer N if we change the horizontal axis in Figure 1(a) to
NT (τ) + τ . Note that the transformation NT (τ) + τ is not just a parallel
shift, since the dependence T (τ) is, in general, nontrivial. This leads to an
overlapping of the families and creates multistability, see [4] for more details.

Again, as in the case of equilibria, it makes sense to ask how the stability
of the members of the family changes as N goes to infinity. The asymptotic
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Figure 1: Illustration of stability for the example (2)–(3) (computed with DDE-Biftool
[5, 6, 7]): (a) bifurcation diagram of periodic orbits in the (τ, T )-plane; (b) phase portraits
of periodic orbits along branch; (c) dominant Floquet exponents of selected periodic orbit
(grey square in panel (a)); (d) dominant Floquet exponents after rescaling of real parts
and curves of asymptotic continuous spectrum. Parameters: α = −0.10779 for (a–d),
τ = 1.081, N = 25 for (c,d).

stability properties then can serve as a good approximation for the situation
with large but finite delay.

In our example, it turns out that, for sufficiently large N , the part that
is displayed as a thick black curve in Figure 1(a,b) is exponentially stable
whereas the grey part is exponentially unstable, having a large number of
weakly unstable Floquet exponents. Figure 1(c) shows the spectrum of the
stable periodic orbit highlighted by a grey square in Figure 1(a) for N = 25.
One can see that, first, its Floquet exponents form bands, and, second, there
is a large number of Floquet exponents very close to the imaginary axis (note
the scale of the horizontal axis in Figure 1(c)). Figure 1(d) illustrates one
of the results of this paper: after rescaling the real part, Floquet exponents
converge to curves for N → ∞. These curves, the asymptotic continuous
spectrum are computable by solving regular periodic boundary value prob-

3



lems parametrized by ω, the vertical axis in Figure 1(d). Since the original
nonlinear DDE is autonomous, one of the curves of the asymptotic contin-
uous spectrum touches the imaginary axis. Similar to the equilibrium case,
we establish that the asymptotic continuous spectrum (together with the
strongly unstable spectrum, see Section 2) determines the stability of the
periodic orbit for sufficiently large N .

Section 2 gives a non-technical overview of the results gradually devel-
oped and proven in the later sections. One central part of our paper is the
construction of a characteristic function

µ 7→ h (µ, exp(−(NT (τ) + τ)µ)) ,

the roots of which are the Floquet exponents of the periodic orbit for delay
τ +NT (τ), and for which we can study the limit N → ∞. This construction
is given in Section 3. The existence of this function h permits us to follow the
approach from [3] and to extend their techniques to the case of periodic solu-
tions. In the following sections 4 and 5 we describe two parts of the Floquet
spectrum that show a different scaling behavior for large τ . The strongly
unstable spectrum, converging to a finite number of asymptotic Floquet ex-
ponents which are determined by the instantaneous terms, is investigated in
Section 4. Then, in Section 5, we analyze the Floquet exponents given by
the asymptotic continuous spectrum shown in Fig 1(c), (d). Based on these
results, we can then prove in Section 6 our main result, a criterion about
asymptotic stability based on the location of the asymptotic continuous and
strongly unstable spectrum.

2. Basic concepts and overview of the results

2.1. Periodic orbits, stability, and Floquet exponents

Let x∗ be a periodic orbit of the n-dimensional autonomous nonlinear
delay differential equation (DDE)

ẋ(t) = f(x(t), x(t − τ)), (4)

that is, x∗(t) satisfies (4) for all times t and has period T : x∗(t) = x∗(t + T )
for all t ∈ R. Without loss of generality we may assume that T = 1 (this can
be achieved by a rescaling of time and the delay τ). If the period T is equal
to 1 then x∗ is also a periodic orbit of

ẋ(t) = f(x(t), x(t − τ − N)), (5)
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where N is a natural number and τ ∈ [0, 1). We denote the restriction of
the periodic function x∗ : R 7→ Rn to the interval [−τ −N, 0] also by x∗ such
that x∗ is an element of C([−τ − N, 0]; Rn).

We are concerned with the question whether the periodic orbit x∗ is stable
or unstable for sufficiently large N in the following sense:

Definition 1 (Exponential orbital stability and instability).
Let X(t; ·) be the semiflow on C([−τ − N, 0]; Rn) induced by DDE (5). The
periodic orbit x∗ is called exponentially orbitally stable if there exists a
decay rate γ > 0 such that all initial history segments x0 in a neighborhood
of x∗ satisfy

∥X(t; x0) − X(t + t0; x∗)∥∞ ≤ C exp(−γt)∥x0 − x∗∥∞
for some time shift t0 and some constant C ≥ 0.

Similarly, x∗ is called exponentially unstable if there exists a growth
rate γ > 0, a neighborhood N of x∗ and a constant C > 0 such that one can
find initial history segments x0 ̸= x∗ arbitrarily close to x∗ that satisfy

∥X(n; x0) − X(n; x∗)∥∞ ≥ C exp(γn)∥x0 − x∗∥∞ > 0

for all n ∈ N as long as X(n; x0) stays in the neighborhood N .

This is the standard definition for stability of periodic orbits used also for
ODEs except that the phase space is C([−τ − N, 0]; Rn) instead of Rn. The
notation ∥ · ∥∞ refers to the usual maximum norm in C([−τ − N, 0]; Rn).

Textbook theory of delay equations reduces the stability problem to the
problem of finding eigenvalues of the linear map MN : C([−τ −N, 0]; Cn) →
C([−τ − N, 0]; Cn), which is given as the time-1 map of the linear DDE

ẋ(t) = A(t)x(t) + B(t)x(t − τ − N), (6)

where the time-dependent n × n-matrices A(t) ∈ Rn×n and B(t) ∈ Rn×n are
the partial derivatives of f in x∗: A(t) = ∂1f(x∗(t), x∗(t − τ)) and B(t) =
∂2f(x∗(t), x∗(t − τ)) [8].

Since (MN)N+1 is compact the spectral theory for compact operators and
the polynomial spectral mapping theorem imply that the spectrum σ(MN)
consists of a sequence of eigenvalues of finite multiplicity accumulating only
at zero (zero is the only element of σ(MN) that is not in the point spectrum).
Also, λ = 1 is always an eigenvalue of MN because ẋ∗(t) satisfies (6) and has
period 1.

The periodic orbit x∗ is exponentially (orbitally) stable if and only if
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(1) the eigenvalue 1 of MN is algebraically simple, and

(2) all other eigenvalues of MN have modulus less than 1.

Similarly, it is exponentially unstable if at least one eigenvalue has modulus
greater than 1.

Thus, the stability of iterations of MN is determined by its eigenvalues.
We also use the term orbitally stable for the map MN , meaning that MN

satisfies both of the above conditions.
The state space of DDE (6) is the function space C([−τ−N, 0]; Rn). Thus,

initial value problems for (6) require specifying an infinite-dimensional initial
condition. Similarly, one expects that a boundary value problem for a DDE
requires the specification of infinitely many boundary conditions. However,
periodic boundary value problems are easier to formulate: for example, a
solution of the periodic boundary value problem for the general DDE (4) for
period T = 1 is simply a function x ∈ C1([−1, 0]; Rn) satisfying

ẋ(t) = f(x(t), x(t − τ)mod[−1,0]) (7)

x(−1) = x(0) (8)

where the notation (t− τ)mod[−1,0] stands for t− τ + k if t− τ ∈ [−k− 1,−k)
and k ∈ Z is the integer part of τ − t. Since x is continuous and satisfies
the periodicity condition (8) it can be extended continuously to a continuous
function on the whole real line by defining x(s) = x(smod[−1,0]). Consequently,
the right-hand-side of (7) is continuous for all t ∈ [−1, 0], which guarantees
that x can really satisfy the differential equation pointwise and is an element
of C1. The solution x then automatically satisfies ẋ(−1) = ẋ(0), and, thus,
by induction is as smooth as the right-hand-side f . In this respect, periodic
boundary value problems for DDEs are similar to boundary value problems
for ODEs. In Section 3 we will reduce linear periodic boundary value prob-
lems for DDEs to low-dimensional linear systems of algebraic equations.

Definition 2. We call µ a Floquet exponent of MN , and write µ ∈ ΣN , if
exp(µ) is an eigenvalue of MN .

Floquet exponents of MN can be found as those complex numbers µ for which
the periodic boundary value problem

ẏ(t) = [A(t) − µI]y(t) + exp(−(N + τ)µ) B(t) y((t − τ)mod[−1,0]) (9)

y(0) = y(−1) (10)
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has a nontrivial solution y ∈ C1([−1, 0], Cn) [8]. Note that in (9) we use
the delay τ ∈ [0, 1) to calculate the Floquet exponents of MN , i.e. for a
periodic orbit of system (6) with delay τ + N . Only the factor exp(−Nµ) in
front of B(t) accounts for the large delay whereas we have just extended y
periodically for arguments less than −1. If (9) has a non-trivial solution y(t)
for µ ∈ C then it has the non-trivial solution y(t) exp(2πikt) for µ + 2kπi
for any integer k. Hence, we choose the Floquet exponent µ such that its
imaginary part is between [−π, π).

2.2. Asymptotic spectra for N → ∞
The set of Floquet exponents, ΣN , forms a discrete subset of the complex

plane, the point spectrum of exponents, which depends on N . In order to de-
scribe in which form ΣN has a limit for N → ∞ we introduce two asymptotic
spectra, which are also subsets of the complex plane. The notation follows
[4].

Definition 3 (Instantaneous and strongly unstable spectrum). The
set ΣA of all µ ∈ C for which the linear ODE boundary value problem on
[−1, 0]

ẏ = [A(t) − µI]y (11)

y(0) = y(−1) (12)

has a non-trivial solution y ∈ C1([−1, 0]; Cn) is called the instantaneous
spectrum. The subset A+ ⊆ ΣA of those µ with positive real part is called
the strongly unstable asymptotic spectrum.

The instantaneous spectrum ΣA contains exactly n elements with imaginary
part in [−π, π), counting algebraic multiplicity. We note that ΣA and A+ do
not depend on N but only on A. One result of our paper is that all Floquet
exponents of MN with a real part that is positive uniformly in N converge
to elements of the strongly unstable spectrum A+.

Yanchuk & Perlikowski [4] observed that the presence of strongly unstable
spectrum is not the only possible cause of instability for large N . They
observed that large numbers of Floquet exponents form bands that have a
distance of order 1/N from the imaginary axis and have a spacing of order
1/N along the imaginary axis. In the limit N → ∞ these bands form curves
after a rescaling of the real part by N . The limiting curves, called asymptotic
continuous spectrum in [4] were defined with the help of a parametric periodic
boundary value problem:
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Definition 4 (Asymptotic continuous spectrum). The complex number
γ + iω ∈ C (γ ∈ R, ω ∈ [−π, π)) lies in the asymptotic continuous spec-
trum, Ac, if the boundary value problem on [−1, 0]

ẏ(t) = [A(t) − iωI]y(t) + exp(−γ − iφ)B(t)y((t − τ)mod[−1,0]) (13)

y(0) = y(−1) (14)

has a non-trivial solution y ∈ C1([−1, 0] Rn) for some φ ∈ R. The quantity
φ is called the phase corresponding to γ + iω.

Again, the asymptotic continuous spectrum does not depend on N but only
on A,B and τ .

2.3. A characteristic function for Floquet exponents

We will reduce now the study of the various spectra and their relations to
each other to a root-finding problem of a holomorphic function. The following
lemma states the existence of a characteristic function for Floquet exponents
that at the same time can be used to describe the asymptotic spectra A+

and Ac.

Lemma 5 (Characteristic function). There exists a function h : Ω1 ×
Ω2 ⊆ C × C 7→ C which is holomorphic in both arguments with the following
properties:

1. µ is a Floquet exponent of MN , i.e. µ ∈ ΣN , if and only if

h(µ, exp(−(N + τ)µ) = 0, (15)

2. µ is in the instantaneous spectrum ΣA if and only if

h(µ, 0) = 0, (16)

and, hence, µ is in the strongly unstable asymptotic spectrum A+ if

h(µ, 0) = 0 and Re µ > 0,

3. µ = γ + iω is in the asymptotic continuous spectrum Ac if, for some
phase φ ∈ R,

h(iω, exp(−γ − iφ)) = 0.

The algebraic multiplicity of µ as a Floquet exponent in the statements 1 and
2 equals its multiplicity as a root in (15) and (16).
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From property 3 the motivation behind the name asymptotic continuous
spectrum becomes clear: if we have a value γ0 + iω0 ∈ Ac and the corre-
sponding phase φ0, and ∂2h(iω0, exp(−γ0− iφ0)) is non-zero (which is gener-
ically the case) then a whole curve γ(ω) + iφ(ω) satisfies h(iω, exp(−γ(ω)−
iφ(ω))) = 0 for ω ≈ ω0. These curves are the bands of the asymptotic contin-
uous spectrum. Note that from the existence of the trivial Floquet exponent
µ = 0 we can conclude that h(0, 1) = 0, which in turn implies that γ = ω = 0
with phase φ = 0 is in Ac. In the generic case where the trivial exponent is
contained in a single curve we call it the critical branch of Ac.

The details of the construction of h, which modifies the general character-
istic matrices and functions for periodic delay equations from [9, 10], will be
given in section 3. The general characteristic function constructed by [9, 10]
may have poles in the complex plane. The modification in Section 3 ensures
that these poles of h(µ, z) stay in the left half-plane. Hence, the domain
Ω1 × Ω2 of h contains all µ and z satisfying Re µ > −R and |z| < exp(R)
where R > 0 is arbitrary but has to be chosen a-priori. Accordingly, state-
ments 1–3 of Lemma 5 are valid only if both arguments of h satisfy their
respective restriction. However, this is the case in the region of interest for
stability and bifurcations.

The introduction of the characteristic function h clarifies how the different
spectra can be calculated and reduces the analysis of the spectra to a root-
finding problem. After defining h properly one could even use h to define
the corresponding spectra by the properties listed in Lemma 5.

2.4. Main results

With the help of the asymptotic spectra A+ and Ac we can formulate
now a sharp criterion for the exponential orbital stability and instability of
MN , which is our main result:

Theorem 6 (Stability/Instability). The map MN (and, hence, the peri-
odic orbit x∗) is exponentially orbitally stable for all sufficiently large
N if all of the following conditions hold:

S-1 (Strong stability) all elements of the instantaneous spectrum ΣA have
negative real part (this implies in particular that the strongly unstable
spectrum A+ is empty), and

S-2 (Non-degeneracy) ∂2h(0, 1) ̸= 0, that is, the Floquet exponent 0 is
simple for sufficiently large N , and
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S-3 (Weak stability) except for the point µ = 0 with phase φ = 0 the
asymptotic continuous spectrum Ac is contained in {z ∈ C : Re z < 0}.

The map MN is exponentially unstable for all sufficiently large N if
one of the following conditions holds

U-1 (Strong instability) the strongly unstable spectrum is non-empty, or

U-2 (Weak instability) a non-empty subset of the asymptotic continuous
spectrum Ac has positive real part.

The weak stability condition S-3 is equivalent to stating that for all ω ∈
[−π, π) the function z 7→ h(iω, exp(−z)) has no roots with non-negative
real part (with the exception of z = 0 for ω = 0). Similarly, the weak
instability condition U-2 is equivalent to stating that h(iω, exp(−z)) = 0 for
some ω ∈ [−π, π) and some z ∈ C with positive real part.

Several additional corollaries follow from our analysis:

Decay rate and dominant frequency

If MN satisfies S-1–S-3 and is, thus, exponentially stable for all sufficiently
large N then the decay rate is at most (and generically) of order O(N−3) and
the dominant relative frequency is of order O(N−1). That is, the dominant
non-trivial Floquet exponents are a complex pair of the form −CN−3 ±
2πi/(N + τ) + O(N−4). One branch of the asymptotic continuous spectrum
touches the imaginary axis in a (generically quadratic) even-order tangency
at 0, and the dominant non-trivial Floquet exponent lies on this branch and
next to the tangency.

Robustness

A map MN that satisfies S-1–S-3 and is, thus, exponentially stable for
sufficiently large N according to Theorem 6 remains exponentially stable for
all sufficiently large N under all perturbations to A, B and τ of size less than
some ϵ > 0. This ϵ does not depend on N because the quantities determining
the exponential stability do not depend on N but only on A, B and τ . This
means that periodic orbits that are stable for large N are uniformly robust
with respect to perturbations of the system despite their weak attraction rate
of order N−3.
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Spectral approximation
Let the instantaneous spectrum ΣA have a positive distance to the imagi-

nary axis. Then we can guarantee that certain points z in the complex plane
are in the resolvent set of MN (that is, the periodic boundary value problem
(9)–(10) has only the trivial solution for µ = z):

• every point z in the positive half-plane that is not in the strongly
unstable spectrum A+ is in the resolvent set of MN for sufficiently
large N .

• All points of the form γ/(N + τ) + iω are in the resolvent set of MN

for sufficiently large N if the point z = γ + iω is not in the asymptotic
continuous spectrum Ac.

These two statements about the resolvent set of MN imply that the spectrum
of MN must be close to A+ or (after rescaling) close to Ac. The other
direction also holds if the instantaneous spectrum ΣA is not on the imaginary
axis:

• if µ ∈ A+ has multiplicity k then k Floquet exponents of MN converge
to µ for N → ∞ (counting multiplicity).

• Let γ∗ + iω∗ be in the asymptotic continuous spectrum Ac, that is,
h(iω∗, exp(−γ∗ − iφ∗)) = 0 for some phase φ∗ ∈ [−π, π). Then we will
find Floquet exponents µN of MN that satisfy (note that this is small-o)

Re µN − γ∗

N + τ
= o(N−1), Im µN − ω∗ = o(1). (17)

Estimate (17) is rather weak. We need and prove a stronger and more
detailed estimate under the additional condition that ∂2h(iω∗, exp(−γ∗−
iφ∗)) ̸= 0. Then we have a local root curve γ̃(ω) + iφ̃(ω) satisfying
h(iω, exp(−γ̃(ω) − iφ̃(ω))) = 0 for ω near ω∗, and for sufficiently large
N we find algebraically simple Floquet exponents µk of MN satisfying

Im µk =
2kπ

N + τ
+

1

N + τ
φ̃

(
2kπ

N + τ

)
+ O

(
(N + τ)−2

)
(18)

Re µk =
[
1 + O

(
(N + τ)−1

)] γ̃(ωk)

N + τ
, (19)

where k are integers such that 2kπ/(N + τ) is near ω∗, and the O-s
are smooth functions of ω. These Floquet exponents µk form a band
of discrete complex numbers approximating the curve γ̃(ω) + iφ̃(ω) of
asymptotic continuous spectrum.
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Degeneracies

Theorem 6 is sharp except for several degenerate cases that are excluded
by the conditions S-1–S-3 and U-1–U-2. Degeneracies limiting the region of
stable periodic orbits are:

• An element of the instantaneous spectrum ΣA has zero real part.

• The partial derivative ∂2h(0, 1) equals 0. In this case the periodic orbit
cannot be exponentially stable.

• (Turing and long wavelength instability) The asymptotically con-
tinuous spectrum Ac touches the imaginary axis in a quadratic tan-
gency at some value ±iω0. In this case the orbit is not exponentially
unstable and it is still possible that the periodic orbit is exponentially
stable for all N (this is different from the stationary case discussed
in [3]) but it may also be weakly stable or unstable. A special case
is that Ac touches the imaginary axis in a quadratic tangency in the
point µ = 0 with phase φ = π. In this case the periodic orbit is still
exponentially stable for large N .

• (Modulational instability) The critical branch of the asymptotic
continuous spectrum Ac, containing the trivial exponent µ = 0, has a
tangency with the imaginary axis at ω = 0 that is of higher order than
quadratic. In this case the periodic orbit is still exponentially stable
according to Theorem 6.

The characteristic function h constructed in Section 3 is still valid for the
degenerate cases. However, for a detailed discussion of these degeneracies,
one needs not only to specify a defining equation for each degeneracy (this is
straightforward) but one also has to state secondary non-degeneracy condi-
tions. In particular the case of instantaneous spectrum with zero real part is
somewhat subtle, even though it looks similar to the other listed degeneracies
of co-dimension 1 at first sight. In the analogous situation for the spectrum
of equilibria, it turns out that instantaneous spectrum iω0 with zero real
part generically implies a singularity of the asymptotic continuous spectrum,
γ(ω0) = ∞, and hence is not part of the stability boundary. Due to these
reasons, we believe that a comprehensive treatment of the degeneracies is
beyond the scope of the present paper.
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3. Construction of the characteristic matrix and function

Let us choose a constant R > 0 arbitrarily large. We construct a function
hN(µ) that is analytic for all µ satisfying Re µ ≥ −R/(N + τ), and that
satisfies hN(µ) = 0 if and only if µ is a Floquet exponent of the map MN .
Hence, this function can be used to find all Floquet exponents µ of MN that
satisfy Re µ > −R/(N + τ). Since we are interested in the stability of the
origin under iterates of MN , finding the roots of hN will then be sufficient.

We introduce the complex variable z ∈ C and consider the periodic
boundary value problem for t ∈ [−1, 0]

ẏ(t) = [A(t) − µI]y(t) + z B(t) y((t − τ)mod[−1,0]), (20)

y(0) = y(−1). (21)

In a first step we will construct a characteristic matrix ∆(µ, z) for (20)–(21)
such that the roots of its determinant h(µ, z) = det ∆(µ, z) will be precisely
those pairs of points (µ, z) in some subdomain of C × C for which (20)–
(21) has a nontrivial continuously differentiable solution y ∈ C1([−1, 0]; Cn).
Thus, by inserting z = exp(−(N +τ)µ) we will then obtain the characteristic
function hN(µ) in a subdomain of C.

Consider a partition of the periodicity interval [−1, 0] into k intervals of
size 1/k:

Ij = [tj, tj+1) =

[
−1 +

j

k
,−1 +

j + 1

k

)
for j = 0, . . . , k − 1. (22)

Using this partition we formulate a multiple initial value problem (MIVP)
for a vector of k initial (or restart) values (v0, . . . , vk−1)

T ∈ Cnk (similar to
multiple shooting):

ẏ(t) = [A(t) − µI]y(t) + zB(t)y((t − τ)mod[−1,0]) (23)

y(ti) = vi for i = 0, . . . , k − 1 (24)

where t ∈ [−1, 0] and z ∈ C. Notice that in (23) the solution y on the
interval [tj, tj+1) depends on the solution y(t) in other intervals due to the
term y(t − τ)mod[−1,0] in the right-hand-side of (23).

The main purpose of this partition is to reduce the length of the integra-
tion interval at the cost of increasing the dimension of the system. Indeed,
this construction is very similar to the construction in [11], where in the case
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of rational τ a reduction to an equivalent system of ODEs could be achieved,
and for the case of irrational τ corresponding rational approximations have
been considered. This can be seen by introducing uj(t) := y(t + tj), which
satisfy the system of equations

u̇j(t) = [A(t + tj) − µI]uj(t) + zB(t + tj)um(j)((t + tj − tm(j) − τ)mod[−1,0])
(25)

uj(0) = vj (26)

with j = 0, . . . , k − 1. This system can now be considered as an initial value
problem on the interval [0, 1/k), and for a solution on this smaller interval
[0, 1/k) each component uj(t) represents the solution y(t + tj) in the cor-
responding subinterval Ij. Note that instead of the delayed term uj((t −
τ)mod[−1,0]) we have inserted a coupling to another component um(j)((t+ tj −
tm(j) − τ)mod[−1,0]), where the index m(j) is chosen in a way such that the
argument (tj − tm(j) − τ)mod[−1,0] is actually in the interval [0, 1/k). The
initial value problem for the coupled system (25)–(26) is an equivalent for-
mulation of the multiple initial value problem (23)–(24) and, in a similar
way as the boundary value problem (20)–(21), contains both delayed and
advanced arguments. Note that at the moment, it is not clear in which sense
these problems can be solved as initial value problems. In the sequel, we will
clarify this point, using the formulation (23)–(24) which is more convenient
for our purposes.

Let us denote by U(t, s, µ) ∈ Rn×n the propagation matrix of the linear
ODE defining the instantaneous spectrum, (11). That is,

U(t, s, µ)v = y(t) where

y(s) = v and

ẏ(r) = [A(r) − µI]y(r) for all r ∈ [s, t].

The norm of U(t, s, µ) can be estimated by

∥U(t, s, µ)∥∞ ≤ exp ([∥A∥∞ − Re µ] (t − s)) . (27)

In (27) we have used the notation ∥A∥∞ = maxt∈[−1,0] ∥A(t)∥∞. We will use
the same notation for B. In order to clarify in which sense system (23)–(24)
is an initial value problem and what it means for y to be a solution of system
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(23)–(24) we formulate an integral equation which is equivalent to (23)–(24):

y(t) = [S(µ)v](t) + z

t∫
ak(t)

U(t, s, µ)B(s)y((s − τ)mod[−1,0])ds (28)

[S(µ)v](t) = U(t, tj, µ)vj if t ∈ Ij, (29)

ak(t) = tj if t ∈ Ij. (30)

We note that S(µ)v and ak are piecewise continuous functions on [−1, 0]
([S(µ)v](t) ∈ Cn and ak(t) ∈ R). They are continuous on each sub-interval
Ij = [tj, tj+1) but have jumps at the times tj. The integral equation (28)
is a fixed-point problem for y. If we find a fixed point y then y may have
discontinuities at the times tj. Thus, the appropriate space in which to
look for solutions of the fixed point problem (28) is the space of piecewise
continuous functions with the usual max-norm ∥y∥∞:

Ck = {y : [−1, 0] 7→ Cn : y continuous on each subinterval Ij = [tj, tj+1)

(j = 0, . . . , k − 1) and limt↗tj y(t) exists for all j = 1 . . . k.}
(31)

The right-hand-side of the integral equation (28) is an affine map, mapping
Ck back to itself such that (28) is of the form

y = S(µ)v + zLk(µ)y (32)

where S(µ) : Cnk 7→ Ck is defined by (29), and Lk(µ)y is the linear part
of the right-hand-side in (28) (that is, the integral term). The linear map
Lk(µ) : Ck 7→ Ck is continuously differentiable (and, thus, holomorphic) with
respect to the complex variable µ. A simple estimate for the norm of Lk with
respect to the ∥ · ∥∞-norm gives us the unique solvability of the fixed point
problem (32) (which is actually the integral equation (28)–(30)):

Lemma 7 (Existence and Uniqueness of solutions for IVP).
Let R > 0 be arbitrary. If we set the number of sub-intervals, k, such that

k > C(R) := max {∥A∥∞ + R, ∥B∥∞ exp(1 + R)} (33)

then the affine integral equation (28)–(30) has a unique solution y ∈ Ck for
all µ and z satisfying

Re µ ≥ −R, |z| ≤ exp(R) (34)

and all tuples (v0, . . . , vk)
T ∈ Cnk.
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The details of the norm estimate for Lk are in Appendix A. The solution y
can be written as y = [I − zLk(µ)]−1S(µ)v. When is this solution y (which
is only in Ck for general v) continuously differentiable on the whole interval?
This requirement is a linear condition on the tuple v. Let us fix a constant
R > 0 and choose the number of sub-intervals k > C(R).

Definition 8 (Characteristic matrix and function).
We define the characteristic matrix ∆(µ, z) ∈ Cnk×nk for the problem
(23)-(24) as

∆(µ, z)v := ∆(µ, z)

 v0
...

vk−1

 :=


v0 − y(0)

v1 − limt↗t1 y(t)
...

vk−1 − limt↗tk−1
y(t)

 . (35)

and the corresponding characteristic function h(µ, z) as

h(µ, z) := det ∆(µ, z). (36)

Note that the integral equation (28) implies that vj = limt↘tj y(t). In
this sense the values vj are the initial (or restart) values for the differential
equation (23). The construction of ∆ gives a well-defined matrix for all z and
µ satisfying Re µ ≥ −R and |z| ≤ exp(R): for a given tuple v we evaluate
the unique solution y = [I − Lk(µ, z)]−1S(µ)v ∈ Ck of the integral equation
(28) and then we use this y to evaluate the right-hand-side of (35). The
characteristic matrix ∆ is set up such that for v in the kernel of ∆(µ, z) the
solution y also satisfies the differential equation (23) on the whole interval
(and does not have jumps) including the periodic boundary conditions:

Lemma 9 (Differentiability). Let Re µ ≥ −R, |z| ≤ exp(R) and k >
C(R). If the tuple v = (v0, . . . , vk−1) satisfies

∆(µ, z)v = 0 (37)

then y = [I − zLk(µ)]−1S(µ)v, the solution of the integral equation (28),
is continuously differentiable on [−1, 0] and satisfies the differential equa-
tion (20) with the periodic boundary condition (21). Conversely, let y ∈
C1([−1, 0], Cn) be a continuously differentiable solution of (20)–(21). Then
the tuple v = (v0, . . . , vk−1) ∈ Ck, where v0 = y(−1), v1 = y(t1), . . . ,
vk−1 = y(tk−1) satisfies (37).

16



Proof. The rows 2 to k of the right-hand-side in the definition (35) of
∆ ensure continuity of y: since vj = limt↘tj y(t) for j = 1, . . . , k − 1 the
condition that these rows are equal to zero reads limt↘tj y(t) = limt↗tj y(t),
and (by inserting the right-hand-side of (28))

vj+1 = U(tj+1, tj, µ)vi + z

tj+1∫
tj

U(tj+1, s, µ)B(s)y((s − τ)mod[−1,0])ds

for j = 0, . . . , k − 1. This implies that y is continuous on [−1, 0], and that
we can concatenate all the integral terms in (28) to

y(t) = U(t,−1, µ)v0 + z

∫ t

−1

U(t, s, µ)B(s)y((s − τ)mod[−1,0])ds (38)

The first row of the condition ∆(µ, z)v = 0 reads v0 = y(0), which makes
sure that y is periodic at the boundary of [−1, 0], and guarantees that the
integrand in (38) is continuous at s = τ − 1. Consequently, the integrand
is continuous everywhere, which implies that y is continuously differentiable.
Thus, we can differentiate (38) with respect to t, which implies that y satisfies
the differential equation (20). This, in turn, implies that also ẏ(−1) = ẏ(0)
because the right-hand-side of (20) is periodic. �

Since the map Lk depends analytically on µ, the matrix ∆ depends ana-
lytically on µ and z, too (as long as Re µ ≥ −R and |z| ≤ exp(R)). Calling
∆ the characteristic matrix makes sense for the following reason:

Lemma 10 (Characteristic function for (6) [9]). Let N ≥ 1 and R > 0
be given, and choose the number of sub-intervals, k, greater than C(R). Then
for all µ satisfying

Re µ ≥ − R

N + τ

the following equivalence holds: µ is a Floquet exponent of the time-1 map
MN of the periodic linear DDE (6) if and only if

hN(µ) := h(µ, exp(−(N + τ)µ)) = det ∆(µ, exp(−(N + τ)µ)) = 0. (39)

The algebraic multiplicity of µ as a Floquet exponent of MN is equal to the
order of µ as a root of hN .
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Proof. That µ is a Floquet exponent of (6) if and only if ∆(µ, exp(−(N +
τ)µ)) has a non-trivial kernel is clear because Floquet exponents of MN

were defined as those complex numbers for which (20)–(21) has a non-trivial
solution. The statement about the multiplicity of µ follows from arguments
similar to [12], which are laid out in detail in [9] (an equivalence between the
eigenvalue problem for MN , exp(µ)v −MNv = 0, and the algebraic equation
∆(µ, exp(−(N + τ)µ)v = 0 is constructed in [9]). �

Both functions, h and hN , are real analytic (that is, their expansion
coefficients are real numbers since A, B and τ are real).

For any given R > 0 we have chosen k > 0 and constructed a character-
istic function hN(µ), defined on the half plane{

µ ∈ C | Re µ ≥ − R

N + τ

}
,

the roots of which are precisely the Floquet exponents (counting multiplic-
ities) of the period map MN for the linearized delay differential equation
(6).

As we are interested in the location of Floquet exponents of the time-1
map MN to the right or close to the imaginary axis we have reduced the
eigenvalue problem to a study of the asymptotic behavior of roots of the
holomorphic function hN for N → ∞. Furthermore, the asymptotic spectra
are defined as roots and root curves of h by construction of h: µ > 0 is
in the the strongly unstable spectrum A+ if and only if h(µ, 0) = 0, and
µ = γ + iω is in the asymptotic continuous spectrum Ac if and only if
h(iω, exp(−γ − iφ)) = 0 for some phase φ ∈ R.

This proves Lemma 5 and allows us to follow an approach similar to [3, 13]
in the following sections.

4. Strongly unstable spectrum

One immediate consequence of Lemma 5 is the statement asserted in
[4] for the relation between eigenvalues of MN and the strongly unstable
spectrum A+. Note that µ is in the strongly unstable spectrum A+ if and
only if h(µ, 0) = 0: if one sets z = 0 in (20) the differential equation reduces
to (11), the expression defining A+. For large N unstable Floquet exponents
of MN either approach the imaginary axis or A+:
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Lemma 11 (Convergence to strongly unstable spectrum).
Let Re µ0 > 0. If h(µ0, 0) ̸= 0 then there exists a N0 such that µ0 lies in the
resolvent set of the time-1 map MN for all N > N0.

If µ0 is a root of multiplicity k of the function h(·, 0) then every sufficiently
small neighborhood U of µ0 contains exactly k Floquet exponents (counting
multiplicity) of MN for all N > N0 (N0 depends on U).

The resolvent set is the set of all complex numbers µ for which the map
exp(µ)I − MN is an isomorphism (characterized by hN(µ) ̸= 0 for µ >
−R/(N + τ)).

Proof. The statement for h(µ0, 0) ̸= 0 follows from expansion of h(µ0, ·) in
z = 0 since z = exp(−(N + τ)µ0) → 0 for N → ∞.

Let µ0 be a root of h(·, 0) of multiplicity k. For any sufficiently small
δ > 0, µ0 is the only root of h(·, 0) inside the ball Bδ(µ0) of radius δ around µ0.
In particular, h(µ, 0) ̸= 0 on the boundary of Bδ(µ0). Then h(µ, exp(−(N +
τ)µ)) is also non-zero on the boundary of Bδ(µ0) for sufficiently large N , and
the logarithmic derivative of h(µ, exp(−(N + τ)µ)) converges for N → ∞:

d
dµ

[h(µ, exp(−(N + τ)µ))]

h(µ, exp(−(N + τ)µ))
=

∂1h(µ, exp(−(N + τ)µ)) − (N + τ) exp(−(N + τ)µ)∂2h(µ, exp(−(N + τ)µ))

h(µ, exp(−(N + τ)µ))

→N→∞
∂1h(µ, 0)

h(µ, 0)
if Re µ > 0 for all µ ∈ Bδ(µ0).

Thus, the line integral of the logarithmic derivative of h(µ, exp(−(N + τ)µ))
along the boundary of Bδ(µ0), which counts the roots (and poles), also con-
verges for N → ∞ to the logarithmic derivative of h(·, 0). Since the line
integral of the logarithmic derivative is an integer it must be constant for
N → ∞, and, hence,, hN(µ) must have the same number of roots (counting
multiplicity) inside Bδ(µ0) as h(·, 0), which is k. �

Lemma 11 shows that MN is exponentially unstable for all sufficiently
large N if the strongly unstable spectrum is non-empty, which is condition U-
1 of Theorem 6.
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5. Asymptotic continuous spectrum

Due to Lemma 5 the asymptotic continuous spectrum is given as those
µ = γ + iω for which one can find a phase φ ∈ R such that h(iω, exp(−γ −
iφ)) = 0.

Thus, we expect the asymptotic continuous spectrum to come in curves:
Let γ0 + iω0 ∈ Ac be a point in the asymptotic continuous spectrum and
let φ0 ∈ [−π, π) be its phase. By definition µ0 = γ0 + iφ0 ∈ C satisfies
0 = h(iω0, exp(−µ0)). If ∂2h(iω0, exp(−µ0)) ̸= 0 then there is a root curve
µ(ω) of complex numbers satisfying h(iω, exp(−µ(ω))) = 0 going through
µ0. Hence locally (for ω in a neighborhood of ω0) there is a curve ω 7→
(Re µ(ω) + iω) ∈ Ac through γ0 + iω0 for ω near ω0 .

We assume for the remainder of the section that the instantaneous spec-
trum ΣA has a positive distance to the imaginary axis. The idea behind
the construction of the asymptotic continuous spectrum is that for Floquet
exponents µ close to the imaginary axis, that is, for µ of the form

µ =
γ

N + τ
+ iω (40)

with a bounded factor γ in the real part, the roots of the characteristic
function h(µ, exp(−(N + τ)µ) converge to a regular limit for N → ∞ after
inserting the scaling (40). This can be made more specific: if the instanta-
neous spectrum ΣA has a positive distance from the imaginary axis then all
Floquet exponents that are not converging to the strongly unstable spectrum
have a real part less than R2/(N + τ) where R2 does not depend on N :

Lemma 12 (Convergence to the imaginary axis). Assume that the el-
ements of the instantaneous spectrum ΣA have a positive distance 2ϵ > 0
from the imaginary axis. Let us denote the points in the strongly unstable
spectrum, A+, by µ1,. . . , µj. There exists a constant R2 ≥ 0 such that all
Floquet exponents µ of MN satisfy either µ ∈ Bϵ(µj) for some j, or

Re µ <
R2

N + τ
(41)

for all N ≥ 1.

Proof. For all complex numbers µ that have non-negative real part and
are outside of the balls Bϵ(µj) the matrix I − U(0,−1, µ) is invertible and
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the inverse has a uniform upper bound (remember that U is the propagation
matrix of ẏ = [A(t) − µI]y):∥∥[I − U(0,−1, µ)]−1

∥∥ ≤ C.

We also know that µ is a Floquet exponent if the integral equation (38)
(which is equivalent to the differential equation (37)) has a non-trivial peri-
odic solution y(t) for z = exp(−(N + τ)µ). This implies (y(−1) = y(0) = v0)

v0 = U(0,−1, µ)v0 + z

∫ 0

−1

U(0, s, µ)B(s)y((s − τ)mod[−1,0])ds,

and, hence,

y(t) =z

[
[I − U(0,−1, µ)]−1

∫ 0

−1

U(0, s, µ)B(s)y((s − τ)mod[−1,0])ds+

+

∫ t

−1

U(t, s, µ)B(s)y((s − τ)mod[−1,0])ds

] (42)

The factor of z in the right-hand-side of this fixed-point problem for y is a
linear operator K(µ) on the space of continuous functions. K(µ) is uniformly
bounded for all µ that have non-negative real part and are outside of the balls
Bϵ(µj). Let us denote an upper bound on the norm of K(µ) by C1. Then for
all z satisfying |z| < C−1

1 the integral equation (38) cannot have a non-trivial
solution. Since, for Floquet exponents of MN , z equals exp(−(N + τ)µ) this
means that µ has to satisfy

| exp(−(N + τ)µ)| ≥ C−1
1 ,

and, thus

Re µ ≤ log C1

N + τ

for |z| to be larger than C−1
1 . Consequently, if we choose R2 > log C1 then

a µ that has non-negative real part and lies outside of the balls Bϵ(µj) must
satisfy (41) in order to be a Floquet exponent of MN . �

A corollary of the construction described by equation (42) is that for
each ω the intersection of the asymptotic continuous spectrum Ac with the
horizontal line {µ ∈ C : Im µ = ω} can be described as a set of eigenvalues
of a compact operator K(iω). Thus, if Re ΣA ̸= 0 the asymptotic continuous
spectrum forms curves parametrizable by ω, which may only have poles at
−∞:
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Corollary 13 (Asymptotic continuous spectrum consists of curves).
Assume that the instantaneous spectrum, ΣA, has a positive distance to the
imaginary axis. A point µ is in the asymptotic continuous spectrum if exp(µ)
is an eigenvalue of the compact linear operator K(iω) : C([−1, 0]; Cn) 7→
C([−1, 0]; Cn) given by

K(iω)y :=

[
[I − U(0,−1, iω)]−1

∫ 0

−1

U(0, s, iω)B(s)y((s − τ)mod[−1,0])ds+

+

∫ t

−1

U(t, s, iω)B(s)y((s − τ)mod[−1,0])ds

]
.

In particular there exists a constant R3 ≥ 0 so that the asymptotic continuous
spectrum lies to the left of the vertical line {z ∈ C : Re z = R3}.

The matrix U in the definition of K is the monodromy matrix of the instan-
taneous problem ẋ(t) = [A(t)− iω]x(t). The inverse of I−U(0,−1, iω) exists
because of our assumption that the instantaneous spectrum, ΣA, is not on
the imaginary axis. The corollary implies that the asymptotic continuous
spectrum consists of curves even in points where the regularity condition on
∂2h ̸= 0 is violated. In these points K(iω) has eigenvalues of finite multiplic-
ity larger than 1 such that finitely many curves of the asymptotic continuous
spectrum cross each other (or are on top of each other).

All Floquet exponents of MN that do not converge to the strongly unsta-
ble spectrum for N → ∞ (these can be at most n, equaling the dimension of
A(t)) are either stable, or they satisfy restriction (41) on the upper bound.
Thus, apart from the strongly unstable spectrum, the multipliers, which are
of interest from the point of view of stability and bifurcations, lie in the strip

CN :=

{
µ ∈ C : − R

N + τ
≤ Re µ ≤ R2

N + τ

}
and have the form

µ =
γ

N + τ
+ iω where γ ∈ [−R, R2] and ω ∈ [−π, π) (43)

(after shifting them into the strip {z : Im z ∈ [−π, π)} by subtraction of an
integer multiple of 2πi). As we focus our discussion on Floquet exponents
of the scale (43) from now on it makes sense to introduce the notation of a
scaled Floquet exponent.
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Definition 14 (Scaled Floquet exponent & resolvent set).
A complex number µ = γ + iω with γ ∈ [−R,R2] and ω ∈ [−π, π) is called a
scaled Floquet exponent of MN if γ/(N +τ)+ iω is a Floquet exponent of
MN . Similarly, µ is in the scaled resolvent set of MN if γ/(N + τ) + iω
is in the resolvent set of MN .

We can now formulate precisely in which sense the asymptotic continuous
spectrum Ac is the limit of the spectra of MN . First we make a statement
about resolvent sets.

Lemma 15 (Points distant from Ac). Let the instantaneous spectrum ΣA

have a positive distance to the imaginary axis. If γ0 > −R and γ0 + iω0 is
not in the asymptotic continuous spectrum Ac then γ0 + iω0 is in the scaled
resolvent set of MN for sufficiently large N .

Proof. Lemma 15 is a simple consequence of the fact that, if h(iω0, exp(−γ0−
iφ)) ̸= 0 for all phases φ ∈ [−π, π] (which defines points γ0 + iω0 /∈ Ac if
γ0 > −R) then

hN

(
γ0

N + τ
+ iω0

)
= h

(
iω0 +

γ0

N + τ
, exp (−γ0 − i(N + τ)ω0)

)
̸= 0

for all sufficiently large N . Lemma 5 implies that γ0/(N + τ) + iω0 is in the
resolvent set of MN for all sufficiently large N . �

Lemma 15 implies that all spectrum of MN near the imaginary axis has
to be close to Ac even after rescaling. The other direction, that every point
of Ac in the strip −R < Re µ < R2 is approached by scaled Floquet expo-
nents of MN , is also true (again under the assumption that the instantaneous
spectrum ΣA is not on the imaginary axis). We prove this direction first for
regular root curves of h because this is the most common case, and the miss-
ing piece for the stability criterion. Our estimate is slightly sharper than
mere approximation to make it useful for our proof of the stability criterion.

In short, Lemma 16 below states that any regular curve of asymptotic
continuous spectrum, γ̃(ω) + iω (with its corresponding phase φ̃(ω)), is ap-
proximated by scaled Floquet exponents of the form γk + iωk where

ωk =
2kπ

N + τ
+

1

N + τ
φ̃

(
2kπ

N + τ

)
+ O

(
(N + τ)−2

)
(44)

γk =
[
1 + O

(
(N + τ)−1

)]
γ̃(ωk), (45)
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k are integers such that 2kπ/(N + τ) is near ω, and the O-s are smooth
functions of ω. This proves the stronger estimate (18)–(19), given in non-
technical overview in Section 2.

Lemma 16 (Convergence to regular curves of Ac).
Assume that the triplet (ω∗, γ∗, φ∗) satisfies

h(iω∗, exp(−γ∗ − iφ∗)) = 0, ∂2h(iω∗, exp(−γ∗ − iφ∗)) ̸= 0.

Let N∗ be sufficiently large and δ > 0 be sufficiently small. We denote the
unique regular root curve of µ 7→ h(iω, exp(−µ)) for ω near ω∗ through (ω =
ω∗, µ∗ = γ∗ + iφ∗) by

µ̃(ω) = γ̃(ω) + iφ̃(ω).

For all N ≥ N∗ there are scaled Floquet exponents µN,k of MN near γ∗ + iω∗.
These scaled Floquet exponents µN,k are algebraically simple and have the
form

µN,k = γ̃N(ωk) + iωk, (46)

where:

• k is any integer satisfying

2kπ

N + τ
∈ (ω∗ − δ, ω∗ + δ),

• ωk is the unique solution of the fixed point problem for ω

ω =
φ̃N(ω)

N + τ
+

2kπ

N + τ
, (47)

• the functions γ̃N and φ̃N are perturbations of γ̃(ω) and φ̃(ω) of the
form

γ̃N(ω) =

[
1 +

1

N + τ
Re g

(
ω,

1

N + τ

)]
γ̃(ω) (48)

φ̃N(ω) = φ̃(ω) +
1

N + τ
Im g

(
ω,

1

N + τ

)
γ̃(ω) (49)

where g(ω, ϵ) is a smooth complex-valued function, which is independent
of N and defined for ω ∈ (ω∗ − δ, ω∗ + δ) and ϵ ∈ [0, 1/N∗).
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We notice that the scaled Floquet exponents of MN lie on bands: they are
on the curve given by γ̃N(ω) + iω, which is a small perturbation of the curve
of asymptotic continuous spectrum γ̃(ω) + iω. The spacing between scaled
Floquet exponents along this band is given by the fixed point equation (47).
The fixed point problem (47) is only weakly implicit since the right-hand-side
terms containing ω all have a pre-factor 1/(N + τ), which is small. Hence,
expression (45) for γk follows immediately from (48) and expression (44) for
ωk follows from (47) and (49).

Proof of Lemma 16. We know that γ̃(ω) + iφ̃(ω) is a regular root curve
of

h(iω, exp(−γ − iφ)) = 0. (50)

The root problem
h (iω + ϵγ, exp (−γ − iφ)) = 0

is for small ϵ a small (order ϵ) perturbation of the root problem (50). Thus,
for sufficiently small ϵ, a root curve of the form γ̃ϵ(ω) + iφ̃ϵ(ω) exists for ω
in some neighborhood of ω∗, and it has the form

γ̃ϵ(ω) + iφ̃ϵ(ω) = [1 + ϵg (ω, ϵ)] γ̃(ω) + iφ̃(ω), (51)

where g(ω, ϵ) is a smooth complex-valued function defined for ω in a small
neighborhood of ω∗ and ϵ ∈ [0, ϵmax) (with some ϵmax > 0). Note that the
error term contains a factor γ̃(ω), making the error equal to zero on the
imaginary axis. (See Appendix B for details of how to extract this factor
from the error.) Inserting ϵ = (N + τ)−1 and labeling the curves γ̃ϵ(ω)
as γ̃N(ω) and φ̃ϵ as φ̃N gives the definitions (48) and (49) in the lemma.
Correspondingly, we make an initial choice for the minimal N , N∗, as 1/ϵmax.

A point on the curve γ̃N(ω)+ iω is a Floquet exponent of MN if and only
if its imaginary part ω satisfies

exp(−iω(N + τ)) = exp(−iφ̃N(ω)) and, thus,

(N + τ)ω = φ̃N(ω) + 2kπ for some integer k ∈ Z.

After dividing by N + τ this becomes the fixed point equation (47) for ω.
For which k does this fixed point problem have a unique solution?

We choose a neighborhood U of ω∗ of the form (ω∗−2δ, ω∗+2δ) such that
φ̃N is well-defined for all ω ∈ U and all N ≥ N∗, and satisfies |φ̃′

N(ω)| < L
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for some constant L (which is independent of N). Next, we increase N∗ such
that

L

N + τ
< 1 for all N > N∗, and

φ̃N(ω)

N + τ
< δ for all N ≥ N∗ and ω ∈ U .

Then the right-hand side of the fixed point problem (47) is contracting with
a Lipschitz constant L/(N + τ) for all ω ∈ U and it is mapping U = (ω∗ −
2δ, ω∗ + 2δ) back into itself:∣∣∣∣ φ̃N(ω)

N + τ
+

2kπ

N + τ
− ω∗

∣∣∣∣ ≤ ∣∣∣∣ φ̃N(ω)

N + τ

∣∣∣∣ +

∣∣∣∣ 2kπ

N + τ
− ω∗

∣∣∣∣ < 2δ

for all ω ∈ U and all N ≥ N∗ if∣∣∣∣ 2kπ

N + τ
− ω∗

∣∣∣∣ < δ. (52)

Thus, the Banach Contraction Mapping Principle guarantees that (47) has
a unique solution ωk for all integers k satisfying (52).

Finally, we confirm the algebraic simplicity of the scaled Floquet expo-
nents µN,k = γ̃N(ωk) + iωk by checking the multiplicity of the corresponding
root of hN : the derivative of hN , divided by N + τ , is

h′
N(z)

N + τ
=

∂1h(z, exp(−(N + τ)z))

N + τ
− exp(−(N + τ)z)∂2h(z, exp(−(N + τ)z)).

Inserting z = γ̃N(ωk)/(N + τ) + iωk and the relation exp(−i(N + τ)ωk) =
exp(−iφ̃N(ωk)) we get

1

N + τ
h′

N(z) = O(N−1)−

− exp(−γ̃N(ωk) − iφ̃N(ωk))∂2h

(
iωk +

γ̃N(ωk)

N + τ
, exp(−γ̃N(ωk) − iφ̃N(ωk))

)
=O(N−1) − exp(−γ̃N(ωk) − iφ̃N(ωk))∂2h(iωk, exp(−γ̃N(ωk) − iφ̃N(ωk))).

Since ωk is in the neighborhood U of ω∗ in which ∂2h is non-zero the overall
derivative is non-zero for sufficiently large N . �
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Lemma 16 is based on a perturbation argument assuming that the com-
plex function h(iω, exp(−γ− iφ)) has a regular root curve ω 7→ γ̃(ω)+ iφ̃(ω).
Thus, it is also valid if the instantaneous spectrum, ΣA, does not have a pos-
itive distance to the imaginary axis as long as one restricts consideration to
Floquet exponents of the form γ/(N +τ)+iω (with bounded γ). Positive dis-
tance of ΣA to the imaginary axis merely ensures that all Floquet exponents
µ with Re µ > −R/(N + τ) are of this form (except for those approximating
A+).

Lemma 15 and Lemma 16 about the approximation of the asymptotic
continuous spectrum, together with Lemma 11 about the approximation of
the strongly unstable spectrum are the tools that we need to prove the crite-
rion for asymptotic stability from Theorem 6. Before turning to asymptotic
stability let us prove the remaining statement about spectral approximation
of the asymptotic continuous spectrum Ac. Let γ∗ + iω∗ be an element of
Ac with phase φ∗ (that is, h(iω∗, exp(−γ∗ − iφ∗))). Then we find scaled Flo-
quet exponents of MN that approximate γ∗ + iω∗ even if the non-degeneracy
condition ∂2h(iω∗, exp(−γ∗ − iφ∗)) ̸= 0 is not satisfied:

Lemma 17 (Approximation of Ac). Assume that the instantaneous spec-
trum ΣA is not on the imaginary axis. Let γ∗ ∈ [−R,R2] and let γ∗ + iω∗
be in the asymptotic continuous spectrum Ac. Then there exists a sequence
γN + iωN of scaled Floquet exponents of MN such that

γN + iωN → γ∗ + iω∗, as N → ∞.

Lemma 17 covers the claim of Theorem 6 about exponential instability of
MN for sufficiently large N under the condition of weak instability U-2.

Proof. Since the instantaneous spectrum ΣA is not on the imaginary axis
exp(γ∗ + iφ∗) is a non-zero eigenvalue of the compact operator K(iω∗) as
introduced in Corollary 13. Consequently, exp(γ∗ + iφ∗) is isolated and has
finite multiplicity, which implies that γ∗+ iφ∗ has finite multiplicity as a root
of z 7→ h(iω∗, exp(−z)). Let us define k(N) for large N as

k(N) = greatest integer k such that
2kπ

N + τ
≤ ω∗.

By construction of k(N) we have that

lim
N→∞

2πk(N)

N + τ
= ω∗.
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Since z 7→ h(iω∗, exp(−z)) has an isolated root at γ∗ + iφ∗, the functions

z 7→ h

(
2πik(N)

N + τ
+

z

N + τ
, exp(−z)

)
also have roots zN = γN + iφN for sufficiently large N which converge to
γ∗ + iφ∗ for N → ∞. Let us define

ωN =
2πk(N) + φN

N + τ
.

Then, by construction, γN + iωN is a scaled Floquet exponent of MN since

h

(
γN + 2πik(N) + iφN

N + τ
, exp(−γN − (2πk(N) + φN)i)

)
= 0.

Moreover, γN → γ∗ and ωN → ω∗, which proves the claim of the lemma. �

6. Asymptotic stability for large delay

The convergence results for the strongly unstable spectrum in Lemma 11
and the asymptotic continuous spectrum in Lemma 15 and Lemma 16 can
be combined to give a criterion for the stability of the periodic orbit x∗ of the
original nonlinear system (5) depending on the triplet (A,B, τ) that ensures
stability of x∗ for all sufficiently large N . If the instantaneous spectrum ΣA

has a positive distance to the imaginary axis then the point 0 is part of the
asymptotic continuous spectrum because 0 is a Floquet exponent for all N .
If ∂2h(0, 1) ̸= 0 then a regular curve γ̃(ω) + iω of the asymptotic continuous
spectrum is passing through 0 (that is, γ̃(0) = 0). This curve at least touches
the imaginary axis because γ(0) = 0 and γ̃′(0) = 0 (γ̃(ω) is an even function,
thus, all odd derivatives of γ are zero).

Lemma 18 (Asymptotic stability). Let the triplet (A,B, τ) be such that
all elements of its instantaneous spectrum ΣA have negative real part. Fur-
thermore, we assume that ∂2h(0, 1) ̸= 0, and that for the asymptotic contin-
uous spectrum (including the corresponding phase φ)

Ac,φ :=
{
(ω, γ, φ) : h(iω, exp(−γ − iφ)) = 0,

ω ∈ [−π, π), γ ∈ [−R, R2], φ ∈ [−π, π]
}

(γ, ω, φ) = (0, 0, 0) is the only point with γ ≥ 0. Then the map MN is
orbitally exponentially stable for all sufficiently large N .
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Note that the assumptions of Lemma 18 exclude the case h(0,−1) = 0 since
this would mean that γ = ω = 0, φ = π is in Ac,φ.

Proof of Lemma 18. Since ∂2h(0, 1) ̸= 0 we know that the Floquet ex-
ponent 0 is simple for MN if N is sufficiently large. Also, since the instanta-
neous spectrum is in the negative half-plane the strongly unstable spectrum
is empty. Hence, MN is the return map of a stable periodic orbit x∗ if it
has no non-zero scaled Floquet exponent γ + iω for which γ ∈ [0, R2] (and
ω ∈ [−π, π)).

Proving the statement by contradiction, we assume that, for a sequence
of increasing N , MN has a scaled Floquet exponent γN + iωN ̸= 0 where
γN ∈ [0, R2].

The sequences (γN , ωN , φN) where φN = (N + τ)ωN mod [−π, π) must
have accumulation points. Without loss of generality we pick our sequence
such that it converges to one of these accumulation points, say (γ∗, ω∗, φ∗).
Since hN(γN/(N + τ) + iωN) = 0 we have by definition of hN and φN :

0 = h

(
iωN +

γN

N + τ
, exp(−γN − iφN)

)
, and, thus, by continuity of h

0 = h(iω∗, exp(−γ∗ − iφ∗)).

Consequently, the accumulation point must be an element of the asymptotic
continuous spectrum Ac,φ. Since γN ≥ 0 for all N of the sequence, γ∗ must
be greater or equal 0, too. By assumption, the only element of Ac,φ with
non-negative γ is γ∗ + iω∗ = 0. Thus, γ∗ = φ∗ = ω∗ = 0.

For every ϵ > 0 we have that ωN ∈ (−ϵ, ϵ) and γN + iφN ∈ Bϵ(0) for
sufficiently large N of the sequence (how large N has to be depends on ϵ).
Since ∂2h(0, 1) ̸= 0 this guarantees that γN lies on the curve γ̃N(ω) given in
(48) in Lemma 16:

γN = γ̃N(ωN) =

[
1 +

1

N + τ
g

(
ωN ,

1

N + τ

)]
γ̃(ωN).

Since for all sufficiently large N the factor in front of γ̃(ωN) is positive,
γ̃N(ωN) must have the same sign as γ̃(ωN), which is negative if ωN ̸= 0 due
to the assumptions of the lemma. Since γN is assumed to be non-negative,
this implies that ωN = γN = 0. Thus, the scaled Floquet exponents γN + iωN

of MN are zero for the converging sub-sequence, which is in contradiction to
our assumption γN + iωN ̸= 0. �

Lemma 18 proves the exponential stability claim of Theorem 6.

29



7. Conclusions

We have shown that Floquet exponents of periodic solutions of delay
differential equations (1) with large delay can be approximated by a set of
continuous curves (asymptotic continuous spectrum) that are independent on
the delay and a finite set Floquet exponents (strongly unstable spectrum).
Although the structure of the spectrum is shown to be similar to the case
of equilibria [3], there are some unique features, which occur specifically for
periodic orbits. Our results are based on the construction of the characteristic
function, the roots of which give Floquet multipliers of the periodic orbit.

Using the asymptotic spectra we have been able to provide necessary and
sufficient conditions for the exponential stability of periodic solutions for all
sufficiently large delays. Our results are applicable to the case when the delay
τ is large compared to the period T of the solution. In this case, the large
parameter N , which controls precision of the asymptotic approximation is
proportional to τ/T .

Let us mention some of the specific features of the spectrum. In contrast
to the equilibrium case, the asymptotic continuous spectrum of Floquet ex-
ponents for periodic solutions contains generically a curve with a tangency
to the imaginary axis (see Fig. 1(c,d)). We have proved that even in the
presence of this tangency, the stability (or instability) of the asymptotic con-
tinuous spectrum implies the exponential stability (resp. instability) of the
corresponding periodic orbit. We have shown that the generic decay rate of
perturbations of the exponentially stable periodic orbit of system (1) is of
the order N−3.

From the practical point of view, our results can be useful for studying
periodic regimes in applications that involve feedback with large delays, for
example, semiconductor lasers with optical feedback [13, 14], or systems with
feedback control [15].
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Appendix A. Proof of Lemma 7

We have to estimate the norm of Lk with respect to the ∥ · ∥∞ norm. The
operator Lk was defined as

[Lk(µ)y] (t) =

∫ t

ak(t)

U(t, s, µ)B(s)y((s − τ)mod[−1,0])ds

mapping a piecewise continuous function y ∈ Ck back into Ck. Using the
norm estimate (27) we can estimate the norm of Lk by

∥Lk(µ)y∥∞ ≤ max
t∈[−1,0]

∣∣∣∣∫ t

ak(t)

∥U(t, s, µ)∥∞∥B∥∞∥y∥∞ds

∣∣∣∣
≤ max

t∈[−1,0]

∫ t

ak(t)

exp([∥A∥∞ − Re µ](t − s))ds · ∥B∥∞∥y∥∞. (A.1)

We distinguish two sub-cases depending on the sign of ∥A∥∞ − Re µ:

Case 1. If ∥A∥∞ ≤ Re µ then the integrand in (A.1) is bounded by unity
such that

∥Lk(µ)∥∞ ≤ (t − ak(t))∥B∥∞ ≤ 1

k
∥B∥∞, (A.2)

taking into account that the length of the integration interval [ak(t), t] in the
right-hand-side of (28) is less than 1/k for all t ∈ [−1, 0] by construction of
ak(t) (see (30)).
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Case 2. For the case Re µ < ∥A∥∞ we can bound the whole integral by (note
that for any a > 0, t ≥ 0 the inequality [exp(at) − 1]/a ≤ at exp(at) holds)

exp ([∥A∥∞ − Re µ] (t − ak(t))) − 1

∥A∥∞ − Re µ
≤

(t − ak(t)) exp ([∥A∥∞ − Re µ] (t − ak(t)) . (A.3)

One of the conditions of Lemma 7 was that k > ∥A∥∞ + R. Thus, if Re µ ≥
−R we have that

[∥A∥∞ − Re µ] (t − ak(t)) ≤ [∥A∥∞ + R] (t − ak(t)) ≤
1

k
[∥A∥∞ + R] < 1

(A.4)

since 0 ≤ t − ak(t) ≤ 1/k by definition of ak. Inserting (A.4) into (A.3) the
integral term in (A.1) is bounded by exp(1)/k such that

∥Lk(µ)∥∞ ≤ exp(1)

k
∥B∥∞ (A.5)

Inserting (A.5), the more pessimistic of the two estimates (A.2) and (A.5)
for both cases, into the upper bound for Lk we get

∥Lk(µ)∥∞ ≤ exp(1)
∥B∥∞

k
.

Condition (33) on k from Lemma 7 (requiring that k > ∥B∥∞ exp(1 + R))
implies that the norm of zLk is less than 1. Consequently, I − zLk(µ) is
invertible such that the fixed-point problem (32) has a unique solution for
all tuples v. �

Appendix B. Multiplicative perturbations

In Lemma 16 we had a triplet (ω0, γ0, φ0) such that

h(iω0, exp(−γ0 − iφ0)) = 0, and ∂2h(iω0, exp(−γ0 − iφ0)) ̸= 0

(h was an analytic complex function in both arguments). One has a regular
local curve γ(ω) + iφ(ω) of complex numbers near γ0 + iω0 satisfying

h(iω, exp(−γ(ω) − iφ(ω))) = 0
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for all ω ≈ ω0. Then, Lemma 16 claims, the regular root curve γϵ(ω)+ iφϵ(ω)
of

h(iω + ϵγ, exp(−γ − iφ)) = 0, (B.1)

which exists for small ϵ, has the form

γϵ(ω) + iφϵ(ω) = γ(ω) + iφ(ω) + ϵgϵ(ω)γ(ω). (B.2)

The emphasis in (B.2) is on the factor γ(ω) in the error term ϵgϵ(ω)γ(ω),
which comes from the special type of perturbation in equation (B.1) defining
the curve. Note that gϵ(ω) is complex.

This fact is a special case of the following general statement:

Lemma 19. Let ϵ be small, the function f : Rn × Rm 7→ Rm be smooth,
f(x∗, y∗) = 0 and ∂2f(x∗, y∗) be invertible. Let A ∈ Rn×m be a matrix. Then
the curve yϵ(x) defined implicitly by

f(x + ϵAyϵ, yϵ) = 0 (B.3)

for x ≈ x∗ has the form

yϵ(x) = [I + ϵg(x, ϵ)A] y0(x) (B.4)

where g is a m × n matrix depending smoothly on x and ϵ.

Note that y0(x) is the curve defined implicitly by f(x, y0) = 0 (putting ϵ = 0
in (B.3)).

Proof. The Implicit Function Theorem guarantees that yϵ(x) exists for
small ϵ and x ≈ x∗, and that it has the form yϵ(x) = y0(x) + ϵh(x, ϵ).
Subtracting the expressions f(x + ϵAyϵ, yϵ) and f(x, y0(x)), which are both
zero, from each other, and applying the mean value theorem we obtain

0 = ϵD1(x, ϵ) Ayϵ + D2(x, ϵ)[yϵ − y0(x)] (B.5)

where D1 and D2 are the averaged derivatives:

D1 =

∫ 1

0

∂1f(x + sϵA(y0(x) + ϵh(x, ϵ)), y0(x) + sϵh(x, ϵ)) ds

D2 =

∫ 1

0

∂2f(x + sϵA(y0(x) + ϵh(x, ϵ)), y0(x) + sϵh(x, ϵ)) ds
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Note that we have replaced yϵ by y0 + ϵh(x, ϵ) inside the arguments of D1

and D2. Since D2 is invertible for small ϵ and x ≈ x∗ we can rearrange (B.5)
for yϵ (dropping the arguments x and ϵ from D1 and D2:

yϵ =
[
I + ϵD−1

2 D1 A
]−1

y0(x)

=
[
I − ϵ

(
I + ϵD−1

2 D1 A
)
D−1

2 D1 A
]
y0(x), (B.6)

which is of the form (B.4) as claimed by the lemma. �

Note that (B.6) is not an explicit definition of yϵ(x) but rather a fixed
point problem for yϵ because yϵ occurs on the right-hand side as well (via
the unknown function h). However, the Banach contraction Mapping Prin-
ciple can be applied to the fixed point problem (B.6) to produce an explicit
definition of yϵ.

If we treat the complex numbers as a two-dimensional vector space then ω
(treated as complex number) plays the role of x ∈ R2, γ + iφ ∈ C = R2 plays
the role of y, (x, y) 7→ h(ix, exp(−y)) plays the role of f , and y 7→ −i Re y
plays the role of A.
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