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Abstract. This paper concerns the shortest path problem for a network in which arc costs can
vary with time, each arc has a transit time, parking with a corresponding time-varying cost is allowed
at the nodes, and time is modeled as a continuum. The resulting problem is called the continuous-
time dynamic shortest path problem, which is well studied in the literature. However, the problem
appears as a subproblem when one wishes to test, via an algorithm for dynamic shortest paths, the
presence of negative cycles in the residual network in order to develop continuous-time analogues of
several well-known optimality conditions for continuous-time dynamic network flow problems. But,
in general, the residual network contains arcs with negative transit times and hence the results in
the literature are useless for these purposes since all results are based on the assumption of positive
transit times. In this paper, we relax this condition to allow negative transit times. We study a
corresponding linear program in space of measures and prove the existence of an optimal extreme
point solution. Moreover, we define a dual problem and establish a strong duality result that shows
under certain assumptions the value of the linear program equals the value of the dual problem and
both values are attained. We also present counterexamples to show that strong duality only holds
under these assumptions.

Key words. Shortest Path Problem, Linear Programming in Measure Spaces, Duality Theory,
Measure Theory

AMS subject classifications. 05C21, 49J27, 49K27,90C35, 90C46

1. Introduction. The shortest path problem is among the best studied network
optimization problems. A natural extension of this problem is the dynamic shortest
path problem, whose aim is to find a path with minimum cost through a network, in
which each arc has a transit time in addition to arc cost, parking is allowed at the
nodes and network characteristics (e.g., arc and parking costs) can change over time.
This problem was initially introduced by Cooke and Halsey [5], who presented an
algorithm based on the Bellman’s principle of optimality. In the model proposed by
Cooke and Halsey [5], time is measured in discrete time steps. Research on dynamic
shortest path problems has also taken another approach where time is modeled as a
continuum.

Work on continuous-time dynamic shortest path problems is conducted by, e.g.,
Orda and Rom [9, 10], Philpott [11], and Philpott and Mees [13, 14]. In particular,
Philpott [11] formulates the problem as a linear program (LP for short) in a space of
measures and investigates the relationship between the problem and its LP formula-
tion. Especially, he introduces a dual problem and proves the absence of a duality
gap1. He demonstrates the existence of an optimal extreme point for the LP formula-
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1There is no duality gap between a linear program and its dual if they have the same (finite)

value. If this finite value is achieved by feasible solutions of the primal and of the dual program,
then strong duality holds. In finite-dimensional linear programming, strong duality holds, whenever
no duality gap exists and vice versa. In general, this is not the case in infinite-dimensional linear
programming (see, e.g., [3]).
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tion and derives a correspondence between extreme points and dynamic paths. More-
over, he establishes a strong duality result in case where cost functions are Lipschitz-
continuous.

In all of the papers mentioned above, the transit times are supposed to be strictly
positive. In particular, Philpott [11] make this condition to abstract certain re-
sults from infinite-dimensional linear programming as adapted by e.g., Anderson and
Nash [3]). This approach cannot be used if transit times are zero or negative as
Philpott [11] writes in the conclusion of his paper, “the assumption that all transit
times are strictly positive is central to the arguments presented”.

In this paper, we study the continuous-time dynamic shortest path in a general
framework where transit times can be negative. Out main motivation to relax transit
times to take negative values is to be able to develop a duality theory and network-
related optimality conditions for a general class of dynamic network flows, the so-
called Continuous-time Dynamic Network Flow Problems (CDNFP). These problems
model the temporal evolution of flows over time and also consider changes of network
parameters such as capacities, costs, supplies, and demands over time. CDNFP was
first introduced by Anderson [2] and since then has been studied by a number of
authors (e.g., Anderson and Philpott [4], Philpott and Craddock [12], Fleischer and
Sethuraman [6]).

In the absence of transit times, CDNFP can be treated as special case of sep-
arated continuous linear programs, for which extensive duality results are developed
by Pullan [15] for the problem given piecewise analytic problem data. Pullan [16]
also considers a general class of separated continuous linear programs to include time-
delays and develops a strong duality for the problem with rational transit times and
piecewise constant/linear input functions. However, despite many attempts on dy-
namic network flows, CDNFP with piecewise analytic input functions still lacks of a
duality theory. Therefore, it would be worthwhile to develop a duality theory and
network-related optimality conditions in a constructive way as in the static network
flows.

We recall that a key step of establishing strong duality for the static minimum
cost flow problem is the fact that starting from some feasible flow we can construct
an optimal dual solution if the network contains no augmenting cycles with negative
cost. More precisely, the shortest distance labels from one specified node to the other
nodes in the residual network define a dual feasible solution which is complementary
slackness with the given feasible flow. The residual network has a backward arc for
each original arc. One possible approach is to derive strong duality for CDNFP is
to go along the same lines as in the static network flows. So we require to compute
the dynamic shortest distance labels from one node to the other nodes in the residual
network. In the setting of dynamic network flows, backward arcs have negative transit
times if all original arcs have positive transit times, and hence we cannot use the results
in the literature and particularly not those derived by Philpott [11].

Our Contribution. In this paper, we study a general class of dynamic shortest
path problems in the more challenging continuous-time model and give a theoretical
analysis for such problems. We allow transit times take negative values, not just
positive ones. We examine a corresponding linear program in the space of measures
and define a dual problem. We show under certain assumptions that the value of LP
formulation is the same as the value of the dual problem and both values are attained,
leading to a strong duality result. Moreover, we show that the linear program has an
optimal extreme point solution.
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Our results can be used in developing a duality theory and establishing optimality
conditions such as negative cycle optimality condition for CDNFP with piecewise
continuous input functions, which has been an open question for a long time (see
Anderson and Philpott [4]). Generally speaking, given a dynamic flow, one could
make use of the ideas presented in this paper to prove the existence of dynamic
shortest distance labels in the residual network satisfying complementary slackness
conditions if there are no negative augmenting cycles with negative costs. This would
lead to a strong duality result as well as several optimality conditions for CDNFP.
Further details can be found in [7].

The rest of the paper is organized as follows. In Section 2, we give a detailed
definition of the continuous-time dynamic shortest path problem. In Section 3, we
formulate this problem as an infinite-dimensional linear program. In Section 4, we
consider a dual problem and give some simple examples to show strong duality does
not necessarily hold between the LP formulation and its dual. In Section 5, we make
certain assumptions and prove a strong duality result between the infinite-dimensional
linear program and its dual.

2. Problem description. Here, we present a precise description of the con-
tinuous-time dynamic shortest path problem. To motivate our treatment, we first
describe the static shortest path problem.

We consider a directed graph G := (V,E) with finite node set V and finite arc
set E. An arc e from a node v to a node w is denoted by e := (v, w) to emphasize that e
leaves v and enters w. In this case, we say that node v is the tail of e and w is the head
of e and write tail(e) := v and head(e) := w. A walk P from node v to node w is an
alternating sequence of nodes and arcs of the form P := (v1, e1, v2, . . . , vn, en, vn+1)
such that v1 = v, ei = (vi, vi+1) for i = 1, . . . , n, and vn+1 = w. Throughout
the paper we denote the walk P by the arc sequence (e1, . . . , en), assuming that
head(ei) = tail(ei+1) for i = 1, . . . , n. Further, we denote by E(P ) := {e1, . . . , en}
and V (P ) := {v1, . . . , vn+1} the set of arcs and nodes, respectively, involved in P .
The walk P is said to be a path from v to w (or simply v-w-path) if v1, v2, . . . , vn+1

are pairwise distinct, except v1 and vn+1. If in addition v1 = vn+1, the path P is called
a cycle. A node w is said to be reachable from node v if there exists a v-w-path.

Each arc e ∈ E has an associated cost ce. The cost of a path P = (e1, . . . , en) is
defined as the sum of the costs of all arcs in the path, that is, cP :=

∑n
i=1 cei . The

network has two distinguished nodes: a source s and a sink t. We assume without
loss of generality that every node of G is reachable from s and that t is reachable from
every node.The (static) shortest path problem is to find a path from source s to sink t
with minimal cost. This problem can be formulated as follows:

min
∑
e∈E

cexe

s.t.
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe =


1 if v = s

0 if v 6= s, t

−1 if v = t

∀v ∈ V ,

xe ≥ 0 ∀e ∈ E .

(LP)

Here and subsequently, the set of arcs leaving node v and entering node v are de-
noted by δ+(v) := {e ∈ E | tail(e) = v} and δ−(v) := {e ∈ E | head(e) = v},
respectively. In (LP), the decision variable xe gives the amount of flow on arc e. It
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is well-known that an optimal extreme point of (LP) yields a shortest s-t-path. The
dual problem (LP∗) of (LP) can be written as follows:

max πs − πt
s.t. πv − πw ≤ ce ∀e = (v, w) ∈ E .

(LP∗)

If π is an optimal solution for (LP∗) then for every node v ∈ V the cost of a short-
est s-v-path is equal to πv − πs. Moreover, if the network contains a cycle C with
negative cost, then (LP) is unbounded because we can send an infinite amount of flow
along C and therefore the objective function value goes to −∞. In this case, the dual
problem (LP∗) is infeasible. The shortest path problem where cycles with negative
cost are allowed is difficult to solve. In fact, it is NP-complete (see [1, page 95]),
i.e., no polynomial-time algorithm for this problem exist unless P = NP. For the
case that the network contains no negative cycle, strong duality holds between (LP)
and (LP∗) and numerous efficient algorithms for solving the shortest path problem
exist. A comprehensive discussion and comparison of these algorithms can be found
in the textbook by Ahuja, Magnanti, and Orlin [1].

So far we have considered the setting of the static shortest path problem. We
now turn to the dynamic case in which each arc e ∈ E has an associated transit
time τe, specifying the required amount of time to travel from the tail to the head
of e. More precisely, if we leave node v at time θ along an arc e = (v, w), we arrive
at w at time θ + τe. Further, waiting is allowed at the nodes of the network for later
departure. In the following we extend the definition of (static) walk, path, and cycle
to the dynamic case.

A dynamic walk is a pair of a walk P = (e1, . . . , en) together with a family of
waiting times (λ1, . . . , λn+1). For i = 1, . . . , n + 1 after arriving at node vi ∈ V (P )
we wait λi time units before we leave vi. Given a starting time θ, let αi be the
time when we arrive at node vi and βi be the time when we departure from node vi.
For i = 1, . . . , n+ 1, the arrival time αi and the departure time βi can be computed
recursively as follows:

αi :=

{
θ for i = 1

βi−1 + τei−1
otherwise

and βi := αi + λi .

A walk P is called a dynamic path if P does not revisit any node (except the endpoints)
at the same point in time, i.e., [αi, βi] ∩ [αj , βj ] = ∅ for each 1 ≤ i < j ≤ n + 1
with vi = vj and (i, j) 6= (1, n + 1). Note that the underlying (static) walk of a
dynamic path need not to be a (static) path since it is allowed that a node can be
revisited at different points in time. Moreover, P is said to be a dynamic cycle if P
is a dynamic path, and in addition v1 = vn+1 and α1 = βn+1. Further, we say that
the path P has time horizon Θ if βn+1 = Θ.

Each arc e and each node v has a cost function ce : R → R and cv : R → R,
respectively. For a certain point in time θ ∈ R, the cost for leaving the tail of e
at time θ and traveling along e is ce(θ) and the cost per time unit for the waiting
at v at time θ is cv(θ). The cost of a dynamic walk P = (e1, . . . , en) with arrival
times α1, . . . , αn+1 and departure times β1, . . . , βn+1 is thus given by

cost(P ) :=

n∑
i=1

cei(βi) +

n+1∑
i=1

∫ βi

αi

cvi(θ) dθ .
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Here the first sum gives the cost for traveling along arcs in the path and the second
one gives the cost for waiting at nodes of the path. A dynamic path P from v to w
is called a dynamic shortest path if cost(P ) ≤ cost(P ′) for all dynamic v-w-paths P ′

with the same starting time and the same time horizon as P .
Given a source s ∈ V , a sink t ∈ V , and a time horizon Θ, the continuous-time

dynamic shortest path problem is to determine a dynamic shortest path from s to t
with starting time 0 and time horizon Θ:

Continuous-time Dynamic Shortest Path Problem (CDSP)

Input: A network consisting of a directed graph G := (V,E), cost func-
tions (ce)e∈E and (cv)v∈V , a source s ∈ V , a sink t ∈ V , and a time
horizon Θ,

Task: Find a dynamic shortest s-t-path with starting time 0 and time
horizon Θ.

In the rest of the paper, if not mentioned otherwise, the starting time and the
time horizon of a dynamic path from source s to sink t are assumed to be 0 and Θ,
respectively.

3. LP formulation in Measure Spaces. As in the static case, we can view
CDSP as the problem of sending one unit of flow from source s at time 0 to sink t
at time Θ at minimal cost. This problem can be formulated as the following linear
program in the space of Borel measures (see Koch and Nasrabadi [8] for a detailed
treatment):

min

∫ ∞
−∞

∑
e∈E

ce(θ) dxe +

∫ ∞
−∞

∑
v∈V

cv(θ)Yv(θ) dθ

s.t.
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

(xe − τe) + yv = bv ∀v ∈ V ,

xe ≥ 0 ∀e ∈ E ,

Yv ≥ 0 ∀v ∈ V .

(LPM)

Here, the variable xe is a Borel measure on the real line R and for each Borel set B
the value xe(B) gives the amount of flow entering arc e within the times in B. Note
that xe−τe is understood to be a Borel measure defined by (xe−τe)(B) := xe(B−τe)
where B − τe := {θ − τe | θ ∈ B}. The variable yv is a signed Borel measure with
distribution function Yv. The value yv(B) gives the overall change in storage at v over
the Borel set B and the value Yv(θ) the amount of flow stored at node v at time θ.
For each v ∈ V , bv is a signed Borel measure defined as

bv(B) :=


1 v = s, 0 ∈ B
−1 v = t,Θ ∈ B
0 otherwise

for every Borel set B. The value |bv(B)| gives as the amount of supply or demand
at node v over the Borel set B depending on whether bv(B) > 0 or bv(B) < 0,
respectively.

We require xe to be a finite Borel measure on R, i.e., |xe| := xe(R) < ∞ for
all e ∈ E. We refer to x = (xe)e∈E as flow and to y = (yv)v∈V (or equivalently
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the corresponding distribution functions Y = (Yv)v∈V ) as storage. A flow x with
corresponding storage y satisfying the constraints of (LPM) is called a feasible solution
or feasible flow. In a similar way as in the finite-dimensional linear programming, a
feasible solution of (LPM) is called an extreme point if it cannot be derived from a
convex combination of any two other feasible solutions. It is known that every signed
Borel measure can be uniquely decomposed into a sum of a discrete and a continuous
measure (see [8, Appendix] for more details). This implies that for each arc e the
flow xe is the sum of a continuous flow xce and a discrete flow xde . A flow x is called
discrete (continuous) if xce = 0 (xde = 0) for all arcs e ∈ E. Koch and Nasrabadi [8]
show that the continuous part of an extreme point is 0 and establish a one-to-one
correspondence between extreme points of (LPM) and dynamic paths.

Theorem 3.1 (Koch and Nasrabadi [8]). Any extreme point of (LPM) corre-
sponds one-to-one to a dynamic s-t-path. If the cost functions are given, this one-to-
one correspondence preserves also costs.

Our aim is to prove the existence of an optimal extreme point for (LPM). To
this end, we require to encode a dynamic path with measures, whereas in the static
case a path is identified with its incidence vector whose elements are 0 or 1. Let
P := (e1, . . . , en) be a dynamic path with arrival times αi and departure times βi
for i = 1, . . . , n + 1. The incidence vector χP of P is a family (χPe )e∈E of discrete
measures defined by

χPe :=

{∑
i|ei=e χ

P
i if e ∈ E(P )

0 otherwise
∀e ∈ E , (3.1)

where

χPi (B) :=

{
1 if αi ∈ B
0 otherwise

∀i = 1, . . . , n ,

for each Borel set B. The corresponding storage ψP := (ψPv )v∈V is defined by:

ψPv := bv −
∑

e∈δ+(v)

χPe +
∑

e∈δ−(v)

(χPe − τe) ∀v ∈ V . (3.2)

For each v ∈ V let ΨP
v denote the distribution function of the measure ψPv , i.e.,

ΨP
v (θ) := ψPv ((−∞, θ]) for all θ ∈ R. It is not hard to observe that

ΨP
v (θ) =

{∑
i|vi=v ΨP

i (θ) if v ∈ V (P )

0 otherwise
∀v ∈ V ,

where

ΨP
i (θ) :=

{
1 for θ ∈ [αi, βi)

0 otherwise
∀i = 1, . . . , n+ 1 .

Therefore, ΨP
v ≥ 0 and the incidence vector χP is a feasible solution of (LPM). Koch

and Nasrabadi [8] show that χP is not only a feasible solution, but also an extreme
point of (LPM).

In this paper, we focus on the objective function of (LPM) and finding its value.
The value of (LPM) is the infimum of its objective function over all feasible solutions
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Fig. 4.1. Network for Example 4.1. The transit times are shown on the arcs.

which will be denoted by V [LPM]. Like the static shortest path problem, (LPM)
is unbounded (i.e., its value tends to −∞) if the network G contains a negative
dynamic cycle (i.e., a dynamic cycle with negative cost). More precisely, let P be a
dynamic s-t-path with incidence vector χP and C be a negative dynamic cycle with
incidence vector χC . It is not difficult to see that χP + δ · χC is a feasible solution
of (LPM) for each δ ≥ 0 whose objective function value is cost(χP ) + δcost(χC).
Therefore if cost(χC) < 0 then V [LPM] can be made arbitrary negative by making δ
sufficiently large. So we give the following assumption.

Assumption 1. The network contains no negative dynamic cycle.
This assumption can be satisfied by making all costs nonnegative or all transit

times strictly positive. For the latter case, the number of arcs in any dynamic s-t-
path is bounded by a constant independent of the path. Further, the feasible region
of (LPM) becomes bounded with respect to a certain norm which makes it possible
to apply certain results from the theory of linear programming in infinite-dimensional
vector spaces. Philpott [11] assumes all transit times are strictly positive and estab-
lishes a duality theory for (LPM) based on the paired-space methodology as adapted
by Anderson and Nash [3]. In particular, he develops a dual problem for (LPM) and
proves the absence of a duality gap. Further, he shows that the values of (LPM) and
its dual are finite and attained in each problem in the case where cost functions satisfy
a Lipschitz condition. In what follows, we give some simple examples to show that
these results do not necessarily hold for the more general case with arbitrary transit
times. Further, we present some necessary and sufficient conditions under which the
strong duality result holds between (LPM) and its dual.

4. Dual Formulation. Before formulating a dual problem for (LPM), we con-
sider the following small example.

Example 4.1. Consider the network shown in Figure 4.1 where the transit
times are shown on the arcs. The arc cost functions are given by

cs,v(θ) = cv,s(θ) = 0 , cv,t(θ) = θ , ∀θ ∈ R .

The node cost functions are supposed to be zero. It is clear that the network contains no
negative dynamic cycle. Now let f be a discrete flow concentrated on the singleton {0}
with f({0}) = 1. For each k ∈ N we define a feasible solution xk for (LPM) as follow:
The flow f circulates k times around the cycle C induced by s and v and then it is
sent along arc (s, v) and (v, t). This yields the following feasible solution:

xk(s,v) =

k∑
i=0

(f + i) , xk(v,s) = (xk(s,v) + 1)− (f + (k + 1)) , xk(v,t) = f + (k + 1) .

Obviously, we have cost(xk) = −k − 1. Hence, (LPM) is unbounded since cost(xk)
tends to −∞ as k goes to ∞.
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The above example shows that the absence of negative dynamic cycles does not
alone guarantee the existence of optimal solutions for (LPM). However, the problem
given in Example 4.1 will have an optimal solution if we restrict the feasible region
of (LPM) by considering a time window for each node. This motivates the following
assumption.

Assumption 2. For each node v ∈ V there exists a time window [av, bv] with
av > −∞ and bv <∞, within which node v is permitted to be visited.

Subsequently, the definition of a dynamic path (or cycle) as well as definition
of a feasible solution for (LPM) are constrained by time windows at nodes. More
precisely, for a dynamic path (or cycle) P = (e1, . . . , en) with arrival time αi and
departure time βi for node vi, we assume that αi, βi ∈ [avi , bvi ] for i = 1, . . . , n + 1.
Further, for any feasible solution x, y of (LPM) the measures x and y are supposed
to be zero at any point out of the time windows. So we let

ue|R\[av,bv] = 0 ∀e = (v, w) ∈ E .

It is naturally assumed that 0 ∈ [as, bs] and Θ ∈ [at, bt]. To simplify notation, we
suppose that for each node v ∈ V and each point in time θ ∈ [av, bv], the network G
contains a dynamic s-v-path with starting time 0 and time horizon θ, and a dy-
namic v-t-path with starting time θ and time horizon Θ. This assumption imposes
no loss of generality because the nodes and times violating this assumption do not
appear in any dynamic s-t-path and can therefore be deleted.

Having made Assumption 2, we can formulate a dual problem. For the ease of
notation, we assume that the waiting costs are zero, i.e., cv(θ) = 0 for every v ∈ V
and θ ∈ R. We note that this assumption imposes no restriction because the general
case can be transformed into this special by integration by parts (see, e.g., [11]). Now
by the theory of linear programming in infinite-dimensional spaces (see, e.g., [3]), we
can write down a dual problem of (LPM) as follows:

min ρs − ρt +

∫ bs

0

ηs(ϑ) dϑ−
∫ bt

Θ

ηt(ϑ) dϑ

s.t. ρv − ρw +

∫ bv

θ

ηv(ϑ) dϑ

−
∫ bv

θ+τe

ηw(ϑ) dϑ ≤ce(θ) ∀e = (v, w) ∈ Eθ ∈ [av, bw − τe] ,

ηv(θ) ≤0 ∀v ∈ V, θ ∈ [av, bv] ,

(LPM∗
′
)

where ρv ∈ R and ηv ∈ L∞[av, bv] for each node v ∈ V . The reader is referred to [11]
for a detailed discussion of the above formulation. To derive a similar formulation
as (LP∗), we consider a more general dual problem. In particular, we shall focus on
the following dual problem:

max πs(0)− πt(Θ)

s.t. πv(θ)− πw(θ + λe) ≤ ce(θ) ∀e = (v, w) ∈ E, θ ∈ [av, bw − τe] ,
πv monotonic increasing and

right continuous on [av, bv] ∀v ∈ V .

(LPM∗)
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s tθs = 0 Θ = 1

cs,t =

{
θ sin(1/θ) θ ∈ (0, 1],

0 θ = 0

ct,s =

{
−θ sin(1/θ) θ ∈ (0, 1],

0 θ = 0

Fig. 4.2. Network for Example 4.3. The transit times are zero.

It is clear that (LPM∗) is a relaxation of (LPM∗
′
) because any feasible solution ρ, η

generates one for (LPM∗) of the same objective function value by setting

πv(θ) = ρv +

∫ bv

θ

ηv(ϑ) dϑ ∀v ∈ V, θ ∈ [av, bv] .

Conversely, if π is feasible for (LPM∗) in which πv is absolutely continuous on [av, bv]
for every v ∈ V , then ρv := πv(bv) and ηv(θ) := π̇(θ) for every θ ∈ [av, bv], is feasible
for (LPM∗

′
) and again the two solutions have the same objective function value.

Any π that satisfies the constraints of (LPM∗) is said to be (dual) feasible, and
the value of (LPM∗), denoted by V [LPM∗], is the supremum over all feasible solu-
tions. The following weak duality result is easily established by integration by parts
(see, e.g., [11] for more details).

Lemma 4.2 (Weak duality). V [LPM] ≤ V [LPM∗].

It is of great interest to conjecture whether a strong duality result can be estab-
lished whereby V [LPM] = V [LPM∗] and these values are attained in each problem.
It depends on being able to construct a feasible solution x for (LPM) and a feasible
solution π for (LPM∗) for which V [LPM, x] = V [LPM∗, π]. The following three ex-
amples show that in general strong duality may not hold between (LPM) and (LPM∗)
if even Assumptions 1 and 2 are fulfilled.

Example 4.3. We consider the network shown in Fig. 4.2. The arc cost func-
tions are shown on the arcs and the node cost functions are zero. Moreover, the transit
times are zero and a time window [0, 1] is associated to each node. Let Θ := 1 be the
time horizon and f be a discrete flow concentrated on the singleton {0} with f({0})=1.

For each k ∈ N we define a feasible solution xk for (LPM) as follow:

xk(s,v) =

k∑
i=1

(
f − 2

(4i− 1)π

)
, xk(v,s) =

k−1∑
i=1

(
f − 2

(4i+ 1)π

)
.

Actually the feasible solution xk is the incidence vector of a dynamic s-t-path P k

derived as follows: We start from node s at time 0 and go from s to t and back
from t to s for k times. In addition, we wait for a certain time at nodes s and t
whenever we arrive at these nodes. At the end of kth circulation we wait at node t
until time 1. More precisely, we have the dynamic s-t-path P k = (e1, . . . , e2k−1) with
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arrival times α1, . . . , α2k and departure times β1, . . . , β2k, where

e2i−1 = (v2i−1, v2i) = (s, t) for i = 1, . . . , k ,

e2i = (v2i, v2i+1) = (t, s) for i = 1, . . . , k − 1 ,

α1 = 0, α2i−1 =
2

(4k − (4i− 5))π
for i = 2, . . . , k ,

α2i =
2

(4k − (4i− 3))π
for i = 1, . . . , k ,

β2i−1 =
2

(4k − (4i− 3))π
for i = 1, . . . , k ,

β2k = 1, β2i =
2

(4k − (4i− 5))π
for i = 1, . . . , k − 1 .

We observe that cost(xk) = −
∑k
i=1

2
(2i+3)π . So cost(xk) tends to −∞ as k goes

to ∞, and hence V [LPM] = −∞.
The following two examples deal with the situation where the value of (LPM) is

finite, but no feasible solution attain this value. Notice that this is not the case for
static shortest path problem as it is well known that if the value of (LP) is finite, then
this value is attained by some feasible solution.

Example 4.4. We consider Example 4.3, but now with the following arc cost
functions:

ct,s(θ) =

{
θ2 sin(1/θ) θ ∈ (0, 1] ,

0 θ = 0 ,
ct,s(θ) =

{
−θ2 sin(1/θ) θ ∈ (0, 1] ,

0 θ = 0 ,

Then, it holds that

V [LPM] = lim
k→∞

cost
(
xk
)

= −
∞∑
i=0

(
2

(2i+ 3)π

)2

<∞

where xk is a feasible solution of (LPM) as defined in Example 4.3. Here the value
of (LPM) is finite, but it is not attained by any feasible solution.

Example 4.5. We consider a simple network containing of only one arc e = (s, t)
which joins source s to sink t. Let Θ := 1 be the time horizon and ce be the cost
function given by

ce(θ) =

{
1− θ θ < 1 ,

1 θ ≥ 1 ,

There is no waiting costs at the nodes and transit time of e is assumed to be zero.
Here we have V [LPM] = 1, but it is not attained by any feasible solution.

The previous two examples show that Assumptions 1 and 2 do not guarantee in
general the existence of an optimal solution for (LPM), even for the case that the cost
functions satisfy a Lipschitz condition or are piecewise analytic. Actually the problem
in Example 4.4 is because of the fact that the cost functions have a infinite number
of local optimum and in Example 4.5 due to the fact that the cost functions do not
attain its minimum. So it is natural to restrict the cost functions to those that have
a finite number of local minima and attain their minima on a closed interval.
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s t

v

w

θs = 0 Θ = 1
0

√
2 0

−1 0

Fig. 4.3. Network for Example 4.6. The transit times are shown on the arcs.

Assumption 3. For each arc e = (v, w) ∈ E, the cost function ce is both piecewise
analytic and lower semi-continuous on [av, bv − τe].

Notice that a function f : [a, b]→ R is said to piecewise analytic if there exists a
partition {θ0, θ1, . . . , θm} of [a, b] (i.e., a = θ0 < θ1 < . . . < θm = b) , ε > 0, and gk
analytic on (θk1

− ε, θk + ε) with gk(t) = f(t) for θ ∈ [θk1
, θk), k = 1, . . . ,m. Hence, a

piecewise analytic function can be discontinuous at a finite number of points and such
a function may not attaint its minimum over a closed interval. That is why we require
that the cost functions are both piecewise analytic and lower semi-continuous. It is
well known that a lower semi continuous function attains its minimum on a compact
set. We shall use this fact later on to prove the existence of dynamic shortest paths.

The following example shows that not only the structure of cost functions, but
also of transit times are important.

Example 4.6. Consider the network shown in 4.3 with cost functions as given
below:

cs,t(θ) = 1− θ cs,v(θ) = cs,w(θ) = cv,s(θ) = cw,s(θ) = 0 ∀θ ∈ R .

cs(θ) = cv(θ) = cw(θ) = ct(θ) = 1 ∀θ ∈ R .

We associate a time window [−1, 1] with each node and let Θ := 1 be the time
horizon. We observe that V [LPM] = 0, but no feasible solution attains this value.
This is because of the fact that

sup
−1<S<1

{S = m
√

2− n | m,n ∈ N ∪ {0}} = 0 ,

but this value is not reached by any finite n and m.
In Example 4.6 the value of (LPM) is finite, but the problem has no optimal

solution. The reason here is that greatest common factor of a set of numbers including
irrational numbers does not exist. This is not the case for rational numbers. Hence,
we give the following assumption.

Assumption 4. The transit times (τe)e∈E as well as the time horizon Θ are all
rational.

So far, we have observed that strong duality does not necessarily hold if at least
one of the Assumptions 1, 2, 3, and 4 is not fulfilled. Throughout the rest of the
paper we suppose that these assumptions hold and prove a strong duality result.
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5. Strong Duality. The basic idea for establishing a strong duality result be-
tween (LPM) and (LPM∗) goes along the same lines as in the static case. Therefore,
we first show that the network G contains a dynamic shortest s-v-path with starting
time 0 for each node v ∈ V and for each time horizon θ ∈ [av, bv].

Let P be a dynamic s-t-path. By Theorem 3.1 the incidence vector χP of P is an
extreme point of (LPM). Note that, for each e ∈ E, the support 2 supp(χPe ) of χPe is
finite and, for each θ ∈ supp(χPe ), it holds that χPe (θ) = 1. Note that in a dynamic
path no node is revisited at the same point in time. Hence, χPe is uniquely defined

by supp(χPe ) and is therefore interpretable as a (finite) vector χPe ∈ R|supp(χP
e )|. The

entries of the vector χPe are exactly the times when we leave the tail of e along the
path P . In the following χPe denotes also this vector and we assume that entries are
ordered monotonically increasing.

In order to define locally shortest paths we define, for all ε > 0, the ε-neighborhood
of a dynamic s-t-path P as the set of all dynamic s-t-paths P ′ satisfying:

|supp(χPe )| = |supp(χP
′

e )| and ||χPe − χP
′

e ||∞ < ε ∀ e ∈ E .

Then, P is a locally shortest path if there exists an ε > 0 such that cost(P ) ≤ cost(P ′)
for all paths P ′ in the ε-neighborhood of P . In the following, we show that the set of
locally shortest paths is finite and hence a dynamic shortest always exists under the
assumptions 1–4. For this, we give an alternative characterization of locally shortest
paths and start with the definition of nonstop paths.

Let P = (e1, . . . , en) be a dynamic s-t-path with waiting times (λ1, . . . , λn+1).
A subsequence P ′ = (ek, . . . , e`) of consecutive arcs in P is called a nonstop subpath
of P if λi = 0 for i = k+ 1, . . . , `. If, in addition, λk > 0 and λ`+1 > 0 holds then the
nonstop subpath P ′ is called maximal. In particular, P ′ is not maximal if P ′ starts
at s at time 0 or ends at t at time Θ.

For any ε ∈ [−λk, λ`+1] the arc sequence (e1, . . . , en) with starting time 0 and
waiting times

(λ1, . . . , λk−1, λk + ε, 0, . . . , 0︸ ︷︷ ︸, λ`+1 − ε, λ`+2, . . . , λn+1)

`− k times

is a dynamic s-t-path denoted by P |P ′(ε). Let βk and α`+1 be the departure time

at vk and the arrival time at v`+1 in P , respectively, and τP ′ :=
∑`
i=k τei be the transit

time of P ′. Then, P |P ′(ε) is obtained by leaving node vk at time βk + ε instead of
time βk and arriving at node v`+1 at time βk+ε+τP ′ = α`+1 +ε instead of time α`+1.
Roughly speaking, P |P ′(ε) is obtained by shifting P ′ within path P by ε time units.

We observe that for a given ε ∈ [−λk, λ`+1], the dynamic s-t-path P |P ′(ε) is con-
tained in the |ε|-neighborhood of P . We are now interested to compute the difference
in costs between P and P |P ′(ε). For this, we define a cost function cP ′ : [avk , bvk ]→ R
where [avk , bvk ] is the time window of vk by

cP ′(θ) :=
∑̀
i=k

cei

(
θ +

i−1∑
j=k

τej

)
. (5.1)

2The support of a measure µ is defined to be the set of all points in R with a neighborhood of
positive measure, that is, supp(µ) := {θ ∈ R : µ(U) > 0 for every open neighborhoodU of θ} (see
[8, Appendix] for more details).
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Thus, for a point in time θ the value cP ′(θ) determines the cost for traveling along P ′

without waiting and with starting time θ. Hence, the cost for moving from P
to P |P ′(θ) is given by cP ′(βk + ε) − cP ′(βk). The following lemma gives a neces-
sary condition for locally shortest paths.

Lemma 5.1. Let P = (e1, . . . , en) be a locally dynamic shortest s-t-path with de-
parture times β1, . . . , βn+1. Then for each maximal nonstop subpath P ′ = (ek, . . . , e`)
of P the cost function cP ′ is locally minimized at the point βk.

Proof. Follows from the above discussion.
Let P̄loc be the set of dynamic s-t-paths P where each maximal nonstop sub-

path P ′ starting at θ locally minimizes cP ′ , i.e., cP ′ has a local minimum at θ. In
addition, we assume that cP ′ is not constant on any open neighborhood containing θ.
Further, we say that two s-t-paths P1 and P2 are equivalent if they differ only in the
starting time θ1 and θ2, respectively, of one common nonstop subpath P ′ and cP ′ is
constant over [θ1, θ2]. Note that in this case P1 and P2 have cost. Then, for all locally
shortest paths, an equivalent path is contained in P̄loc. Hence, the following lemma
shows that the set of locally shortest s-t-paths is in essence finite.

Lemma 5.2. The set P̄loc is finite.
Proof. Let P ∈ P̄loc be a dynamic s-t-path and P ′ be a nonstop subpath of P .

Note that P ′ contains no dynamic cycles. First we show that there are only finitely
many possible arc sequences for the nonstop subpath P ′. Let Imax := maxv∈V {bv−av}
be the maximum length of time windows [av, bv] over all nodes v ∈ V (see Assump-
tion 2) and let τ̂ be the greatest common factor of transit times, i.e.,

τ̂ := min{S > 0 | S is a finite sum of elements of the form − τe or τe} .

Note that τ̂ exists and is greater than 0 because of Assumption 4. Since P ′ contains
no dynamic cycle it visits any node at most d Iτ̂ e times. Consequently, the number of
possible arc sequences for P ′ is bounded by a constant. This implies that cP ′ is the
finite sum of piecewise analytic functions. Hence, cP ′ is also piecewise analytic.

In the the following let P ′ be a maximal nonstop subpath of P . Because of As-
sumption 3 and equation (5.1), cP ′ is piecewise analytic and lower semi-continuous.
Hence, cP ′ has only a finite number of local minima (at points where c′P is not con-
stant) and attains all of them by some real value. Therefore there are only finite
number of possible start times for P ′. This implies that the number of maximal non-
stop subpath with the same arc sequence as P ′ is bounded by a constant. Otherwise P
contains a dynamic cycle. Therefore the length of the arc sequence of P is bounded
by a constant.

Since P is chosen arbitrary at the beginning of this proof, any arc sequence of a
path in P̄loc is bounded by the same constant. Hence, the cardinality of P̄loc is finite.

The next lemma shows that P̄loc contains the dynamic shortest s-t-path.
Lemma 5.3. Let P be a dynamic s-t-path. Then there exists an s-t-path P̄ ∈ P̄loc

with cost(P̄ ) ≤ cost(P ).
Proof. If P ∈ P̄loc, then we are done. So we consider the case where P is

not in P̄loc. In this case we iteratively apply the following procedure to construct a
dynamic s-t-path P̄ ∈ P̄loc:

(i) Let P ′ = (vk, . . . , v`) be a maximal nonstop subpath of P such that the cost
function cP ′ does not have a local minimum (or is constant) at βk. Notice that
such a path path exists because of the definition of P̄loc and the fact that P is
not in P̄loc. Further, choose P ′ such that it contains a minimal number of arcs.
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(ii) Since the functions ce, e ∈ E, are lower semi-continuous by Assumption 3, cP ′ is
also lower semi-continuous. Thus, cP ′ takes its minimum over [βk − λk, βk + λ`]
at some point θ. If there are several local minima choose θ maximal.

(iii) Let P |P ′(βk−θ) be the dynamic s-t-path obtained from P by shifting the nonstop
subpath P ′ by βk− θ time units. Since P |P ′(θ) may contain dynamic cycles, we
delete all dynamic cycles in P |P ′(θ).

(iv) Set P := P |P ′(θ). If P is not in P̄loc, then go to (i).
Notice that the number of arcs in P ′ is bounded by |E(P )| and increases after at
most |E(P )| iterations. Hence, the above procedure terminates after a finite number
of iterations and the resulting dynamic s-t-path P is contained in P̄loc. Further, in
each iteration the cost of P does not increase which proves this lemma.

Lemmas 5.2 and 5.3 show that a dynamic shortest s-t-path exists. More precisely,
a dynamic shortest s-t-path is one in P̄loc with minimal cost. Further, Lemma 5.2 as
well as Lemma 5.3 remain valid if the sink t is replaced by any node v ∈ V and if the
time horizon Θ is replaced by any point in time θ ∈ [av, bv]. Furthermore, we obtain
the following result.

Lemma 5.4. For each node v ∈ V and each point in time θ ∈ [av, bv], let dv(θ) be
the cost of a dynamic shortest s-v-path with starting time 0 and time horizon θ. Then,
for each node v ∈ V , the label dv(θ) exists for all θ and the function dv : [av, bv]→ R
is piecewise analytic and monotonic decreasing.

Proof. As discused above the existence of dv(θ) follows from 5.2 and 5.3. Fur-
thermore, since there are no waiting costs the function dv is monotonic decreasing.
Hence, it thus remains to show that dv is piecewise analytic on [av, bv] for each v ∈ V .

In the following we fix a node v ∈ V . Similar to the definition of P̄loc before
Lemma 5.2 define P̄loc(θ) as the set of dynamic s-v-paths P with starting time 0 and
with time horizon θ where each maximal nonstop subpath P ′ of P starting at ϑ locally
minimizes cP ′ . In addition, we assume that cP ′ is not constant on any open neigh-
borhood containing ϑ. Then Pv := ∪θ∈[av,bv]P̄loc(θ) contains (nearly) all dynamic
shortest s-v-paths for any feasible time horizon θ.

Next we define an equivalence relation ∼ on the set of all dynamic s-v-paths.
Let P = (e1, . . . , enP

) and P̄ = (ē1, . . . , ēnP̄
) be two dynamic s-v-paths with waiting

times (λ1, . . . λnP
) and (λ̄1, . . . λ̄nP̄

). Then ∼ is defined by

P ∼ P̄ :⇐⇒ (e1, . . . , enP
) = (ē1, . . . , ēnP̄

) ,

∃k ∈ {1, . . . , nP + 1} : λi = λ̄i ∀i < k ,

λi, λ̄i > 0 i = k ,

λi = λ̄i = 0 ∀i > k .

Hence, P and P̄ are equivalent if they differ only in the last positive waiting time. For
an equivalence class [P ] we denote by P1 the path consisting of the first k−1 arcs of P
without waiting at the end and by P2 the path consisting of the last np − k + 1 arcs
of P without waiting at the beginning. Note that P1 and P2 can be the empty path.
Further, P1 and P2 are well-defined in the sense that they are coincide for any member
of [P ]. On the other hand, any dynamic path in [P ] is obtained by concatenating P1

and P2 and introducing some positive waiting between them. (If P is a nonstop path
without waiting at all we put it in the equivalence class P1 = ∅ and P2 = P .)

Consider the quotient set Pv/ ∼ and an equivalence class [P ] ∈ Pv/ ∼. Then
each maximal nonstop subpath P ′ and also the last nonstop subpath of P locally
minimizes cP ′ . Further, P2 is a nonstop subpath itself. Hence, along the same lines
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as in the proof of Lemma 5.2 we obtain that there exists only a finite number of
possibilities for P1 and P2. Hence, Pv/ ∼ is a finite set. In order to get an expression
for dv we define a cost function c[P ] : [av, bv]→ R by

c[P ](θ) := cost(P1) +

{
cP2

(θ − τP2
) if θ > τP1

+ τP2
,

∞ if θ ≤ τP1 + τP2 ,

Then, for every P ∈ Pv we have cost(P ) = c[P ](θ) where θ is the time horizon of P .
Thus we obtain dv = min{c[P ]}. Therefore dv is piecewise analytic since it is the
minimum of a finite number of piecewise analytic functions.

From the above discussion we obtain the main result of this section.
Theorem 5.5 (Strong duality). There exist an extreme point x for (LPM) and

a piecewise analytic solution π for (LPM∗) so that

V [LPM, x] = V [LPM∗, π].

Proof. Following Lemma 5.4, we define for each v ∈ V and each θ ∈ [av, bv]
the shortest label dv(θ) to be the cost of a dynamic shortest s-v-path with starting
time 0 and time horizon θ. Obviously, we have ds(0) = 0 since the network contains
no negative dynamic cycle due to Assumption 1. In the following we show that the
shortest path labels define a dual feasible solution whose value equals to the cost of
some feasible solution for (LPM).

Let πv(θ) = −dv(θ) for any v ∈ V and every θ ∈ [av, bv]. It follows from
Lemma 5.4 that π is a piecewise analytic solution for (LPM∗) Now let P be a dy-
namic shortest s-t-path with starting time 0 and time horizon Θ and χP denote its
corresponding incidence vector. We know from Theorem 3.1 that χP is an extreme
point of (LPM) whose value is equal to the cost of P . Summarizing, we can conclude
that

V [LPM, χP ] = cost(P ) = dt(Θ) = −ds(0) + dt(Θ) = πs(0)− πt(Θ) = V [LPM∗, π] .

It now follows from Lemma 4.2 that x is optimal for (LPM) and π is optimal
for (LPM∗). This yields the desired result.
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