
EXTREME POINT CHARACTERIZATION FOR

CONTINUOUS-TIME DYNAMIC SHORTEST PATH PROBLEMS

WITH ARBITRARY TRANSIT TIMES∗

RONALD KOCH† AND EBRAHIM NASRABADI†‡

Abstract. We consider the dynamic shortest path problem in the continuous-time model. This
problem has been extensively studied in the literature because of its importance. But so far, all
contributions to this problem are based on the assumption that all transit times are strictly positive.
However, in order to study dynamic network flow problems it is essential to support negative transit
times since they occur quite naturally in residual networks. In this paper we extend the work of
Philpott [SIAM J. Control Optim., 1994, pp. 538–552] to the case of arbitrary (also negative and
irrational) transit times. We study a corresponding linear program in a space of measures and give
a full characterization of its extreme points. In particular, we show a one-to-one correspondence
between extreme points and dynamic paths.

Key words. Shortest Path Problem, Linear Programming in Measure Spaces, Extreme Points,
Measure Theory

AMS subject classifications. 05C21, 28A25, 49J27, 90C48, 90C49

1. Introduction. The notion of extreme points plays a central role in the theory
of linear programming, specifically for the simplex algorithm. Fundamental to this
algorithm is that, whenever the problem has an optimum solution, then one can be
found among the extreme points of the feasible region. Moreover, extreme points
usually have a considerably simpler structure than arbitrary feasible solutions and
are more meaningful in practice. This becomes even more important for network flow
problems because extreme points of the feasible region correspond to the flows which
do not admit cycles, that is, the arcs with flow strictly between their bounds form a
forest.

The shortest path problem is one of the most basic and important problems
in combinatorial optimization, operations research, and computer sciences. For this
problem, the extreme points of the corresponding linear programming problem cor-
respond one-to-one to paths from the source to the sink. An interesting extension of
the shortest path problem is the dynamic shortest path problem, whose goal is to find
a shortest path between two specified nodes in a network where

• each arc has a transit time determining the amount of time needed for travers-
ing that arc,

• waiting at the nodes is allowed and causes cost,
• the cost for traversing an arc as well as the cost for waiting vary over time.

In this paper, we concentrate on a continuous-time setting where arcs can be entered
and left at arbitrary points in time and assign also negative values to transit times.
We study a related linear programming problem formulated in the space of mea-
sures, present a full characterization of its extreme pints, and conclude a one-to-one
correspondence between extreme points and dynamic paths.

∗This work is supported by DFG project SK58/7-1. The first author is supported by DFG
Research Center Matheon in Berlin.

†Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136,
10623 Berlin, Germany, phone: +49 (0)30 314-28641, fax: +49 (0)30 314-25191,
({koch,nasrabadi}@math.tu-berlin.de)

‡Present address: Operations Research Center, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, (nasrabad@mit.edu)

1



2 R. KOCH, E. NASRABADI

Related Literature. The dynamic shortest path problem was first introduced by
Cooke and Halsey [9], who present an algorithm based on Bellman’s principle of
optimality. In the model proposed by Cooke and Halsey [9], arcs can be entered and
left only at integral points in time, leading to the so-called discrete-time model. Since
then, a number of authors (see, e.g., [1, 7, 8, 17]) have studied different aspects of the
discrete-time dynamic shortest path problem.

Although discretization of time leads to problems that are considerably easier
to solve, this approach suffers from a serious drawback: the points in time at which
decisions are made are fixed in advance, before the problem is solved. For many
applications, this is not a desired feature of the corresponding problem, since we
get only approximations of the optimum. In contrast, in the continuous-time model,
decisions can be made at arbitrary points in time.

The first work on dynamic network flows in the continuous-time model is due to
Philpott [18] and Anderson, Nash and Philpott [5], who study the dynamic maxi-
mum flow problem in a network with zero transit times and time-varying transit and
storage capacities. Anderson [2] introduces Continuous-time Dynamic Network Flow
Problems (CDNFP) within the space of bounded measurable functions and character-
izes the extreme points for the problem given rational transit times. Anderson, Nash,
and Perold [4] characterize extreme points for a general class of CDNFP, but with
zero transit time, so-called Separated Continuous Linear Programs (SCLP). Ander-
son and Pullan [6] develop a purification algorithm for SCLP, that is, the process of
turning an arbitrary feasible solution into an extreme point solution whose objective
function value is no worse. Hashemi and Nasrabadi [11] present a characterization
of extreme points and adapt the purification algorithm developed in [6] for CDNFP
with piecewise analytic problem data and rational transit times.

Pullan [22] examines a larger class of SCLP to include transit-times. For the
case that transit times are rational, he transforms the problem into a larger problem
which is very close to a special class of SCLP and develops interesting results. In
particular, Pullan [22] characterizes the extreme points and proves the existence of
piecewise analytic optimum extreme point solutions for the case where input functions
are piecewise analytic.

Research on the continuous-time version of the dynamic shortest path prob-
lem is conducted by, e.g., Orda and Rom [15, 16], Philpott [19], and Philpott and
Mees [20, 21]. In particular, Philpott [19] formulates the problem as a linear program
(LP for short) in a space of measures and investigates the relationship between the
problem and its LP formulation. Especially, he introduces a dual problem and proves
the absence of a duality gap. He also demonstrates the existence of an optimal ex-
treme point for the LP formulation and derives a correspondence between extreme
points and dynamic paths. Moreover, he establishes a strong duality result in the case
where the cost functions are Lipschitz-continuous.

In all of the work mentioned above, it is assumed that the transit times are
strictly positive. In particular, this assumption is critical to the arguments presented
by Philpott [19]. In this case, the feasible region of the LP formulation becomes
bounded with respect to a certain norm. This makes it possible to apply certain
results from the theory of linear programming in infinite-dimensional spaces (see,
e.g., Anderson and Nash [3]). This method no longer works for the case of nonpositive
transit times since the feasible region of the corresponding LP formulation may be
unbounded. Philpott [19] writes in the conclusion of his paper, “the assumption that
all transit times are strictly positive is central to the arguments presented”.



Extreme Points for Dynamic Shortest Path Problems 3

In this paper we extend Philpott’s work [19] to the case where transit times can
be also negative. Notice that the assumption that all transit times are strictly positive
is not too restrictive in direct applications of the dynamic shortest path problem. For
instance, when some material (e.g., a vehicle or a message) has to be sent between
two specified points in a network as quickly or as cheaply as possible. However, like
classical shortest path problems, instances with negative transit times arise in solving
more complicated problems. For example, verifying whether a given dynamic flow
has minimum cost, we have to scan the residual network for negative cycles (see
Chapter 6 in [14]). But, in general, the residual network contains arcs with negative
transit times. Hence, we cannot use the results in the literature and particularly not
those derived by Philpott [19]. This is our main motivation to study the dynamic
shortest path problem in the continuous-time setting, but – in contrast to Philpott’s
work – with possibly negative transit times.

As already mentioned, research on dynamic flows has been pursued in two different
and mainly independent directions with respect to time modeling: discrete-time and
continuous-time models. However, in many applications a joint combination of both
models is desirable. Measure theory provides an appreciate tool to unify discrete-time
and continuous-time dynamic network flows into a single model. In this regard, Koch,
Nasrabadi, and Skutella [13] study the dynamic maximum flow problem formulated in
a network where capacities on arcs are given as Borel measures and storage is allowed
at the nodes of the network. They generalize the concept of cuts to the case of these
Borel Flows and extend the famous MaxFlow-MinCut Theorem. In addition to the
paper [13], this paper provides a basic conceptual framework for Borel flows, but
concentrated on the dynamic shortest path problem, and lays the ground for further
research on dynamic network flows formulated in the space of measures.

Our Contribution. We advance the state of the art for dynamic shortest path
problems by bridging the gap between them and linear programming. Our results
generalize those achieved by Philpott [19] for the case of positive transit times, but
the ideas of the underlying analysis and proofs do not follow those of Philpott. In
particular, Philpott [19] appeals to abstract results from infinite-dimensional linear
programming, whereas our results are more constructive and can be used to charac-
terize extreme points for dynamic minimum cost flow problems in a space of measures.

In Section 2, a detailed definition of the continuous-time dynamic shortest path
problem is given. Like in the static case, the problem is formulated as the minimum
cost flow problem, but in contrast, the flow on each arc is modeled as a finite Borel
measure on the real line (time axis) indicating the amount of flow entering the arc
over time. This idea is due to Philpott [19], who gives an LP formulation of the
problem in space of measures. In Section 3, we give an alternative LP formulation,
which differs slightly from that formulated by Philpott [19].

The main results of this paper appear in Sections 4 and 5 where we show that
extreme points of the LP formulation are measures with finite support corresponding
to dynamic paths. To this end, in Section 4, we prove that the continuous part of
any extreme point solution is zero. The main idea of the proof is to start at a node
with some stored flow and then construct a search tree that tracts where this flow
goes (while preserving measure). We then use the assumption that the flow on each
arc is a finite measure to show that this construction terminates at another node with
storage after a finite number of steps. In Section 5, we extend this construction for
discrete solutions to show that extreme points correspond to dynamic paths.

Our results are based on novel ideas and new techniques, which, among others,



4 R. KOCH, E. NASRABADI

include a fair amount of advanced measure theory. For the convenience of the reader,
we give the basic definitions and results in measure theory that are required for the
purposes of this paper in Appendix A. In Appendix B we provide the proofs of some
technical lemmas.

2. Preliminaries and Problem Description. In this section we give a precise
description of the dynamic shortest path problem in the continuous-time model. To
motivate our treatment, we first describe the static shortest path problem.

We consider a directed graph G := (V,E) with finite node set V and finite arc
set E ⊆ V × V . An arc e from a node v to a node w is denoted by e := (v, w) to
emphasize that e leaves v and enters w. In this case, we say that node v is the tail
of e and w is the head of e and write tail(e) := v and head(e) := w. Further, we
use δ+(v) := {e ∈ E | tail(e) = v} and δ−(v) := {e ∈ E | head(e) = v} to denote the
set of arcs leaving node v and entering node v, respectively.

A walk P from node v to node w is an alternating sequence of nodes and
arcs of the form P := (v1, e1, v2, . . . , vn, en, vn+1) such that v1 = v, ei = (vi, vi+1)
for i = 1, . . . , n, and vn+1 = w. Throughout the paper we denote the walk P by the
arc sequence (e1, . . . , en), assuming that head(ei) = tail(ei+1) for i = 1, . . . , n. Fur-
ther, we denote by E(P ) := {e1, . . . , en} and V (P ) := {v1, . . . , vn+1} the set of arcs
and nodes, respectively, involved in P . The walk P is said to be a path from v to w
(or simply v-w-path) if v1, v2, . . . , vn+1 are pairwise distinct, except v1 and vn+1. If
in addition v1 = vn+1, the path P is called a cycle. A node w is said to be reachable
from node v if there exists a v-w-path.

Each arc e ∈ E has an associated cost ce. The cost of a path P = (e1, . . . , en)
is defined as the sum of the costs of all arcs in the path, that is, cP :=

∑n
i=1 cei .

Let s ∈ V be a given source and t ∈ V be a given sink. We assume without loss
of generality that every node of G is reachable from s and that t is reachable from
every node. The (static) shortest path problem is to determine a path from source s
to sink t with minimal cost. This problem can be seen as the problem of sending one
unit of flow from s to t at minimal cost and hence, can be formulated as follows:

min
∑

e∈E

cexe

s.t.
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe =







1 if v = s

0 if v 6= s, t

−1 if v = t

∀v ∈ V ,

xe ≥ 0 ∀e ∈ E .

(LP)

Here the decision variable xe gives the amount of flow on arc e. It is well-known that
the underlying constraint matrix is total unimodular. This implies that any extreme
point of (LP) corresponds one-to-one to a path from s to t with the same cost. In
particular, in any extreme point, xe is either 1 or 0 for each e ∈ E which indicates
whether or not the corresponding path involves the arc e, respectively. Thus, an
optimal extreme point of (LP) yields a shortest s-t-path.

So far we have considered the setting of the static shortest path problem in which
time does not enter the model. We now turn to the dynamic case in which each
arc e ∈ E has an associated transit time τe, specifying the required amount of time
to travel from the tail to the head of e. More precisely, if we leave node v at time θ
along an arc e = (v, w), we arrive at w at time θ + τe. Further, waiting is allowed at



Extreme Points for Dynamic Shortest Path Problems 5

the nodes of the network for later departure. In the following we extend the definition
of (static) walk, path, and cycle to the dynamic case.

A dynamic walk is a pair of a walk P = (e1, . . . , en) together with a family of
waiting times (λ1, . . . , λn+1). For i = 1, . . . , n + 1 after arriving at node vi ∈ V (P )
we wait λi time units before we leave vi. Given a starting time θ, let αi be the
time when we arrive at node vi and βi be the time when we departure from node vi.
For i = 1, . . . , n+ 1, the arrival time αi and the departure time βi can be computed
recursively as follows:

αi :=

{

θ for i = 1

βi−1 + τei−1
otherwise

and βi := αi + λi .

A walk P is called a dynamic path if P does not revisit any node (except the endpoints)
at the same point in time, i.e., [αi, βi] ∩ [αj , βj ] = ∅ for each 1 ≤ i < j ≤ n + 1
with vi = vj and (i, j) 6= (1, n + 1). Note that the underlying (static) walk of a
dynamic path need not to be a (static) path since it is allowed that a node can be
revisited at different points in time. Moreover, P is said to be a dynamic cycle if P
is a dynamic path, and in addition v1 = vn+1 and α1 = βn+1. Further, we say that
the path P has time horizon Θ if βn+1 = Θ.

Each arc e and each node v has a cost function ce : R → R and cv : R → R,
respectively. For a certain point in time θ ∈ R, the cost for leaving the tail of e
at time θ and traveling along e is ce(θ) and the cost per time unit for the waiting
at v at time θ is cv(θ). The cost of a dynamic walk P = (e1, . . . , en) with arrival
times α1, . . . , αn+1 and departure times β1, . . . , βn+1 is thus given by

cost(P ) :=

n∑

i=1

cei(βi) +

n+1∑

i=1

∫ βi

αi

cvi(θ) dθ .

Here the first sum gives the cost for traveling along arcs in the path and the second
one gives the cost for waiting at nodes of the path. A dynamic path P from v to w
is called a dynamic shortest path if cost(P ) ≤ cost(P ′) for all dynamic v-w-paths P ′

with the same starting time and the same time horizon as P .
Given a source s ∈ V , a sink t ∈ V , and a time horizon Θ, the continuous-time

dynamic shortest path problem is to determine a dynamic shortest path from s to t
with starting time 0 and time horizon Θ:

Continuous-time Dynamic Shortest Path Problem (CDSP)

Input: A network consisting of a directed graph G := (V,E), cost func-
tions (ce)e∈E and (cv)v∈V , a source s ∈ V , a sink t ∈ V , and a time
horizon Θ,

Task: Find a dynamic shortest s-t-path with starting time 0 and time
horizon Θ.

For the case that transit times as well as the time horizon are integral and further,
waiting times have to be integral, the problem is a discrete-time model. Actually, in
the discrete-time model, one is only allowed to leave each node at integral points
in time. Hence, the resulting problem can be solved by the time-expanded network
technique (see, e.g., [10]). In this paper we focus on the more challenging continuous-
time model in which we can leave each node at any point in time and further, transit
times as well as the time horizon can be any real value.



6 R. KOCH, E. NASRABADI

Throughout the paper, if not mentioned otherwise, the starting time and the
time horizon of a dynamic path from source s to sink t are assumed to be 0 and Θ,
respectively.

3. An Infinite-dimensional Linear Program for CDSP. We observed that
the static shortest path problem has an equivalent LP formulation as (LP). More
precisely, there is a one-to-one correspondence between static s-t-paths and extreme
points of (LP) which preserves costs. Hence, a natural question is “Does CDSP have
an equivalent LP formulation?” In order to answer this question we go along the
same lines as in the static case. In fact, CDSP can be seen as the problem of sending
one unit of flow from source s at time 0 to sink t at time Θ at minimal cost which
can be modeled as a minimum cost flow over time problem. Unlike the static case
the flow over time on each arc e ∈ E is given by a measure xe on the real line R
(time axis) which assigns to each suitable subset B a nonnegative real value xe(B).
Intuitively, xe(B) is interpreted as the amount of flow entering arc e within the times
in the subset B. This idea is due to Philpott [19], who formulates CDSP as a linear
program in space of measures. In what follows, we give a detailed description of
the LP formulation for CDSP, which differs slightly from that of Philpott [19] and
is easier to recognize as a generalization of (LP). But first we motivate the use of
measures.

Let B be the collection of all intervals of R, whose elements can be seen as time
intervals. In order to distribute flow over time on an arc e ∈ E we assign a value xe(I)
to each time interval I, determining the amount of flow entering arc e within the time
interval I. Thus, intuitively, the function xe : B → R has to satisfy the following
properties:
(i) The flow assigned to the empty set is 0, i.e., xe(∅) = 0.
(ii) An amount of flow is always nonnegative, i.e., xe(I) ≥ 0 for all I ∈ B.
(iii) For any countable collection (Ii)i∈N of pairwise disjoint intervals in B, it holds:

xe

(
⋃

i∈N

Ii

)

=
∑

i∈N

xe(Ii) .

On closer inspection of property (iii) we observe that B must be closed under
countable unions of its members. Otherwise property (iii) is not well-defined. In
addition, we require that B is closed under complementation. Henceforth, we extend B
to the smallest set containing all (open) intervals which is closed under countable union
and complementation. We call B the Borel σ-algebra on R and a set B ∈ B a Borel
set or a measurable set. In this manner properties (i)–(iii) make xe a Borel measure.
Thus, measures provide an appropriate tool for defining flow distributions over time.

Based on the above observations, we define a Borel flow x by Borel measures

xe : B → R e ∈ E .

For a Borel set B ∈ B the value xe(B) gives the amount of flow entering arc e within
the times in B. For the purposes of the paper, we require xe to be a finite Borel
measure on R, i.e., |xe| := xe(R) < ∞ for all e ∈ E. This means that the total
amount of flow traversing an arc is finite. Through the paper, we focus on Borel flows
and therefore the term flow is used to refer to Borel flows.

Recall that the problem we want to model is to send one unit of flow from s

at time 0 to t at time Θ so that the cost is minimized. This means that there is a
supply of one flow unit at the source at time 0, and a demand of one flow unit at the



Extreme Points for Dynamic Shortest Path Problems 7

sink at time Θ. Hence, the supply or demand at a node v is given by a signed Borel
measure bv defined as

bv(B) :=







1 v = s, 0 ∈ B

−1 v = t,Θ ∈ B

0 otherwise

∀B ∈ B .

The value |bv(B)| is interpreted as the amount of supply or demand at node v over
the Borel set B depending on whether bv(B) > 0 or bv(B) < 0, respectively.

Flow has to be stored at a node v ∈ V if more flow enters v than leaves that node
at certain points in time. Given a flow x, the storage at node v is determined by a
signed measure yv defined as

yv(B) := bv(B)−
∑

e∈δ+(v)

xe(B) +
∑

e∈δ−(v)

xe(B − τe) ∀B ∈ B , (3.1)

where B−τe := {θ−τe | θ ∈ B}. For a Borel set B the value yv(B) shows the amount
of flow which is in total additionally stored at v over B if yv(B) ≥ 0. Note that flow
can also leave v, even if yv(B) ≥ 0. Further, if yv(B) ≤ 0 the value −yv(B) can be
interpreted as the total amount of stored flow leaving v over B. Since the space of
signed measures is a vector space (see Appendix A), (3.1) can be rewritten as follows:

∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

(xe − τe) + yv = bv .

Here xe−τe is understood to be a Borel measure defined by (xe−τe)(B) := xe(B−τe)
for every Borel set B ∈ B.

We know that every signed Borel measure can be uniquely decomposed into a sum
of a discrete and a continuous measure (see for more details Appendix A). This implies
that for each arc e the flow xe is the sum of a continuous flow xce and a discrete flow xde .
Similarly, for each node v ∈ V the storage y is the sum of a continuous storage yc and
a discrete storage yd. Since the supply or demand bv is a discrete measure for each
node v, we get the following equation for xc = (xce)e∈E and yc = (ycv)e∈E :

∑

e∈δ+(v)

xce −
∑

e∈δ−(v)

(xce − τe) + ycv = 0 ∀v ∈ V . (3.2)

A flow x is called discrete (continuous) if xce = 0 (xde = 0) for all arcs e ∈ E. So it
follows from (3.2) that yc = 0 whenever x is discrete.

For a node v ∈ V we let Yv be the distribution function of the storage yv, that is,
Yv(θ) := yv((−∞, θ]), for all θ ∈ R. So we have

Yv(θ) = bv((−∞, θ])−
∑

e∈δ+(v)

xe((−∞, θ]) +
∑

e∈δ−(v)

xe((−∞, θ − τe]) ∀θ ∈ R .

Here the first sum denotes the total amount of flow arriving at node v up to time θ
and the second one represents the total amount of flow leaving node v up to time θ.
Further, |bv((−∞, θ])| gives the total amount of supply or demand at node v up to
time θ, depending on whether bv((−∞, θ]) is positive or negative, respectively. Thus,
the value Yv(θ) gives us the amount of flow stored at node v at the point in time θ ∈ R.
It is assumed that there is no initial storage at any node and flow must not remain at



8 R. KOCH, E. NASRABADI

any node. This means Yv(−∞) := limθ→−∞ Yv(θ) and Yv(∞) := limθ→∞ Yv(θ) must
be zero for each node v ∈ V . Notice that both limits exist since Yv is of bounded
variation.

A flow x with corresponding storage y fulfills the flow conservation constraint at
node v if

Yv(θ) ≥ 0 ∀θ ∈ R .

The flow x fulfills the strict flow conservation constraints at node v if the equality
holds in the above inequality. This implies that storage is not allowed at v.

We suppose that the cost functions (ce)e∈E and (cv)v∈V are measurable. The
value ce(θ) can be interpreted as the cost per flow unit for sending flow into arc e at
time θ and cv(θ) as the cost per time unit for storing one unit of flow at node v at
time θ. The cost of a flow x with corresponding storage y is thus given by

cost(x) :=

∫ ∞

−∞

∑

e∈E

ce(θ) dxe +

∫ ∞

−∞

∑

v∈V

cv(θ)Yv(θ) dθ . (3.3)

Summarizing the above discussion, the problem of sending one unit of flow from
a source s at time 0 to a sink t at time Θ at minimal cost can be expressed as the
following linear program in the space of signed Borel measures:

min

∫ ∞

−∞

∑

e∈E

ce(θ) dxe +

∫ ∞

−∞

∑

v∈V

cv(θ)Yv(θ) dθ

s.t.
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

(xe − τe) + yv = bv ∀v ∈ V ,

xe ≥ 0 ∀e ∈ E ,

Yv ≥ 0 ∀v ∈ V .

(LPM)

This formulation is quite similar to the formulation of (LP) and can be seen as its
extension. In fact if waiting is not allowed and the transit times as well as the time
horizon are zero, then (LPM) reduces to (LP).

A flow x with corresponding storage y satisfying the constraints of (LPM) is
called a feasible solution or feasible flow. Similarly as in the finite-dimensional linear
programming, a feasible solution of (LPM) is called an extreme point if it cannot be
derived from a convex combination of any two other feasible solutions. In the next
section we want to show that extreme points of (LPM) correspond to dynamic s-t-
paths with the same cost and vice versa. Hence, we have to encode a dynamic path
with measures, whereas in the static case a path is identified with its incidence vector
whose elements are 0 or 1. Let P := (e1, . . . , en) be a dynamic path with arrival
times αi and departure times βi for i = 1, . . . , n+1. The incidence vector χP of P is
a family (χP

e )e∈E of discrete measures defined by

χP
e :=

{∑

i|ei=e χ
P
i if e ∈ E(P )

0 otherwise
∀e ∈ E , (3.4)

where

χP
i (B) :=

{

1 if αi ∈ B

0 otherwise
∀B ∈ B i = 1, . . . , n .



Extreme Points for Dynamic Shortest Path Problems 9

The corresponding storage ψP := (ψP
v )v∈V is defined by:

ψP
v := bv −

∑

e∈δ+(v)

χP
e +

∑

e∈δ−(v)

(χP
e − τe) ∀v ∈ V . (3.5)

For each v ∈ V let ΨP
v denote the distribution function of the measure ψP

v , i.e.,
ΨP

v (θ) := ψP
v ((−∞, θ]) for all θ ∈ R. It is not hard to observe that

ΨP
v (θ) =

{∑

i|vi=v Ψ
P
i (θ) if v ∈ V (P )

0 otherwise
∀v ∈ V ,

where

ΨP
i (θ) :=

{

1 for θ ∈ [αi, βi)

0 otherwise
∀i = 1, . . . , n+ 1 .

Therefore, ΨP
v ≥ 0 and the incidence vector χP is a feasible solution of (LPM). In the

following section we show that χP is not only a feasible solution, but also an extreme
point of (LPM).

4. Continuous Part of Extreme Points. In this section, we show that the
continuous part of any extreme point is 0. We begin our discussion with an important
result concerning the characterization of extreme points. Roughly speaking, it deals
with the following situation: whenever there exists a walk P carrying a continuous
measure of flow and in addition there is waiting at the beginning and at the end but
not at intermediate nodes of P , then the corresponding feasible solution is not an
extreme point. For the proof, we require the following technical lemma, proven in
Appendix B.

Lemma 4.1. Let µ be a finite signed measure on R with a nonnegative distribution
function F . Let S := {θ ∈ R | F |(a,b) > 0 for some interval (a, b) ∋ θ} be the set of
points with a strictly positive neighborhood regarding F . Then R\S is a strict µc-null
set, i.e., µc|R\S = 0.

For a signed measure µ the positive and negative part is denoted by µ+ and µ−,
respectively (see Appendix A). This is used in the following lemma.

Lemma 4.2. Let x with corresponding storage y be a feasible solution for (LPM)
and P = (e1, . . . , en) be a walk from node v to node w. Further, assume that there
exists a positive measure f such that

f − (τe1 + . . .+ τen) ≤ yc−v , (4.1)
∑

i|ei=e

f − (τe1 + . . .+ τei ) ≤ xce ∀e ∈ E , (4.2)

f ≤ yc+w . (4.3)

Then x is not an extreme point.
Proof. We show that x can be written as the convex combination of two fea-

sible solutions x1 and x2. The basic idea is to increase and decrease x along P to
construct x1 and x2. This will change the flow x on arcs e1, . . . , en and affect the
storage y at endpoints v and w. To maintain the feasibility of x1 and x2, we first
find a closed interval satisfying certain properties. We then send at the beginning
of the interval less flow and at the end more flow as compared with x. But in total



10 R. KOCH, E. NASRABADI

we send the same amount of flow as x over the interval along P . This gives us x1.
The solution x2 is constructed the other way around, i.e., we send more flow at the
beginning of the interval and less flow at the end.

Let us first look for an interval which ensures that we are able to increase and
decrease the flow x slightly along P without violating feasibility. Let τ :=

∑n
k=1 τei

be the transit time of the walk P . Notice that P can be seen as a dynamic walk with
zero waiting times at nodes. We show that there exists a closed interval I satisfying
the following properties:

1. f(I) > 0 implying that the flow can be reduced along P over I − τ with a
nonzero measure;

2. Yv|I−τ > ǫ and Yw|I > ǫ for some ǫ > 0 implying that the storage can be
reduced at v and w.

As in Lemma 4.1, we define

Sv := {θ ∈ R | Yv|I′ > 0 for some open interval I ′ ∋ θ},
Sw := {θ ∈ R | Yw|I′ > 0 for some open interval I ′ ∋ θ}.

Because of (4.3) we know that f is absolutely continuous with respect to yc+w and, as
a consequence, with respect to |ycw| := yc+w + yc−w . On the other hand, it follows from
Lemma 4.1 that ycw|R\Sw

= 0. Hence, we can conclude that |ycw|(R \ Sw) = 0 and
further, f = f |Sw

since f is absolutely continuous with respect to |ycw|. Similarly, (4.1)
and Lemma 4.1 imply f = (f − τ)|Sv

. Consequently, we get from the definitions of Sv

and Sw that there exists an θ ∈ supp(f) and an open interval I ′ containing θ such
that Yv|I′−τ > 0 and Yw|I′ > 0. Since θ is contained in the support of f , every closed
interval I := [α, β] ⊆ I ′ with θ ∈ (α, β) satisfies the properties above.

In the following let I = [α, β] be a closed interval and ǫ > 0 such that f(I) > 0,
Yv|I−τ > ǫ, and Yw|I > ǫ. Without lost of generality, assume that f(R \ I) = 0
(i.e., supp(f) ⊆ I). This can be done by letting f := f |I . Further, let α1, β1 ∈ I

with α1 ≤ β1 be chosen in such a way that f([α, α1]) = f([β1, β]) = min{ǫ, f(I)2 }.
Note that α1 and β1 exist since f is a continuous measure. Then we define

f1 := f |(α,α1) − f |[β1,β] ,

f2 := −f |(α,α1) + f |[β1,β] = −f1 .

It is easy to see that f1+f2 = 0 and that |f1(B)| < ǫ and |f2(B)| < ǫ for all measurable
set B. We now define xq for q = 1, 2 by

xqe = xqe +
∑

i|ei=e

(
fq|[α,β] − (τ1 + . . .+ τi)

)
∀e ∈ E .

The equation f1 + f2 = 0 implies 1
2x

1 + 1
2x

2 = x. Thus it remains to check the
feasibility of x1 and x2. The flows x1 and x2 are nonnegative because of (4.2) and
the fact that |f1| ≤ f and |f2| ≤ f . Let y1 and y2 be the corresponding storage of x1

and x2, respectively. It is not hard to see that for q = 1, 2 yq is equal to y except for
nodes v and w where we have yqv = yv − (fq − τ) and yqv = yw − fq. It then follows
from the definition of f1 and f2 that the distribution functions Y 1, Y 2, and Y coincide
everywhere except on I − τ and I at nodes v and w, respectively. Within the points
in time in I − τ and I at nodes v and w, respectively, we get

Y q
v |I−τ ≥ 0, Y q

w |I ≥ 0, q = 1, 2 ,



Extreme Points for Dynamic Shortest Path Problems 11

s t

v

−1

0

0

Fig. 4.1. Network for Example 4.3. The transit times are shown on the arcs.

due to the fact that |f1(B)| < ǫ, |f2(B)| < ǫ and the definition of I. This yields the
desired result.

As already mentioned, our first goal in this section is to show that the continuous
part of an extreme point is 0. Thus, if we find a walk and a nonzero measure satisfying
the assumptions of Lemma 4.2 whenever the continuous part is positive, we are done.
The next example shows that an algorithm constructing such a path could cycle and,
hence, must be designed carefully.

Example 4.3. Consider the network depicted in Figure 4.1 where the transit
times are shown on the arcs and suppose that f is some continuous Borel measure such
that f([0, 1]) = 1 and f(R \ [0, 1]) = 0. Let Θ := 0 be the time horizon and consider
the following feasible solution of (LPM): The flow f circulates on the cycle C induced
by s and v. Every time the flow reaches the node v half of the remaining flow is sent
in the arc (v, t). Thus we get the following solution

x(s,v) =

∞∑

i=0

1

2i
(f + i), x(v,s) =

1

2
(x(s,v) + 1), x(v,t) =

1

2
(x(s,v) + 1).

Every finite s-t-walk P satisfies the assumptions of Lemma 4.2. The corresponding
measure is f

2k assuming that the cycle C is used k− 1 times by P . On the other hand
an uncarefully designed algorithm could be caught within the cycle C.

If we want to apply Lemma 4.2 we have to ensure that there exists a node whose
continuous part of storage is nonzero. The next lemma shows that whenever we have
an extreme point x such that the continuous part of the corresponding storage is 0,
then the continuous part of x has to be 0 as well.

Lemma 4.4. Let x be an extreme point of (LPM) with corresponding storage y.
If yc = 0, then xc = 0.

Proof. Since yc = 0, from (3.2) we get

∑

e∈δ+(v)

xce −
∑

e∈δ−(v)

(xce − τe) = 0 ∀v ∈ V.

Thus we can add and subtract this equation from equation (3.1) without changing its
the right hand side. This yields two feasible solutions x1 := x + xc and x2 := x− xc

both with corresponding storage y if xc  0. Since x = 1
2 (x

1 + x2) is a convex
combination of two feasible solutions, x is not an extreme point.

Having established Lemma 4.4, we consider the case where ycv 6= 0 for some node v,
which requires a more complicated treatment. In this case, we prove the existence of a
walk and a nonzero measure satisfying the assumptions (4.1)-(4.3) of Lemma 4.2. The
approach is based on an algorithm, which is a kind of the well-known breadth-first



12 R. KOCH, E. NASRABADI

v∗1

e∗

vT

eT , feT

Fig. 4.2. Construction of the BFS-tree.

search (BFS). The node set and arc set of the BFS-tree are denoted by VT and ET ,
respectively. Each node in VT corresponds to one node in V and each arc in ET to one
arc in E. Actually, the BFS-tree contains in general multiple copies of a node v ∈ V

and multiple copies of an arc e ∈ E. An arc in ET whose head is a leaf is called a leaf
arc. The BFS-tree is an out-tree and constructed in a way that each path starting
at the root node corresponds to a walk satisfying the assumptions (4.1) and (4.2).
The termination condition ensures that also the assumption (4.3) is satisfied. An
illustration of the algorithm is shown in Figure 4.2.

Before giving a detailed description of the algorithm, we present the following
lemma that will help us to show correctness. For the proof, see Appendix B.

Lemma 4.5. Let µ, µ1, . . . , µn be finite Borel measures on R with µ ≤ ∑n
i=1 µi.

Then there exists Borel measures µ̄1, . . . , µ̄n such that µ̄i ≤ µi, for i = 1, . . . , n
and µ =

∑n
i=1 µ̄i.

BFS Algorithm

Input: A feasible solution x of (LPM) with corresponding storage y and a
node v1 with yc−v1 > 0.

Output: A walk and a measure satisfying the assumptions of Lemma 4.2.

(1) Init x̄e := xce for all e ∈ E, VT := ∅, and ET := ∅.
(2) Add an (artificial) arc e∗ to ET and let the head of e∗ be the copy v∗1 of v1. Assign

the flow fe∗ := yc−v1 to e∗.
(3) For each leaf arc eT ∈ ET with head vT do:

(a) Let v ∈ V be the original node of vT and τeT be transit time of the original
arc of eT (In the case of eT = e∗ we set τeT := 0).

(b) If feT − τeT and yc+v are not mutually singular, then go to (5).
(c) For each arc e ∈ δ+(v) compute a (continuous) measure fe such that fe ≤ x̄e

for all e ∈ δ+(v) and feT − τeT =
∑

e∈δ+(v) fe.

(d) For each arc e ∈ δ+(v) with fe  0 add a copy e′ to ET , connect e
′ to eT

via vT and set fe′ := fe and x̄e := x̄e − fe.
(4) Go to (3).
(5) Return the walk consisting of the original arcs of the unique path from v∗1 to vT



Extreme Points for Dynamic Shortest Path Problems 13

in the BFS-Tree and the measure f := min{feT − τeT , y
c+
v }.

In what follows, we analyse the correctness of the BFS Algorithm in details.
One complete execution of Step (3) is called phase. Thus, in each phase every leaf
arc is treated and the depth of the tree is increased by 1. Note that the first phase is
not interrupted since eT = e∗, v = v1, fe∗ = yc−v1 , and we know that yc−v1 and yc+v1 are
mutually singular. Further, x̄e denotes the remaining continuous flow on arc e since x̄e
is initialized with xce and after assigning the flow fe to a tree arc e′ in Step (3d) we
reduce x̄e by the same flow. The next lemma shows that the BFS Algorithm works
properly.

Lemma 4.6. The BFS Algorithm is well-defined and correct. In particular,
the algorithm is able to execute Step (3c), terminates in a finite time, and produces
the desired output.

Proof. Assume that we are at Step (3c) and let e∗, eT and v be as defined by
the algorithm. With each arc e ∈ E we associate two measures ge and gle, which
denote the total flow assigned to e within the BFS-tree and the total flow assigned
to e within the leaf arcs of the BFS-tree, respectively. More precisely, measures ge
and gle are defined by

ge :=
∑

e′∈ET |e′=e

fe′ , gle :=
∑

leaf arc e′|e′=e

fe′ .

Note that the artificial arc e∗ does not appear in any of the two sums above. Steps
(3a)-(3d) ensure that flow (ge)e∈ET

fulfills the strict flow conservation constrains at
intermediate nodes of the BFS-tree. Hence, for each intermediate node v ∈ VT we
get:

∑

e∈δ−(v)

(ge − τe)−
∑

e∈δ+(v)

ge =
∑

e∈δ−(v)

(gle − τe)−
{

fe∗ if v = v1

0 otherwise

≥
∑

e∈δ−(v)

(gle − τe)− yc−v . (4.4)

Further, because of Step (3d) we see that the sum x̄e + ge remains constant during
the execution of the algorithm. In fact, we always have

xce = x̄e + ge ∀e ∈ E . (4.5)

Therefore, by substituting x̄e + ge instead of xc in (3.2), we get

ycv =
∑

e∈δ−(v)

((x̄e − τe) + (ge − τe))−
∑

e∈δ+(v)

(x̄e + ge) .

On the other hand, x̄e ≥ 0 for each arc e because of earlier executions of (3c). Now
it follows from the above equation and inequality (4.4) that

∑

e∈δ−(v)

(gle − τe) ≤ yc+v +
∑

e∈δ+(v)

x̄e .

Because of Step (3b), we know that feT − τeT and yc+v are mutually singular. Hence,
from the above inequality we obtain

feT − τeT ≤
∑

e∈δ+(v)

x̄e .



14 R. KOCH, E. NASRABADI

Now we can construct a decomposition of feT − τeT into
∑

e∈δ+(v) fe so that fe ≤ x̄e

for each arc e ∈ δ+(v) (see for more details Lemma 4.5). This establishes the validity
of Step (3c).

Next we prove the termination of the algorithm. We first observe that the number
of tackled leafs in one phase is finite. This can be seen by induction and the fact that
the number of outgoing arcs of an original node is finite. Thus it suffices to show that
the number of phases is finite. In each phase the flow in the leaf arcs is completely
routed to the outgoing arcs of the corresponding head nodes. Thus, by induction the
total amount of flow in the leaf arcs is always equal to fe∗1 (R) =: ǫ. Hence, in each
phase the total amount of flow (

∑

e∈E ge)(R) is increased by ǫ. On the other hand,
because of (4.5) the total amount of flow is bounded by M := (

∑

e∈E x
c
e)(R) which is

finite since (xe)e∈E are assumed to be finite measures. Thus, the number of iterations
is bounded by

⌈
M
ǫ

⌉
and the algorithm terminates in a finite time.

For the correctness of the algorithm we show that the output of the algorithm
satisfies the assumptions (4.1)-(4.3) of Lemma 4.2. Consider Step (3c). Since this
step is well-defined the flow which is assigned to the outgoing arcs of v is smaller than
the flow feT . Therefore we obtain the following invariance from Steps (2) and (4.5):
For each tree arc eT ∈ ET with head node vT the walk consisting of the original arcs
of the unique path from v∗1 to vT and the measure feT satisfies (4.1) and (4.2). Hence,
the correctness of the algorithm follows directly from the termination condition in
Step (3b) and the definition of f in the final Step (5). Note that f is nonzero since feT
and yc+v are not mutually singular when reaching Step (5). This completes the proof
of the lemma.

The following lemma concludes the first part of this section.

Lemma 4.7. Let x with corresponding storage y be an extreme point of (LPM).
Then xc = 0.

Proof. We assume the opposite and derive a contradiction. Suppose that xce is
nonzero for some arc e. Then, it follows from Lemma 4.4 that ycv is nonzero for some
node v. On the other hand, we can conclude from (3.2) that

∑

v∈V

ycv(R) =
∑

v∈V




∑

e∈δ−(v)

xce(R)−
∑

e∈δ+(v)

xce(R)



 = 0 .

since, for each edge e = vw ∈ E, the term xce(R) occurs once with a positive sign
if w is considered in the sum above and once with a negative sign if v is considered in
the sum above. Hence, we assume without loss of generality that yc−v  0. Then, the
BFS Algorithm which gets as input the feasible solution x and the node v, gives
as output a walk and a nonzero measure satisfying the assumptions of Lemma 4.2.
Then Lemma 4.2 implies that x is not an extreme point, which is a contradiction.
This yields the result.

5. Discrete Part of Extreme Points. Up to this point, we have shown that xc

must be zero whenever x is an extreme point of (LPM). In this section, we restrict
our attention to discrete feasible solutions, when identifying extreme points and show
that an extreme point of (LPM) corresponds to a dynamic s-t-path. We first give
some definitions.

Suppose that x is a discrete feasible solution of (LPM) with corresponding stor-
age y and that P = (e1, . . . , en) is a dynamic walk with arrival times α1, . . . , αn+1 and
departure times β1, . . . , βn+1. Let δ be a positive real number. The walk P carries a



Extreme Points for Dynamic Shortest Path Problems 15

flow of value δ (with respect to x) if

xek({βk}) ≥ δ ∀i = 1, . . . , n ,

Yvk(θ) ≥ δ ∀θ ∈ [αi, βi), i = 1, . . . , n+ 1 .

The flow value of P is defined as the maximum amount of flow that can be carried
by P . The walk P is called a flow-carrying walk if its flow value is positive. For the
case where P is a dynamic path or dynamic cycle, it is called a flow-carrying path or
cycle, respectively.

For a dynamic s-t-path let χP be the corresponding incidence vector and ψP be
the corresponding storage, respectively, given by (3.4) and (3.5). Then it is not hard
to observe that P carries a flow of value δ if and only if δ · χP

e ≤ xe for all e ∈ E

and δ ·ΨP
v ≤ Yv for all v ∈ V .

Next we show that an extreme point provides a flow-carrying s-t-path. We do
this along the same lines as showing that the continuous part of an extreme point
is 0. Here a BFS-tree is constructed in a way that each path starting at the root node
corresponds to a flow-carrying walk. To do so, we assign to each tree arc eT = (vT , wT )
a measure feT whose support consists only of one point in time θ. This is interpreted
as follows: Let e = (v, w) be the original arc of eT . Then the arc e is entered at time θ
in the corresponding walk, i.e., the departure time from node v is θ and consequently
the arrival time at node w is θ + τe. If we consider the unique path from the root
node to wT , then the corresponding s-w-walk carries a flow of value feT ({θ}). The
termination condition ensures that in the end we obtain a flow carrying s-t-walk.

The construction of the BFS-tree follows the same lines as the Continuous BFS
Algorithm. But in contrast, we have to take care that the constructed BFS-Tree has
finite width since incoming flow could be split into an infinite but countable number
of different parts. Therefore in Step (3c) of the algorithm, we do not propagate the
entire flow of an arc. In particular, we use the following result, the proof of which can
be found in Appendix B.

Lemma 5.1. Let µ1 and µ2 be two finite discrete measures. Furthermore, let γ
be a signed measure with γ(R) = 0 and nonnegative distribution function Fγ such
that µ2 + γ ≥ µ1. Consider a point θ ∈ R and let ν1 ≤ µ1 be a measure with
supp(ν1) = {θ}. Then for every ρ ∈ [0, 1) there exists a (discrete) measure ν2 ≤ µ2

with finite support and a signed (discrete) measure η with distribution function Fη

such that:

ρ · ν1 = η + ν2 ,

0 ≤ Fη ≤ Fγ ,

η(R) = 0 .

We are now in a position to give a detailed description of the algorithm.

Discrete BFS Algorithm

Input: A discrete feasible solution x of (LPM) with corresponding storage
y.

Output: An s-t-walk carrying a flow of value of f .

(1) Init x̄e := xe for all e ∈ E, VT := ∅, ET := ∅, i := 1, and ρ := 3
4 .

(2) Add an (artificial) arc e∗ to ET and let the head of e∗ be the copy s∗ of s. Assign
the measure fe∗ := bs to e∗.



16 R. KOCH, E. NASRABADI

(3) For each leaf arc eT ∈ ET with head vT do:
(a) Let v ∈ V be the original node of vT and τeT be transit time of the original

arc of eT (In the case of eT = e∗ we set τeT := 0). Further, let θ ∈ R be such
that {θ − τeT } = supp(feT ).

(b) If v = t, θ ≤ T and ȳt|(θ,T ] > ǫ for a some positive ǫ ∈ R then go to (5).
(c) Compute a signed measure yvT and for each arc e ∈ δ+(v) a measure fe

with finite support such that fe ≤ x̄e, 0 ≤ YvT ≤ Ȳv, yvT (R) = 0 and
ρ · (feT − τeT ) = yvT +

∑

e∈δ+(v) fe

(d) For each arc e ∈ δ+(v) and each time ϑ ∈ supp(fe) add a copy e′ to ET ,
connect e′ to eT via vT and set fe′ := fe|{ϑ}, x̄e := x̄e−fe′ , and ȳv := ȳv−yvT .

(4) Set i := i+ 1 and then ρ := 2i+1
2i+2 . Go to (3).

(5) Return the dynamic walk corresponding to the unique path from s∗ to vT in the
BFS-Tree and the positive real number δ := min{feT ({θ − τeT }), ǫ}.
It is worth mentioning that the continuous and the discrete BFS algorithm are

quite similar. Regardless of the kinds of measures participating in these algorithms,
the discrete BFS algorithm can be seen as a generalization of the continuous version
as follows: We obtain the notion of the continuous BFS algorithm if we set ρ always
equal to 1 and assume that yvT computed in Step (3c) is always zero. As in the
continuous BFS algorithm, x̄e is the remaining flow on an arc e. In addition ȳv is the
remaining storage of a node v.

Lemma 5.2. The Discrete BFS Algorithm works correctly, i.e., Step (3c)
is always valid executable, the algorithm terminates, and the output is a flow carry-
ing s-t-path.

Proof. Assume that we reach Step (3c) and let e∗, eT and v be as defined by the
algorithm. We define for each arc e ∈ E two measures: The measure ge is the total
flow assigned to e within the BFS-tree and gle is the total flow assigned to e within
the leaf arcs of the BFS-tree. In addition, we define a measure zv for each node v ∈ V

determining the stored flow which is already propagated. Thus, we have:

ge :=
∑

e′∈ET |e′=e

fe′ , gle :=
∑

leaf arc e′|e′=e

fe′ , zv :=
∑

v′∈VT |v′=v

yv′ .

Note that the artificial arc e∗ does not appear in any of the first two sums above and
that vT does not appear in the last sum. Because of the above definitions and the
flow conservation equation in Step (3c) we get:

∑

e∈δ−(v)

(ge − τe)−
∑

e∈δ+(v)

ge ≥ zv +
∑

e∈δ−(v)

(gle − τe)−
{

fe∗ if v = v1

0 otherwise

= zv +
∑

e∈δ−(v)

(gle − τe)− b+v . (5.1)

Further, because of Step (3d) we see that the two sums x̄e + ge and ȳv + zv remain
constant during the execution of the algorithm. Thus we have

x̄e + ge = xe ∀e ∈ E and ȳv + zv = yv v ∈ V . (5.2)

Further, by induction we have ȳv(R) = 0 and Ȳv ≥ 0 for each v ∈ V . Inserting the
first equation of (5.2) in (3.1) we obtain:

yv = bv +
∑

e∈δ−(v)

((x̄e − τe) + (ge − τe))−
∑

e∈δ+(v)

(x̄e + ge) .



Extreme Points for Dynamic Shortest Path Problems 17

On the other hand, we know that x̄e ≥ 0 for each arc e because of (3c). Hence the
above equation and inequality (5.1) imply

∑

e∈δ−(v)

(gle − τe) ≤ −b−v + (yv − zv) +
∑

e∈δ+(v)

x̄e .

Further, Step (3b) implies that there exists a θ̄ ∈ R ∪ {∞} with ȳv(−∞, θ̄)) = 0 such
that the measures (feT − τeT ) − ȳv|(−∞,θ̄) and b−v (−∞, θ̄)) + ȳv|[θ̄,∞) are mutually

singular (note that in the case v = t we can choose θ̄ ∈ [θ,Θ] and otherwise we
choose θ̄ = ∞). Then we can conclude:

feT − τeT ≤ ȳv|(−∞,θ̄) +
∑

e∈δ+(v)

x̄e .

By the application of Lemma 5.1 we obtain a discrete measure ν ≤ ∑

e∈δ+(v) x̄e of

finite support and the signed measure yvT satisfying ρ · (feT − τeT ) = yvT + ν. Now
we apply Lemma 4.5 to ν in order to find the measure fe for each e ∈ δ+(v). From
the conclusions of both Lemmas 4.5 and 5.1, we get the validity of Step (3c).

For proving the termination of the algorithm we first observe that the number
of tackled leafs in one phase is finite. This is seen by induction and the fact that in
Step (3d) only a finite number of (new) leafs are added to the tree. Thus it suffices
to show that the number of phases is finite. At the end of each phase the amount of

flow in the new leave arcs is ρ times the amount of flow in the old leafs. Let ρi =
2i+1
2i+2

be the ρ used in phase i. Then at the end of phase i the amount of flow in the new
leaves is equal to

fe∗(R) ·
i∏

j=1

ρj = bs(R) ·
i∏

j=1

2j + 1

2j + 2
= 1 · 1

2i

i∏

j=1

2j + 1

2j−1 + 1
=

2i + 1

2i
≥ 1

2
. (5.3)

Hence, in each phase the total amount of flow (
∑

e∈E ge)(R) is increased by at least 1
2 .

Further, because of (4.5) the total amount of flow is bounded by M := (
∑

e∈E x)(R)
which is finite since we restrict to finite measures. Thus, the number of iteration is
bounded by 2M and the algorithm terminates in finite time.

To prove the correctness of the algorithm it is enough to show that the output is
a walk-carrying flow of amount f . Consider Step (3c) and a point in time ϑ ≥ θ+τeT .
It holds:

∑

e∈δ+(v)

fe((ϑ,∞)) =
∑

e∈δ+(v)

fe(R)−
∑

e∈δ+(v)

fe((−∞, ϑ])

= ρ · (feT − τeT )((−∞, ϑ])−
∑

e∈δ+(v)

fe((−∞, ϑ])

= yvT ((−∞, ϑ]) .

For e ∈ δ+(v) and ϑ ∈ supp(fe) we know YvT |[θ+τeT ,ϑ) ≥ fe(ϑ). Therefore we obtain
the following: For tree arc eT ∈ ET with head node vT the dynamic walk correspond-
ing to the unique path from s∗ to vT in the BFS-Tree carries a flow of value feT (R).
Hence, the correctness of the algorithm follows directly from the termination condition
in Step (3b) and the definition of δ in the final step (5).

As mentioned previously, the nonzero components of any extreme point of (LP)
are one which indicate a static s-t-path. The next lemma shows that this result can
be extended to CDSP.



18 R. KOCH, E. NASRABADI

Lemma 5.3. Suppose that x is an extreme point of (LPM). Then the network G
contains no flow-carrying cycle. Moreover, there is a unique flow-carrying s-t-path P
of flow value 1. In fact, we have x = χP where χP is the incidence vector of P .

Proof. Let us first assume by contradiction that there is a flow-carrying cy-
cle C and let χC be the incidence vector of C. If C carries a flow of value δ

then x1 := x+ δ · χC and x2 := x − δ · χC are both feasible solutions. Obviously
x = 1

2 (x
1 + x2) is the convex combination of x1 and x2. This implies that x is not an

extreme point, which is a contradiction. Hence, there exists no flow-carrying cycles
with respect to x.

Now suppose that there are two s-t-paths P1 and P2 with incidence vectors χP1

and χP2 carrying a flow of values δ1 and δ2, respectively. Let δ := min{δ1, δ2}. Then
x1 := x+ δχP1 − δχP2 and x2 := x− δχP1 + δχP2 are both feasible solutions and we
have x = 1

2 (x
1+x2). Hence, x is not an extreme point, which is again a contradiction.

This implies that there must be at most one flow-carrying s-t-path.

We are left to prove the existence of a flow-carrying s-t-path of flow value 1.
Since x is an extreme point, it follows from Lemma 4.7 that the continuous part of x
is 0. This means that x is discrete and thus applying Discrete BFS Algorithm
yields a flow-carrying s-t-path P with respect to x. Define x∗ := x − δ · χP where δ
and χP are the flow value and incidence vector of P , respectively. We show that δ
must be 1 and further, x∗ must be zero. Note that δ ≤ 1 because of the definition of bs.
Now suppose that δ < 1. Then it is not hard to see that x∗ 6= 0 and 1

1−δ
x∗ is also

a discrete feasible solution of (LPM). Thus there exists a flow carrying s-t-path P ∗

with respect to x∗ and hence, also with respect to x. Because of the maximality
of x∗ we have P ∗ 6= P contradicting the uniqueness of P . Thus we must have δ = 1
implying x∗ = x − χP . In this case x1 := x + x∗ and x2 := x − x∗ are both feasible
solutions and we have x = 1

2 (x
1 + x2). This implies that x∗ = 0 since x is an extreme

point. Hence, x = χP , which completes the proof of the lemma.

As a direct consequence of the above lemma we obtain the following:

Corollary 5.4. For an extreme point x of (LPM) the flow xe is concentrated
on a finite set (that is, xe is discrete and supp(xe) is finite) for each arc e ∈ E.
Further, xe({θ}) = 1 for each arc e ∈ E and each point θ ∈ supp(xe).

We can now summarize the results of this paper in the following theorem.

Theorem 5.5. Any extreme point of (LPM) corresponds one-to-one to a dy-
namic s-t-path. If the cost functions are given, this one-to-one correspondence pre-
serves also costs.

Proof. From Lemma 5.3 we know that for any extreme point x there exists an
s-t-path P with x = χP . Thus, it remains two show that for any dynamic s-t-path P
the incidence vector χP is an extreme point of (LPM).

We assume the opposite, that is, x := χP is not an extreme point for some
dynamic s-t-path P . Then there is a signed measure x∗ such that x1 := x + x∗

and x2 := x − x∗ are both feasible solutions. Further, assume that x∗ is maximal in
the following sense: for any ρ > 1 at least one of x+ρ ·x∗ and x−ρ ·x∗ is not feasible.
Obviously x∗ is a discrete measure and hence, x1 and x2 are. Then by Lemma 5.3,
there are flow-carrying s-t-paths P1 and P2 with respect to x1 and x2 respectively.
Because of the maximality of x∗ at least one of P1 and P2 is not equal to P . Without
loss of generality let P1 be this path. We have x2 = 2x − x1 ≤ 2χP − δ · χP1 for
some δ > 0. But this contradicts the feasibility of x2 since 2χP −δ ·χP1 � 0. Hence, x
is an extreme point.

The definition of the incidence vector implies that the cost of a dynamic s-t-path



Extreme Points for Dynamic Shortest Path Problems 19

and its corresponding incidence vector are equal. This establishes the theorem.

REFERENCES

[1] R. K. Ahuja, J. B. Orlin, S. Pallottino, and M. G. Scutellà. Dynamic shortest paths minimizing
travel times and costs. Networks, 41:197–205, 2003.

[2] E. J. Anderson. Extreme-points for continuous network programs with arc delays. Journal of

Information and Optimization Sciences, 10:45–52, 1989.
[3] E. J. Anderson and P. Nash. Linear Programming in Infinite-Dimensional Spaces. Wiley, New

York, 1987.
[4] E. J. Anderson, P. Nash, and A. F. Perold. Some properties of a class of continuous linear

programs. SIAM Journal on Control and Optimization, 21:258–265, 1983.
[5] E. J. Anderson, P. Nash, and A. B. Philpott. A class of continuous network flow problems.

Mathematics of Operations Research, 7:501–514, 1982.
[6] E. J. Anderson and M. C. Pullan. Purification for separated continuous linear programs.

Mathematical Methods of Operations Research, 43:pp. 9–33, 1996.
[7] X. Cai, T. Kloks, and C. K. Wong. Time-varying shortest path problems with constraints.

Networks, 27:141–149, 1997.
[8] L. Chabini. Discrete dynamic shortest path problems in transportation applications: Complex-

ity and algorithms with optimal run time. Transportation Research Record, 1998:170–175,
1645.

[9] L. Cooke and E. Halsey. The shortest route through a network with time-dependent internodal
transit times. Journal of Mathematical Analysis and Applications, 14:492–498, 1966.

[10] L. K. Fleischer and É. Tardos. Efficient continuous-time dynamic network flow algorithms.
Operations Research Letters, 23:71–80, 1998.

[11] S. M. Hashemi and E. Nasrabadi. On solving continuous-time dynamic network flows. Technical
Report 13-2008, Technische Universität Berlin, 2008. under revision for Journal of Global
Optimization.

[12] J. F. C. Kingman and S. J. Taylor. Introduction to Measure and Probability. Cambridge
University Press, Cambridge, 1966.

[13] R. Koch, E. Nasrabadi, and M. Skutella. Continuous and discrete flows over time: A general
model based on measure theory. Mathematical Methods of Operations Research, 2010. to
appear.

[14] E. Nasrabadi. Dynamic Flows in Time-varying Networks. PhD thesis, Technische Universität
Berlin (Germany) and Amirkabir University of Technology (Iran), 2009.

[15] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms in networks with time-
dependent edge length. Journal of the ACM, 37:607–625, 1990.

[16] A. Orda and R. Rom. Minimum weight paths in time-dependent networks. Networks, 21:295–
320, 1991.

[17] S. Pallottino and M. G. Scutellà. Shortest path algorithms in transportation models: Classical
and innovative aspects. In P. Marcotte and S. Nguyen, editors, Equilibrium and advanced

transportation modelling, pages 245–281. Kluwer, Norwell, MA, 1998.
[18] A. B. Philpott. Algorithms For Continuous Network Flow Problems. PhD thesis, University

of Cambridge, UK, 1982.
[19] A. B. Philpott. Continuous-time shortest path problems and linear programming. SIAM

Journal on Control and Optimization, 32:538–552, 1994.
[20] A. B. Philpott and A. I. Mees. Continuous-time shortest path problems with stopping and

starting costs. Applied Mathematics Letters, 5:63–66, 1992.
[21] A. B. Philpott and A. I. Mees. A finite-time algorithm for shortest path problems with time-

varying costs. Applied Mathematics Letters, 5:91–94, 1993.
[22] M. C. Pullan. A study of general dynamic network programs with arc time-delays. SIAM

Journal on Optimization, 7:889–912, 1997.

Appendix A. Preliminaries on measure theory. In this appendix we briefly
present some basic definitions and notation that are used frequently throughout the
paper. For a detailed treatment we refer to, e.g., [12].

A σ-algebra on the real line R is a nonempty collection of subsets of R that is closed
under countable unions and complements. The smallest σ-algebra on R containing all
open sets (or, equivalently, closed sets) is called the Borel σ-algebra. The elements of
the Borel algebra are called measurable sets or Borel sets. Let B denote the collection



20 R. KOCH, E. NASRABADI

of all Borel sets on R. A function µ : B → R≥0 is called a Borel measure on R if
1. µ(B) ≥ 0 for any B ∈ B and µ(∅) = 0;
2. if {Bi}i∈N is a countable collection of pairwise disjoint sets in B, then

µ
(
∪i∈NBi

)
=

∑

i∈N

µ(Bi) .

A Borel measure µ on R is called finite if µ(R) < ∞. Measures are by defini-
tion nonnegative, i.e., a nonnegative real number is assigned to each measurable set.
However, it is sometimes convenient that also negative values can be assigned to some
measurable sets. A measure which can take both positive and negative values is called
a signed measure. The space of finite signed Borel measures becomes a vector space
under the standard addition and scalar multiplication operations. In particular, for
any two finite signed Borel measures µ1 and µ2 and any real value λ, the addition
µ1 + µ2 and scalar multiplication λ · µ1 are defined as

(µ1 + µ2)(B) = µ1(B) + µ2(B) ∀B ∈ B ,

(λ · µ1)(B) = λ · µ1(B) ∀B ∈ B .

Let µ1 and µ2 be two signed Borel measures. We write µ1 = µ2 (µ1 ≤ µ2)
if µ1(B) = µ2(B) (µ1(B) ≤ µ2(B)) for each B ∈ B. Moreover, we write µ1 ≥ 0
if µ1(B) ≥ 0 for each Borel set B and µ � 0 if µ(B) < 0 for some Borel set B. For
a measurable set A and a Borel measure µ, the restriction µ|A of µ to the set A is a
Borel measure defined by µ|A(B) := µ(B ∩ A) for each B ∈ B. If µ|A = 0, then A

is called a strict µ-null. This implies µ(B) = 0 for each Borel set B ⊆ A. A Borel
set B for which µ(B) = 0 is called a µ-null set. A (signed) measure µ is called zero
if µ(B) = 0 for each Borel set B. Otherwise µ is called nonzero.

A function F : R → R is called measurable if the preimage of each measurable set
is measurable, that is, F−1(B) := {θ ∈ R | F (θ) ∈ B} is a measurable set for every
Borel set B. It is well known that if F is measurable, then the integral of F on a
measurable set B with respect to a Borel measure µ exists and is denoted by

∫

B
F dµ.

We refer to, e.g., [12] for more details.
A function F : R → R is called a distribution function if it is of bounded variation

and right-continuous, and moreover limθ→−∞ F (θ) = 0. Notice that the limit exists
since F is of bounded variation. For every finite signed Borel measure µ, there is
a unique distribution function F satisfying F (b) − F (a) = µ((a, b]) for all a, b ∈ R
with a ≤ b. In fact F is given by the formula F (θ) = µ((−∞, θ]).

Given a measure µ on R, the support of µ is defined to be the set of all points
in R with a neighborhood of positive measure, that is,

supp(µ) := {θ ∈ R : µ(U) > 0 for every open neighborhood U of θ} .
A point θ ∈ R is called an atom of µ if µ({θ}) > 0. Obviously if µ is finite, the set of
atoms of µ is countable. We define the discrete part µd and continuous part µc of a
finite measure µ by

µd(B) :=
∑

atoms θ∈B

µ
(
{θ}

)
and µc(B) := µ(B)− µd(B)

for every measurable set B. The measure µ is called a discrete (continuous1) if
its continuous (discrete) part is zero. In fact, a finite Borel measure is continuous

1A continuous measure is also called nonatomic in textbooks on measure theory.



Extreme Points for Dynamic Shortest Path Problems 21

(discrete) if and only if its corresponding distribution function is continuous (a jump
function) (see, e.g., Section 9.3 in [12]). Moreover, the decomposition µ = µc+µd of a
finite Borel measure µ a into a sum of a discrete and a continuous measure is unique.

Two Borel measures µ1 and µ2 are called singular if there exist two disjoint mea-
surable sets A and B whose union is R such that µ1 is zero on all measurable subsets
of B while µ2 is zero on all measurable subsets of A, i.e., µ1(B) = 0 and µ2(A) = 0.
Moreover, µ1 is said to be absolutely continuous with respect to µ2 if µ1(A) = 0 for
every measurable set A for which µ2(A) = 0.

The following theorem shows that any signed measure can be expresses as the
difference of two singular (positive) measures.

Theorem A.1 (Jordan Decomposition). Every signed measure µ can be expressed
as a difference of two nonnegative measures µ+ and µ− such that µ+ and µ− are
singular and at least one of which is finite. Moreover if µ = µ1 − µ2, then µ+ ≤ µ1

and µ− ≤ µ2. The measures µ+ and µ− are called the positive and negative part of µ,
respectively. The pair (µ+, µ−) is called the Jordan decomposition (or sometimes
Hahn–Jordan decomposition) of µ.

Following this theorem, let µ be a signed measure with the Jordan decomposi-
tion (µ+, µ−). The absolute value of µ is then defined by |µ| := µ1+µ2. Theorem A.1
helps us to define the minimum of two measures. Let µ1 and µ2 be two nonnega-
tive measures on R. The minimum of µ1 and µ2 is a nonnegative measure defined
by min{µ1, µ2} := µ1 − µ+ = µ2 − µ−, where (µ+, µ−) is the Jordan decomposition
of the signed measure µ1 − µ2. It is not hard to see that min{µ1, µ2} is positive if µ1

and µ2 are positive and not singular.

Appendix B. Proofs of technical lemmas. In this Appendix, we provide the
proofs of Lemmas 4.1, 4.5 and, 5.1 that were omitted from the main text. We start
with the proof of Lemma 4.5.

Proof. [Proof of Lemma 4.5] The following algorithm computes µ̄1, . . . , µ̄n:
1. Set ν1 := µ.
2. For i := 1 to n do the following:

(a) Let (z+i , z
−
i ) be the Jordan decomposition of the signed measure µi− νi.

(b) Set µ̄i := µi − z+i = νi − z−i and νi+1 := νi − µ̄i = z−i .
In order to complete the prove we have to show that µ is reduced to zero during
the algorithm, i.e., νn+1 = 0. We assume the opposite and seek a contradiction.
Let B = supp(νn+1). It follows from the computations of the algorithm that

n∑

i=1

µi =

n∑

i=1

(νi + z+i − z−i ) = µ+ z+1 − z−1 +

k∑

i=2

(z−i−1 + z+i − z−i )

= µ− νn+1 +

n∑

i=1

z+i

Since νn+1 is mutually singular to z+i for all i = 1, . . . , n, we get (
∑n

i=1 µi)(B) < µ(B),
which is a contradiction.

The proof of Lemma 5.1 is based on the following result.
Lemma B.1. Let µ be a finite discrete measure on R, f be a positive real number,

and θ be a real number such that: f ≤ µ([θ,∞)). Then for every ρ ∈ [0, 1) there exists
a (discrete) measure ν ≤ µ with finite support supp(ν) ⊂ [θ,∞] such that:

ρ · f = ν(R),

f − µ([θ, ϑ]) ≥ ν((ϑ,∞)) ∀ϑ ∈ [θ,max(supp(ν)) ).



22 R. KOCH, E. NASRABADI

Proof. Since f ≤ µ([θ,∞)), there is some point in time θmax ∈ R, such that:

√
ρ · f ≤ µ([θ, θmax]) .

In the following let θmax be the infimum over all such times. Then, θmax is in fact a
minimum, because of the right continuity of distribution functions. Therefore:

0 ≤ √
ρ · f − µ([θ, θmax))

︸ ︷︷ ︸

=: a

≤ µ({θmax}).

Since µ is discrete there exist a finite set Ω ⊂ [θ, θmax) such that:

√
ρ · µ([θ, θmax)) ≤ µ(Ω).

We define the discrete measure ν as follows:

ν({ϑ}) :=







µ({ϑ}) for ϑ ∈ Ω

a for ϑ = θmax

0 otherwise

Thus by definition we know that supp(ν) ⊂ [θ,∞]. Further, we have

ν(R) = a+ µ(Ω) ≥ µ({θmax}) +
√
ρ · µ([θ, θmax)) ≥

√
ρ · µ([θ, θmax]) ≥ ρ · f .

For proving the second property let ϑ ∈ [θ, θmax). We have:

f − µ([θ, ϑ]) = f − µ([θ, θmax)) + µ((ϑ, θmax))

≥ a+ µ((ϑ, θmax))

≥ ν((ϑ,∞)) .

Scaling of ν such that equality is reached in the first property completes this proof.
Proof. [Proof of Lemma 5.1] The idea is to apply Lemma B.1 to f := ν1({θ})

and µ2. Therefore we have to show f ≤ µ2([θ,∞)). Since γ(R) = 0 and Fγ ≥ 0 we
know:

γ([θ,∞)) = γ(R)− γ((−∞, θ)) ≤ 0

Thus, from µ2 + γ ≥ µ1 we obtain:

f ≤ µ1([θ,∞)) ≤ γ([θ,∞)) + µ2([θ,∞)) ≤ µ2([θ,∞))

Hence, Lemma B.1 ensures the existence of a discrete measure ν2 ≤ µ2 with finite
support in [θ,∞) such that:

ρ · f = ν2(R),

f − µ2([θ, ϑ]) ≥ ν2((ϑ,∞)) , ∀ϑ ∈ [θ,max(supp(ν2))) .

In order two satisfy the first statement we define η := ρ · ν1 − ν2. Then from the first
equation we get η(R) = ν2(R) − ρ · f = 0. Further, the distribution function Fη is
equal to 0 outside of [θ,max(supp(ν2)). For ϑ ∈ [θ,max(supp(ν2)) we obtain:

Fη(ϑ) = ρ · f − ν2((−∞, ϑ]) = ν2(R)− ν2((−∞, ϑ]) = ν2((ϑ,∞))

≤ f − µ2([θ, ϑ]) ≤ µ1([θ, ϑ])− µ2([θ, ϑ]) ≤ γ([θ, ϑ]) ≤ Fγ(ϑ) .



Extreme Points for Dynamic Shortest Path Problems 23

This completes the proof.
It remains to prove Lemma 4.1. To this end, we first give some lemmas.
Lemma B.2. Suppose that µ1, µ2 ≥ 0 are two finite continuous Borel measures

on R with distribution functions F1 and F2, respectively. Let F1 ≥ F2 on some interval
I := (−∞, θ], θ ∈ R, and M := {ϑ ∈ I | F1(ϑ) = F2(ϑ)} be the set of points in I

where the two distribution functions are equal. Then µ1(M) = µ2(M).
Proof. For a given ǫ > 0, we let M<ǫ := {ϑ ∈ (−∞, θ) | F1(ϑ) − F2(ϑ) < ǫ} be

the set of points in (−∞, θ) where two distribution functions differ by less than ǫ.
It is clear that M<ǫ is an open set, so we can express it as a countable union of
pairwise disjoint open intervals, unique up to order, as Mǫ = ∪i∈J (ai, bi), where J is
a countable set of indices. Note that, for each i ∈ J , (ai, bi) is maximal in the following
sense: There exists no open interval (a′, b′) ⊆Mǫ strictly containing (ai, bi). We also
know that the distribution functions F1 and F2 are continuous since µ1 and µ2 are
continuous measures. Hence we can conclude that F1(ai) − F2(ai) = ǫ if ai 6= −∞,
and F1(bi)− F2(bi) = ǫ if bi 6= θ. Then it follows that

µ1(Mǫ)− µ2(Mǫ) =
∑

i∈J

µ1((ai, bi))− µ2((ai, bi)) ≤ ǫ .

Now we let tend ǫ to 0 and get µ1(M) = µ2(M).
The next corollary generalizes Lemma B.2 from µ1(M) = µ2(M) to µ1|M = µ2|M ,

even for the more general case when the assumption of F1 ≥ F2 is not met.
Corollary B.3. Let µ1, µ2 ≥ 0 be two finite continuous Borel measures on R

with distribution functions F1 and F2, respectively. Moreover, let M := {θ ∈ R |
F1(θ) = F2(θ)} be the set of points where two distribution functions are equal. Then
µ1|M = µ2|M .

Proof. We first assume that F1 ≥ F2. Then Lemma B.2 implies

µ1|M ((−∞, θ]) = µ1|(−∞,θ](M) = µ2|(−∞,θ](M) = µ2|M ((−∞, θ]) ∀θ ∈ R .

It follows from this relation that the distribution functions with respect to µ1|M
and µ2|M coincide on R. This implies µ1|M = µ2|M .

For the general case, we define Fmax : R → R by Fmax(θ) := max{F1(θ), F2(θ)}.
It is clear that Fmax is monotonic increasing and continuous on the right. So it is the
distribution function of some measure µmax. Applying the previous result to Fmax

and F1 and also to Fmax and F2, we get

µ1|M = µmax|M = µ2|M .

Corollary B.4. Let µ be a finite signed Borel measure on R with distribution
function F and Q ⊂ R be a countable set of real numbers. If µ is continuous, then
M := {θ | F (θ) ∈ Q} is a strict µ-null set, i.e., µ|M = 0.

Proof. For each q ∈ Q define Mq := {θ | F (θ) = Q}. Then M is the disjoint
(countable) union of the Mq’s. Hence, in order to establish the lemma it is enough to
show µ|Mq

= 0 for each q ∈ Q.
Let q ∈ Q be fixed and assume, without loss of generality, that q ≥ 0. Further,

let µ+ and µ− be the positive and negative part of µ with distribution functions F+

and F−, respectively. Since µ is continuous, a := min{θ | F+(θ) ≥ q} is well-defined
and F+(a) = q. We define F̄ : R → R+ by

θ 7→
{

0 if θ ≤ a ,

F+(θ)− q if θ > a .



24 R. KOCH, E. NASRABADI

Then F̄ is the distribution function of the restricted measure µ̄ := µ+|[a,∞) and we
haveMq = {θ | F̄ (θ) = F−(θ)}. From Corollary B.3 and the fact thatMq∩(−∞, a) =
∅, it follows µ+|Mq

= µ̄|Mq
= µ−|Mq

, and as a direct consequence µ|Mq
= 0.

We are now in a position to prove Lemma 4.1.
Proof. [Proof of Lemma 4.1] Let µd be the discrete part of µ. Then there exists a

countable set Q of real numbers such that the distribution function of µd only takes
its values in Q.

Let F c be the distribution function of µc and define M̄ := {θ | F c(θ) ∈ Q}. It
now follows from Corollary B.4 that µc|M̄ = 0 since Q is countable. In order to prove
the lemma, it suffices to show R \M ⊆ M̄ ∪ supp(xd). Let θ ∈ R \M be fixed. Due
to the definition of distribution functions, we have

µ({θ}) = F (θ)− lim
ϑ→θ−

F (ϑ) .

Then exactly one of the following cases occurs:
1. µ({θ}) = 0 and F (θ) = 0,
2. µ({θ}) > 0.

In the first case we have θ ∈ S̄ and in the second case θ ∈ suppxd. This completes
the proof of the lemma.


