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Abstract Research on flows over time has been conducted mainly in two sepa-
rate and mainly independent approaches, namely discrete and continuous models,
depending on whether a discrete or continuous representation of time is used. Re-
cently, Borel flows have been introduced to build a bridge between these two mod-
els. In this paper, we consider the maximum Borel flow problem formulated in a
network where capacities on arcs are given as Borel measures and storage might be
allowed at the nodes of the network. This problem is formulated as a linear program
in a space of measures. We define a dual problem and prove a strong duality result.
We show that strong duality is closely related to a MaxFlow-MinCut Theorem.

1 Introduction

Network flows over time (also called dynamic network flows in the literature) form
a fascinating area of study. In contrast to classical static flows, transit times are in-
troduced on the arcs to describe how long it takes to traverse an arc. This would
imply that flows on arcs are not constant but may change over time. Ford and Fulk-
erson [6, 7] study the maximum flow over time problem where the aim is to find the
maximum amount of flow that can be sent from a source node to a sink node within
a given time horizon. They show that this problem can be solved efficiently by one
minimum cost flow computation on the given network.

In the model studied by Ford and Fulkerson [6, 7], time is represented in discrete
time steps and arc capacities are constant over time. In contrast to this, Philpott [10]
and Anderson, Nash, and Philpott [2] study the maximum flow over time problem
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in a network with zero transit times and time-varying transit and storage capacities
for the case where time is modeled as a continuum. They extend the concept of
cuts to the continuous-time setting and establish a MaxFlow-MinCut theorem (see
also [1]) for the case that transit times are zero and the transit capacities are bounded
measurable. This result was later extended to arbitrary transit times by Philpott [11].

Since the seminal research of Ford and Fulkerson in the 1950s, many authors
have extensively studied flows over time from different viewpoints (see, e.g., [14]
for a recent survey on the topic), but in two separate ways with respect to time-
modeling, leading to discrete and continues models. For the case of constant net-
work parameters (e.g., costs, capacities, supplies, and demands) and integral transit
times, Fleischer and Tardos [5] point out a close correspondence between discrete
and continuous models. In particular, they show how a number of results and al-
gorithms for the discrete model can be carried over to the analogous continuous
model.

Recently, Koch, Nasrabadi, and Skutella [9] introduced the notion of Borel flows
to unify discrete and continuous flows over time into a single model. Here the flow
on each arc is modeled as a measure on the real line (time axis) which assigns to
each suitable subset a real value, interpreted as the amount of flow entering the arc
over the subset. Koch, Nasrabadi, and Skutella [9] establish a MaxFlow-MinCut
Theorem for the maximum Borel flow problem.

Developing a duality theory for various classes of optimization problems has re-
ceived a great deal of attention because of its importance in designing solution algo-
rithms. In the classical static network flows, it is known that the dual problem for the
maximum flow problem corresponds to the cuts and strong duality is equivalent to
the MaxFlow-MinCut Theorem. Anderson and Philpott [3] explore this relationship
for the maximum flow over time in the continues model for the special case where
transit time are zero and the arc and node capacities are piecewise analytic. In the
case that all transit times are zero, the network flow over time problem can be treated
as a special case of the so-called Separated Continuous Linear Program (SCLP).
Pullan [12] establishes strong duality for SCLP given piecewise analytic problem
data. Moreover, Pullan [13] examines a larger class of SCLP to include time-delays
and drive a strong duality result for the problem with rational transit times and piece-
wise constant/linear input functions. Hashemi, Koch, and Nasrabadi [8] make use
of ideas from the area of static network flows to establish a strong duality result
for network flow over time problems with piecewise analytic input functions and
rational transit times.

The aim of this paper is to establish a strong duality result for the maximum
Borel flow problem and examine its relationship to the MaxFlow-MinCut Theorem.
In Section 2 we give an overview of the maximum Borel flow problem as well
as the MaxFlow-MinCut Theorem that are required for the purposes of this paper.
In Section 3 we formulate a dual problem for the maximum Borel flow problem.
In Section 4 we derive a strong duality result between the maximum Borel flow
problem and its dual.
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2 The Maximum Borel flow Problem

We consider a directed graph G = (V,E) with finite node set V and finite arc set E.
Let s∈V be a source and t ∈V be a sink in G. Each arc e∈ E has an associated tran-
sit time τe ∈ R specifying the required amount of time for traveling from the tail to
the head of e. More precisely, if flow leaves node v at time θ along an arc e = (v,w),
it arrives at w at time θ + τe.

Consider the real line R as the time domain. A Borel flow x is defined by a family
of Borel measures

xe : B −→ R≥0 ∀e ∈ E ,

where B is the Borel σ -algebra on R. We refer readers to [9] for the motivation
of Borel flows. A member B ∈ B is called a Borel set or measurable set. The
value xe(B) gives the amount of flow entering arc e over the Borel set B.

Each arc e ∈ E has an associated Borel measure ue : B → R≥0 which denotes
its capacity. We assume that ue(R) < ∞ for each arc e ∈ E. The value ue(B) is an
upper bound on the amount of flow that is able to enter arc e over the Borel set B.
We require that a Borel flow x fulfills arc capacity constraints

xe(B)≤ ue(B) ∀e ∈ E,B ∈B .

The flow particles arriving at a node may wait for some time before they leave
again that node. Thus the Borel flow x induces a storage function Yv on R at each
node v by

Yv(θ) := ∑
e∈δ−(v)

xe
(
(−∞,θ − τe]

)
− ∑

e∈δ+(v)
xe
(
(−∞,θ ]

)
∀θ ∈ R , (1)

where δ+(v) and δ−(v) denote the sets of arcs leaving node v and entering node v,
respectively. The value Yv(θ) gives the amount of flow stored at node v at the point in
time θ ∈ R. The function Yv is the difference between two right-continuous, mono-
tonic increasing functions and thus is a right-continuous function of bounded varia-
tion.

We suppose that the storage of flow at a node v ∈ V is bounded from above
by a function Uv : R→ R≥0. The value Uv(θ) is an upper bound on the amount
of flow that can be stored at node v at time θ . We assume that there is no initial
storage at any node and flow must not remain at any node except s and t. This
means Yv(−∞) := limθ→−∞ Yv(θ) and Yv(∞) := limθ→∞ Yv(θ) must be zero for each
node v ∈ V \ {s, t}. Notice that both limits exist since Yv is of bounded variation.
Therefore we require Uv(−∞) =Uv(∞) = 0 for each v ∈V \{s, t}.

A Borel flow x with corresponding storage Y fulfills the node capacity constraint
at node v ∈V \{s, t} if

0≤ Yv(θ)≤Uv(θ) (2)
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for all θ ∈ R. We assume that Uv is of bounded variation and continuous from the
right for each node v. This imposes no restriction since Yv is a right-continuous
function of bounded variation.

The Borel flow x is called an s-t Borel flow if it satisfies the node capacity con-
straint at all nodes v ∈ V \ {s, t}. The value val(x) of an s-t Borel flow x is defined
as the total net flow out of node s, that is, val(x) := ∑e∈δ+(s) |xe|−∑e∈δ−(s) |xe|
where |xe| denotes the total amount of flow entering arc e, i.e., |xe| := xe(R).
An s-t Borel flow is called maximum if it has maximum value among all s-t Borel
flows. The maximum Borel flow problem is to find a maximum flow. This problem
can be formulated as follows:

max ∑
e∈δ+(s)

|xe|− ∑
e∈δ−(s)

|xe|

s.t. ∑
e∈δ+(v)

xe− ∑
e∈δ−(v)

(xe− τe)+ yv = 0 ∀v ∈V \{s, t} ,

0≤ xe ≤ ue ∀e ∈ E ,

0≤ Yv ≤Uv ∀v ∈V \{s, t} .

(MBFP)

In this formulation, for each v ∈V \{s, t}, yv signed Borel measure derived from
the formula yv

(
(−∞,θ ]

)
= Yv(θ). For a Borel set B, the value yv(B) can be in-

terpreted as the overall change in storage at v over the Borel set B. Moreover, for
each e ∈ E, xe− τe is a shifted measure defined by (xe− τe)(B) = xe(B− τe) for
all B ∈B, where B− τe := {θ − τe | θ ∈ B}.

The MaxFlow-MinCut Theorem, which is due to Ford and Fulkerson [7], is
one of the most elaborated results in network flow theory. Koch, Nasrabadi and
Skutella [9] extent this theorem for Borel flows. To state this result, we require to
give some definitions. An s-t Borel cut S :=(Sv)v∈V is defined by measurable sets Sv,
one for each v ∈V so that Ss = R, St = /0 and for every node v ∈V \{s, t} the set

Γv := Sv∩
{

θ ∈ R : Uv(θ−)> 0 or Uv(θ)> 0
}

(3)

is a countable union of pairwise disjoint intervals. Here, Uv(θ−) denotes the limit
of Uv at θ from the left, i.e., Uv(θ−) := limϑ↗θ Uv(ϑ).

For a right-continuous function M : R→ R≥0 of bounded variation, we shall
use M�0 to denote the set of all points θ ∈ R where M or its left limit is positive
at θ . More precisely:

M�0 :=
{

θ ∈ R |M(θ−)> 0 or M(θ)> 0
}
. (4)

By this notation, Γv can be simplified as Sv∩U�0
v .

We say that node v belongs to the s-side of S for the points in time θ ∈ Sv and
to the t-side of S for the points in time θ ∈ Sc

v
2. Thus, an arc e = (v,w) connects

the s-side to the t-side for all times in Sv∩ (Sw− τe)
c.

2 For a set A ∈ R we denote by Ac := R\A the complement of A.
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Let S = (Sv)v∈V be an s-t Borel cut and consider a node v. By definition, Γv is
expressible as

⋃
i∈Jv Iv,i, where Jv is a countable set of indices and Iv,i, i ∈ Jv, are

pairwise disjoint intervals. Each interval Iv,i is supposed to be inclusion-wise max-
imal, i.e., there is no interval I ⊆ Γv strictly containing Iv,i. We keep this assump-
tion throughout the paper; whenever we consider a countable union of intervals
we suppose that the intervals are inclusion-wise maximal. Let αv,i and βv,i be the
left and right boundary of the interval Iv,i, respectively. An interval Iv,i can be of
the form (αv,i,βv,i), [αv,i,βv,i), (αv,i,βv,i], or [αv,i,βv,i]. Therefore we partition the
set Jv of indices into four subsets. Let J1

v (J2
v , J3

v , and J4
v ) be the set of indices i for

which Iv,i is open (left-closed & right-open, right-closed & left-open, and closed,
respectively). With these constructions, the capacity cap(S) of S is defined by

cap(S) := ∑
e=(v,w)∈E

ue
(
Sv∩ (Sw− τe)

c)+
∑

v∈V\{s,t}

(
∑

i∈J1
v∪J2

v

Uv(βv,i−)+ ∑
i∈J3

v∪J4
v

Uv(βv,i)
)
.

(5)

We set the capacity cap(S) to ∞ if any infinite sum does not converge. We refer to
an s-t Borel cut whose capacity is minimum among all s-t Borel cuts as a minimum
Borel cut. The following theorem summarizes the main results of [9]

Theorem 1. The MaxFlow-MinCut Theorem holds for Borel flows, i.e., there exists
an s-t-flow over time x and an s-t-cut over time S for which val(x) = cap(S).

3 Dual Formulation

In the context of static network flows, the MaxFlow-MinCut Theorem is equivalent
to strong duality. Here we wish to establish a similar result for Borel flows. To do
this, we need a dual problem for (MBFP). In order to state a dual formulation, we
require the concept of a function of σ -bounded variation. Let f be a real-valued
function on R. The total variation of f within a bounded interval [a,b] is defined by

V ( f ; [a,b]) := sup
{ n

∑
i=1

(
f (ai)− f (ai−1)

)
| {a1, . . . ,an} is a partition of [a,b]

}
.

The function f is called of bounded variation on [a,b] if V ( f , [a,b])< ∞. The func-
tion f is said to be of bounded variation on R if there exists a constant K < ∞ such
that V (M; [a,b])< K for any (bounded) interval [a,b]⊂ R.

The function f is said to be of σ -bounded variation if it can be decomposed
into a countable sum of functions of bounded variation on R. Similarly, f is said to
be σ -monotonic increasing if it can be decomposed into a countable sum of mono-
tonic increasing and bounded functions on R. These two definitions can be regarded
as the extension of finite measures to σ -finite measures and because of that we have
used the symbol σ .
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It is a well-known result that a function is of bounded variation if and only if it is
the difference between two monotonic increasing and bounded functions (see, e.g.,
Chapter 6 in [4]). This implies that a function is of σ -bounded variation if and only
if it is the difference between two σ -monotonic increasing functions. Let f : R→R
be a function of σ -bounded variation with f (∞) = 0 where f (∞) := limθ→∞ f (θ).
Notice that this limit exists since f is of σ -bounded variation. Then there ex-
ist functions f (+) and f (−) (subsequently referred to as the Jordan decomposi-
tion of f ) that are σ -monotonic increasing on f with f (+)(∞) = f (−)(∞) = 0
and f (θ) = f (+)(θ)− f (−)(θ) for θ ∈ R. The functions f (+) and f (−) are called
the positive and negative parts of f , respectively.

We now consider a dual problem for (MBFP) as follows:

min ∑
e∈E

∫
R

ρe due + ∑
v∈V\{s,t}

∫
R

Uv dπ
(−)
v

s.t. ρe(θ)−λv(θ)+λw(θ + τe)≥ 0 ∀e = (v,w) ∈ E, θ ∈ R ,

ρe(θ)≥ 0 ∀e ∈ E, θ ∈ R ,

λs(θ) = 1 ∀θ ∈ R ,

λt(θ) = 0 ∀θ ∈ R ,

πv := λv|U�0
v

of σ -BV on R ∀v ∈V \{s, t} ,

(MBFP∗)

where ρe,e ∈ E and λv,v ∈V \{s, t} are measurable functions. We should mention
that this problem generalizes the dual problem studied by Anderson and Philpoot [3]
for the continuous-time maximum flow problem. Note that π

(−)
v denotes the negative

part of πv and πv := λv|U�0
v

is given for each v ∈V \{s, t} as follows:

πv(θ) :=

{
λv(θ) if θ ∈U�0

v ,
0 otherwise .

It follows from this definition that πv(∞) = 0 since Yv(∞) = 0 due to our assumption.
The integrals in the objective function of (MBFP∗) should be explained. For

each e ∈ E the first integral involves the function ρe as the integrand and the
measure ue as the integrator and is understood in the sense of Lebesgue-Stieltjes.
Since ρe is supposed to be measurable and µe is a Borel measure, the first integral is
well defined and exists. The second integral for each v∈V \{s, t} involves two func-
tions Uv and π

(−)
v (Uv as the integrand and π

(−)
v as the integrator) and is regarded as a

generalization of the Riemann-Stieltjes integral. More precisely, if π
(−)
v =∑i∈N π

(−)
v,i

where π
(−)
v,i , i ∈ N are monotonic increasing and bounded, then∫

R
Uv dπ

(−)
v := ∑

i∈N

∫
R

Uv dπ
(−)
v,i .

Each left integral of the above equation is treated as the Riemann-Stieltjes integral
as developed in [4, Chapter 7]. However, although Uv is supposed to be of bounded
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variation and right-continuous and π
(−)
v,i is monotonic increasing and bounded, the

Riemann-Stieltjes integral
∫
RUv dπ

(−)
v,i need not exist for some i ∈N as Uv and π

(−)
v,i

may have common discontinuous from the left or from the right at some points. In
such a case, the integral does not exist (see [4, Theorem 7.29]) and we replace Uv
by another function, say Ūv, defined by

Ūv(θ) :=

{
Uv(θ−) if Uv is discontinuous at θ and πv,i is right-continuous at θ ,
Uv(θ) otherwise .

Note that the function Ūv differs from Uv only at those points θ for which Uv

and π
(−)
v,i share a common discontinuity from the left or from the right at θ . Then

the integral
∫
RUv dπ

(−)
v,i is defined by∫

R
Uv dπ

(−)
v,i :=

∫
R

Ūv dπ
(−)
v,i

Note that the left integral of the above equation is guaranteed to exist (see [4, The-
orem 7.29]). In what follows, each integral with a measure as the integrator is re-
garded in the sense of Lebesgue-Stieltjes and each one with a function as the inte-
grator is regarded in the sense of Riemann-Stieltjes as defined above.

For each e ∈ E, the dual variable ρe can be eliminated from (MBFP∗) since it
appears in the objective function integrated with respect to measure ue which is
nonnegative, and hence at an optimum solution ρe should be made as small as pos-
sible. This observation implies that if we know optimal values for the dual vari-
ables λv, v ∈V , we can compute the optimal values for ρe,e ∈ E by

ρe(θ) = max{0,λv(θ)−λw(θ + τe)} ∀e = (v,w) ∈ E, θ ∈ R. (6)

4 Strong duality

The first result that we would like to establish between (MBFP) and (MBFP∗) is
weak duality. Before we prove this, we require the following technical result.

Lemma 1. Let µ be a finite signed Borel measure on R with a nonnegative distribu-
tion function M. Suppose that h :R→R is a measurable function such that h(θ) = 0
for all θ ∈M�0. Then

∫
R h(θ)dµ = 0.

Proof. Let A := R\M�0 be the set of points θ ∈ R for which M is continuous and
zero at θ . We can write∫

R
h(θ)dµ =

∫
M�0

h(θ)dµ +
∫

A
h(θ)dµ

The first integral on the right-hand side of the equality sign is zero because h(θ) = 0
for all θ ∈M�0. Moreover, we can conclude from Lemma 1 in [9] that the set A is
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a strict µ-null set, i.e., µ(B) = 0 for all measurable sets B⊆ A. This implies that the
second integral is zero as well. ut

We introduce some notations that are used throughout the rest of the paper. For a
given optimization problem (OP), we use the notation V [OP] to denote its optimal
value and use the notation V [OP,x] to denote the objective function value for a given
feasible solution x.

Lemma 2. Suppose that x is feasible for (MBFP) and λ is feasible for (MBFP∗).
Then V [(MBFP),x]≤V [(MBFP∗),λ ].

Proof. Assume that y is the storage with respect to x derived from (??) and ρ is the
function corresponding to λ given by (6). Since λs(θ) = 1 for each θ ∈ R, we can
express the objective function value of (MBFP) for x as

V [(MBFP),x] = ∑
e=(v,w)∈δ+(s)

∫
R

λv(θ)dxe− ∑
e=(v,w)∈δ−(s)

∫
R

λw(θ + τe)dxe . (7)

Moreover, as λt(θ) = 0 for all θ ∈ R, we have

∑
e=(v,w)∈δ+(t)

∫
R

λv(θ)dxe− ∑
e=(v,w)∈δ−(t)

∫
R

λw(θ + τe)dxe = 0 . (8)

On the other hand, the flow conservation constraint (1) at node v ∈ V \ {s, t} holds
for all θ ∈ R. Therefore,∫

R

(
∑

e∈δ+(v)

∫
θ

−∞

dxe− ∑
e∈δ−(v)

∫
θ−τe

∞

dxe +Yv(θ)
)

dπv(θ) = 0 v ∈V \{s, t} .

By summing up these equations over v ∈V \{s, t}, we get

∑
v∈V\{s,t}

∫
R

(
∑

e∈δ+(v)

∫
θ

−∞

dxe− ∑
e∈δ−(v)

∫
θ−τe

∞

dxe +Yv(θ)
)

dπv(θ) = 0 . (9)

By integration by parts and the fact that πv(∞) = 0 for each v ∈ V \{s, t}, we have
for each arc e = (v,w) ∈ E∫

R

(∫ θ

−∞

dxe

)
dπv(θ) =

∫
R

πv(θ)dxe ,∫
R

(∫ θ−τe

−∞

dxe

)
dπw(θ) =

∫
R

πw(θ + τe)dxe .

Thus, (9) can be rewritten as follows:
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∑
e=(v,w)∈δ−({s,t})

∫
R

πv(θ)dxe− ∑
e=(v,w)∈δ+({s,t})

∫
R

πw(θ + τe)dxe

∑
e=(v,w)∈E\(δ+({s,t})∪δ−({s,t}))

∫
R
(πv(θ)−πw(θ + τe))dxe+

∑
v∈V\{s,t}

∫
R

Yv(θ)dπv(θ) = 0 .

(10)

Moreover, for each v∈V \{s, t}we have
∫
R (λv(θ)−πv(θ))dyv = 0 by means of

Lemma 1 and yv = ∑e∈δ−(v) (xe− τe)−∑e∈δ+(v) xe because of the flow conservation
constraint at node v. Thus, we can write down

0 = ∑
v∈V\{s,t}

∫
R
(λv(θ)−πv(θ))dyv

= ∑
v∈V\{s,t}

∫
R
(λv(θ)−πv(θ))d

(
∑

e∈δ−(v)
(xe− τe)− ∑

e∈δ+(v)
xe
)

= ∑
e=(v,w)∈δ+({s,t})

∫
R

(
λv(θ)−πv(θ))

)
dxe

− ∑
e=(v,w)∈δ+({s,t})

∫
R

(
λw(θ + τe)−πw(θ + τe)

)
dxe

+ ∑
e=(v,w)∈E\(δ+({s,t})∪δ−({s,t}))

∫
R

(
(λv(θ)−πv(θ))− (λw(θ + τe)−πw(θ + τe))

)
dxe .

(11)

Then, adding (10) and (11) leads to

∑
e=(v,w)∈δ−({s,t})

∫
R

λv(θ)dxe− ∑
e=(v,w)∈δ+({s,t})

∫
R

λw(θ + τe)dxe

∑
e=(v,w)∈E\(δ+({s,t})∪δ−({s,t}))

∫
R
(λv(θ)−λw(θ + τe))dxe+

∑
v∈V\{s,t}

∫
R

Yv(θ)dλv(θ) = 0 .

(12)

Now by summing up (7), (8), and (12), we obtain

V [(MBFP),x] = ∑
e=(v,w)∈E

∫
R
(λv(θ)−λw(θ + τe))dxe + ∑

v∈V\{s,t}

∫
R

Yv(θ)dπv(θ) .

Then by comparing the objective function values of (MBFP) and (MBFP∗) for x
and λ , respectively, we have
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V [(MBFP∗),λ ]−V [(MBFP),x] = ∑
e∈E

∫
R

ρe(θ)d(ue− xe)+

∑
e=(v,w)∈E

∫
R

(
ρe(θ)−λv(θ)+λw(θ + τe)

)
dxe+

∑
v∈V\{s,t}

∫
R

Yv(θ)dπ
(+)(θ)+

∑
v∈V\{s,t}

∫
R

(
Uv(θ)−Yv(θ)

)
dπ

(−)
v (θ) .

Each of the above integrals is nonnegative due to feasibility of x,y for (MBFP)
and feasibility of λ ,ρ for (MBFP∗). Thus, V [(MBFP),x] ≤ V [(MBFP∗),λ ], which
establishes the desired result. ut

Corollary 1. Suppose that x,y is feasible for (MBFP) and λ ,ρ is feasible for
(MBFP∗). If

∑
e∈E

∫
R

ρe(θ)d(ue− xe) = 0 , (13)

∑
e=(v,w)∈E

∫
R

(
ρe(θ)−λv(θ)+λw(θ + τe)

)
dxe = 0 , (14)

∑
v∈V\{s,t}

∫
0
Yv(θ)dπ

(+)
v (θ) = 0 , (15)

∑
v∈V\{s,t}

∫
0

(
Uv(θ)−Yv(θ)

)
dπ

(−)
v (θ) = 0 , (16)

then x,y and π,ρ are optimal for (MBFP) and (MBFP∗), respectively. Moreover,
strong duality holds between (MBFP) and (MBFP∗).

So far we have seen that weak duality holds between (MBFP) and (MBFP∗). A
stronger result is to prove the existence of a feasible solution x for (MBFP) and a
feasible solution λ for (MBFP∗) in which V [(MBFP),x] =V [(MBFP∗),λ ]. As noted
previously, the arc capacities ue,e ∈ E are finite and this is sufficient to guarantee
the existence of an optimal solution x, say, for (MBFP). Moreover, by Theorem 1,
there exists an s-t Borel cut S for which val(x) = cap(S). It thus enough to show
that S corresponds to a feasible solution λ with cap(S) = V [(MBFP∗),λ ]. This is
the context of the next lemma.

Lemma 3. Given an s-t Borel cut S = (Sv)v∈V , let λv : R → R be the indicator
function3 of Sv and ρe : R → R be the indicator function of Sv ∩ (Sw − τe)

c for

3 The indicator function χA of a set A⊆ R is defined by

χA(θ) :=

{
1 if θ ∈ A ,
0 otherwise ,

∀θ ∈ R .
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each arc e = (v,w) ∈ E. Then λ := (λv)v∈V , ρ := (ρe)e∈E is a feasible solution for
(MBFP∗) and moreover, V [(MBFP∗),λ ] = cap(S).

Proof. We first show that λ is feasible for (MBFP∗). As Ss = R and St = /0, we
have λs = 1 and λt = 1. Moreover, it easy to see that λ and ρ satisfy the equa-
tion (6). It thus suffices to prove for each v ∈ V \{s, t} that the function πv defined
by πv := λv|U�0

v
is of σ -bounded variation. We easily observe that πv is the indi-

cator function of Γv := Sv ∩U�0
v . By the definition of s-t Borel cuts, the set Γv is

a countable union of pairwise disjoint intervals for each v ∈ V \ {s, t} and, as an
immediate result, the indicator function of Γv is a function of σ -bounded variation.
This establishes the first part of the lemma.

It remains to show that V [(MBFP∗),λ ] = cap(S). To do so, we simplify the ob-
jective function value of (MBFP) with respect to solution λ , ρ . The first term in the
objective function can be expressed as follows:

∑
e∈E

∫
R

ρe(θ)due = ∑
e=(v,w)∈E

ue
(
Sv∩ (Sw− τe)

c) ,
since ρe is the indicator function of Sv∩ (Sw− τe)

c for each arc e = (v,w) ∈ E.
For each node v ∈ V \ {s, t}, the set Γv := Sv ∩U�0

v can be written as
⋃

i∈Jv Iv,i,
where Jv is a countable set and Iv,i, i ∈ Jv, are pairwise disjoint intervals. Then the
second term in the objective function can be written as follows:

∑
v∈V\{s,t}

∫
R

Uv(θ)dπ
(−)
v (θ) = ∑

v∈V\{s,t}

(
∑

i∈J1
v∪J2

v

Uv(βv,i−)+ ∑
i∈J3

v∪J4
v

Uv(βv,i)
)
.

Here αv,i and βv,i are the left and right boundaries of the interval Iv,i for each v ∈ V
and i ∈ N. Further, J1

v , J2
v , J3

v , and J4
v are the sets of indices i for which Iv,i is open,

left-closed & right-open, right-closed & left-open, and closed, respectively. ut

Combining Theorem 1 and Lemma 3, we get the main result of this paper.

Theorem 2. Strong duality holds between (MBFP) and (MBFP∗), i.e., there ex-
ists a feasible solution x for (MBFP) and a feasible solution λ for (MBFP∗) in
which V [(MBFP),x] =V [(MBFP∗),λ ].
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