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Abstract. One of the most challenging problems in dynamic concurrent multiscale simula-
tions is the reflectionless transfer of physical quantities between the different scales. In particular,
when coupling molecular dynamics and finite element discretizations in solid body mechanics, often
spurious wave reflections are introduced by the applied coupling technique. The reflected waves
are typically of high frequency and are arguably of little importance in the domain where the finite
element discretization drives the simulation. In this work, we provide an analysis of this phenomenon.

Based on the gained insight, we derive a new coupling approach, which neatly separates high
and low frequency waves. Whereas low frequency waves are permitted to bridge the scales, high
frequency waves can be removed by applying damping techniques without affecting the coupled
share of the solution. As a consequence, our new method almost completely eliminates unphysical
wave reflections and deals in a consistent way with waves of arbitrary frequencies. The separation of
wavelengths is achieved by employing a discrete L2-projection, which acts as a low pass filter. Our
coupling constraints enforce matching in the range of this projection. With respect to the numerical
realization this approach has the advantage of a small number of constraints, which is computationally
efficient. Numerical results in one and two dimensions confirm our theoretical findings and illustrate
the performance of our new weak coupling approach.
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1. Introduction. Various phenomena in solid body mechanics that can eventu-
ally be observed by the plain eye emerge from processes on an atomic scale. In the
last decades, advances in modeling techniques and the ever-growing power of com-
puters have sparked an increasing interest in simulating such phenomena to forecast
their occurrence or predict their evolution over time. It has been understood that
this task involves a wide range of length and time scales. At first glance, it therefore
seems an appealingly simple solution to use a full-scale atomistic simulation, certainly
covering all relevant scales of the problem under consideration. However, despite suc-
cesses of large atomistic computer simulations [Abr03, SGP+06], they suffer from the
vast amounts of computer power required by the employed extremely fine-grained
resolution of the physical body.

One promising approach to remedy this limitation is based on the fact that in
most industrial problems, the complex processes on small time and length scales take
place only in a comparably small region whereas for the remaining part a considerably
simpler upscaled description suffices. A prominent example is crack propagation.
Here, a high resolution close to the crack tip is needed, where prior to eventual
failure the material may undergo plastic deformation or experience quick oscillations in
density [Abr03, Bue08]. In contrast, in the remainder of the body the deformations are
smooth, which permits to approximate them efficiently by well-understood continuum
models. This part of the body cannot be disregarded in a simulation, as otherwise
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spurious finite size effects due to the reflection of stress waves at the (non-physical)
boundaries occur [HR95].

The development of a multitude of so-called multiscale methods in different fields
started about twenty years ago and has accelerated in the last few years. Along with
this expansion, several survey articles have been published seeking to classify these
methods by different aspects [CM03, PL04, BCC+04, ELVE04]. The different multi-
scale methods vary not only in scope and underlying assumptions, but also in their
approach to the more basic question whether to decompose the problem hierarchi-
cally or rather rely on a concurrent approach. In the first case, the computations are
performed on each scale separately. Often, the scale coupling is done by transferring
problem parameters, i.e., the results obtained on one scale determine the parameters
for the computational model on another scale [BLL02, AG05]. Thus, for instance, a
continuum model can be derived from the atomic information [BLL02]. Under the
concurrent paradigm, computations on different scales are carried out simultaneously.

Most concurrent multiscale methods use a spatial decomposition of the simulation
domain. The details of the partition, i.e., whether the partition is overlapping, non-
overlapping, or even fully overlapping, is one major characteristic of such a method.
The coupling of length scales method, for example, uses a non-overlapping decomposi-
tion with a lower-dimensional interface for coupling [BABK99]. At the interface, mesh
nodes are identified with atoms. Wave reflections due to the necessary mesh grading
are counteracted by coupling the equations of motion to a heat bath. For efficiency
reasons, many other methods try to avoid this refinement of the finite element mesh
down to the atomistic lattice. Li et al. [LYE10] developed a method which is based
on the formulation of both, the continuum and the MD scale, as a set of conservation
laws. In their method information is transfered from MD to the continuum via momen-
tum and energy flux through the atomistic/continuum interface. The authors derive
boundary conditions for the atomistic system which account for the missing neigh-
boring atoms. Kraczek et al. [KTHJ10] have developed a concurrent non-overlapping
coupling method in a Spacetime Discontinuous Galerkin framework. The coupling
of continuum and atomistic equations at the interface is achieved through appropri-
ately chosen Riemann values for the continuum side and jump conditions for velocities
and stresses for the atomistic side. The equations of motion are solved in a mono-
lithic fashion. In contrast to most other approaches, the authors attempt to represent
all modes of the atomistic system in the continuum system using space adaptivity.
The bridging scale method by Liu et al. [WL03] uses a mass-weighted least squares
projection to decompose the fine atomistic displacement in a coarse part, which is
representable on the coarse finite element mesh, and the remaining fine fluctuation
field. Starting from the assumption of totally overlapping scales, the atomistic lattice
is removed outside the critical region and absorbing boundary conditions are applied
at the artificial molecular dynamic boundary. This approach has also been further
developed by Klein and Zimmermann [KZ06], To and Li [TL05] and Park and Liu
[PL04].

Different in nature is the Bridging Domain method (BDM) by Belytschko and
Xiao [XB04], which is based on ideas from domain decomposition techniques. In the
BDM a partially overlapping decomposition of the scales is used. Both models are
coupled by pointwise matching constraints in the so-called bridging domain, where
both models coexist. The equations of motion are derived from a weighted sum of the
individual Hamiltonians. As can be observed in simulations, the pointwise constraints
result in spurious reflections, if not counteracted by algorithmic modifications. Typi-
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cally one uses a lumping of the multiplier matrix in a timestepping scheme which only
constraints velocities. Then, high frequency waves are dissipated by a velocity rescal-
ing. However, higher order, structure-preserving algorithms, like e.g., the RATTLE
algorithm, may require the enforcement of the constraints also in the displacements.
In this case, the approach again suffers from spurious reflections.

In this work, we present a novel method for the concurrent coupling of molecular
dynamics and finite elements for the simulation of solids. We start by an analysis of
the wave reflection phenomena observed in the above mentioned methods. It reveals
that the distinct densities of degrees of freedom cause different dispersion relations
within the two models, meaning that short wavelengths propagate at different speeds.
More importantly, the change of wave propagation speed at the artificial interface(s)
introduced by the coupling method will cause non-vanishing reflection.

Motivated by these observations, we propose the use of averaging (“weak”) con-
straints to couple the models in a coupling zone. In order to be able to formulate the
constraints, the space of atomistic displacements is embedded in the function space L2

by means of a Partition of Unity base [FK09, Fac09]. The constraints are constructed
to be oblivious of high frequency waves, which are (almost) orthogonal to the finite
element space. To cope with these waves, we apply a modified perfectly matched
boundary method (PML) [TL05, LLAT06] within the coupling zone.

The paper is organized as follows. In Section 2 we briefly introduce molecular
dynamics and continuum mechanics, and derive the dependency of the reflection co-
efficient on the FE discretization parameter in a model setting. Section 3 contains an
introduction to the BDM. Therein, we discuss the weak coupling framework and our
new coupling method. We show that although our coupling approach is based on a
first-order approximation of displacements, it also has remarkable properties with re-
gard to the energy transferred between the scales. After presenting the PML method,
Section 4 contains numerical examples in one and two spatial dimensions agreeing
with our theoretical findings.

2. Issues in Multiscale Modeling. In this section we discuss challenges in the
simulation of solids by means of multiple models spanning different length scales. Af-
ter an introduction of the individual models, we discuss the dependence of propagation
speed of waves on the density of degrees of freedom. This will allow to analyze wave
reflections at coupling interfaces, which is a major issue in all dynamic concurrent
multiscale methods.

2.1. The Basic Equations.

Molecular Dynamics. As an appropriate model for the time dependent and
strongly non-linear processes contemplated here, on the micro scale we use molecular
dynamics, cf. [Abr03, GKZ07]. In molecular dynamics, atoms α ∈ A of the material
under consideration are represented as point masses in the Euclidean space. Each of
the atoms is subject to external and internal forces obtained as a function of positions
(and velocities) of the atoms, and time. The positions of the atoms are then assumed
to follow Newton’s equations of motion, cf. [GKZ07].

The position of each atom α ∈ A in a reference configuration is denoted by
Xα ∈ Rd. We define xα(t) to be the position and qα(t) to be the displacement of
atom α at time t ≥ 0, i.e.,

xα(t) = Xα + qα(t). (2.1)
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The displacements of the atoms change according to Newton’s equations of motion

mα q̈α(t) = Fα(q, q̇, t), (2.2)

where Fα is the force exerted on atom α and mα > 0 is its mass. This yields the
system of ordinary differential equations

Mq̈(t) = F (q, q̇, t) ,

where q = (qα)α∈A ∈ Rd|A|, M = diag(mαId×d)α∈A and F = (Fα)α∈A ∈ Rd|A|,
respectively. Its unique solution is determined by the initial displacement qα and
velocities q̇α. We assume conservative forces, so that the force is independent of the
velocity and a potential UMD with F = −∇q UMD(q(t), t) exists.
For later use, we denote the kinetic energy of the MD system by T MD, i.e.

T MD(q̇) =
1

2
q̇TMq̇ =

1

2

∑
α∈A

mα |q̇α|2 (2.3)

Continuum Mechanics. In continuum theories the discrete structure of the
body is discarded. Rather, the motion of the body Ω is described in terms of a
locally invertible, volume preserving mapping ϕ : Ω → Rd or (equivalently) by the
displacement field u = ϕ − id. In the deformed body, internal stresses arise which
— if not balanced by external traction — yield a motion of the body, i.e., a change
of u. The equations of motion can be derived from momentum conservation (see
e.g. [BLM00, Cia88]). Denoting by P the first Piola-Kirchhoff tensor, by % the density
in the undeformed reference configuration and by b external body forces (assuming
dead loads), the equations of motion read

%ü = divP (u) + b. (2.4)

Depending on the constitutive equations and the boundary of Ω, solutions for u fail
to be smooth enough for (2.4) to be senseful. In this case it is necessary to interpret
(2.4) in a weak sense, i.e.,∫

Ω

%ü · v dx =

∫
Ω

%b · v dx−
∫

Ω

P (u) : ∇v dx (2.5)

for all v in the testspace, which is a subspace of H1(Ω). This formulation is also more
appropriate for discretization by meshless or mesh-based methods, e.g., FEM.

If the material law is hyperelastic (e.g., linear elasticity, Cauchy-Born materials)
a stored energy function W : Md×d

+ → R exists such that

∂W

∂F
(F (u)) = P (u) .

Here, by Md×d
+ we denote the set of d × d matrices with positive determinant

(cf. [Cia88]) and

F = F (u) = ∇ϕ = Id×d +∇u

is the deformation gradient.
In this setting, the potential energy of a deformed body is given by

UCM(u) =

∫
Ω

W (F (u)) dx .
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The kinetic energy of the moving deformed body has a form similar to (2.3), namely

T CM(u̇) =
1

2

∫
Ω

% |u̇|2 dx .

For the numerical approximation of equation (2.4) or (2.5), we employ a finite
element discretization of lowest order. Let T h denote a shape regular mesh with mesh
size parameter h > 0 which approximates Ω. We use Lagrangian conforming finite
elements of first order (P1 or Q1) for the displacement u and denote the set of all
nodes of T h by N h. The finite element space Sh(Ω) ⊂ H1(Ω) is then spanned by the
nodal basis

Sh(Ω) = spanp∈Nh{θhp}.

The Lagrangian basis functions θhp ∈ Sh(Ω) are uniquely characterized by the Kronecker-
delta property

θhp (xq) = δpq =

{
1 if p = q

0 else
, p, q ∈ N h .

Any function u ∈ Sh(Ω) can uniquely be written as

u =
∑
p∈Nh

upθ
h
p , (2.6)

where (up)p∈Nh ∈ Rd|Nh|, up ∈ Rd, is the coefficient vector. We can identify each
element of Sh(Ω) with its coefficient vector (up)p∈Nh .

2.2. Challenges of Multiscale Coupling: The Dispersion Relation. In
the first section we introduced the continuum and the molecular description. When
bringing them to practice, either of them exhibits advantages and disadvantages. On
the one hand, atomistic simulations are able to describe defects on the small scale,
however the required number of atoms — and thus the computational costs — become
prohibitively large. On the other hand, finite element based continuum simulations are
computationally less burdening, but also less accurate. In particular, the abstraction
of a continuous body is infeasible under strong local deformations. Multiscale methods
strive for combining the advantages of both techniques by employing a continuum
description on the majority of the computational domain and restricting molecular
dynamics to regions where a highly resolved simulation is actually needed. The main
challenge is to match these two descriptions in a sound way.

As we will see in the following section, the speed at which waves propagate is a
crucial quantity if a suitable matching along the interface is to be achieved. Conse-
quently, we want that this velocity is conserved when the discretization changes. In
order to attain this, we now explore the behavior of waves in continuum as well as
atomistic regions. To do so, let us consider a simple case on each scale: a mass spring
system on the molecular scale and its corresponding continuum counterpart. Even
in this simplistic model reflections occur when an unsuitable coupling of molecular
dynamics with finite elements is applied. An analysis of these reflections at the end
of this chapter will give rise to our new coupling strategy.

The dispersion relation states the dependence of the frequency on the wave num-
ber. In order to show this relationship, we first briefly introduce traveling waves in
crystals and then derive the dispersion relation for the molecular dynamics setting.
For the sake of simplicity we confine our discussion to the one-dimensional case.
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Wave Propagation in Crystals. Recall that q(t) denotes the deviation of the
atoms from the reference configuration. In the following we identify atoms α with
integers in the range 1, . . . , |A|. A harmonic wave in the atomistic model is of the
form

qα(t) = q̃ei(kXα−ωt) (2.7)

where q̃ is the amplitude, k the wave vector and ω the angular frequency. The wave
number κ := |k| is related to the wave length λ by κ = 2π/λ. By means of the Fourier
transformation, any given perturbation can be translated into a (frequency) spectrum
of harmonic waves. The number of the harmonic solutions depends on the number of
atoms in the body.

To keep things simple, we assume that the time dependent motion of the atoms
is a linear superposition of harmonic waves. The gained insights from the linear case
then gives necessary conditions for nonlinear systems such as typical MD simulations.
Considering a one-dimensional crystal lattice with atomistic spacing r0, so that Xα =
αr0, and nearest neighbor interaction, we have

qα(t) =
∑
k

q̃ke
i(kαr0−ωt) . (2.8)

In the considered linear case, the behavior of the solution can be understood by
examining the harmonic solutions independently, i.e., q̃k = 0 for all but one k.

Let us consider a mass spring system with equal masses m and spring constant
K. The atomistic Hamiltonian is given by

HMD =
1

2

|A|∑
α=1

p2
α

m
+
K

2

|A|∑
α=1

(qα − qα−1)2 , pα = mq̇α . (2.9)

Here and in the following, for convenience, we set q0 = q|A| and q|A|+1 = q1. The
respective equations of motion derived from HMD can be stated as

mq̈α = K(qα+1 + qα−1 − 2qα) . (2.10)

Inserting (2.8) gives

−mω2q̃ke
i(kαr0−ωt) = −q̃ke−iωtK(2eikαr0 − eik(α−1)r0 − eik(α+1)r0)

or

mω2 = 2K

(
1− e−ikr0 + eikr0

2

)
= 2K sin2

(
kr0

2

)
.

This equality is referred to as the dispersion relation.
Definition 2.1 (Dispersion Relation of the Atomistic System).

ω2 =
2K

m
sin2

(
kr0

2

)
. (2.11)

Apparently it holds that ω(k) = ω
(
k + 2πn

r0

)
for any n ∈ Z. Hence we only consider

the case k ∈ (−π/r0, π/r0), which is known as the first Brillouin zone [Kit04]. We
chose the open interval, as for κ = π/r0 the group velocity vgr := dω

dk equals zero,
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meaning that the solution is a standing wave. For symmetry reasons it is sufficient to
restrict to k = κ > 0.

Very differently, continuum theories feature a linear dispersion relation ω2 ∼ k2.
A connection to the atomistic case can be found in the limit of long wavelengths, i.e.,
κ→ 0, since then the sine behaves like the identity.

Definition 2.2 (Dispersion Relation of the Continuum System).

ω2 =
Kk2r2

0

2m
. (2.12)

Comparing the two dispersion relations, we see that for large wave numbers κ, both
systems behave differently. In particular, one consequence of the different dispersion
relations are differing phase and group velocities, where the phase velocity is defined
as vph := ω

k . The molecular phase and group velocities are

vMD
ph =

1

k

√
2K

m
sin

(
kr0

2

)
and vMD

gr =

√
K

2m
r0 cos

(
kr0

2

)
, (2.13)

whereas their continuum counterparts are given by

vCM
ph = vCM

gr =

√
K

2m
r0.

Thus, for large wavelengths, i.e., small κ, we have

vMD
ph ≈ vCM

ph and vMD
gr ≈ vCM

gr .

On the contrary, for large wave numbers close to the boundary of the first Brillouin
zone, we have cos(kr02 ) ≈ 0, implying that shorter wavelengths propagate slower
than waves with long wavelengths in the discrete system, which is not the case in a
continuum.

So far we have shown that the continuum and the molecular scale have differ-
ent dispersion relations, which carries over to the velocities of waves. However, for
long wavelengths these differences are insignificant. Next, we examine the numerical
dispersion relation, i.e., the case when the continuum is discretized. The finite ele-
ment model which we employ on the macro scale is based on a continuum mechanics
approximation of the deformation of our body.

Analogously to the atomistic case, we consider a finite element approximation for
the continuum Hamiltonian of a harmonic system in one dimension, which is given by

HFE =
1

2

∑
p∈Nh

%hu̇2
p +

Ch

2

∑
p∈Nh

(
up − up−1

h

)2

, (2.14)

where we assumed the standard linear nodal basis with equidistant mesh spacing
h. By % and C we denote the mass density and the elastic modulus, respectively.
Moreover we choose

C = Kr0 and % = m/r0, (2.15)

which means that the material constants of the atomistic and the continuum model
are the same. Again, we assume periodic boundary conditions. The equations of
motion for HFE can then be stated as

müp =
Kr2

0

h2
(up+1 + up−1 − 2up) (2.16)



8 K. FACKELDEY, D. KRAUSE, R. KRAUSE AND C. LENZEN

Hence, if the finite element size h equals the atomistic spacing r0 we have that (2.10)
and (2.16) coincide.

A harmonic solution of (2.16) is given by

up(t) = ũei(kxp−ωt), (2.17)

where ũ is the amplitude, ω is the frequency and k ∈ (−π/h, π/h) is the (fixed) wave
vector. Again, κ = π/h would imply that the solution is a standing wave. Analogously
to the molecular case we obtain the dispersion relation

Definition 2.3 (Numeric Dispersion Relation for the FE Discretization).

ω2 =
2Kr2

0

mh2
sin2

(
kh

2

)
. (2.18)

The phase and group velocities evaluate to

vFE
ph =

√
2K

m

r0

hk
sin

(
kh

2

)
and vFE

gr =

√
K

2m
r0 cos

(
kh

2

)
, (2.19)

since we assume k = κ > 0.
From (2.19) we can see that for fixed k the speed of a wave decreases as the

meshsize h increases. For very large h no representation of the wave is possible, since
we need at least two discretization points per wave length.

Fig. 2.1: Reflection due to an abrupt change of the wave propagation speed at an
interface.

In Fig. 2.1 an example of a wave entering a region of slower wave propagation
speed due to a change of the spatial discretization size is shown. We observe reflec-
tions at the interface. In the next section we quantify these spurious reflections by
examining the reflection coefficient.

2.3. The Reflection Coefficient. So far we have shown that due to the differ-
ences in the dispersion relation the speed of a wave changes when propagating from
the molecular domain into the continuum domain.

We now consider the transition of waves from molecular dynamics to a finite
element discretization. Suppose that we have an incoming and a reflected wave in
the MD region, and a wave transmitted into the finite element region, separated by
an interface (thus, in one dimension, a point). In the MD region, we have a resulting
wave as superposition of the incoming and reflected waves. Denote by AI and ω the
amplitude and frequency of the incoming wave, and by AR and AT the amplitudes of
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the reflected and transmitted waves, respectively. Our starting point is the continuity
of the composed solution at the interface. Thus, it is required that all waves have the
same frequency ω. Assuming non-negative amplitudes, we moreover have

AT = AI +AR. (2.20)

The respective energy flows ΦI ,ΦR,ΦT of the incoming, reflected, and transmitted
waves are (cf. [Bri53])

ΦI =
%

2
ω2A2

Iv
MD
gr (ω)

ΦR =
%

2
ω2A2

Rv
MD
gr (ω)

ΦT =
%

2
ω2A2

T v
FE
gr (ω).

Energy conservation imposes that

ΦI = ΦT + ΦR.

Inserting the respective energy terms for the flows we obtain

A2
Iv

MD
gr (ω) = A2

T v
FE
gr (ω) +A2

Rv
MD
gr (ω).

Solving for the transmission coefficient T := AT
AI

we get

T 2 =
A2
T

A2
I

=
vMD

gr (ω)

vFE
gr (ω)

(
1− A2

R

A2
I

)
=
vMD

gr (ω)

vFE
gr (ω)

(
1−R2

)
. (2.21)

with the reflection coefficient R := AR
AI

. From (2.20) we obtain the relationship

T 2 = (1 +R)2. (2.22)

We set the two representations of T equal, which implies either R = −1 or

fv :=
vMD

gr (ω)

vFE
gr (ω)

=
(1 +R)2

1−R2
=

1 +R

1−R,

since with R = 1 not both equalities involving T and R can be fulfilled. Solving for
R yields

R =
fv − 1

fv + 1
.

Note that the solution R = −1 is trivial, as it describes the case of the reflected wave
annihilating the incoming one, resulting in no wave at all. We also immediately see
that if fv = 1, i.e., h = r0 (cf. (2.13) and (2.19)), the nontrivial solution has zero
reflection.

To get a more explicit description of R, we solve the dispersion relations (2.11)

and (2.18) for k. Abbreviating c :=
√

2K
m , we get

kMD = ± 2

r0
arcsin

(ω
c

)
and kFE = ± 2

h
arcsin

(
hω

r0c

)
. (2.23)
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We insert into the expressions for vMD
gr and vFE

gr given by (2.13) and (2.19), respectively,
to obtain

fv =
vMD

gr (ω)

vFE
gr (ω)

=
cos
(
sign(kMD) arcsin

(
ω
c

))
cos
(

sign(kFE) arcsin
(
hω
cr0

)) =

√
1− ω2

c2√
1− h2ω2

c2r20

,

where we used that cos arcsin(x) =
√

1− x2.
We conclude that the reflection coefficient is

R =

√
1− ω2

c2 −
√

1− h2ω2

r20c
2√

1− ω2

c2 +
√

1− h2ω2

r20c
2

. (2.24)

Fig. 2.2: Reflection coefficient R for c = 1, r0 = 21/6 and different values of h and ω.

To interpret these results in our coupling context, we observe that the FE mesh
size h shall be significantly larger than equilibrium distance r0 in order to keep the
number of coarse scale degrees of freedom low.

From (2.24) we deduce that we cannot hope for R� 1 independent of ω if h 6≈ r0,
cf. Figure 2.2. If ω tends to the cut-off, i.e., maximum, frequency cr0

h of the finite
element system (cf. (2.18)) the reflection coefficient R approaches 1. Even worse, the
maximum frequency of the MD system c (cf. (2.11)) exceeds the maximum frequency
of the finite element discretized continuum by a factor of h

r0
. For any frequency in

between we must observe total reflection: If for a given ω no solution exists in the
finite element system, it follows that the transmitted wave vanishes. This can also be
seen in Figure 2.2 where the reflection rate equals one in the range ω > r0c/h. In this
case energy conservation requires that we have total reflection.

Remark 1. In the above derivation we have assumed non-negative amplitudes.
Due to a phase transition of π it is however possible that AR < 0. In this case we can
have T = 0 and R = 1, i.e., total reflection.
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The remaining possibility in this qualitative analysis is that hω
r0c

is small. Since
h > r0, this means also that ω

c is small. Then (2.24) gives that R � 1 as desired.
Moreover, we also have that vMD

ph ≈ vFE
ph and vMD

gr ≈ vFE
gr from (2.13) and (2.19).

Finally (2.23) shows that κMD ≈ κFE. Altogether we conclude that if

ω � r0c

h
(2.25)

we have little reflection and incoming and transmitted wave agree on wavelength,
frequency and amplitude, i.e., the solutions in both systems are nearly identical.

Although these results apply to an interface, they are also highly relevant for
overlapping coupling models, as these also impose interfaces. A reduction of the
density of degrees of freedom in conjunction with incorrectly applied constraints yield
a reduced ability to represent high frequency waves in the handshake region. The
above analysis applies in this situation as well.

3. The Weak Concept. Recall that our overall goal is the coupling of a coarse
FE (space) discretization with MD. This ensures that the number of FE degrees of
freedom is small compared to the number of MD degrees of freedom. Apparently, in
this case not all MD displacement fields can be represented exactly on the FE mesh.
More precisely, the standard linear FE basis cannot resolve wavelengths smaller than
the element size, whereas it is well suited to deal with large wavelengths.

In this chapter, we discuss approaches to stable coupling based on constrained
dynamics, i.e., by means of coupled equations of motion. In order to match the
numerical solutions in an overlapping subdomain, constraints are imposed, resulting
in additional force terms in the equations of motion.

3.1. Coupling by Constraints. We consider an overlapping decomposition of
the domain Ω = ΩMD ∪ ΩCM. In ΩMD we use molecular dynamics to resolve critical
nonlinear phenomena. In the larger domain ΩCM we employ continuum mechanics.
The overlap ΩBD = ΩCM ∩ ΩMD is called the bridging domain [XB04].

ΩCM

ΩCM ∩ ΩMD

ΩMD

Fig. 3.1: Example of a domain Ω ⊂ R2 with a pure molecular part ΩMD, a pure
continuum part ΩCM and a mixed part ΩMD ∩ ΩCM.

We define q and u as the displacement fields in ΩMD and ΩFE, respectively. We
denote the set of atoms with reference position Xα ∈ ΩBD by ABD. To achieve the
coupling between the MD and the continuum system, we impose constraints (q, u) ∈ C,
where C is the configuration manifold. This means that the displacements q and u
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at each time should lie on the manifold C. The shape and orientation of C define
the matching conditions and the way the displacements of the individual, uncoupled
systems are corrected. Obviously, the constraints should be local in the sense that
they do not depend on the displacements outside of ΩBD because there only one model
is valid.

The authors of [XB04] impose pointwise constraints, i.e., C is the linear space

C =
{

(q, u)
∣∣ qα = u(Xα) for each atom α ∈ ABD

}
. (3.1)

Reformulating the constraints in an algebraic form we find C = {g = 0} with

g(q, u) = q −Nu (3.2)

and the interpolation operator N : Sh(ΩBD)→ Rd|ABD| defined by (Nu)α = u(Xα).
The choice of pointwise constraints is motivated by the Cauchy-Born rule [BH98].

The constraints (3.2) are a strong modification of the uncoupled systems since they
prohibit the existence of displacement fields q which are not exactly representable by
the coarse finite element basis. As a consequence, small-wavelength waves are not
permitted in the bridging domain and are reflected at the interface ∂ΩBD∩ΩMD since
energy is conserved.

In the Bridging Domain method the pointwise constraints serve two purposes:
• They deliver the information transfer between the scales. In the bridging

domain both systems have the same dynamic yielding a globally consistent
displacement field.

• They avoid the reflection of high frequency waves (roughly speaking, those
not representable on the finite element mesh) at the MD boundary ∂ΩBD by
inhibiting the propagation of such waves in the bridging domain.

However, this approach is too restrictive in the sense that it inhibits the MD
component of the coupled system too severely. From our point of view, the failure
of the coupling method presented above is due to the misuse of the same constraints
for both information transfer and reflection elimination. In Section 3.3 we show how
to decouple these tasks by imposing constraints in a “weak” sense. Since small-
wavelength waves are not affected by the constraints they can propagate smoothly
into the bridging domain where, e.g., non-reflecting boundary conditions can be used
to eliminate reflections.

In the following we assume the configuration manifold C to be linear. Hence we
can find a linear mapping g so that C = {g = 0}. The map g might be written as

g(q, u) = BMDq −BCMu. (3.3)

Here BMD and BCM are linear operators with range in some intermediate space V. In
the bridging domain method, this intermediate space V is the space of all atomistic
displacements in ΩBD and BMD = id, BCM = N .

3.2. Deriving Constraints in the Lagrangian Setting. In general, the equa-
tions of motion on the atomistic as well as on the continuum level can be derived
either from the Hamiltonian or the Lagrangian description. In some situations, the
derivation from the Lagrangian equations is more natural, since the Hamiltonian ap-
proach requires the identification of the canonical conjugated momenta, which are the
derivatives of the Lagrangian with respect to the velocities.

The Lagrangian for a wide class of mechanical systems in generalized coordinates
s is L(s, ṡ) = T −U . Here, T denotes the kinetic energy and U is the potential energy
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of the system, cf. Section 2.1. We assume that U does not depend on the velocity. The
time evolution of such a system is governed by the Lagrangian equations of motion

d

dt

∂

∂ṡ
L =

∂

∂s
L. (3.4)

As T does not depend on the displacement, the right hand side of (3.4) is the negative
of the gradient of U . However, the canonical conjugated momentum ∂

∂ṡL usually
differs from the kinetic momentum mṡ.

This general formalism applies to the bridging domain setting as follows. Let

LMD(q, q̇) = T MD(q̇)− UMD(q)

and

LCM(u, u̇) = T CM(u̇)− UCM(u)

denote the Lagrangian of the molecular dynamic system and the continuum system,
respectively. The Lagrangian of the coupled system now is a weighted sum of the
individual Lagrangian plus a contribution due to the constraints. Since in the overlap
the molecular and the continuum description coexist, a weighting function w : Ω →
[0, 1] is necessary so that energy is not counted twice in ΩBD. We require w ≡ 1 in
ΩMD \ΩBD and w ≡ 0 in ΩCM \ΩBD so that the equations of motion are not altered in
those subdomains where only one model is valid. Denoting by (·, ·)V a scalar product
on V, the Lagrangian L for the coupled system reads

L(q, u, q̇, u̇, λ) = w ·
(
T MD(q̇)− UMD(q)

)
+

(1− w) ·
(
T CM(u̇)− UCM(u)

)
+ (λ, g(q, u))V . (3.5)

The Lagrange multipliers λ ∈ V are determined by the constraint that the coupled
solution (q, u) lies on the configuration manifold (q, u) ∈ C, i.e g(q, u) = 0.

We remark that in the above formula the multiplication by w and (1 − w) is an
abuse of notation. More precisely, w · TMD(q̇) denotes the weighted sum

1

2

∑
α

mαw(Xα) · |q̇α|2

and (1− w) · T CM(u̇) is defined as

1

2

∫
%(1− w) · |u̇|2 dx.

Inserting the Lagrangian (3.5) into the general Lagrangian equation (3.4) we obtain
the coupled equations of motion

M̄ q̈ = −∇ŪMD(q) +
(
λ,∇qg(q, u)

)
V (3.6)

%̄ü = −∇ŪCM(u) +
(
λ,∇ug(q, u)

)
V (3.7)

0 = g(q, u) (3.8)

where we introduced the notations M̄αβ = w(Xα)mαδαβ , %̄ = (1 − w)% as well as
ŪMD = w · UMD and ŪCM = (1 − w) · UCM. The equations of motion in ΩCM are to
be understood in a weak sense.
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Comparing (3.6) and (3.7) to the equations of motion of the individual, uncoupled
systems, we see that the weighting w affects the internal forces and does not cancel
out. Notably, we find the canonical conjugated momenta to be weighted as well, e.g.,
pMD
α = w(Xα)mα · u̇α. Therefore

w · T MD(pMD) =
1

2

∑
α

∣∣pMD
α

∣∣2
mαw(Xα)

.

In [XB04] the weighted Hamiltonian is always written using the kinetic momenta
rather than the canonical conjugated momenta. However, when deriving the Hamil-
tonian equations it is important to reformulate the Hamiltonian using the conjugated
momenta which is only possible through the Lagrange formulation.

Both, the MD and the continuum system, admit trivial solutions (i.e., functions
affine linear in space and time) on unbounded domains or bounded domains with
appropriate boundary conditions. However, for the coupled system the question of
existence of such situations is more involved. First, ignoring the weighting for the
moment, we notice that any solution of the individual uncoupled systems which fulfills
the constraints is also a solution of the coupled equations. Using the constraints
defined in Subsection 3.3 this is true for all solutions which are representable on both
scales (i.e. piecewise affine linear solutions). However, by the geometric setup, both
ΩMD and ΩBD have a free boundary at the interfaces of the handshake region (interior
to the simulation domain Ω). This prohibits the existence of trivial solutions due to
the lack of neighbor atoms/nodes.

Fortunately, numerical evidence shows that the most important effect of the
weighting in the equations of motion (3.6)–(3.8) is the mitigation of these bound-
ary effects. In fact, the weighting of the internal forces in (3.6) and (3.7) has only
little effect on our simulations and it is possible to assume a constant weighting (jus-
tified by the small slope of w compared to the atomistic distances) in the evaluation
of the mass terms on the left side and the force terms such that the effect of the
weighting cancels out, cf. [ACRZ08]. However, (heuristically) dividing (3.6) by w
and (3.7) by 1 − w we see that the effective Lagrange forces are scaled by the in-
verse weighting. Hence, near the internal boundaries where w → 0 (or (1 − w) → 0,
resp.) the Lagrange forces dominate the total force and the effects due to the free
boundary vanishes. The motion of these atoms/nodes is completely dictated by the
displacements of the complementary scale.

To illustrate this effect we consider the static solution of (3.6)–(3.8) in one di-
mension on the domain Ω = [−80 · 21/6,+80 · 21/6] with ΩBD = [−40 · 21/6, 40 · 21/6]
using the harmonic approximations (2.9), (2.14) with h = r0, for simplicity. We en-
force zero Dirichlet values on the left and u = 1 on the right boundary of Ω. Figure
3.2a shows the static solution of (3.6)–(3.8) with and without scaled Lagrange forces.
By comparing the solution to the linear interpolating function (which is the solution
of the system if we would solve a pure MD problem) we can see that the weighting
mitigates the effects of the free boundaries at X = −40 · 21/6 and X = +40 · 21/6.
Since the weighting of the boundary atoms/nodes cannot be exactly zero we see a
small error in the solution with weighting.

In conclusion, using heuristic arguments we find that (3.6)–(3.8) approximately
admits trivial solutions up to errors due to a lower bound on the weighting function,
assuming we use a zero order approximation of w in the mass and force terms.
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Fig. 3.2: Static solution of the coupled equations (3.6)–(3.8) with and without scaled
Lagrange forces.

3.3. Imposing Constraints in Weak Sense. In view of the problems dis-
cussed in Subsection 3.1, we need to modify the constraints, i.e., the manifold C.
Instead of pointwise constraints, which prohibit the propagation of waves with high
wave numbers into the coupling zone, we use averaging constraints, i.e.,

C =
{

(q, u)
∣∣ (λ, q − u)L2(ΩBD) = 0 for all λ ∈Mh

}
, (3.9)

where (·, ·)L2(ΩBD) is the L2 scalar product over ΩBD. The choice of the space Mh

(called the multiplier space) is discussed below. The underlying idea is that, due to
the choice of Mh, the constraints “do not see” those parts of the fine scale solution
q that are not representable by the coarse FE basis (since their average contribution
vanishes). Therefore, waves with high wave numbers and thus small wavelengths are
not affected by the constraints, and are able to pass through the bridging domain
uninhibited. Apparently, with this approach it requires additional effort to suppress
reflections at ∂ΩMD.

The constraints in (3.9) require q ∈ L2(ΩBD), whereas the displacement on the
molecular scale is given by (qα)α∈ABD which is in the Euclidean space. In other words,
for each configuration stemming from the atomistic scale, the state of the αth particle
is given by

(Xα, qα) ∈ Rd × Rd , α ∈ ABD. (3.10)

Thus, we need a way to interpret the molecular displacement (qα)α∈ABD as ele-
ment of the function space L2(ΩBD). This can be realized by using techniques from
scattered data approximation theory, e.g. utilizing the Partition of Unity method
(PUM) [BM96]. To do so, we interpret the configuration given by (3.10) as a scat-
tered data set

X|ABD|(Ω
BD) := {(Xα, qα) |α ∈ ABD, qα ∈ Rd} ⊂ (Rd × Rd)|A|. (3.11)

In a next step, we consider the discrete displacements qα ∈ Rd as elements of a
function space K|ABD|(Ω

BD). This is done by means of a linear operator which maps
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the discrete displacement of the atoms qα, α ∈ ABD, into a function space, i.e.,

ιBD : (Rd × Rd)|A
BD| → K|ABD|(Ω

BD) ⊂ L2(ΩBD) . (3.12)

For more details we refer to [FK09, Fac09]. In order to identify a molecular displace-
ment with a function in L2, we employ local approximation spaces for each atom as
it is done in the context of PUM [BM96, GS00, Sch03].

The starting point for our PUM is to build an approximation space K|ABD|(Ω
BD).

To do so, a patch ωα ⊂ Rd is attached to each point, such that the union of these
patches form an open cover Cω := {ωα}α∈ABD of the domain ΩBD. We define for each
atom α a patch ωα associated with Xα ∈ ΩBD as

ωα = {x ∈ Rd : ‖Xα − x‖ < hα}. (3.13)

The most basic property that these patches have to fulfill is that they cover the
complete domain ΩBD: ⋃

α∈ABD

ωα ⊃ ΩBD.

For an example of a two-dimensional sketch see Figure 3.3. On the basis of such a

ΩCMΩBDΩMD

Fig. 3.3: A two-dimensional example of patches overlapping ΩBD.

suitable cover Cω we can define a partition of unity via data fitting techniques.
Here, we follow Shepard’s approach [She68] for the construction of a PU. Thus,

the shape functions ϕα are defined as

ϕα(x) =
Wα(x)∑

β∈{γ : ωγ∩ωα 6=∅}
Wβ(x)

, x ∈ ωα ,

where we assume supp(Wα) = ωα. We then define

ι(X, q) =
∑

α∈ABD

qαϕα (3.14)
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For a fixed reference configuration we write ι(X, q) = ι(q). Let us note that the
truncation of the approximation space at the BD boundary leads to a reduced ap-
proximation quality near the boundary. However these effects are negligible.

So far we have transferred the molecular displacement into a function space. By
means of a scale decomposition of ι(q) we can reformulate the definition of C in (3.9)
in a more accessible way. We decompose the total displacement field in the function
space by

ι(q) = q + q′,

where q is a coarse scale part and q′ is a fine scale part. As a matter of fact not all
information of ι(q) can be represented on the coarse scale. More precisely, not all
wavelengths in the MD solution q can be captured by the finite element space. As
stated above, the constraints should only affect those values, which can be represented
on both scales (i.e., in the function spaces K|ABD|(Ω

BD) and Sh). For this purpose let

Sh∗ denote the space of restrictions of functions from Sh to the bridging domain ΩBD.
Similarly, N h

∗ denotes the set of finite element nodes in ΩBD.
We can write

(λ, ι(q)− u)L2(ΩBD) = (λ, q − u)L2(ΩBD) (3.15)

if we define the coarse scale displacement q to be the L2 projection πh (ι(q)) of the MD
displacement function. The mapping πh : L2(ΩBD) −→ Sh∗ is uniquely determined by
the property

πh(ι(q)) ∈ Sh∗ : (πh(ι(q)), µ)L2(ΩBD) = (ι(q), µ)L2(ΩBD) ∀µ ∈Mh , (3.16)

where the multiplier space Mh is defined as

Mh = span{µs | s ∈ N h
∗ } .

Here, the basis functions µs, s ∈ N h
∗ , are assumed to have the local support suppµs ⊆

supp θs|ΩBD . As is the case in the mortar coupling method, there are several possible

choices for the basis functions µs of Mh. We follow the standard approach, see, e.g.,
[BMP94, Bel99], by setting

µs = θs|ΩBD , s ∈ N h
∗ . (3.17)

Our coarse scale representation is now defined by q = πh(ι(q)) ∈ Sh∗ . Thus the
displacement stemming from the fine scale can be decomposed by

ι(q) = πh (ι(q)) +
(
ι(q)− πh (ι(q))

)
. (3.18)

We have decomposed the displacement ι(q) into a part which can be captured by the
coarse scale and into a part which can only be represented on the fine scale. If ι
is bijective, this allows us to compute the fine fluctuation field of the MD solution
as ι−1(q′) = ι−1(ι(q) − πh(ι(q))). With the above terminology and the standard
multiplier space we may write

C =
{

(q, u)
∣∣ u = q in ΩBD

}
. (3.19)

(3.19) gives rigorous meaning to the above statements, in particular the claim that
the high frequency part q′ ∈ kerπh is not affected by the weak constraints.
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Next we elucidate, how to obtain the discrete representation of the constraints.
Inserting ι(q) =

∑
α∈ABD qαϕα and πh (ι(q)) =

∑
p∈Nh∗

πpθp into (3.16), we obtain

Mπ = Rq (3.20)

with M = (mts)t,s∈Nh∗ , R = (rsα)s∈Nh∗ ,α∈ABD , where

rsα =

∫
Ω

µsϕα dx and mts =

∫
Ω

θtµs dx . (3.21)

Here, we have set q = (qα)α∈ABD and π = (πp)p∈Nh∗ . This gives rise to the matrix
representation

W = M−1R (3.22)

of the L2 projection πh : K|ABD|(Ω
BD)→ Sh∗ .

Due to the definition of Sh∗ , for our choice ofMh the matrix M has the character
of a finite element mass matrix, is well conditioned, and M−1µ can be computed
easily for any µ ∈ Mh. For ease of computation, we might lump the matrix M . In
order to assemble the matrix R, we need to evaluate integrals of the form∫

ωα∩supp(µp)

µpϕα dx. (3.23)

In order to compute these integrals, the cut between the support of µp and the patch
ωα has to be computed. On the resulting polytope, quadrature has to be carried
out. Since, following our approach, the cut polytopes can be controlled in their size
but not in their shape, the quadrature is a challenging task. In order to deal with
this problem we have developed and implemented the library CutLib, which allows
for cut detection and quadrature on the resulting cut-polytopes; for details we refer
to [FKK08].

Hence, for our coupling scheme we have

C =
{

(q, u)
∣∣ u = Wq

}
=
{

(q, u)
∣∣ Mu = Rq

}
, (3.24)

with BCM = id and BMD = W . The intermediate space V is the finite element space
Sh∗ . Note that because M is the matrix representation of an isomorphism, we can
likewise choose BCM = M and BMD = R in order to simplify computations.

Since the dimension of V determines the computational burden of the coupling
method (determined by the size of the multiplier matrix to be inverted in every
timestep of, e.g., a RATTLE time integrator) the weak constraints are computation-
ally more efficient than pointwise constraints as in [XB04].

3.4. Frequency Sensitivity of the Coupling Operator. Even though our
weak coupling operator is designed for the transfer of displacements, it has notable
properties with regard to the transfer of energy. In the forthcoming, we show that
the L2 projection suppresses the energy stored in high frequency waves and conserves
the energy stored in low frequency waves. The precise meaning of “high” and “low”
in this context is given by (2.25). Again, for the sake of simplicity we stick to a single
dimension, a harmonic potential, and the linear standard FE basis for an equidistant
mesh. W.l.o.g., we normalize constants such as vol

(
ΩBD

)
and the density ρ to one,

as we are only interested in the relative energy transfer depending on the frequency.
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As starting point for our discussion, let us recall that the solutions of both systems
(2.9) and (2.14) in Section 2.2 were of the form

qα(t) =
∑
k

q̃ke
i(kXα−ωt) and up(t) =

∑
k

ũke
i(kxp−ωt). (3.25)

The energies of these solutions can be computed by inserting them into (2.9) and
(2.14), respectively.

In our simplified setting, we consider the projection of an harmonic displacement
in the molecular system. We set q(x) = cos(kx) and analyze the L2 projected image
πh(q) ∈ Sh. Note that here we neglect the approximation error introduced by the
embedding ι. Furthermore, we restrict our analysis to the potential energy, which is
feasible because the average kinetic and potential energies of solutions—in time and
space, respectively—coincide [Bri53]. From (2.9), we have that the potential energy of
q is approximately proportional to

∫
Ω

(q′)2 dx = ‖q′‖2L2 , which can be seen by taking
the continuous limit.1 The quantitative quality of this approximation is depicted in
Figure 3.4. Therefore, we analyze the qualitative behavior of our coupling operator
with regard to the energy by comparing the L2 norms of the spatial derivatives of q and
πh(q). Afterwards, we will briefly discuss the implications of our results considering
the various simplifications and approximations made.
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Fig. 3.4: Harmonic and H1 energy for different values of k (left) and the relative error
(right).

We first compute the coefficients rp =
∫
θpq dx, where

θp(x) =


x−xp−1

h for x ∈ [xp−1, xp]

1− x−xp
h for x ∈ (xp, xp+1]

0 else

,

1Note that in this subsection we use a prime to denote the spatial derivative rather than a scale
decomposition.
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so that πh(q) = M−1r. We find

rp =

∫
supp θp

θp(x)q(x) dx

=

∫ xp

xp−1

x− xp−1

h
cos(kx) dx+

∫ xp+1

xp

(
1− x− xp

h

)
cos(kx) dx

=

∫ h

0

x

h
(cos(k(xp−1 + x)) + cos(k(xp+1 − x))) dx

=
[ x
hκ

(sin(k(xp−1 + x))− sin(k(xp+1 − x)))
]h

0

+

[
1

hk2
(cos(k(xp−1 + x)) + cos(k(xp+1 − x)))

]h
0

=
1

hk2
(cos(kxp)− cos(kxp−1) + cos(kxp)− cos(kxp+1)) . (3.26)

By the mean value theorem and | cos′(kx)| ≤ κ we have rp ∈ [−2/κ, 2/κ]. For a
(quasi-)uniform mesh the eigenvalues mp of the mass matrix are ∼ h, implying that
the coefficients πp of πh(q) are bounded by O (1/(κh)).

The potential energy of the wave is proportional to ‖q′‖2L2 ∼ κ2. On the other
hand, since the gradient of the finite element shape functions is in O(1/h), we infer

‖πh(q)′‖2L2 = O
(
κ−2h−4

)
. (3.27)

By virtue of (2.23) we conclude κ ∼ r−1
0 c−1ω, giving that

‖πh(q)′‖2L2

‖q′‖2L2

= O
((r0c

ωh

)4
)
. (3.28)

This simple analysis shows that the relative energy transfer is small if ω � r0c/h, i.e.,
the frequency is high.

In case of ω � r0c/h a more careful analysis is necessary. In this case, we have
κ � 1/h, i.e., the wave length λ ∼ 1/κ is lower bounded by the FE discretization
parameter. Thus, we expect the FE basis to provide a good approximation to q.
We compute the derivative of the projection on the interval (xp−1, xp). Using the
assumption of lumped masses, we get for interior nodes(
πh(q)′

) ∣∣
(xp−1,xp)

=
rp − rp−1

h2

(3.26)
=

1

h3k2
[cos(kxp−2)− 3 cos(kxp−1) + 3 cos(kxp)− cos(kxp+1)]

=
1

h3k2

[
cos

(
k(xp−1 + xp − 3h)

2

)
− 3 cos

(
k(xp−1 + xp − h)

2

)
+3 cos

(
k(xp−1 + xp + h)

2

)
− cos

(
k(xp−1 + xp + 3h)

2

)]
= −k sin

(
k(xp−1 + xp)

2

)
±O

(
κ2h

)
,

where in the last step we used that the expression equals a finite difference of third
order for the function −k−2 cos

(
kx
2

)
at x = xp−1 + xp with step size h. Moreover,∣∣∣∣k(sin

(
k(xp−1 + xp)

2

)
− sin(kx)

)∣∣∣∣ ≤ κ2h/2
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for x ∈ (xp−1, xp). Thus, for any x ∈ (xp−1, xp), we have that∣∣∣(q′(x))
2 −

(
πh(q)′(x)

)2∣∣∣ =
∣∣(q′(x)− πh(q)′(x)

) (
q′(x) + πh(q)′(x)

)∣∣ . κ3h

Since we normalized the volume of Ω to one, integration yields∣∣∣‖q′‖2L2 −
∥∥πh(q)′

∥∥2

L2

∣∣∣ . κ3h,

Dividing by ‖q′‖2L2 ∼ κ2, we see that the relative error in the energy is

‖πh(q)′‖2L2 − ‖q′‖2L2

‖q′‖2L2

= O (κh)� 1.

To complete our analysis, we briefly discuss the effects of approximation errors
and in how far the above estimates can be transferred to more general cases.

• PUM basis: Since high frequencies are strongly suppressed, the approxima-
tion error introduced by ι becomes less important with increasing frequency.
Hence, unless the PUM basis is particularly ill-chosen, this error can be ne-
glected.

• Continuous approximation: For high frequencies, the continuous approx-
imation of (the energy of) a wave in a discrete system is not very accurate.
However, again this effect is negligible as high frequencies are removed almost
completely.

• Equidistant mesh: In the examined case of an equidistant mesh, the finite
difference occurring in the second case is central, therefore achieving a by a
factor of h better approximation. We refrained from exploiting the stronger
guarantee, however.

• Multiple dimensions: The suppression of high frequency waves merely
exploits the structure of the L2 projection. Considering the tensor structure
of wave solutions in higher dimensions, this property will be preserved. On
the other hand, as the estimate for low frequencies relies on a finite difference,
it is not clear whether it can be generalized in a straightforward manner.

• Single frequency: Our analysis assumes different frequencies not to inter-
act. Due to the linearity of the coupling operator, this is true for the linear
case, i.e., a harmonic potential. Since we have assumed the linear approxima-
tion to be valid throughout the bridging domain, this is no further restriction.

We conclude that in the regimes ω � r0c/h and ω � r0c/h the weak transfer
operator has convenient energy-related properties, namely it annihilates waves with
large wavenumbers very efficiently, but yields a small energy error for small wave-
lengths. Note, however, that in the regime ω ≈ r0c/h, we obtained neither a strong
upper bound on the transferred energy, nor an approximation guarantee with regard
to the spatial derivative of the solution.

4. Numerical Experiments.

4.1. PML. In the previous Section, we have observed that our constraints allow
high frequency waves to enter the bridging domain without reflection. In order to
cope with reflections at the boundary ∂ΩMD, additional effort is necessary.

Typical approaches to deal with reflections are kernel methods (e.g., non-reflecting
boundaries, see [Giv91]), or dampening of waves before they reach critical domain
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boundaries ([Ber94]). The loss of energy due to dissipation is both necessary and
eligible if controlled carefully.

In the following, we confine our discussion to the Boundary Layer methods which
have been introduced in the context of multiscale methods by To and Li [TL05,
LLAT06]. The method changes the equations of motion by an additional force term

F 7→ F +M ·D
[
2q̇ +Dq

]
, (4.1)

where D = (δ(Xα))α∈A)) and δ : ΩMD → R is a stretching function. Note that (4.1)
contains a frictional term and additionally changes the stiffness of the lattice. The
derivation by To and Li is inspired by Berenger’s Perfectly Matched Layer method
originally introduced for the wave equation.

In the context of MD simulations a boundary layer, reducing the reflection can be
accomplished by a stretching of the atomic bond. For more details and a discussion
for higher dimensions we refer to [CM98, CT01]. It should be pointed out that despite
the name, this damping is not perfectly matching. However, in practice it works well.

Frictional terms as in (4.1) haven been used ever since for temperature control
in the MD simulation of NVT ensembles, e.g. [GKZ07]. Numerical evidence shows
that we can omit the last term MD2q if D is chosen appropriately, cf. Subsection 4.4.
There we use a pure friction term, i.e.,

F 7→ F +M · 2Dq̇, (4.2)

since it allows for the parallel computation of the additional force term in (4.2) with
only half the communication volume compared to (4.1).
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Fig. 4.1: An example of a domain Ω ⊂ R2 and a possible damping layer (right).

Different choices for the damping zone, i.e., the support of d, are possible (see
Fig. 4.1). The damping zone could be an additional atom layer around ΩMD. In this
case, the full wave spectrum must be removed. However, care is required at the MD
boundary since there the weighting w ≈ 0. Fortunately, our approach allows us to use
ΩBD as the damping zone, in turn demanding us to dampen only the high frequency
waves in order to not disturb the information transfer between the scales. Although
this necessitates a larger coupling zone ΩBD, it is computationally more efficient, since
no atom layer without further use is introduced for the damping (see Fig. 4.1).

Since (4.1) affects waves of arbitrary wave numbers, it is not appropriate if the
damping zone is equal to ΩBD, as mentioned above. Instead we propose the use of

F 7→ F +M ·D
[
2 (Qhq̇) +D (Qhq)

]
(4.3)

or

F 7→ F +M · 2D (Qhq̇) , (4.4)
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where Qh is the algebraic representation of id−Nπhι, N being the interpolation
operator (cf. (3.2)). Note that Qhq is an easily computable approximation to the fine
fluctuation ι−1(q′). In general, it is exact if the PUM basis is interpolating.

The damping (4.3) is motivated by the fact that the propagation of high and low
frequency waves can be splitted in the case of linear equations of motion. However, for
interesting non-linear problems which feature a non-trivial interaction between waves
of different frequencies, (4.3) cannot be exact. On the other hand, our numerical
results indicate that (4.3) also works nicely for the considered numerical examples.
Indeed, the comparison of Fig. 4.8b and Fig. 4.9a shows only a slight difference in the
displacements in the FE region. Also, in Fig. 4.5 we find the energy in the FE region
to be almost insensitive to the length of ΩBD, indicating that the damping does not
reduce the quality of the information transfer significantly. We note that the final
energy in the MD region is a good measure for the amount of reflection. We refer to
[FKK11] for the measurement of reflection rates in a different numerical experiment.

In practice, we have found that for both (4.3) and (4.4), a diameter of ΩBD

between 30 and 60 (corresponding to 25–55 layers of atoms) is a good compromise be-
tween the accuracy and the computational overhead of the damping (cf. 4.5) We have
chosen Boundary Layer methods in this work for their simplicity and “local nature”
(compared, e.g., to kernel methods). On the other hand, especially for d = 3, the
high bandwidth of Qh leads to high computational expenses. Therefore, alternative
damping methods will be a subject of future research.

4.2. Discretization in Time. Time integration is a crucial part of a molecular
dynamics simulation. It is widely believed that the usage of structure preserving time
integrators, e.g., symplectic ones, is the best way to guarantee stability of measure-
ments over long simulation times without the requirement to use expensive higher
order methods. In contrast to the classical Bridging Domain method, our averaging
constraints allow us to apply standard symplectic integrators for constrained Hamil-
tonian systems, such as the well-known RATTLE integrator [HLW00].

In the following, we describe the discretization of the coupled equations of motion
(3.6) and (3.7). For this purpose, let τ > 0 denote a fixed timestep size. Let (qn, un)
and (q̇n, u̇n) be the atomistic and continuum displacement fields and velocities at
timestep tn = nτ , respectively. The number of timesteps is denoted by N , i.e., the
simulation time interval is [0, T ], where T = Nτ .

Algorithm 1 shows the timestep integration scheme. We start from given initial
values (q0, u0) and (q̇0, u̇0). By FMD and FCM we denote the (weighted) molecular
dynamics and finite element forces. Note that FMD depends on the velocity due to
the additional PML force terms. We treat this velocity dependency explicit in time.
The mass matrices of the scales are denoted by MMD and MCM, respectively. Again,
the weighting w must be taking into account, e.g.,

(MMD)αβ = w(Xα)mαδαβ . (4.5)

In each timestep of the RATTLE method, two linear systems need to be solved.
Due to the linearity of the constraints (3.3), velocity and displacement corrections λ
and µ are solutions of a linear system with the same multiplier matrix Λ. The matrix
Λ is positive definite since

xtΛx = (Mx)
t
M−1

CM (Mx) +
(
Rtx

)t
M−1

MD

(
Rtx

)
(4.6)

Hence all steps of Algorithm 1 are well defined.
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Algorithm 1 RATTLE time integration scheme

1: for n = 1, . . . , N do
2: Compute velocity trial values[

q̇n+1/2

u̇n+1/2

]
=

[
q̇n
u̇n

]
+

1

2
τ

(
M−1

MD 0
0 M−1

CM

)[
FMD(qn, q̇n)
FCM(un, u̇n)

]
3: Compute displacement trial values[

qn+1

un+1

]
=

[
qn
un

]
+ τ

[
q̇n+1/2

u̇n+1/2

]
4: Compute the residual g = Mun+1−Rqn+1 and solve the linear system Λλ = g

with the multiplier matrix

Λ = MM−1
CMM +RM−1

MDR
t (4.7)

5: Apply corrections[
q̇n+1/2

u̇n+1/2

]
←
[
q̇n+1/2

u̇n+1/2

]
+

1

τ

(
M−1

MD 0
0 M−1

CM

)[
Rtλ
−Mλ

]
and[

qn+1

un+1

]
←
[
qn+1

un+1

]
+

(
M−1

MD 0
0 M−1

CM

)[
Rtλ
−Mλ

]
6: Compute velocity trial values[

q̇n+1

u̇n+1

]
=

[
q̇n+1/2

u̇n+1/2

]
+

1

2
τ

(
M−1

MD 0
0 M−1

CM

)[
FMD(qn, q̇n+1/2)
FCM(un, u̇n+1/2)

]
7: Compute the residual ġ = Mu̇n+1 −Rq̇n+1 and solve Λµ = ġ for µ
8: Apply velocity corrections[

q̇n+1

u̇n+1

]
←
[
q̇n+1

u̇n+1

]
+

(
M−1

MD 0
0 M−1

CM

)[
Rtµ
−Mµ

]
9: end for

It should be noted that in Algorithm 1 the timestep size is the same for both
scales. A multirate extension of the proposed scheme which allows for using a larger
timestep size for the coarse scale is possible but left for future research. For the
interested reader we point out that, though not an ideal choice from our point of view
for its lack of exact preservation of the constraints, the multiple-time-step algorithm
developed in Section 3.4 of [XB04] can be directly used with our method.

4.3. A One Dimensional Example. We consider the propagation of an initial
amplitude q from the fine scale into a coarse region in a one-dimensional simulation.
The presented coupling method is bidirectional by construction. Since any displace-
ment field in the FE ansatz space is also representable on the atomistic scale, the
transfer of waves from the coarse to the fine scale is easily accomplished by our con-
straints. This has been also backed-up by numerical experiments but we refrain from
discussing this in more detail here, concentrating instead on the challenging transfer
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from fine to coarse for waves containing high frequent modes.

For this experiment, on the fine scale, we use a Lennard Jones potential V with
parameters σ = 1 and ε = 1, i.e.

V (r) = 4
(
r−12 − r−6

)
,

and nearest neighbor interaction so that a lattice of atoms with distance r0 = 21/6

minimizes the potential energy. The atom mass is normalized to one. To derive a
continuum model for the coarse scale we use the Cauchy-Born rule (cf. [FT08]). This
ensures matching elastic coefficients. The continuum density accordingly is % = r−1

0 .
In order to create a superposition of a high and a low frequency wave, the initial

displacement is a sum of a constant and a high frequency share. As we want the
wave to propagate from the molecular into the finite element region, we localize the
displacement by means of a Gaussian distribution. Hence, the initial amplitude q is

qα =
A

A− qc

(
A exp(−(Xα −X ′/σ′)2)− qc

)
· (1 + b · cos(2π(Xα −X ′)/H))

with A = 0.015, σ′ = 30, b = 0.1, qc = e−25, H = σ′/4 and X ′ = −200r0 (cf. [WL03]).
Since the propagation to the left and to the right is completely symmetric we

only consider atoms with initial positions X ≥ X ′, see Fig. 4.2. Fig. 4.3 shows the
spectrum of the initial amplitude used in this experiment.

200 · r0
diam(ΩBD)

ΩMD ΩBD ΩCM

−200 −150 −100 −50 0 50 100 150
−2

0

2

4

6

8

10

12

14

16

18

x 10
−3

Fig. 4.2: Geometry (left) and initial amplitude (right) in the one-dimensional numer-
ical example.

For the partition of unity we use hα = 0.75r0. We employ a RATTLE time
integration scheme with τ = 0.05. The PML damping function δ was chosen as

δ(X) = − log(0.1) · 0.15 ·
(

dist(X,ΩBD)

diam(ΩBD)

)2

.

The weighting function w is linear.
We consider the wave propagation for different mesh sizes h ∈ {5, 10} · r0 and

different diameters diam(ΩBD) ∈ {2, 5, 8, 10}·h. Fig. 4.4 shows the displacements after
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Fig. 4.3: Normalized spectrum of the initial condition (cf. (2.8)). The Nyquist fre-
quency (i.e., the right boundary of the first Brillouin zone) equals π/r0 ≈ 2.7988.

700 and 1000 timesteps. For diam(ΩBD) = 10·h we observe only very small reflections.
It is important to observe that the high fluctuation field passes the interface between
pure molecular dynamics and bridging domain region without disturbance.

To obtain an indication of the amount of reflection we measure the (weighted)
energy in the atomistic and the finite element region. The results, shown in Fig. 4.5,
reveal that the transfer of the coarse displacement is rather independent of the length
of the bridging domain (since the final energy in the coarse region is almost indepen-
dent of the diameter). On the other hand, a larger bridging domain is important for
the PML damping method as can be inferred from the decay of the energy in the
molecular dynamics region for increasing bridging domain size.

Note that in general it is not feasible to compensate for a short damping zone
by a stronger damping since this will again lead to spurious reflections in the PML
zone. In the limit of a zero-length damping zone, we must observe total reflection,
cf. Section 2.2.

As pointed out at the beginning of Subsection 4.1, loss of total energy (as observed
in Fig. 4.5) in such zero-temperature simulations are necessary. In this example, more
than 70% of the total energy is contributed by modes which are not representable on
the coarse scale. These modes (and hence the energy they carry) need to be removed as
they leave the atomistic domain. Fortunately, in many interesting applications (e.g.,
in many fracture simulations) removal of these highly oscillating (but usually low
amplitude) waves can be justified. We refer to [CQ08] for an approach for enriching
the FE ansatz space to allow for capturing some of these modes and hence reducing
the energy loss.

To assess the error of the simulation we compare the computed continuum solution
u to the result of a pure MD solution. We define the error e as

e = ‖u− πh(uMD)‖∞ .

Fig. 4.6c shows the time evolution of e from the time where the initial wave enters
ΩBD. As expected in a time dependent system we see an increasing divergence of u
and uMD over time. However, the error stays moderately. We can see that e is rather
insensitive to the length of the BD but depends strongly on the mesh size h. On the
one hand this indicates that the damping works well for this example and does not
impact the quality of the coarse solution. On the other hand Fig. 4.6c suggests that
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Fig. 4.4: Atomistic and finite element displacement. The mesh size is 5 · r0. The
bridging domain consists of 10 elements.
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Fig. 4.5: Normalized weighted energy in the atomistic (solid) and coarse (dashed)
region for mesh size 10 · r0. The diameter of the handshake region is increased from
2 to 10 elements.
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the difference in both models is major source of error as e strongly depends on the
meshsize h. It should be pointed out that we use a non-lumped FE mass matrix.

To support this hypothesis we also compared the MD solution to a pure FE solu-
tion. For this purpose we (re-)initialized the continuum displacements and velocities
at t = 20 with the projected values from the pure MD solution. In 4.6d we see the
difference of both solutions. As can be seen by comparing the slopes of the curves in
4.6c and 4.6d the coupling does not introduce a significant additional error for this
benchmark problem.
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Fig. 4.6: Comparison of the computed continuum solution in the coupled simulation
(MS) with the result of a full MD simulation (MD) and a full continuum simulation
(FE) with the projected MD solution as initial values.

4.4. A Two-Dimensional Example. To test our multiscale method in higher
dimensions, we consider the propagation of a radial wave through a two-dimensional
solid. For the atomistic system we use Tremolo [GKZ07, GH06, GH04], coupled to
the grid manager of UG [BBJ+97]. The multiplier system is solved by UMFPACK
[Dav04a, Dav04b, DD99, DD97].

We consider a hexagonal lattice, again with Lennard Jones ε = 1, σ = 1 po-
tential with nearest neighbor interaction and Cauchy-Born constitutive equation for
the continuum system. The atomistic mass is normalized to m = 1 and the derived
continuum density % = 0.9165.
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Fig. 4.7 shows a schematic view of the coupling geometry. The hexagonal lattice
contains 60,000 atoms. The finite element mesh (which covers two disjoint connected
components) consists of 8,960 = 2 · 80 · 56 quadrilaterals and 9,234 = 2 · 81 · 57 nodes.
Each connected component of the handshake region has size 30×448.985 and consists
of 640 = 80 · 8 elements and 729 = 81 · 9 nodes.

We use a linear weighting w and a quadratic damping function

δ(X) = − log(0.35) · 1.5 ·
(

dist(X,ΩBD)

diam(ΩBD)

)2

. (4.8)

As stated above, we use a pure frictional damping term, i.e., we omit the stiffness
change in the PML method. For the partition of unity we use hα = 0.75r0.

For the time integration we employ a RATTLE integration scheme with time step
size τ = 0.005. The initial amplitude q is chosen to be the radial displacement field

qα =
A

A− qc

(
A exp(−(Xα −X ′/σ′)2)− qc

)
· (1 + b · cos(2π(Xα −X ′)/H))

Xα −X ′
|Xα −X ′|

(4.9)
with A = 0.15, σ′ = 15, b = 0.15 qc = e−25. The center point X ′ is chosen to be the
midpoint of the fine scale region (which does not coincide with a lattice site). The
geometry is distributed onto 4 processors (two MD processors and two FE processors)
for parallel processing.

30

400 · 21/6

200

Fig. 4.7: Geometry of the two-dimensional wave propagation benchmark.

Fig. 4.8a and Fig. 4.8b show the displacements after 1,500 and 2,500 timesteps.
We see that the low wavelength part of the radial wave propagates into the coarse
scale region. A comparison with a pure atomistic simulation (Fig. 4.9b) shows that
the averaging constraints deliver a sound coupling of the scales. From Fig. 4.9a we
infer that the damping works as expected. Note that the amplitude of the wave in the
coarse region is smaller than the amplitude of the initial radial wave. Comparing 4.8b
and 4.9a we find that the damping has a slight impact on the low wavelength part of
the wave. This is not surprising as the equations of motion for individual harmonic
contributions do not decouple. Moreover, since we use a lumped mass matrix M for
the L2 projection and R ≥ 0 (elementwise), we have ‖W‖L∞ = 1. The amplitude of
the coarse scale displacement is therefore always smaller or equal to the amplitude of
the fine scale displacement.
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(a) timestep 1500 (b) timestep 2500

Fig. 4.8: Weak bridging domain solution of wave propagation problem after 1500 and
2500 timesteps. We observe almost no reflection due to the combination of the weak
constraints and the modified PML method.

(a) without PML damping (b) pure atomistic simulation

Fig. 4.9: Solutions at timestep 2500 for comparison. In the left picture, the spurious
reflections of the fine fluctuation field can clearly be observed.
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4.5. Application to Fracture Mechanics. In this section we consider the ap-
plication of our multiscale coupling method to the simulation of fracture mechanics.
The development of concurrent multiscale simulation techniques is often motivated
by applications to fracture mechanics. One the one hand, fracture is an inherently
multiscale process with complicated physics near the crack tip (Needlemann and Van
der Giessen termed it “an archetypical multiscale problem” in [NvdG01]) and hence
hierarchical approaches are not readily applicable. On the other hand, pure atomistic
simulations of fracture tend be sensitive to finite size effects (cf. [HR95]), i.e. spurious
effects introduced by the necessary reduction of the simulation volume to match the
limited available computing resources. Here, ideally concurrent multiscale methods
can be used to couple an atomistic description around the crack tip with a continuum
description of the surrounding material.

We consider the propagation of mode I fracture initiated at the tip of an ellipsoidal
notch. The two-dimensional geometry is shown in Fig. 4.10c. The inner MD slab
consists of 293× 493 atoms (14,2628 atoms). The outer finite element slabs have size
260 × 767.76 each. The complete finite element mesh consist of 28,712 nodes and
28,178 elements with (approximately uniform) mesh size equal 3.5. The handshake
region consists of two slabs of size 30×767.76, each spanning 8 elements in x-direction.
We use a Lennard Jones potential with ε = 1, σ = 1 with cut-off radius rcut = 2.5σ.
The continuum constitutive equation is derived from this potential using the Cauchy-
Born rule. As in Subsection 4.4 we use a linear weighting α and a quadratic damping
function. The patch size (hα in Equation (3.13)) for the PUM basis functions equals
0.75 · 21/6. The timestep size τ = 0.005.

We apply surface forces (0,± 1
4 , 0) at the left and right boundary of the FE do-

main (in normalized units). We distribute the simulation onto 32 processing elements,
24 of which perform the MD time integration. The FE mesh is distributed over the
remaining 8 processing elements. Differently from 4.4, the connected components of
ΩBD are not completely located on one processing element. Hence, we need to use a
parallel solver for the multiplier system. In this simulation the multiplier system is
comfortably solved with a Jacobi-preconditioned conjugate gradient solver from the
Trilinos package [HBH+05].

The results of the simulation are shown in Fig. 4.10. We can see that also in the
case of larger deformations, the RATTLE integrator achieves continuity of displace-
ments and velocities. Also, we can observe high frequent waves being emitted from
the crack tip in Fig. 4.10a, but the damping is able to remove spurious reflections in
the handshake region. The effect of the damping can be seen in the the visualization.
In the simulation we find a straight propagation path of the crack. This is the expected
result for a crack propagating along the strong (vertical) direction in a hexagonal lat-
tice, cf. [Abr96].

As can be seen in Picture 4.10d from the propagating crack, line dislocations are
emitted by the propagating crack. In course of the simulation, these line dislocations
also propagate into the handshake region. Since only the averaged MD displacements
are taken into account by the constraints, our simulation can proceed without prob-
lems (line dislocations can propagate roughly halfway through the handshake region
before the constraints enforce a smooth displacement field). In this simulation the
propagating crack is not affected by the line dislocations. However, in a different sim-
ulation the prohibited propagation of line dislocations might significantly affect the
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(a) Velocities at timestep 25000 (b) Velocities at timestep 50000

(c) Initial Configuration (d) Displacement at timestep 75000

Fig. 4.10: Results of the coupled simulation of a mode I fracture propagating along
the strong direction.

results. In this case it would be interesting to consider the coupling of MD, continuum
mechanics and dislocation dynamics. It should be noted that in our simulation, the
MD simulation domain has been chosen based on knowledge of the expected path of
the crack. This is necessary for (to our best knowledge) all current approaches since
adaptive concurrent coupling is not understood well yet.

It should be pointed out that in this example a standard cut-off radius for the
Lennard-Jones potential is used, i.e., non nearest-neighbor interactions are taken into
account. With respect to the method this change is “transparent”, i.e., no changes
have to be made. In view of our results from the end of Subsection 3.1, however, we
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expect a slightly increased impact of the free MD boundary which now affects more
atoms. Still, we did not encounter any problems in our numerical results.
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