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Abstract

We consider an inverse problem arising in laser-induced thermotherapy, a minimally

invasive method for cancer treatment, in which cancer tissues is destroyed by coagu-

lation. For the dosage planning numerical simulation play an important role. To this

end a crucial problem is to identify the thermal growth kinetics of the coagulated zone.

Mathematically, this problem is a nonlinear and nonlocal parabolic heat source inverse

problem. The solution to this inverse problem is de�ned as the minimizer of a noncon-

vex cost functional. The existence of the minimizer is proven. We derive the Gateaux

derivative of the cost functional, which is based on the adjoint system, and use it for a

numerical approximation of the optimal coe�cient.

1 Introduction

Laser-induced thermotherapy (LITT) is an advanced technique for cancer treatments, which
is of minimally invasion and especially applicable for patients with liver metastases from
colorectal primal tumors. In this technique, a catheter is used to place an applicator device
connected to a laser source into the tumor (cf. Fig. 1). The energy of the laser light
emitted from the surface of the applicator is absorbed by the biological tissue and therefore
leads to a rise in temperature. The laser power and treatment time is adjusted such that
a temperature of around 60oC is reached in a neighborhood of the applicator. Driven by
this rise in temperature the tissue is coagulated, a process which is governed by protein
denaturation leading to the disruption of cell walls and eventually to the destruction of
the tumor tissue. The deadened tissue remains in the body and is either decomposed or
encapsulated.

The LITT treatment is guided using magnetic resonance imaging (MRI). Unfortunately,
MRI is known to have either a good spatial or a good temporal resolution, making it di�cult
to predict the �nal size of the coagulated zone. Hence, there is a strong demand for computer
simulations of LITT to support therapy planning and �nding an optimal dosage.
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Figure 1: Sketch of laser-induced thermotheraphy treatment.

A detailed mathematical model for LITT is discussed in [6]. The most important parts
are a coagulation model coupled to the bioheat equation describing temperature changes
θ(x, t) in tumor tissue Ω. In laser medicine, coagulation is de�ned as an optically visible
irreversible cell destruction (necrosis) caused by the denaturation of proteins. Following [11]
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with an Arrhenius formalism model, the distribution of native tissue z(x, t) for each protein
is governed by the ordinary di�erential equation

∂zi(x, t)

∂t
= −Fi(θ)zi(x, t), t > 0 (1.1)

with the initial distribution

zi(x, 0) ≡ 1 (1.2)

for all x ∈ Ω, where the function Fi(·) describes the coagulation process, which has the
representation for speci�ed protein

Fi(θ) =

{
0, θ < 44C

Ai exp
(−Gi

Rθ

)
, else,

(1.3)

where two constants Ai, Gi depend on the properties of the protein and R is the universal
gas constant. In this con�guration, Fi can be considered either as a nonlinear functional
with respect to θ or a function de�ned in Ω× [0, T ] in terms of the composition Fi(θ(x, t)).

Although the above model with Fi(·) containing only two constants describing the co-
agulation process in each protein is quite simple, it is rather di�cult to devise an experi-
ment to identify the coagulation characteristics separately for each protein. Thus, it is more
favourable to use a heuristic approach to model the tissue coagulation. To this end we weight
several coagulation states of zi for di�erent proteins, with weights ci ∈ (0, 1) representing
the concentration of di�erent proteins:

z(x, t) =
N∑

i=1

cizi(x, t) (1.4)

with
∑N

i=1 ci = 1. Then the coagulation process for the biological tissue can be described as

∂z(x, t)

∂t
= −G(θ)z(x, t), x ∈ Ω, t > 0 (1.5a)

z(x, 0) = 1, x ∈ Ω, (1.5b)

where the non-negative function G(θ) describes the thermal part of the coagulation growth
kinetics. Similar models are used in polymerization [1] and in solid-solid phase transitions
[6]. The goal of this paper is to show how G(θ) can be identi�ed from measurements.

The second physical quantity relevant for the treatment is the temperature θ(x, t) gov-
erned by the bio-heat equation. According to [11], for most of the biological tissue, the
density ρ, the heat capacity cp and the thermal conductivity k are almost constants in the
relevant temperature interval between 37oC and 70oC. Then the bio-heat equation reads as
follows

∂θ(x, t)

∂t
−∇ ·

(
κ(x)∇θ(x, t)

)
= Q(x, t, θ), x ∈ Ω× (0, T ). (1.6)

Here, T is the end-time of the treatment and κ = k/ρcp is the thermal di�usivity. The
heat source Q = QL + QB in the bio-heat process contains two terms. The �rst term
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QL describes the recalescence e�ect of the coagulation process, which is assumed to be
proportional to the coagulation growth rate, i.e.

QL(x, t, θ) = β
∂z

∂t
, (1.7)

where β > 0 is the latent heat. Since zt ≤ 0, we observe that latent heat is consumed during
the coagulation process. Neglecting metabolic changes, the second term QB describes the
heat exchange due to blood perfusion in the tissue. A change in the blood perfusion rate is
one of the reactions to the thermal changes in the tissue. Under the simple but widely used
Pennes model to account for the blood perfusion with isotropic blood �ow, this heat source
can represented by

QB(x, t, θ) = α̃(z, x)(θB − θ), in Ω× (0, T ), (1.8)

where θB is the known temperature of the arterial blood. Since there are no (active) vessels
in the coagulated zone, there is no perfusion, hence we can write

α̃(z, x) = zα(x) (1.9)

where α(x) describes the perfusion in the non-coagulated tissue.
Physical Configuration
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Figure 2: Physical domain and boundary parts.

The light is absorbed in a region around the catheter. The irradiation of laser light within
the tissue can be described by the radiation transfer equation [3]. However, for our purposes
it is su�cient to model it by a Neumann boundary condition, i.e., we have

−κ∂θ
∂ν

= h(x, t), in Γ1 × (0, T ) (1.10a)

−κ∂θ
∂ν

= 0, in Γ2 × (0, T ) (1.10b)

where Γ1 is the boundary to the applicator and Γ2 to the surrounding tissue, see Fig. 2.
We also specify the initial temperature distribution

θ(x, 0) = θ0(x), x ∈ Ω. (1.11)

We conclude that (1.5)-(1.11) constitute the laser-induced thermotherapy model. Note
that similar models, in which a heat equation is coupled to a system of rate equations for
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example arise in the modeling of phase transition in steel as well as in polymerization, see,
e.g., [1, 6, 13].

As mentioned before, there is a strong demand for computer simulations of LITT sup-
porting therapy planning and �nding an optimal dosage. In order to perform numerical
simulations which give quantitatively satisfactory results, the estimation of tissue parame-
ters is a crucial task. However, while the respective data for the bio-heat equation are by now
available, the determination of the parameters in the coagulation model is still an important
task, in our case this is the function G(θ).

To this end, we specify the following measurement data

θ(x, t) = F (x, t), (x, t) ∈ Γ1 × (0, T ). (1.12)

From practical point of view this can be approximately realized by using temperature sensors
in the catheter.

Then the purpose of this paper is to reconstructG(θ) from some measurement information
about the temperature, based on the over-determined system (1.5)-(1.12).

In the next section we will reformulate this problem in terms of an optimal control
problem, the state system is analyzed in Section 3, while Section 4 is devoted to the control
problem. Numerical results are given in Section 5. We would like to acknowledge that
our analysis has been inspired by the investigations in [10, 9], where the identi�cation of a
temperature dependent heat coe�cient has been studied.

2 Reformulation of the inverse problem

Thanks to the simplicity of the coagulation rate law (1.5) we easily obtain the solution

z(x, t) = exp

(
−

∫ t

0

G(θ(x, τ))dτ

)
, in Ω× (0, T ). (2.1)

On the other hand, a direct computation from (1.7)-(1.9) yields

Q(x, t, θ) = z(x, t) (α(x)(θB − θ)− βG(θ)) . (2.2)

Therefore we get the following semilinear parabolic equation for θ(x, t) in Ω ⊂ Rm (m =
2, 3) with ∂Ω = Γ1 ∪ Γ2:

∂θ(x, t)

∂t
−∇ ·

(
κ(x)∇θ(x, t)

)
= e−

R t
0 G(θ)dτ [α(θB − θ)− βG(θ)].

For given boundary and initial data h(x, t) and θ0(x), we are given the measurement data

θ(x, t) = F (x, t), x ∈ Γ1, t ∈ (0, T ). (2.3)

The inverse problem is to identify G(θ), which belongs to the category of identifying the
nonlinear heat source depending on the temperature.

We would like to mention that a laser material treatment problem with the source term
F (θ(x, t)) + p(t)G(x, t) has been considered in [7], where the control term is p(t), while the

nonlinear function F is known. In our paper, the term e−
R t
0 G(θ)dτ in the right-hand side of the

equation in (2.5) makes this problem nonlocal, which can be considered as a generalization
of [7] in the sense that our source is nonlinear and nonlocal. Generally, it is very hard to
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establish the uniqueness using �nite measurement data. A known uniqueness result for the
general nonlinear source for the heat system can be found in [8, Theorem 9.6.1], where the
inversion input data are the Dirichlet-to-Neumann map in terms of the �nal measurements.
In the case of recovering the coe�cient q(x) in the equation ut − κ∆u + q(x)u = 0 with
measurement data u(x, T ), the reconstruction based on the optimization can be found in [2].

For our problem (2.5)-(2.3), although the unknown nonlinear source G depends only on
θ, the uniqueness is still open, noticing the nonlocal property of right-hand side of (2.5) and
only one set of measurement data is speci�ed. Therefore we introduce the cost functional

J(θ,G) =
1

2

∫ T

0

∫
Γ1

|θ(x, t)− F (x, t)|2dσdt (2.4)

over some admissible set Uad for G, where θ is the solution to direct problem for given G.
Since it will be more convenient to deal with the original system instead of the nonlocal
heat equation in terms of derivation of optimality conditions we will consider the following
optimization problem and take its minimizer Ḡ as the solution to our inverse problem:

(CP) min J(θ,G)

subject to

θt −∇ ·
(
κ(x)∇θ

)
= z[α(θB − θ)− βG(θ)], in Ω× (0, T ) (2.5a)

zt = −G(θ)z, in Ω× (0, T ) (2.5b)

−κ∂θ
∂ν

= h, in Γ1 × (0, T ) (2.5c)

−κ∂θ
∂ν

= 0, in Γ2 × (0, T ) (2.5d)

θ(x, 0) = θ0(x), z(x, 0) = 1, in Ω, (2.5e)

and the control constraint G ⊂ Gad.

For the admissible set we assume

Gad :=
{
G ∈ C1,γ(R) : ‖G‖C1,γ(R) ≤M0, supp G ⊂ (θ−, θ+), G(s)|s∈R ≥ 0

}
(2.6)

for some γ ∈ (0, 1), where θ−, θ+ are known constants. Furthermore we make the following
assumptions for the data:

(A1) β, θB are positive constants

(A2) κ ∈ L∞(Ω) with κ1 ≤ κ(x) ≤ κ2 a.e. in Ω and constants κ2 ≥ κ1 > 0

(A3) α ∈ L∞(Ω), satisfying α ≥ 0 a.e. in Ω

(A4) θ0 ∈ C(Ω̄)

(A5) h ∈ L∞(0, T ;Lp(Γ1)) with p > m = dim Ω

(A6) F ∈ Lp(Γ1 × (0, T )).
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3 Analysis of the state system

For the proof of our existence result we utilize the following maximal parabolic regularity
result [5]:

Lemma 3.1. Assume (A2), (A4), and (A5), let p, s ∈ (1,∞) and f ∈ Ls(0, T ;Lp(Ω)), then
there holds:

(1) The parabolic system

θt −∇ ·
(
κ(x)∇θ

)
= f, in Ω× (0, T ) (3.1a)

−κ∂θ
∂ν

= h, in Γ1 × (0, T ) (3.1b)

−κ∂θ
∂ν

= 0, in Γ2 × (0, T ) (3.1c)

θ(x, 0) = θ0 , in Ω, (3.1d)

has a unique solution in W 1,s(0, T ;Lp(Ω)) ∩ Ls(0, T ;W 1,p(Ω)) satisfying the apriori
estimate

‖θ‖W 1,s(0,T ;Lp(Ω)) + ‖θ‖Ls(0,T ;W 1,p(Ω)) ≤ C
(
‖f‖Ls(0,T ;Lp(Ω)) + ‖h‖Ls(0,T ;Lp(Γ1))

)
.

(2) If in addition p > m and s has been chosen big enough, then there exists δ ∈ (0, 1) such
that θ ∈ C0,δ(Q̄) and it is bounded by the data as in the previous estimate.

Remark 3.2. This Lemma has been proven in [5]. For p > m see Theorem 3.4 and 3.7
and for p ∈ (1,m] see Remark 3.8.

Since we have already seen that the rate law (1.5) admits an explicit solution (2.1), we
can easily state the following

Lemma 3.3.

(1) Let θ ∈ L1(Q) and G ∈ Gad then (1.5) admits a unique solution z ∈ W 1,∞(0, T ;L∞(Ω))
such that

0 ≤ z(x, t) ≤ cT < 1 a.e. in Q.

Moreover, there exists M > 0 independent of θ such that

‖z‖W 1,∞(0,T ;L∞(Ω)) ≤M.

(2) Let p ∈ (2,∞) and θ1,2 ∈ Lp(Q) with solutions z1,2 of (1.5). Then there exists a constant
L > 0 such that

‖z1 − z2‖W 1,p(0,T ;Lp(Ω)) ≤ L‖θ1 − θ2‖Lp(Q).

Part (2) can be easily proven testing the di�erence of (1.5) for θ1,2 by |z1−z2|p−2(z1−z2)
and applying the inequalities of Gronwall and Young.

De�ning W 1,1
p (Q) = W 1(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 1,p(Ω)) we are now in a position to

formulate the main result of this section:

Theorem 3.4. Assume (A1)�(A4), then the state system (2.5) admits a unique solution
(θ, z) such that θ ∈ W 1,1

p (Q) ∩ C0,δ(Q̄) for some δ > 0 and z ∈ W 1,∞(0, T ;L∞(Ω)).
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Proof. The proof is an easy application of the contraction mapping theorem. In view of
Lemmas 3.3 and 3.1 the solution satis�es the apriori estimate

‖θ‖W 1,1
p (Q) ≤M, (3.2)

where M only depends on h and θ0. Hence we de�ne the closed set

K = {w ∈ W 1,1
p (Q) | ‖w‖W 1,1

p (Q) ≤M and w(., 0) = θ0}

and a mapping F : θ̂ 7→ θ where θ is the solution to (3.1) for

f = ẑ[α(θB − θ̂)− βG(θ̂)]

where ẑ is the solution to (1.5) for θ̂. Obviously, F maps K onto itself. Now let θ̂1,2 be given

and de�ne θ = θ1 − θ2 with θ1,2 = F (θ̂1,2). Then θ satis�es the system

θt −∇ ·
(
κ(x)∇θ

)
= f̄ , in Ω× (0, T ) (3.3a)

−κ∂θ
∂ν

= 0, in ∂Ω× (0, T ) (3.3b)

θ(x, 0) = 0, in Ω, (3.3c)

with f̄ = ẑ1[α(θB − θ̂1) − βG(θ̂1)] − ẑ2[α(θB − θ̂2) − βG(θ̂2)]. We apply Hölder's inequality
and Lemma 3.3(2) to obtain

‖f̄‖Lp(Q) ≤ c‖θ̂1 − θ̂2‖Lp(Q) ≤ cT
p−1

p ‖θ̂1,t − θ̂2,t‖Lp(Q) ≤ cT
p−1

p ‖θ̂1 − θ̂2‖W 1,1
p (Q). (3.4)

Hence, F is a contraction for some T+ ≤ T small enough and thanks to the global apriori
estimate we can extend the solution to the whole time interval [0, T ].

Thanks to this theorem we have a well-de�ned solution operator

S : Gad 3 G 7→ θ = θ(G). (3.5)

Next, we prove

Corollary 3.5. Let

θ+ > max
G∈Gad

‖θ(G)‖C(Q̄) and θ− < θB (3.6)

then

θ− < θ(G)(x, t) < θ+ for all (x, t) ∈ Q̄ and all G ∈ Gad. (3.7)

Proof. The upper bound is a direct consequence of Theorem 3.4, since the constant M in
(3.2) is independent of G. To derive the lower bound we write

θ = θ− + [θ − θ−]+ − [θ − θ−]−
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where [x]+ = max{x, 0} and [x] = −min{x, 0} are the positive and negative part functions,
respectively. Then, by a standard argument we test (3.1) with [θ − θ−]− to obtain

1

2

∫
Ω

[θ − θ−]2−dx+

t∫
0

∫
Ω

κ|∇[θ − θ−]−|2dxds = −
t∫

0

∫
Ω

zβG(θ)[θ − θ−]−dxds

+

t∫
0

∫
Ω

zα(θB − θ−)[θ − θ−]−dxds+

t∫
0

∫
Ω

zα[θ − θ−]2−dxds

≤ c

t∫
0

∫
Ω

[θ − θ−]2−dxdt.

Invoking Gronwall's Lemma �nishes the proof.

To investigate stability of solutions we take G1,2 ∈ Gad. Then the di�erence of corre-
sponding solutions θ1,2 solves a system similar to (3.3) but with f̄ given by

f̄ = z1[α(θB − θ1)− βG1(θ1)]− z2[α(θB − θ2)− βG2(θ2)].

Proceeding as in the proof of Theorem 3.4 we can estimate

‖f̄‖p
Lp(Q) ≤ c1T

p−1

t∫
0

s∫
0

∫
Ω

(θ1,ξ − θ2,ξ)
pdxdξds+ c2‖G1 −G2‖p

C[θ−,θ+].

Utilizing Gronwall's Lemma once again together with Lemma 3.1 and 3.3(2), we obtain

Corollary 3.6. Let θ1,2 and z1,2 be the solutions to (2.5) corresponding to G1,2 ∈ Gad, then
there exists a constant L > 0 such that

‖θ1 − θ2‖W 1,1
p (Q) + ‖θ1 − θ2‖C0,δ(Q̄) + ‖z1 − z2‖W 1,p(0,T ;Lp(Ω)) ≤ c‖G1 −G2‖C[θ−,θ+].

Now, we show that the solution operator is also Gateaux-di�erentiable. To this end we
take admissible functions G and Ḡ, de�ne

Gε(·) = Ḡ(·) + ε(G(·)− Ḡ(·)), (3.8)

and denote (θε, zε), (θ̄, z̄) the corresponding solutions. Formally, we de�ne the derivatives as

θ̇ = lim
ε→0

θε − θ̄

ε
, ż = lim

ε→0

zε − z̄

ε
. (3.9)

From the de�nition of Gε we have

lim
ε→0

Gε(zε)− Ḡ(θ̄)

ε
= Ḡ′(θ̄)θ̇ +G(θ̄)− Ḡ(θ̄).

Thus, formal computations lead to the system

θ̇t −∇ ·
(
κ(x)∇θ̇

)
= ż[α(θB − θ̄)− βḠ(θ̄)] (3.10a)

+z̄(−αθ̇ − β(Ḡ′(θ̄)θ̇ +G(θ̄)− Ḡ(θ̄))), in Ω× (0, T ) (3.10b)

żt = −Ḡ(θ̄)ż − (Ḡ′(θ̄)θ̇ +G(θ̄)− Ḡ(θ̄))z̄(x, t), in Ω× (0, T ) (3.10c)

−κ∂θ̇
∂ν

= 0, in ∂Ω× (0, T ) (3.10d)

θ̇(x, 0) = 0, ż(x, 0) = 0, in Ω, (3.10e)
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In the spirit of Theorem 3.4 one can easily verify that (3.10) admits a unique solution
(θ̇, ż) ∈ W 1,1

p (Q) ∩ C0,δ(Q̄) ×W 1,∞(0, T ;L∞(Ω)). To prove that this indeed is the Gateaux
derivative, we de�ne

ηε = θε − θ̄ − εθ̇ and ζε = zε − z̄ − εż.

Straightforward computations using a �rst-order expansion of G and Ḡ show that (ηε, ζε)
solve the system

ηε,t −∇
(
· (k(x)∇ηε

)
= g1ηε + g2ζε + g3(ε, x, t), in Ω× (0, T ) (3.11a)

ζε,t = g4ζε + g5ηε + g6(ε, x, t), in Ω× (0, T ) (3.11b)

−κ∂ηε

∂ν
= 0, in ∂Ω× (0, T ) (3.11c)

ηε(x, 0) = 0, ζε(x, 0) = 0, in Ω. (3.11d)

Here, gi, i = 1, . . . , 6 are bounded in L∞(Q). Moreover, thanks to the stability result in
Corollary 3.6, we have

‖g3(ε, x, t)‖L∞(Q) + ‖g6(ε, x, t)‖L∞(Q) ≤ cε2,

with a constant c > 0. Now, we test (3.11b) with |ζε|p−2ζε and apply Youngs inequality,
leading to

∫
Ω

|ζε|pdx ≤ c1

t∫
0

∫
Ω

|ζε|pdxds+
1

p

t∫
0

∫
Ω

(g5ηe + g6)
pdxds+

p− 1

p

t∫
0

∫
Ω

|ζε|pdxds.

Gronwall's lemma and comparison in (3.11b) give

‖ζε‖W 1,p(0,T ;Lp(Ω)) ≤ c2‖ηε‖Lp(Q) + c3ε
2.

As in the proof of Theorem 3.4 we can now apply Lemma 3.1 and Gronwall to obtain

‖ηε‖W 1,1
p (Q) + ‖ηε‖C0,δ(Q̄) + ‖ζε‖W 1,p(0,T ;Lp(Ω)) ≤ cε2. (3.12)

Thus, we have proved

Theorem 3.7. The solution operator S : Gad → W 1,1
p (Q) ∩ C0,δ(Q̄)×W 1,p(0, T ;Lp(Ω)) to

(3.1) is Gateaux di�erentiable. The directional derivative (θ̇, ż) in direction G− Ḡ is de�ned
as the solution to (3.10).

4 Analysis of the optimal control problem

To prove the existence of a solution to (CP) we proceed similar to [10] by introducing the
set

Tad := {(G, θ(G)) : G ∈ Uad, θ ∈ C0,δ(Q̄)}.

Lemma 4.1. Tad is compact in C1[θ−, θ+]× C(Q̄).
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Proof. Standard embedding results for Hölder continuous functions imply that Tad is a rel-
atively compact subset of C1[θ−, θ+] × C(Q̄). To show that it is also closed we take a a
sequence (Gn, θn) ∈ Tad with limit (G, θ). Thanks to the uniqueness of solutions to the state
system (2.5) passing to the limit in the equations in a standard way (see, e.g. [4]) yields
θ = θ(G) ∈ C0,δ(Q̄). Since also G ∈ Gad, this concludes the proof.

Using Lemma 4.1 and the continuity of the cost functionalJ(θ(G), G) in Uad together
with Weierstrass' Theorem we obtain

Theorem 4.2. The control problem (CP) has a solution Ḡ ∈ Gad.

In order to characterize the gradient of the cost functional it is convenient to introduce
an adjoint system. To this end we employ a standard Lagrange technique (see, e.g. [12]),
which results in the system

−φt −∇ ·
(
κ(x)∇φ

)
= −z̄(α+ βḠ′(θ̄))φ− Ḡ′(θ̄)z̄ψ, in Ω× (0, T ) (4.1a)

−ψt = −Ḡ(θ̄)ψ + [α(θB − θ̄)− βḠ(θ̄)]φ, , in Ω× (0, T ) (4.1b)

−κ∂φ
∂ν

= −(θ̄ − F ), in Γ1 × (0, T ) (4.1c)

−κ∂φ
∂ν

= 0, in Γ2 × (0, T ) (4.1d)

φ(x, T ) = 0, ψ(x, T ) = 0, in Ω, (4.1e)

In view of (A6) we can again utilize Lemma 3.1 and argue similar to the proof of Theorem
3.4 to show that 4.1 admits a unique solution (φ, ψ) ∈ W 1,1

p (Q)∩C0,δ(Q̄)×W 1,∞(0, T ;L∞(Ω)).

Now let Ḡ be a local minimizer of J(θ(·), ·), then we have

0 ≤ lim
ε→0

J(θ(Gε), Gε)− J(θ(Ḡ), Ḡ)

ε

=
1

2
lim
ε→0

∫ T

0

∫
Γ1

[(θε − F )2 − (θ̄ − F )2]

ε
=

∫ T

0

∫
Γ1

(θ̄ − F )θ̇dσdt =: I. (4.2)
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Next, we test (4.1a) with θ̇ and integrate by parts with respect to time yielding

I =

T∫
0

∫
Ω

θ̇tφ dxdt+

T∫
0

∫
Ω

(
z̄(α+ βḠ′(θ̄))θ̇φ+ Ḡ′(θ̄)z̄ψ

)
θ̇ dxdt

+

T∫
0

∫
Ω

κ∇φ · ∇θ̇ dxdt

(3.10a)
=

T∫
0

∫
Ω

φż[α(θB − θ̄)− βḠ(θ̄)] dxdt−
T∫

0

∫
Ω

φz̄β[G(θ̄)− Ḡ(θ̄)] dxdt

+

T∫
0

∫
Ω

z̄Ḡ′(θ̄)ψθ̇ dxdt

(3.10c)
=

T∫
0

∫
Ω

φż[α(θB − θ̄)− βḠ(θ̄)] dxdt−
T∫

0

∫
Ω

(βφ+ ψ)[G(θ̄)− Ḡ(θ̄)]z̄ dxdt

+

T∫
0

∫
Ω

żψt dxdt−
T∫

0

∫
Ω

Ḡ(θ̄)żψ dxdt

(4.1b)
= −

T∫
0

∫
Ω

(βφ+ ψ)[G(θ̄)− Ḡ(θ̄)]z̄ dxdt.

All in all we have derived the following necessary optimality conditions:

Theorem 4.3. There exists an optimal control Ḡ ∈ Gad, an optimal state (θ̄, z̄) satisfying
the state system (2.5) and an adjoint state (φ, ψ) satisfying (4.1). In addition, the following
variational inequality holds:

−
T∫

0

∫
Ω

(βφ+ ψ)[G(θ̄)− Ḡ(θ̄)]z̄ dxdt ≥ 0 for all G ∈ Gad. (4.3)

5 Numerical simulation

5.1 The state equation

Numerical tests showed that the simulation results obtained in [3] for the full system including
the radiation transport can be approximated in a more realistic way by choosing a distributed
heat source with support in the neighborhood of the applicator. Hence the following system
is the basis for the simulations:

θt −∇ ·
(
κ(x)∇θ

)
= z[α(θB − θ)− βG(θ)] + γΦ, in Ω× (0, T ) (5.1a)

zt = −G(θ)z, in Ω× (0, T ) (5.1b)

−κ∂θ
∂ν

= 0, in ∂Ω× (0, T ) (5.1c)

θ(x, 0) = θ0(x), z(x, 0) = 1, in Ω, (5.1d)
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The heat source in (5.1) is approximated as

Φ(x, y) =

{
e−6000(x2+y2), x ≥ 0

e−6000y2
, else.

The physical constants used for the simulations are summarized in Table 1. Note that
the whole setting has been taken from an experiment reported in [11].

Symbol Units native and coagulated tissue

ρ kg·m−3 1040
cp Jkg−1K−1 3640
κ Wm−1K−1 0.518
θB K 310.15
α Jm−3K−1s−1 6.7· 105

β Jm−3 10−4

γ m−1 19.5

Table 1: Data used in the simulations (from [11]).

We have approximated the forward problem with a function G(θ) = 0.01e−0.02(θ−338.15)2

and initial temperature θ0 = 37 °C with linear �nite elements using the MATLAB pde
toolbox. Figure 3 depicts the function G(θ). The corresponding temperature distribution
and the coagulated tissue at t = 600s i.e. at the end of the exposure time are shown in
Figure 4. The maximal temperature is 89.9 °C.

Figure 3: Function G(θ).
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Figure 4: Simulated temperature distribution (left) and coagulated tissue (right) at the end
time t = 600s.

A convenient way to reduce the computational e�ort for the identi�cation problem is to
nondimensionalize the problem �rst. To this end we introduce the following transformations:

x̂ =
x+ 0.025

0.05
,

ŷ =
y + 0.025

0.05
,

θ̂ =
θ − 310.15

53
,

ẑ = z,

t̂ =
t

600
.

Then the transformed state system is given by

θ̂t̂ − κ̂∆θ̂ = −α̂ẑθ + β̂
∂ẑ

∂t̂
+ γ̂Φ(x̂, ŷ), in Ω̂× (0, T̂ ) (5.2a)

∂ẑ

∂t̂
= −Ĝ(θ̂)ẑ, in Ω̂× (0, T̂ ) (5.2b)

−κ̂ ∂θ̂
∂n

(x̂, t̂) = 0, in ∂Ω̂× (0, T̂ ), (5.2c)

θ̂(x̂, 0) = 0, in ∂Ω̂, (5.2d)

ẑ(x̂, 0) = 1, in ∂Ω̂, (5.2e)

where the transformed constants are summarized in Table 2. To generate model data for
the identi�cation problem, we have solved the system of state equations (5.2a)-(5.2e) with
a function Ĝ(θ) depicted in Figure 5, initial temperature θ̂0 = 0 and treatment time T̂ = 1.
Figure 6 shows the corresponding temperature distribution and the coagulated tissue at
T̂ = 1 i.e. at the end of the exposure time.

Compared to the previous simulation prior to nondimensionalization the coagulated frac-
tion is smaller, however in terms of solving the identi�cation problem this is not important.
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Figure 5: Function G(θ).

Figure 6: Simulated temperature distribution (left) and coagulated tissue (right) at the end
time t̂e = 1.
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Symbol Native and coagulated tissue

κ̂ 0.0328
α̂ 106.21

β̂ 4.98· 10−13

γ̂ 40.82

Table 2: Value of constants in transformed state system.

5.2 Numerical solution of the identi�cation problem

Due to the structure of the problem we cannot give a characterization of the gradient in
function space. Hence we proceed as follows. First , we discretize the control G. We
partition the domain [θ−, θ+] by

θ− := τ0 < τ1 < · · · < τN := θ+

and use cubic B-splines with basis functions ϕi(τ) with i = 1, · · · , N to approximate G, i.e.,

GN(τ) =
N∑

i=1

Giϕi(τ), τ ∈ [θ−, θ+].

Introducing the �nite-dimensional set of admissible controls,

GN
ad = {GN = (G1, . . . , GN)T ∈ RN+1 | 0 ≤ m1 ≤ Gi ≤M1 for i = 1, · · · , N}

we can replace (CP) by the corresponding �nite-dimensional optimization problem (CP)N .
To compute the gradient of the reduced cost functional j(ḠN) = J(θ(ḠN), ḠN) we choose
GN in (4.3) such that Gj = Ḡj for j 6= l. Then the inequality boils down to

−(Gl − Ḡl)

T∫
0

∫
Ω

(βφ+ ψ)z̄ϕl(θ̄) dxdt ≥ 0.

For Ḡi 6= m1,M1, we thus obtain the gradient of j(GN) as

∂j

∂Gl

= −
T∫

0

∫
Ω

(βφ+ ψ)z̄ϕl(θ̄) dxdt, 1 ≤ l ≤ N. (5.3)

Using this gradient we have solved the resulting nonlinear optimization problem with a
BFGS method using the MATLAB routine fmincon. The upper and lower bounds in the
control constraints have been chosen as M1 = 10,m1 = 0, respectively. Figure 7 shows four
iterations in the case of unperturbed data. The resulting convergence history is given in
Table 3.

To investigate the stability of our method with respect to noisy data we have perturbed
the model data with 10% and 30 % noise, respectively. Note that these values correspond
to 1% noise and 5% noise, respectively, for the original problem, i.e. prior to nondimension-
alization. From the results, depicted in Figure 8, we conclude that our approach is stable
with respect to perturbed data.

16



Figure 7: Iterations of optimisation procedure.

Iteration Ji ei

1 6.6483 66.2174
20 0.0068 18.7427
40 0.0025 13.1533
60 1.9593 · 10−6 0.0288
86 3.0419 · 10−9 0.0014

Table 3: Value of objective function Ji and error in the parameter ei = ‖G∗(θ) − Gi(θ)‖ of
i-iteration.
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Figure 8: Final iteration of optimisation procedure. Identi�cation of G(θ) from the data
with 10 % noise (left) and 30 % noise (right).
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