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Abstract

In this paper we study the distributed optimal control for the Cahn-Hilliard system.

A general class of free energy potentials is allowed which, in particular, includes the

double-obstacle potential. The latter potential yields an optimal control problem of

a parabolic variational inequality which is of fourth-order in space. We show the

existence of optimal controls to approximating problems where the potential is replaced

by a mollified version of its Moreau-Yosida approximation. Corresponding first order

optimality conditions for the mollified problems are given. For this purpose a new

result on the continuous Fréchet differentiability of superposition operators with values

in Sobolev spaces is established. Besides the convergence of optimal controls of the

mollified problems to an optimal control of the original problem, we also derive first

order optimality conditions for the original problem by a limit process. The newly

derived stationarity system corresponds to a function space version of C-stationarity.
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1 Introduction

In the study of interface dynamics phase field models received a considerable amount of
attention in the recent past; see, e.g., [54] for a review on phase field models in material
science. Such models have also been applied successfully in fluid dynamics [7], image pro-
cessing [14,25] and cancer growth modelling [27].

In [20] Cahn and Hilliard introduced a continuous model for phase transitions in systems
of non-uniform compositions capturing spinodal decomposition. Based on the minimization

∗Department of Mathematics, Humboldt-Universität zu Berlin, E-Mail: hint@math.hu-berlin.de and De-

partment of Mathematics and Scientific Computing, Karl-Franzens-University of Graz.
†Department of Mathematics, Humboldt-Universität zu Berlin, E-Mail: dwegner@math.hu-berlin.de

1



2 1 INTRODUCTION

of a Ginzburg-Landau type free energy, the resulting system is of parabolic type with a
fourth-order (partial) differential operator in space which describes the evolution of a local
phase variable y. Within a spatial domain Ω, the latter is required to take values in [−1, 1]
where, for x ∈ Ω, y(x) = 1 represents one of two phases and y(x) = −1 the respective other
one. For −1 < y(x) < 1 the composition is in a mixed state at x ∈ Ω. Utilizing a chemical
potential w and assuming constant mobility (normalized to 1), the associated mathematical
model reads

yt − ∆w = 0, w + γ∆y ∈ ∂Ψ(y), (1.1)

with appropriate initial and boundary conditions. Here, γ > 0 denotes a given parameter,
Ψ represents the homogeneous free energy density contained in the Ginzburg-Landau model
and ∂Ψ stands for the generalized derivative from non-smooth analysis [21]. Note that the
latter is single-valued whenever Ψ is differentiable at y. In this case ∂Ψ(y) = {Ψ′(y)} with
Ψ′(y) the derivative of Ψ at y.

Depending on the application context, different choices of Ψ have been investigated in the
literature. Typically, the various versions of Ψ aim at confining the values of y to [−1, 1]
or (−1, 1). In this context, a widely studied choice is the double-well potential [23, 26, 50].
Another choice is of logarithmic form and goes back to Cahn’s and Hilliard’s original work
[20]; see also [2]. Logarithmic forms of the free energy density are also important in the Flory-
Huggins solution theory of the thermodynamics of polymer solutions. While the double-well
type free energy allows violations of y(x) ∈ [−1, 1], the logarithmic potential does not. Both
choices, however, share certain differentiability properties such that ∂Ψ becomes single-
valued and the second equation in (1.1) becomes an equality with the derivative Ψ′ on the
right hand side. On the other hand, in [51] Oono and Puri found that in the case of deep
quenches of, e.g., binary alloys the so-called double-obstacle potential

Ψ(y)(x) =

{
1
2
(1 − y(x))2 if |y(x)| ≤ 1,

+∞ if |y(x)| > 1
, (1.2)

x ∈ Ω, is better suited than the other free energy models mentioned above. A similar ob-
servation appears to be true in the case of polymeric membrane formation under rapid wall
hardening. For this choice of the free energy, due to the non-differentiability of the associ-
ated function Ψ the second relation in the system (1.1) is indeed a variational inclusion or,
equivalently, a variational inequality. For the resulting Cahn-Hilliard system, a comprehen-
sive mathematical analysis can be found in [16, 17]. Concerning numerical solvers we refer
to [8, 9, 15,32,33,39] and the references therein.

In many applications, it might be interesting to influence the phase transition in such a way
that a pre-specified control goal is achieved. In this direction, feedback stabilization and
optimal control for the Cahn-Hilliard equation with a double-well type homogeneous free
energy density is studied theoretically in [58]. For a polynomial type free energy density,
in [56] a first order optimality system is derived for minimizing a tracking type objective
subject to the associated Cahn-Hilliard equation. With the goal of preventing spinodal
decomposition in Fe-Al alloys, in [31] the Cahn-Hilliard system with double-well type free
energy is controlled near a steady-state of the system. In some applications one might be
interested in governing the Cahn-Hilliard system from an initial phase distribution (often a
homogeneous mixture) y0 to some desired phase pattern yT at a given (final) time T . For
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the Cahn-Hilliard system with a double-obstacle type homogeneous free energy density such
a problem formulation was mentioned by Garcke in [30]. For instance, in the context of
polymeric membrane formation, yT may describe a desired porosity patter which implies
filtration or other membrane qualities.

In this paper we pick-up the latter perspective and study the minimization of an objective
of the type

J(y, u) =
µ1

2

∫ T

0

∫

Ω

|y(x, t)− yΩ|2dx dt+
µ2

2

∫

Ω

|y(x, T )− yT |2dx+

∫ T

0

∫

Ω

|u(x, t)|2dx dt (1.3)

subject to (1.1) with the double-obstacle homogeneous free energy density (1.2). Here,
µ1, µ2 ≥ 0 are fixed and yΩ and yT are given targets, respectively, and u denotes the control
variable. As noted above, the Cahn-Hilliard system with a double-obstacle type homogeneous
free energy density admits an equivalent reformulation as a variational inequality such that
the resulting minimization problem amounts to an optimal control problem for a parabolic
variational inequality which is of fourth order in space.

Recently, in [40, 41] optimal control problems for variational inequalities were linked to so-
called mathematical programs with equilibrium constraints (MPECs). The latter problem
class is well-studied in finite dimensions; see, e.g., the monographs [45, 47, 48, 52] and the
many references therein. It is well-known that MPECs are problematic from an optimisation-
theoretic point of view due to a generic lack of constraint qualification. This fact prevents
the application of Karush-Kuhn-Tucker (KKT) type stationarity concepts for mathematical
programs in Banach space [46, 59]. In function space, the literature on MPECs is much
scarcer and the work on the relation between finite and infinite dimensional versions of
stationarity notions such as C-stationarity or strong (S) stationarity is only at its beginning.
Most problems in function space are formulated in terms of elliptic variational inequalities
(see [11–13,37,38,41,43,49] and the references therein, for instance). An account of parabolic
type variational inequalities can be found in the literature on mathematical finance [3,4,42]
and also in connection with the Stefan problem [11]. Typically, the differential operator in
these applications is of second order in space only, and systems like the Cahn-Hilliard one
with double-obstacle potential are untreated in the literature to the best of our knowledge.

In this paper our goal is to derive C-stationarity conditions for the minimization of (1.3)
subject to (1.1) with homogeneous free energy densities which cover the case of the double-
obstacle free energy in (1.2). This will be achieved by a regularization process, which allows
the application of classical KKT-theory in Banach space [59] and the subsequent passage to
the limit with respect to the regularization parameter. Concerning the control action, we
study the case of distributed control. An example for the latter can be found, e.g., in [36],
where a control problem for the Cahn-Hilliard equation with the double-well potential is
studied.

Clearly, many applications require the coupling of the Cahn-Hilliard system with another
system of partial differential equations describing the underlying physics. This could be the
Navier-Stokes system [1] or linear or nonlinear elasticity [18, 29, 57], to mention only two.
Coverage of such a fully coupled system, however, goes beyond the scope of the present work
and rather justifies an independent study.

The remainder of the paper is organized as follows: In section 2 we introduce notation and
provide existence and regularity results for solutions of parabolic differential inclusions. The
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optimal control problem is formulated in section 3 together with necessary assumptions on
the involved operators. Concerning the homogeneous free energy density we particularly
highlight the double-obstacle case. Then we study the existence of a solution of the original
and the regularized MPEC as well as the behavior of solutions under a vanishing regular-
ization parameter. The latter finally yields a function space version of the C-stationarity
conditions for the distributed optimal control of the Cahn-Hilliard system with a double-
obstacle potential.

2 Preliminaries

In this section we introduce the notation used throughout this work. We also provide an
abstract existence result for evolution inclusions and results concerning the regularity of
solutions.

2.1 Notation and Conventions

For any real Banach space X let us denote by || . ||X its norm, with 〈 . , . 〉X : X∗ ×X →
R its dual pairing and the canonical injection of X into its bi-dual space by iX : X →
X∗∗, 〈iXx,x∗ 〉X∗ := x∗(x). If X is a Hilbert space then ( . | . )X : X ×X → R represents its
inner product and JX : X → X∗, 〈JXx,y〉X := (x |y)X the corresponding dual mapping. For
two sets M1 ⊂ M2 we denote by IM1→M2

: M1 → M2, IM1→M2
x := x the identity regarded

as a mapping from M1 into M2. Finally, the convex indicator function ıM1
: M2 → R of M1

is defined by

ıM1
(x) :=

{
0 if x ∈ M1,
∞ otherwise.

Let Ω be an open, bounded subset of R
N with smooth boundary and T =]0, T [ a bounded

interval. For n ∈ {2, 3, 4} we define the spaces H,V1, ..., V4 by (for the definition of real-
valued Lp-spaces see e.g. [5]; for vector-valued spaces we refer to [28])

H := {u ∈ L2(Ω) :
∫
Ω

u = 0}

V1 := H1(Ω) ∩ H, Vn := {u ∈ Hn(Ω) ∩ H : u, ∆u ∈ H}

together with the operators L1 : V1 → V ∗
1 , Ln : Vn → Vn−2 given by

〈L1u,v〉V1
:=

∫

Ω

∇u · ∇v, Lnu := −∆u.

We equip H with the L2–inner product and V1, ..., V4 with the inner products

(u |v)V1
:= 〈L1u,v〉V1

, (u |v)Vn
:= (Lnu |Lnv)Vn−2

.

For n ∈ {1, ..., 4} the corresponding time-dependent spaces are

H := L2(T ; H), Vn := L2(T ; Vn).
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The spaces H and H∗ will be identified via JH . Furthermore, for n ∈ {3, 4} we use the
following abbreviations I1 := IV1→V ∗

1
, I2 := IV2→H , In := IVn→Vn−2

and IV := IV1→H .

For ease of notation we identify multivalued operators A : X ⇉ Y with its graph gph(A) ⊂
X ×Y and define its domain D(A) as the set {x ∈ X : Ax 6= ∅} and the composition and
inverse for A ⊂ X ×Y, B ⊂ Y ×Z by

A−1 := {(y, x) : (x, y) ∈ A}, BA := {(x, z) ∈ X ×Z : Ax ∩ B−1z 6= ∅}.

For multi-valued operators from a Banach space X into a Banach space Y we denote by
calligraphic letters the corresponding superposition operators mapping from L2(T ; X) into
L2(T ; Y ). For instance, for A ⊂ X ×Y the operator A reads as

A := {(f, g) ∈ L2(T ; X)×L2(T ; Y ) : g(t) ∈ Af(t) for a.e. t ∈ T }.

Moreover, for a functional on X denoted by a small greek letter we use a captical greek
letter for its L2–realization with respect to T . If, for example, ϕ : X → R is given, then Φ
is defined as

Φ : L2(T ; X) → R, Φ(u) :=

{∫
Ω

ϕ ◦ u if ϕ ◦ u ∈ L1(T ),

∞ otherwise.

For two Banach spaces X and Y by L(X; Y ) we denote the space of continuous linear
operators from X to Y . In case X = Y , we also write L(X) instead of L(X; X). Finally,
assume that E ∈ L(X; Y ) is injective. Then the enlargement of ϕ to Y with respect to E is
given by

C(ϕ,X, Y,E) : Y → R, C(ϕ,X, Y,E)(y) :=

{
ϕ(E−1y) if y ∈ E(X),
∞ otherwise.

Remark 2.1. 1. Since all the spaces H,V1, ..., V4 are reflexive, they posses the Radon-
Nikodým property (cf. [24]). Hence, e.g., V∗

1 can be identified with the space L2(T ; V ∗
1 ) ,

which we shall do without explicit use of the identification mapping. An analogous identifi-
cation will be used for the other spaces.
2. The positive-definiteness of the inner products of V1, ..., V4 is a consequence of the Poincaré
inequality and the fact that the only solution to the homogenous Laplace equation with zero
mean value is the 0–function. Moreover, it is not difficult to prove that these spaces are in
fact Hilbert spaces.
3. Furthermore, the operator L1 corresponds to the negative Laplacian with Neumann
boundary conditions in its weak form as an operator from V1 into V ∗

1 . By definition of the
inner product of V1, L1 also coincides with the dual mapping of V1 and all mappings L1, ..., L4

are unitary operators.
4. Since we identify the Hilbert space H with its dual H∗ through JH and because IV : V1 →
H is linear, continuous and has a dense range, the space H ∼= H∗ becomes a subspace of
V ∗

1 (under the identification I∗
V ). Additionally, Rellich’s lemma implies that IV is a linear,

compact mapping, hence these properties transfer to I∗
V .

5. If A : X → Y is single-valued and defined on all of X and if it is continuous and satisfies
the growth condition

||Ax ||Y ≤ C(1 + ||x ||X)

for a constant C > 0, then A is single-valued and defined on L2(T ; X).
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Definition 2.2. We define the following spaces that allow a weak (time-)derivative

W1 := {u ∈ V1 : u ∈ H1(T ; V ∗
1 )}, W3 := {u ∈ V3 : u ∈ H1(T ; V ∗

1 )},
W4 := {u ∈ V4 : u ∈ H1(T ; H)}.

We fix the following norms:

||u ||W1
:= (||u ||2V1

+ ||u′ ||2V∗

1

)1/2, ||u ||W3
:= (||u ||2V3

+ ||u′ ||2V∗

1

)1/2,

||u ||W4
:= (||u ||2V4

+ ||u′ ||2H)1/2.

Most of the operators considered below are subdifferentials of convex functionals on various
spaces.

Definition 2.3. For every real Banach space U and every functional ϕ : U → R we define
a multi-valued operator ∂ϕ ⊂ U ×U∗ by

∂ϕ := {(u, u∗) ∈ U ×U∗ : u ∈ dom ϕ ∧ ϕ(v) − ϕ(u) ≥ 〈u∗ , v − u〉U ∀ v ∈ U}.
If U is a Hilbert space, we further introduce ∂∗ϕ ⊂ U ×U :

∂∗ϕ := J−1
U ∂ϕ.

2.2 Existence results

Now we establish two properties of the enlargement of functionals that will be used below.
We will give proofs of this lemma and of other basic results of this section in the appendix.

Lemma 2.4. Let X and Y be two Banach spaces, E ∈ L(X; Y ) be injective and ϕ : X → R

a functional. Then we have

∂C(ϕ,X, Y,E) = (E∗)−1∂ϕE−1.

If, furthermore, X is reflexive, ϕ is proper, convex and lower-semicontinuous and has bounded
lower-level sets (i.e. ϕ−1(] −∞, a]) is bounded in X for every a ∈ R), then C(ϕ,X, Y,E) :
Y → R is proper, convex and lower-semicontinuous as well.

The following theorem by Abels/Wilke [2, Theorem 3.1] is our central key to prove existence
of solutions to evolution inclusions.

Theorem 2.5. Assume that W1 and W0 are real, separable Hilbert spaces and E ∈ L(W1; W0)
is injective with E(W1) dense in W0. Let α > 0, ψ0 := C(α|| . ||2W1

,W1,W0, E) and

ψ : W0 → R be a non-negative, proper, convex and lower-semicontinuous functional such
that dom ψ ∩ dom ψ0 6= ∅. We set ψ1 := ψ + ψ0 and R := ∂∗ψ1. Furthermore, suppose that
S : W1 → W0 is Lipschitz continuous. Then, for every y0 ∈ D(R) and f ∈ L2(T ; W0) there
exists a unique y ∈ L∞(T ; W1) with Ey ∈ H1(T ; W0) such that

(Ey)′ + REy + Sy ∋ f,

(Ey)(0) = y0.

Moreover, it holds that Ψ1(Ey) ∈ L∞(T ).
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Next, we provide a reformulation of this theorem applied to our situation.

Theorem 2.6. Suppose we are given a non-negative, proper, convex and lower-semicontin-
uous functional ϕ : V1 → R, a Lipschitz mapping B : V1 → V ∗

1 , y0 ∈ D(∂C(ϕ, V1, V
∗
1 , I1))

and f ∈ V∗
1 . Then there exists a unique y ∈ W1 ∩ L∞(T ; V1) with

(I1y)′ + L1w = f, (2.1)

L1y + (∂Φ)(y) + By ∋ w, (2.2)

(I1y)(0) = y0. (2.3)

Additionally, y satisfies ϕ(y) + 1
2
||y ||2V1

∈ L∞(T ).

Proof. We define A := ∂ϕ and apply Theorem 2.5 to the following setting:

W1 := V1, W0 := V ∗
1 , E := I1, α := 1

4
,

ψ0 := C(1
4
|| . ||2V1

, V1, V
∗
1 , I1), ψ := C(ϕ, V1, V

∗
1 , I1) + ψ0, ψ1 := ψ + ψ0,

R := ∂∗Ψ1, S := I1L
−1
1 B.

From Lemma 2.4 it follows that ψ is proper, convex and lower-semicontinuous. Hence, there
exists a unique y ∈ W1 such that y ∈ L∞(T ; V1), Ψ1(I1y) ∈ L∞(T ) and

(I1y)′ + RI1y + Sy ∋ f, (I1y)(0) = y0. (2.4)

In order to calculate R we use two basic facts from functional analysis:

(1) For every Hilbert space W it holds that iW = JW ∗JW , J−1
W ∗ = J∗

W .
(2) For Banach spaces X,Y and F ∈ L(X; Y ) we have F ∗∗iX = iY F .

Thus, J∗
HiH = J−1

H∗JH∗JH = JH and from I1 = I∗
V JHIV it follows that

I∗
1 = I∗

V J∗
HI∗∗

V = I∗
V J∗

HiHIV i−1
V = I1i

−1
V = I1J

−1
V J−1

V ∗

1

.

Due to Lemma 2.4, we obtain with ϕ1 := ϕ + 1
2
|| . ||2V1

and C(ϕ1, V1, V
∗
1 , I1) = ψ1 that

R = J−1
V ∗

1

(I∗
1 )−1∂ϕ1I

−1
1 = JV I−1

1 ∂ϕ1I
−1
1 = L1I

−1
1 ∂ϕ1I

−1
1 .

Since L1 = JV = ∂(1
2
|| . ||2V1

) and since the functional 1
2
|| . ||2V1

is continuous on V1, it holds
that ∂ϕ1 = ∂(ϕ + 1

2
|| . ||2V1

) = L1 + ∂ϕ = L1 + A. Therefore, we have

RI1 = L1I
−1
1 ∂ϕ1 = L1I

−1
1 (L1 + A).

Consequently, equation (2.4) is equivalent to (I1y)′ + L1I−1
1 (L1 + A + B)y ∋ f . Defining

w := L−1
1 (f − (I1y)′), this can be rewritten as

(I1y)′ + L1w = f, (L1 + A + B)y ∋ I1w,

which completes the proof. ¤
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2.3 Regularity results

The following proposition provides some basic properties of the interplay between I1 and L1.

Proposition 2.7. The following commutation rules hold true:

I1L3 = L1I3 and I∗
3L1 = L∗

3I1.

Moreover, L3 : V3 → V1, L1 : V1 → V ∗
1 and L∗

3 : V ∗
1 → V ∗

3 are unitary operators and
the mappings L−1

1 I1 ∈ L(V ) and (L∗
3)

−1I∗
3 are positive, symmetric, injective and compact. If

U1 ⊂ V1 and U∗
1 ⊂ V ∗

1 are closed subspaces such that L−1
1 I1(U1) = U1 and (L∗

3)
−1I∗

3 (U∗
1 ) = U∗

1

are satisfied, then it holds that

I1PV1→U1
= PV ∗

1
→I1(U1)I1, I∗

3PV ∗

1
→U∗

1
= PV ∗

3
→I∗

3
(U∗

1
)I

∗
3 ,

L1PV1→U1
= PV ∗

1
→I1(U1)L1, L∗

3PV ∗

1
→U∗

1
= PV ∗

3
→I∗

3
(U∗

1
)L

∗
3

with PX→Y denoting the othogonal projection of X onto the closed subspace Y ⊂ X.

Furthermore, the following generalization of the integration-by-parts formula to functions
admitting time derivatives in different spaces is needed.

Proposition 2.8. Assume that y ∈ V3, v ∈ V1 with y ∈ H1(T ; V ∗
1 ) and v ∈ H1(T ; V ∗

3 ).
Then y and v possess representatives in C(T ; V1) and C(T ; V ∗

1 ) respectively, which can be
continuously extended to T . Moreover, in this sense it holds that

〈
y′ , v

〉
V1

+
〈
v′ , y

〉
V3

=
〈
v(T ) , y(T )

〉
V1

−
〈
v(0) , y(0)

〉
V1

.

Next, we state a regularity result for the time-dependent bi-Laplace equation ensuring higher
space regularity.

Theorem 2.9. Suppose that y ∈ V1 and f ∈ V∗
1 satisfy y ∈ H1(T ; V ∗

3 ), y(0) ∈ V1 together
with y′ + L∗

3L1y = f ∈ V∗
3 .Then y ∈ V3, y ∈ H1(T ; V ∗

1 ) and it holds that

y′ + L1L3y = f ∈ V∗
1 .

Remark 2.10. If we assume that f ∈ H and y(0) ∈ V2 are satisfied, then y ∈ V4, y ∈
H1(T ; H) and y′ + L2L4y = f ∈ H.

In order to derive an optimality system later on, the continuous Fréchet differentiability of
some superposition operators acting on integrable functions with values in Sobolev spaces
will be needed.

Proposition 2.11. Let Ω ⊂ R
N be an open, bounded set with smooth boundary and a :

R → R be twice continuously differentiable with bounded first and second derivatives. Let A
denote the superposition operator

A : Ls1(T ; W 1,s2(Ω)) → L2(T ; H1(Ω)), (Ay)(t, x) := a(y(t, x)).

If s1 ≥ 4 and s2 > 2 with s2 ≥ 4N
N+2

, then the operator A is continuously Fréchet differentiable
and its derivative A′ : Ls1(T ; W 1,s2(Ω)) → L(Ls1(T ; W 1,s2(Ω)); L2(T ; H1(Ω))) is given by

(A′(y; r))(t, x) = a′(y(t, x))r(t, x).
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3 Optimal control for the Cahn-Hilliard system

Now, we turn our attention to a problem of optimal control of the Cahn-Hilliard system. For
theoretical as well as numerical purposes, the original problem is approximated by a suitable
sequence of associated auxiliary problems which are easier to handle from an optimization-
theoretic point of view. We then derive an optimality system for the auxiliary problems
which permits us to pass to the limit. This results in first order optimality conditions of
C-stationarity type for the original problem.

In addition to our earlier notations and assumptions we invoke the following assumption.

Assumption 3.1. For α0 > 0 and Λ :=]0, α0 ] , Λ := [0, α0 ] let (ϕα)α∈Λ and ψ be proper,
convex and lower-semicontinuous functionals on V1 with values in R such that ϕα is non-
negative for all α ∈ Λ. We define ϕ := ϕ0, θα := 1

2
|| . ||2V1

+ ϕα − ψ : V1 → R and the

operators Aα := ∂ϕα, A := ∂ϕ, B := −∂ψ for α ∈ Λ. We suppose that:

(i) (Aα)α∈Λ, B are single-valued operators from V1 into V ∗
1 and B is Lipschitz continuous.

(ii) There exists some constant cθ > 0 such that the functionals (θα − cθ|| . ||2V1
)α∈Λ are

bounded from below by some common constant.

(iii) The restrictions of the superposition operators (Aα)α∈Λ,B of (Aα)α∈Λ and B to the
subspace W1 ⊂ V1 attain only values in V1 ⊂ V∗

1 . We define for α ∈ Λ

Âα : W1 → V1, Âα := Aα, B̂ : W1 → V1, B̂ := B.

(iv) (Âα)α∈Λ, B̂|W3
: W3 → V1 are continuously Fréchet differentiable and B̂ : W1 → H is a

bounded operator. For every y ∈ W4 and α ∈ Λ, there are operators DAα(y), DB(y) ∈
L(V1;V1) such that DAα(y)v = DÂα(y)v and DB(y)v = DB̂(y)v for all v ∈ W3.

(v) There exists a constant η > 0 such that for all α ∈ Λ, v ∈ V1 and y ∈ W3 it
holds that 〈L1y , Âαy〉V1

≥ 0 and
〈
DB(y)v ,v

〉
V1

≥ −η||v ||2H. The set {DB(y)∗ : y ∈
W3, ||y ||W1

≤ r} is bounded in L(V1;V∗
1 ) for all r > 0.

(vi) Moreover, if (αn) and (yn) are sequences in Λ and W1 such that αn → 0, yn ⇀ y in
W1 and yn → y in H and α ∈ Λ, then

(1) Aαyn ⇀Aαy, Byn →By in V∗
1 ,

(2) If Âαn
yn ⇀ h in H, then (y, h) ∈ A.

We fix yΩ ∈ H, yT ∈ V1, µ1, µ2 ≥ 0 and define the functional J : W1 ×H → R by

J(y, u) :=
1

2

(
µ1||y − yΩ ||2H + µ2||y(T ) − yT ||2H + ||u ||2H

)
.

Finally, let y0 ∈ V1 be given such that y0 ∈ D(∂C(ϕα, V1, V
∗
1 , I1)) for α ∈ Λ and sup{θα(y0) :

α ∈ Λ} =: Cθ < ∞.

Throughout the rest of the paper, we refer to y as the state and u as the control variable,
respectively. A prototypic example for this setting is given next.
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Example 3.2 (Double-obstacle potential). Suppose that N ≤ 3, M = [a, b] ⊂ R, a <
0 < b, is a bounded interval and

KH := {u ∈ H : u(x) ∈ M for a.e. x ∈ Ω}, KV := I−1
V KH ,

γ̃ := ıM : R → R, β̃ := ∂γ̃,

ϕ := ıKV
: V1 → R, ψ :=

1

2
|| . ||2H : V1 → R.

Let ρ ∈ C2(R) be a fixed mollifier with supp ρ ⊂ [−1, 1],
∫

R
ρ = 1, ρ :=

∫
R

rρ(r) dr, 0 ≤
ρ(r) ≤ 1 for all r ∈ R. Moreover, ε : R

+ → R
+ is a function with ε(α) > 0, ε(α)→ 0 and

ε(α)
α

→ 0 as α→ 0. By γ̃α and ϕ̃α we denote the Moreau-Yosida approximations of γ̃ and ϕ

with the parameter α > 0, respectively, and the Yosida approximation of the operator β̃ by
β̃α. For the general definitions of the Moreau-Yosida and the Yosida approximation we refer
to [10]. We set

ρε(r) :=
1

ε
ρ
(r

ε

)
, βα := β̃α ∗ ρε(α), γα(r) :=

∫ r

0

βα, ϕα(u) :=

∫

Ω

γα ◦ u,

where ∗ denotes the convolution operator and f◦g the superposition of f and g. Furthermore,
q : R → R is given by q := αβ̃α, Q : H → H denotes its superposition operator with respect
to Ω and Q : H → H the superposition operator of Q with respect to T . Finally, let
y0 ∈ V1 ∩ L∞(Ω) be such that a < ess infΩ y0 ≤ ess supΩ y0 < b.

In order to prove that Example 3.2 falls into the framework of Assumption 3.1, we first
collect some basic properties.

Lemma 3.3. Given the setting of Example 3.2 we have

β̃α(r) =





1
α
(r − a) if r < a,

0 if a ≤ r ≤ b,
1
α
(r − b) if b < r,

β̃′
α(r) =





1
α

if r < a,
0 if a < r < b,
1
α

if b < r,

γ̃α(r) =





1
2α

(r − a)2 if r < a,
0 if a ≤ r ≤ b,
1
2α

(r − b)2 if b < r.

Moreover, β̃α and βα are Lipschitz continuous with constant 1
α
, monotone and βα(0) = 0 if

ε(α) ≤ min(−a, b). Furthermore, βα(r) = β̃α(r)− ε(α)
α

ρ for r ≤ a−ε(α) and r ≥ b+ε(α) and

|β′
α(r)| ≤ 1

α
, |βα(r) − β̃α(r)| ≤ ε(α)

α
(2 + |ρ|), |βα(r) − β′

α(r)q(r)| ≤ C
ε(α)

α
(3.1)

for all r ∈ R and some constant C which does not depend on α. Finally, if aα : L2(Ω) →
L2(Ω), aα(u)(x) := βα(u(x)) denotes the superposition operator of βα and PH : L2(Ω) → H
the orthogonal projection of L2(Ω) onto H, then it holds that

Aα = PHaα, B = −I1.
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Proof. 1. The definition of the Yosida approximation directly provides the formula for β̃α

and its derivative. Hence, by integration we obtain the relation for γ̃α.
2. The Lipschitz continuity and monotonicity of β̃α and βα, respectively, are direct conse-
quences of the properties of the Yosida approximation and the convolution with ρ ≥ 0.
3. The inequality |β′

α(r)| ≤ 1
α

is a consequence of the definition of βα and the Lipschitz

continuity of β̃α with constant 1
α
. In order to prove the second estimate of (3.1), we first

notice that for an affine function g(r) := c1r + c2 it holds that (g ∗ ρε(α))(r) = g(r)− c1ε(α)ρ

as readily seen by a simple calculation. This implies the assertion βα(r) = β̃α(r) − ε(α)
α

ρ
for r ≤ a − ε(α) and r ≥ b + ε(α) (note that outside the interval [a − ε(α), β + ε(α)] the
convolution β̃α ∗ ρε(α) only touches affine parts of β̃α). Since β̃α and βα are monotone, we
conclude for r ∈ [a − ε(α), b + ε(α)]:

|βα(r) − β̃α(r)| ≤ max
(
|β̃α(b + ε(α)) − βα(a − ε(α))|, |βα(b + ε(α)) − β̃α(a − ε(α))|

)

≤ ε(α)

α
(2 + |ρ|).

This also holds true for r outside the interval. Now let us show the third inequality |βα(r)−
β′

α(r)q(r)| ≤ C ε(α)
α

. Similar to q we define

qα(r) :=





r − (a + 2ε(α)) if r ≤ a + 2ε(α),
0 if a + 2ε(α) < r < b − 2ε(α),
r − (b − 2ε(α)) if r ≥ b − 2ε(α)

and assume that α is sufficiently small (such that 4ε(α) < b−a). We have that |(q−qα)(r)| ≤
2ε(α) and with σε(r) := rρε(r) we find

|(β̃′
α ∗ σε(α))(r)| ≤ 1

α

∫

R

|σε(α)(r)| dr =
1

α

∫

R

∣∣∣
r

ε(α)
ρ
( r

ε(α)

)∣∣∣ dr

=
ε(α)

α

∫

R

|sρ(s)| ds = C
ε(α)

α
.

Furthermore, for an affine function g(r) := c1r + c2 and any integrable function f it holds
that [(f ∗ ρε)g](r) = [(gf) ∗ ρε](r) − (f ∗ σε)(r). Hence, we obtain

|βα(r) − β′
α(r)q(r)| ≤ |βα(r) − β′

α(r)qα(r)| + 2
ε(α)

α

=
∣∣∣
[
β̃α ∗ ρε(α) − (qαβ̃′

α) ∗ ρε(α)

]
(r) + (β̃′

α ∗ σε(α))(r)
∣∣∣ + 2

ε(α)

α

≤
∣∣∣
[
(β̃α − qβ̃′

α) ∗ ρε(α)

]
(r)

∣∣∣ + 2
ε(α)

α
+ C

ε(α)

α
+ 2

ε(α)

α

= (C + 4)
ε(α)

α

due to β̃α = qβ̃′
α and the fact that the convolution β′

αqα = (β̃′
α ∗ ρε(α))qα only involves affine

parts of qα.
4. Finally, it is easy to show that for α > 0 we have

〈Aαu,v〉V1
=

∫

Ω

vβα(u), Bu = −u

for u, v ∈ V1. Hence, Aα may be written as PHaα. ¤
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Proposition 3.4. Assume the setting of Example 3.2 is fulfilled. Then there exists a con-
stant α0 > 0 such that the functionals (ϕα)α∈Λ, ϕ0 := ϕ and ψ satisfy Assumption 3.1.

Proof. We establish the statements (i)-(vi) of Assumption 3.1 step by step.
(i) The facts that Aα, B are single-valued and B are consequences of Lemma 3.3.

(ii) From the properties of βα given in Lemma 3.3 it follows that there are 0 < α0 < 1
and r0 > 0 such that γα(r) ≥ 1

2
r2 and rβα(r) ≥ 1

2
r2 for all 0 < α ≤ α0 and |r| ≥ r0.

Consequently, it holds that

θα(v) − 1

2
|| . ||2V1

≥ ϕα(v) − ψ(v)

≥
∫

{|v|≤r0}

γα(v) − 1

2
|v|2 dx +

∫

{|v|>r0}

γα(v) − 1

2
|v|2 dx

≥ −r2
0

2
|Ω|.

This proves the desired boundedness from below.

(iii) Since βα ∈ W 1,∞(Ω) it follows that βα ◦ u ∈ H1(Ω) for u ∈ V1. Since Aα = PHaα, B =
−I1, Aα can also be written as Aαu = PV (β′

α(u)) where PV : H1(Ω) → V1 denotes the
orthogonal projection of H1(Ω) onto V1 with respect to the H1-inner product. Consequently,
we obtain Aα(V1),B(V1) ⊂ V1.

(iv) Next we show that Âα : W3 → V1 is continuously Fréchet differentiable. For this
purpose, first notice that βα is twice continuously differentiable with bounded first and
second derivatives. Furthermore, by the Sobolev Embedding Theorem (cf. [5]) the space V3

is continuously embedded into W 1,q1(Ω) for arbitrary q1 < ∞ if N ≤ 4. This implies that W3

can be continuously embedded into Lp1(T ; W 1,q1(Ω)) for p1 = 2 as well as into C(T ; V1) by
Proposition 2.8, hence in particular into Lp2(T ; W 1,q2(Ω)) for q2 = 2 and arbitrary p2 < ∞.
Applying standard interpolation arguments (cf. Triebel [55]), the space Lp1(T ; W 1,q1(Ω)) ∩
Lp2(T ; W 1,q2(Ω)) can be embedded into Lp(T ; W 1,q(Ω)) for all 1 ≤ p, q < ∞ with

1

p
=

θ

p1

+
1 − θ

p2

,
1

q
=

θ

q1

+
1 − θ

q2

for θ ∈ ]0, 1[. Let β > 1 be given and set θ := 1
1+β

, p2 := 4θβ
1−2θ

and q1 = p2

β2 . Then we obtain
1 − θ = θβ and hence

1

p
=

θ

2
+

θβ(1 − 2θ)

4θβ
=

1

4
,

1

q
=

θβ2

p2

+
θβ

2
= β

(θ

2
+

1 − θ

p2

)
=

β

p
.

Thus, p = 4 and q = p
β
. Since β > 1 was arbitrary, Proposition 2.11 implies the continuous

Fréchet differentiability of Âα.
Next, we prove that for each y ∈ W4 there exists an operator DAα(y) ∈ L(V1;V1) with
DAα(y)v = DÂα(y)v for all v ∈ W3. This assertion is equivalent to saying that DÂα(y) ∈
L(W3;V1) can be continuously extended to V1, or equivalently, that there exists a constant
C ≥ 0 with

||DÂα(y)v ||V1
≤ C||v ||V1
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for all v1 ∈ W3. Let us assume that y ∈ W4 and v ∈ W3. We have

||DÂα(y)v ||2V1
≤ ||∇(β′

α(y)v) ||2H ≤ 2
(
||β′′

α(y)v∇y) ||2H + ||β′
α(y)∇v ||2H

)

and want to show that both terms on the right hand side are bounded from above by C ||v ||V1
.

Since β′
α and β′′

α have bounded range, it remains to be checked that ||v∇y ||H ≤ C ||v ||V1
.

For this purpose, notice that W4 can be continuously embedded into C(T ; V2); in particular
∇y ∈ L∞(T ; H1(Ω)). By Sobolev’s Embedding Theorem and since N ≤ 3, H1(Ω) embedds
continuously into L4(Ω). Therefore, it follows

||v∇y ||2H =

∫

T

||v∇y ||2H ≤
∫

T

||v ||2L4(Ω)||∇y ||2L4(Ω)

≤ C ||∇y ||2L∞(T ;L4(Ω)) ||v ||2L2(T ;L4(Ω))

≤ C ||v ||2V1
.

The corresponding properties of B are obivous since B = −I1.

(v) Let α ∈ Λ be given. Since Aαu = PV (βα(u)) and 0 ≤ β′
α(r) for all r ∈ R we have that

〈L1y , Âαy〉V1
=

∫

Ω

∇y · ∇(βα(y)) =

∫

Ω

β′
α(y)|∇y|2 ≥ 0.

Since B = −I1, the remaining properties of DB given in (v) are trivially satisfied.

(vi) Assuming yn → y in H, it follows from the Lipschitz continuity of βα that Aαyn converges
to Aαy in V∗

1 . The same applies to B since B is even linear. This proves (1).

In order to show (2), from |βα(r)−β̃α(r)| ≤ ε(α)
α

(2+ρ) it follows that ||βαn
◦yn−β̃αn

◦yn ||H ≤
C ε(α)

α
→ 0 as α→ 0. Let Ãαn

: H → H, Ãαn
v := βαn

(v) denote the Yosida approximation of

∂γ̃ with parameter αn. Consequently, it holds that Ãαn
yn ⇀ h in H. Since ∂γ̃ is maximal-

monotone, we invoke Proposition 2.5 of [19] in order to conclude (y, h) ∈ ∂γ̃ and hence
(y, h) ∈ A.

Let us choose α0 > 0 so small that ε(α) < min{infΩ y0 − a, b − supΩ y0} for all α ∈ [0, α0].
Then βα(y0(x)) = 0 and y0 satisfies the conditions given in Assumption 3.1. This completes
the proof. ¤

Remark 3.5. For α sufficiently small, βα vanishes identically in a neighborhood of 0. We
could choose different mollifiers ρ1 and ρ2 instead of ρ in the definition of βα(r) for either
positive r or negative r, respectively. Thus, the assertion of Proposition 3.4 remains true
also in this case.

For given u ∈ H and α ∈ Λ consider the problems of finding y ∈ W1 such that there is a
w ∈ V1 with

(Qα) y′ + L1w = u, w ∈ (L1 + Aα + B)y, y(0) = y0,

and (Q):=(Q0). Note that under Example 3.2 and for α > 0, (Qα) represents a regularized
version of the Cahn-Hilliard-system with double obstacle potential. The regularization acts
on the indicator function involved in the potential. For α = 0 we arrive at the original
Cahn-Hilliard-system with double obstacle potential. The following theorem shows that the
problem (Qα) admits a unique solution.
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Theorem 3.6. For every α ∈ Λ and every right hand side u ∈ H the problem (Qα) has a
unique solution y ∈ W1. If α ∈ Λ, the solution satisfies y ∈ W3 and with w := L−1

1 (u − y′)

y′ + L1w = u, w = (L3 + Âα + B̂)y, y(0) = y0,

Proof. The existence and uniqueness of a solution is a direct consequence of Theorem 2.6.
For given α ∈ Λ, let y ∈ W1 be the solution to (Qα) and w := L−1

1 (u − y′). Then

I∗
3 (y′ + L1w) = y′ + L∗

3w = y′ + L∗
3(L1y + Aαy + By)

and since Aαy,By ∈ V1, it follows that L∗
3(Aαy+By) = L∗

3I1I−1
1 (Aαy+By) = L1I−1

1 (Aαy+
By) ∈ V∗

1 . Consequently, Theorem 2.9 implies the assertion. ¤

Remark 3.7. Theorem 3.6 shows that the original problem (Q) admits a solution y ∈ W1

for every u ∈ H. Furthermore, the solutions y of the regularized problems (Qα) belong to
W3 for all α ∈ Λ. This holds even true for all u ∈ V∗

1 and will be used to prove the existence
of Lagrange multipliers for the optimal control problem (Pα) below. For u ∈ H we can use
Remark 2.10 and obtain y ∈ W4 for α > 0. This higher regularity will only be needed in
order to show that in the linearization of (Qα) the derivative DÂα(y) and DB̂(y) for y ∈ W4

extend continuously to operators in L(V1;V1) (which, in general, does not hold for y ∈ W3).

Definition 3.8. For given u ∈ H, let Sαu ∈ W1 denote the solution of (Qα) given by
Theorem 3.6.

3.1 Regularized optimal control problems

In order to derive an optimality system for problem (P), the non-smooth potential ϕ is
replaced by ϕα leading to the family of optimiztion problems (Pα), which we study next.

For α ∈ Λ and with (P):=(P0) we consider

(Pα) inf{J(y, u) : (y, u) ∈ W1 ×H, y = Sαu},

For studying α→ 0 in (Pα) we need the energy estimate for solutions to problems (Qα) as
given in the next lemma.

Lemma 3.9. Let u ∈ H and α ∈ Λ be given. For the corresponding solution y := Sαu ∈ W1

to problem (Qα) and w := L−1
1 (u − y′) it holds that θα ◦ y admits an absolutely continuous

representative on T and in this sense for t ∈ T and T ′ := [0, t] we have

(θα ◦ y)(t) + ||χT ′w ||2V1
= (θα ◦ y)(0) + 〈u,χT ′w〉V1

.

In particular, it holds that ||θα ◦ y ||L∞(T ) + ||w ||2V1
≤ (θα ◦ y)(0) + ||u ||V∗

1
||w ||V1

.
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Proof. The chain rule (cf. Proposition 4.2 in [22]) implies for the convex functionals σ =
θα + ψ and σ = ψ that σ ◦ y is absolutely continuous on T and for every v ∈ V1 such that
v(t) ∈ ∂σ(y(t)) for almost all t ∈ T and with T ′ := [0, t] it holds that

(σ ◦ y)(t) =

∫

T ′

d

dt
(σ ◦ y) dt + (σ ◦ y)(0) =

〈
y′ ,χT ′v

〉
V1

+ (σ ◦ y)(0).

Using w ∈ (L1 + Aα + B)y = (∂(Θα + Ψ) − ∂Ψ)y, we obtain

(θα ◦ y)(t) =
〈
y′ ,χT ′w

〉
V1

+ (θα ◦ y)(0)

= 〈u − L1w,χT ′w〉V1
+ (θα ◦ y)(0)

= −||χT ′w ||2V1
+ 〈u,χT ′w〉V1

+ (θα ◦ y)(0),

which yields the desired assertions. ¤

Corollary 3.10. Let (αn) and (un) be sequences in Λ and in H, respectively, such that (un)
is bounded in V∗

1 . By (yn) we denote the sequence of corresponding solutions Sαn
un to the

problems (Qαn
) and wn := L−1

1 (un − y′
n). Then (yn) is bounded in W1 and L∞(T ; V1) and

(wn) is bounded in V1. If αn ∈ Λ for all n, then Âαn
yn is bounded in H.

Proof. From the energy estimate of Lemma 3.9 it follows that (wn) is bounded in V1. Hence,
y′

n = un−L1wn is bounded in V∗
1 . Moreover, the energy estimate implies that (yn) is bounded

in L∞(T ; V1) since θα ≥ cθ|| . ||2V1
− c for all α ∈ Λ and some c ∈ R. Hence, (yn) is also

bounded in W1. If αn ∈ Λ for all n, then we obtain from wn = (L1 + Âαn
+ B)yn and with

the help of Assumption 3.1(iv)-(v) that

||Âαn
yn ||2H = 〈Âαn

yn , Âαn
yn〉V1

=
〈
wn − (L1 + B)yn , Âαn

yn

〉
V1

≤ (wn − Byn |Âαn
yn )H ≤ C ||Âαn

yn ||H.

This finishes the proof. ¤

With these a priori estimates we are able to prove convergence (consistence) results and the
existence of minimizers for (Pα).

Proposition 3.11. Let (αn) and (un) be sequences in Λ respectively H with αn → 0 and
un ⇀ u in V∗

1 for some u ∈ H. Then there exist subsequences (denoted by the index m) such
that

Sαm
um ⇀ Su in W1, Sαm

um → Su in V1.

Proof. From Corollary 3.10 we already know that yn := Sαn
un is bounded in W1 and

wn := L−1
1 (un − y′

n) in V1. Due to the compactness of I1 : W1 → H and with an :=
wn − (L1 + B)yn ∈ Aαn

yn we have that

(ym, wm, am) ⇀ (y, w, a) in W1 ×V1 ×V∗
1 ,

ym → y in H
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for some y ∈ W1, w ∈ V1 and a ∈ V∗
1 along a subsequence αm of αn. Moreover, since

Byn →By in V∗
1 by Assumption 3.1(vi) and since wn = L1yn + an + Byn, it follows that

w = L1y + a + By as well as

||ym − y ||2V1
=

〈
L1(ym − y) , ym − y

〉
V1

= (wm − w |ym − y)H − 〈am − a,ym − y〉V1
− 〈Bym − By ,ym − y〉V1

for m ∈ N. The strong convergence of ym and Bym in H, respectively V∗
1 , shows that the

first and the last term on the right hand side tend to zero. In the case that αm = 0 for
infinitely many m, for these indices it holds that 〈am−a,ym−y〉V1

≥ 0 by the monotonicity
of A and hence ym → y in V1. Thus, from Proposition 2.5 of [19] we obtain that (y, a) ∈ A.

Otherwise, we may assume the αm > 0 for all m and that Âαm
ym converges weakly in

H to an a1 ∈ H by Corollary 3.10. This implies 〈am − a,ym − y〉V1
= (am − a |ym −

y)H → 0. Consequently, it holds that ym → y in V1 and that a = a1 and (y, a1) ∈ A by
Assumption 3.1(vi). ¤

Proposition 3.12. For every α ∈ Λ the problem (Pα) admits a minimizer (y, u) ∈ W1 ×H.

Proof. Although the proof technique is standard, we provide the proof for the sake of keeping
the paper self-contained. Let α ∈ Λ be given and (Sαun, un) an infimizing sequence for
problem (Pα). We set yn := Sαun ∈ W1 and wn := L−1

1 (un − y′
n). The coercivity of J yields

that (un) is bounded in H. With the help of Corollary 3.10 we may pass to subsequences
(denoted by the index m) such that

(ym, um) ⇀ (y, u) in W1 ×H,

ym → y in H.

The continuity properties of Aα and B given in Assumption 3.1(vi) imply that y = Sαu if
α > 0. In case of α = 0 this is obtained by Proposition 3.11. Finally, the weakly lower
semicontinuity of J : W1 ×H → R implies that (y, u) is in fact a minimizer of (Pα). ¤

Next, it will be shown that a sequence (yn, un) of minimizers to problem (Pαn
) for αn → 0

admits a cluster point in a suitable topology which is a minimizer of (P). For this purpose
we have to pass to the limit in J(yn, un) which, in particular, requires strong convergence of
y(T ) in H. This is proved next.

Lemma 3.13. Let (αn) be a sequence in Λ with αn → 0 and let (yn, un) ⊂ W1 ×H be a
sequence of solutions to problem (Qαn

) such that (un) is bounded in H. Then there exist
a ∈ H, y ∈ W1 and a subsequence (denoted by the index m) such that

(ym, Âαm
ym, um) ⇀ (y, a, u) in W1 ×H×H,

(ym, ym(T )) → (y, y(T )) in V1 ×H.

Proof. Since (un) is bounded in H and due to Corollary 3.10, we can pass to a subsequence
such that um ⇀ u in H and Âαn

ym ⇀ a in H for some u, a ∈ H. Then, Proposition 3.11
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shows that ym → y := Su weakly in W1 and strongly in V1. It remains to show that ym(T )
converges strongly to y(T ) in H. For this purpose, notice that W1 embedds continuously
into C(T ; H), hence ym(T ) ⇀ y(T ) in H. In order to prove the strong convergence, we show
that (yn) is bounded in V2 and we apply a compactness argument.

As in the proof of Theorem 2.9 let (en) be a complete orthonormal system of eigenvectors for
the eigenvalues (λn)n∈N in V1 of the operator L−1

1 I1 and the span of V1,n := span{e1, ..., en}.
Defining ỹn,m := PV1,m

yn and ũn,m := PV1,m
un, where PV1,n

denotes the orthogonal projection
of V1 onto V1,n, it follows that ỹn,m → yn in V1 as m→∞. Since (yn) solves (Qαn

) for the
right hand side un ∈ H with w̃n,m := L−1

1 (ũn,m − ỹ′
n,m) we obtain that

(
ũn,m

∣∣ỹn,m

)
H − 1

2
(|| ỹn,m(T ) ||2H − || ỹn,m(0)||2H)

= −
(
ỹ′

n,m − ũn,m

∣∣ỹn,m

)
H =

〈
L1w̃n,m , ỹn,m

〉
V1

=
〈
w̃n,m ,L3ỹn,m

〉
V1

= ||L3ỹn,m ||2H +
〈
Aαn

ỹn,m ,L3ỹn,m

〉
V1

+
〈
Bỹn,m ,L3ỹn,m

〉
V1

.

Assumption 3.1(iv)-(v) implies that (Bỹn,m) is bounded in H and that
〈
Aαn

ỹn,m ,L3ỹn,m

〉
V1

=〈
L1ỹn,m , Âαn

ỹn,m

〉
V1

≥ 0. Hence, it follows that

−C ||L3ỹn,m ||H + ||L3ỹn,m ||2H +
1

2
|| ỹn,m(T ) ||2H ≤ ||ũn,m ||H|| ỹn,m ||H +

1

2
|| ỹn,m(0)||2H.

Since the right hand side is bounded, we conclude the boundedness of (L3ỹn,m) in H and
therefore of (ỹn,m) in V2. Thus, also (yn) remains bounded in V2. Applying interpolation
arguments, it can be shown that L2(T ; V2)∩H1(T ; V ∗

1 ) continuously embedds into C(T ; V1/2)
for a Hilbert space V1/2 that is compactly embedded in H (cf. e.g. [6]). This means that
y 7→ y(T ) is a compact mapping from L2(T ; V2) ∩ H1(T ; V ∗

1 ) into H. Consequently, after
passing to a subsequence (yl) of (ym) we have that yl(T ) converges strongly in H to y(T ).
This completes the proof. ¤

Proposition 3.14. Let (αn) be a sequence in Λ with αn → 0 and (yn, un) ⊂ W1 ×H be a
sequence of minimizers to (Pαn

). Then there exist subsequences (denoted by the index m)
and (y, u) ∈ W1 ×H which is a minimizer of (P) such that

(ym, Âαm
ym) ⇀ (y, a) in W1 ×H,

(ym, ym(T ), um) → (y, y(T ), u) in V1 ×H ×H.

Proof. For fixed v ∈ H the sequence Sαn
v converges weakly in W1 to Sv by Proposition 3.11.

In particular, (Sαn
v) is bounded in W1 and hence it holds that

J(yn, un) ≤ J(Sαn
v, v) ≤ C

for some constant C, because (yn, un) is a minimizer of (Pαn
). The coercivity of J implies

that (un) is bounded in H. Applying Lemma 3.13 guarantees the existence of sequences with
index m such that (ym, Âαm

ym, um) ⇀(y, a, u) in W1 ×H×H and (ym, ym(T ))→(y, y(T )) in
V1 ×H. Note that (y, u) satisfies Su = y by Proposition 3.11.
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Now, let (y∗, u∗) ∈ W1 ×H be a minimizer of (P) (which exists by virtue of Proposition 3.12).
From Proposition 3.11 and Theorem 3.6 we conclude that (Sαm

u∗, u∗) ⇀(y∗, u∗) in W1 ×H
and Sαm

u∗ → y∗ in V1 for a suitable subsequence. By Lemma 3.13 and after passing to
another subsequence which we still denote by the index m we have that Sαm

u∗(T )→ y∗(T )
in H. The weak lower semicontinuity of J and the convergence properties of (Sαm

u∗, u∗)
imply that

J(y∗, u∗) ≤ J(y, u) ≤ lim
m→∞

J(ym, um) ≤ lim
m→∞

J(ym, um) ≤ lim
m→∞

J(Sαm
u∗, u∗)

= J(y∗, u∗).

Consequently, (y, u) is a minimizer of (P). Moreover, we have that J(ym, um)→ J(y, u) which
implies ||um ||H →||u ||H. Since we already know that um ⇀ u in H, it follows that um →u
in H. ¤

3.2 Stationarity system for (Pα)

Theorem 3.15. For every α ∈ Λ and for every minimizer (yα, uα) ∈ W1 ×H of prob-
lem (Pα) there exists a pα ∈ W3 with

−p′α + L1L3pα + R∗
αL3pα = µ1(yα − yΩ),

pα(T ) = µ2(yα(T ) − yT ),

where Rα := DAα(yα) + DB(yα) ∈ L(V1;V1). Moreover, we have

pα + uα = 0.

Proof. First, recall that by Remark 3.7 a minimizer (yα, uα) ∈ W1 ×H satisfies yα ∈ W4 and
therefore Rα is indeed a linear, bounded operator on V1 by Assumption 3.1(iv).
In order to prove the assertion, we first apply a theorem by Zowe/Kurcyusz [59] which
guarantees the existence of a Lagrange multiplier pα satisfying a particular partial differential
equation. In the second step we show the relation between this multiplier and the control uα

and in the last step we prove that pα indeed is a solution to the evolution equation above.

1. For v0 ∈ V1 we define W3(v0) := {v ∈ W3 : v(0) = v0} and consider the following setting
in order to apply Theorem 3.1 of [59]:

X := W3 ×H, C := W3(y0)×H,

Y := V∗
1 , K := {0} ⊂ Y,

g : X → Y, g(y, u) := y′ + L1(L3 + Âα + B̂)y − u,

f : X → R, f(y, u) := J(y, u).

From Assumption 3.1 it follows that f and g are continuously Fréchet differentiable with

Dg(y, u; δy, δu) = δy
′ + L1(L3 + DÂα(y) + DB̂(y))δy − δu,

Df(y, u; δy, δu) = µ1(y − yΩ |δy )H + µ2

(
y(T ) − yT

∣∣δy(T )
)
H + (u |δu )H



3.2 Stationarity system for (Pα) 19

with (δy, δu) ∈ W3 ×H. For given v∗ ∈ Y we choose u := 0 ∈ H and y ∈ W1 to be the
solution of

y′ + L1w = v∗, w = (L1 + Rα)y, y(0) = 0.

Due to Theorem 2.6 such a solution exists since Rα : V1 → V∗
1 is Lipschitz continuous.

Moreover, Theorem 2.9 shows that y ∈ W3 as well as

y′ + L1(L3 + Rα)y − u = v∗.

This demonstrates that g′(x̃) ∈ L(X0; Y ) is surjective for x̃ := (yα, uα) and X0 := W3(0)×H.
Now, using Theorem 3.1 of Zowe/Kurcyusz [59], there is a p̂α ∈ Y ∗ such that

〈
p̂α , g(x̃)

〉
Y = 0, Df(x̃; δy, δu) −

〈
p̂α ,Dg(x̃; δy, δu)

〉
Y = 0

for all (δy, δu) ∈ X0. Since Y ∗ ∼= V1, the multiplier p̂α ∈ Y ∗ can be identified with a pα ∈ V1

satisfying

〈
y′

α + L1(L3 + Âα + B̂)yα − uα , pα

〉
V1

= 0, (3.2)

DJ(x̃; δy, δu) −
〈
δy

′ + L1(L3 + Rα)δy − δu , pα

〉
V1

= 0 (3.3)

for all (δy, δu) ∈ X0.

2. By choosing δy = 0 in (3.3) and since DJ(x̃; 0, δu) = (uα |δu )H we find

DJ(x̃; 0, δu) + 〈δu , pα 〉V1
= (uα + pα |δu )H = 0

for all δu ∈ H. This yields pα + uα = 0.

3. Now we show that (3.2) and (3.3) imply the assertion on pα. For this purpose, first recall
that a function z ∈ L2(T ; Z) has a weak derivative v ∈ L2(T ; Z) for some Banach space Z
if and only if ∫

T

ηv = −
∫

T

η′z ∀ η ∈ C∞
c (T ).

From (3.3) and the symmetry of L1 it follows that for all (y, u) ∈ X0 it holds that

〈
δy

′ , pα

〉
V1

= DJ(x̃; y, u) −
〈
L1pα , (L3 + Rα)y

〉
V1

+ 〈u,pα 〉V1

= DJ(x̃; y, u) −
〈
(L3 + Rα)∗L1pα , y

〉
V3

+ 〈u,pα 〉V1
.

Now, for arbitrary v0 ∈ V3 and η ∈ C∞
c (T ) by choosing δy(t) := η(t)v0, δu := 0 and defining

q := µ1(yα − yΩ) − (L3 + Rα)∗L1pα ∈ V∗
3 we obtain

〈
η′v0 , pα

〉
V1

= 〈q ,ηv0〉V3

and therefore 〈 ∫
T

η′pα −
∫
T

ηq , v0

〉
V3

=
〈
η′v0 , pα

〉
V1

− 〈q , ηv0〉V3
= 0.

Since v0 ∈ V3 was arbitrary,
∫
T

η′pα =
∫
T

ηq holds for every η ∈ C∞
c (T ). This implies that

pα ∈ H1(T ; V ∗
3 ) and

p′α = (L3 + Rα)∗L1pα − µ1(yα − yΩ).
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Therefore, in the case δu = 0 equation (3.3) reduces to
〈
δy

′ , pα

〉
V1

+
〈
p′α , δy

〉
V3

− µ2

(
yα(T ) − yT

∣∣δy(T )
)
H = 0.

With the help of Proposition 2.8 we infer that
〈
pα(T ) , δy(T )

〉
V1

−
〈
pα(0) , δy(0)

〉
V1

− µ2

〈
yα(T ) − yT , δy(T )

〉
V1

= 0

for all δy ∈ W3(0). Since it is possible to find a sequence δyn ∈ W3(0) such that δyn(T )→ v1

in V1 for arbitrarily given v1 ∈ V1, we conclude that

pα(T ) = µ2(yα(T ) − yT ).

Finally, applying Theorem 2.9 again finshes the proof. ¤

Lemma 3.16. Let y ∈ W3, α ∈ Λ.Then I1DAα(y) : V1 → V∗
1 is monotone.

Proof. Let v ∈ V1 be given. We have to show that
〈
DAα(y)v ,v

〉
V1

≥ 0. Since the image
of IW3→V1

is dense in V1, we may find a sequence (yn) in W3 with yn → v in V1. By the
continuity of DAα(y) and the Fréchet differentiability of Âα : W3 → V1 in y it holds that

〈
DAα(y)v ,v

〉
V1

= lim
n→∞

〈
DÂα(y)yn , yn

〉
V1

= lim
n→∞

lim
t→ 0

1

t

〈
Âα(y + tyn) − Âαy , yn

〉
V1

= lim
n→∞

lim
t→ 0

1

t2
〈
Aα(y + tyn) −Aαy , (y + tyn) − y

〉
V1

≥ 0

since Aα = ∂ϕα which is montone (cf. [10, Proposition 2.1]). ¤

3.3 C-stationarity for the limit problem

Finally, we derive a function space version of C-stationarity (compare [40,53]) for the optimal
control problem of the Cahn-Hilliard system with the double-obstacle potential given in
Example 3.2; see Theorem 3.19.

Theorem 3.17. Let (αn) be a sequence in Λ with αn → 0. We assume that (yn, un) ∈
W3 ×H is a sequence of minimizers to problem (Pαn

), pn ∈ W3 is given as in Theo-
rem 3.15, wn := L−1

1 (un − y′
n), ξn := Âαn

yn ∈ V1, λn := DAαn
(yαn

)∗L3pn ∈ V∗
1 and

κn := DB(yn)∗L3pn ∈ V∗
1 . Then there exist subsequences (denoted by the index m) and a

minimizer (y, u) ∈ W1 ×H of (P) such that

(ym, wm, pm, p′m, pm(0)) ⇀ (y, w, p, q, p0) in W1 ×V1 ×V3 ×W∗
1 ×V1,

(λm, ξm, κm) ⇀ (λ, ξ, κ) in W∗
1 ×H×V∗

1 ,

(ym, um) → (y, u) in V1 ×H,

pm
∗
⇀ p in L∞(T ; V1).
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It holds that yn(0) = y0, pn(T ) = µ2(yn(T ) − yT ), pn + un = 0,

y′
n + L1wn = un, wn = L3yn + ξn + B̂yn, (3.4)

−p′n + L1L3pn + λn + κn = µ1(yn − yΩ), (3.5)

as well as y(0) = y0, p(T ) = µ2(y(T ) − yT ), p + u = 0 and

y′ + L1w = u, w = L1y + ξ + By, (3.6)

−q + L1L3p + λ + κ = µ1(y − yΩ). (3.7)

Proof. Since (yn) and y are solutions to (Pαn
) and (P), respectively, the equations (3.4)

and (3.6) are satisfied together with the corresponding initial conditions. Theorem 3.15
guarantees (3.5) and pn(T ) = µ2(yn(T )− yT ). The boundedness and convergence properties
of (ym), (wm), (ξm) and (um) are obtained from Corollary 3.10 and Proposition 3.14. Due
to Assumption 3.1

〈
DB(yn)∗v ,v

〉
V1

=
〈
DB(yn)v ,v

〉
V1

≥ −η||v ||2H.

holds for all v ∈ V1. For the time being, let us fix t0 ∈ T and define ϕ : T → R, ϕ(t) :=
exp(η2t) together with p̃n := ϕpn ∈ W3, q̃n := χ[t0,T ]p̃n ∈ V3 and fn := ϕ(yn − yΩ) ∈ H.
Using (3.5) we obtain that

p̃n
′ = ϕ

(
η2pn + p′n

)

= ϕ
(
η2pn +

[
L1 + DAαn

(yn)∗ + DB(yn)∗
]
L3pn

)
− fn

= η2p̃n +
[
L1 + DAαn

(yn)∗ + DB(yn)∗
]
L3p̃n − fn.

The integration by parts formula yields

〈
p̃n

′ ,L3q̃n

〉
V1

=
〈
(I∗

3L1I3p̃n)′ , q̃n

〉
V3

=
1

2

(
|| p̃n(T ) ||2V1

− || p̃n(t0) ||2V1

)

and therefore, after testing with L3q̃n, with the help of Lemma 3.16 we obtain

1

2

(
|| p̃n(T ) ||2V1

− || p̃n(t0) ||2V1

)

=
〈
p̃n

′ ,L3q̃n

〉
V1

≥ η2
〈
p̃n ,L3q̃n

〉
V1

+
〈
L1L3p̃n ,L3q̃n

〉
V1

− η||L3q̃n ||2H − ||fn ||V∗

1
||L3q̃n ||V1

= η2|| q̃n ||2V1
+ || q̃n ||2V3

− η||L3q̃n ||2H − ||fn ||V∗

1
|| q̃n ||V3

.

With the estimation

||L3q̃n ||2H =
〈
I1L3q̃n ,L3q̃n

〉
V1

=
〈
L∗

3I1L3q̃n , q̃n

〉
V1

=
〈
L1L3q̃n ,I3q̃n

〉
V1

≤ ||L1L3q̃n ||V∗

1
|| q̃n ||V1

≤ 1

2η
|| q̃n ||2V3

+
η

2
|| q̃n ||2V1

we finally arrive at

|| p̃n(T ) ||2V1
≥ || p̃n(t0) ||2V1

+ η2|| q̃n ||2V1
+ || q̃n ||2V3

− 2||fn ||V∗

1
|| q̃n ||V3

.
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By Corollary 3.10, yn is bounded in L∞(T ; V1). Hence pn(T ) = µ2(yn(T ) − yT ) in V1. Since
(fn) is bounded in V∗

1 , it follows that (p̃n) and thus also (pn) are bounded in V3 (by choosing
t0 = 0) as well as (pn(t0)) in V1 . For v ∈ W1 we have that

〈
p′n , v

〉
W1

=
〈
p′n , v

〉
V1

= −
〈
v′ , pn

〉
V1

+
(
pn(T )

∣∣v(T )
)
H −

(
pn(0)

∣∣v(0)
)
H

≤ C
(
||pn ||V1

+ ||pn(T ) ||H + ||pn(0)||H
)
||v ||W1

,

which shows that p′n is bounded in W∗
1 . The boundedness of (pn) in V3 together with

Assumption 3.1 imply that (κn) is bounded in V∗
1 . Moreover, the embedding of V∗

1 into W∗
1

is continuous, hence it follows from (3.5) that also (λn) is bounded in W∗
1 . Finally, passing

to the limit with m→∞ in (3.5) yields (3.7). ¤

Convention 3.18. In the last theorem we will use projection and superposition operators
which do not preserve the mean value. In order to simplify the notation, we extend the inner
product of H to a semi-inner product on L2(Ω) by

(u |v)H := (Qu|Qv)H

for u, v ∈ L2(Ω), where Q : L2(Ω) → H denotes the orthogonal projection of L2(Q) onto H.
Likewise, we define

〈u,v〉V1
:=

〈
u|V1

,Qv
〉

V1

for u ∈ (H1(Ω))∗, v ∈ H1(Ω). This is well-defined since Q maps H1(Ω) onto V1. Accord-
ingly, the inner product of H and the dual pairing between V1 and its dual are extended to
L2(T ; L1(Ω)), respectively, L2(T ; H1(Ω)) and its dual.

Finally, for the double-obstacle potential according to Example 3.2 we study further prop-
erties of various dual quantities involved in the system established in Theorem 3.17.

Theorem 3.19. Let the setting of Example 3.2 and the assumption of Theorem 3.17 be
satisfied (which implies λn ∈ V1). If furthermore (λm) is bounded in V∗

1 and h : R → R is a
Lipschitz function which satisfies h(a) = h(b) = 0 and h(vm)→h(v) in H1(Ω) if vm → v in
H1(Ω), then (using the notation of Theorem 3.17) the following relations hold true:

(ξ |y − a)H = 0, (ξ |y − b)H = 0,

lim
(
λm

∣∣h(ym)
)
H = 0, lim (ξm |L3pm )H = 0,

lim (λm |L3pm )H ≥ 0,

λk → 0 almost everywhere on {z ∈ T ×Ω : a < y(z) < b}
for a subsequence (λk) of (λm).

Proof. 1. We start by showing the complementarity conditions (ξ |y−a)H = 0, (ξ |y−b)H =
0. For this purpose, recall that Assumption 3.1 ensures that (y, ξ) ∈ A and that A is the
superposition operator of the subdifferential of ϕ = ıKV

: V1 → R. Since ξ ∈ H, we
therefore may conclude that (y(z), ξ(z)) ∈ ∂ıM for almost all z ∈ T ×Ω, which implies
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ξ(z)(y(z) − a) = 0 and ξ(z)(y(z) − b) = 0. Integration yields the desired complementarity
conditions.

2. Next, we prove lim
(
λm

∣∣h(ym)
)
H = 0. Denoting the metric projection of R onto M = [a, b]

by pM , the metric projection of H onto KH by P (which is the superposition operator of
pM) and the superposition operator of P with respect to T by P , it follows that P(V1) ⊂ V1

and limPyn = Py = y, lim h(Pym) = h(Py) = h(y) = lim h(ym) in L(T ; H1(Ω)).We know
that |β′

α(r)| ≤ 1
α

for all r and β′
α(r) = 0 for a + ε(α) ≤ r ≤ b − ε(α). If Lh is the Lipschitz

constant of h, then |h(r)| ≤ Lh min(|r − a|, |r − b|) for r ∈ R. Consequently, it follows that

|
(
λm

∣∣h(Pym)
)
H|2 = |

(
L3pm

∣∣DAαm
(ym)h(Pym)

)
H|2

≤ ||L3pm ||2H
∫

T ×Ω

|β′
αm

(ym)h(Pym)|2

≤
(
|T ×Ω| ||L3pm ||H Lh

ε(αm)

αm

)2

→ 0

as m→∞. Moreover, since (λm) is bounded in V∗
1 we have that

lim
(
λm

∣∣h(ym)
)
H = lim

(
λm

∣∣h(Pym)
)
H + lim

〈
λm , h(ym) − h(Pym)

〉
V1

= 0.

3. We set gm(r) := βαm
(r) − β′

αm
(r)q(r). With r − pM(r) = q(r) we find

(ξm |L3pm )H =
(
L3pm

∣∣βαm
(ym)

)
H

=
(
L3pm

∣∣gm(ym)
)
H + (λm |ym − Pym )H.

By Lemma 3.3, for m sufficiently large it holds that |gm(r)| = |βαm
(r) − β′

αm
(r)q(r)| ≤

C ε(αm)
αm

. Hence, the first term on the right hand side converges to 0. So does the second
since (λm) is bounded in V∗

1 and since (ym) and (Pym) both converge to y in V1.

4. The fact that lim 〈λm ,L3pm〉V1
≥ 0 is an obvious consequence of Lemma 3.16.

5. Let us fix a representative of the equivalence classes y, (ym) and denote Z the set {z ∈
T ×Ω : a < y(z) < b}. Since ym converges to y in V1, a subsequence (yk) of (ym) converges
almost everywhere on T ×Ω to y. Moreover, we know that ε(αm)→ 0. Hence, for almost
all z ∈ Z there exists k0(z) such that a + ε(αk) < yk(z) < b − ε(αk) for all k ≥ k0(z).
From the properties of βα it therefore follows that λk(z) = 0 for almost all z ∈ Z and
k ≥ k0(z). Consequently, λk converges to 0 almost everywhere on Z. ¤

Remark 3.20. The convergence of vn to v in H1(Q) implies the convergence of v+
n to v+

in H1(Ω) (where r+ := max(0, r) for r ∈ R). A proof can e.g. be found in [41, Lemma A.1].
This implies the continuity of the modulus and of the projection P on H1(Ω) and extends
to the continuity of the modulus and of P on L2(T ; H1(Ω)). Hence, a possible choice of h
in the last theorem is h(r) := |r − m1| − |m2| for m1 := (a + b)/2 and m2 := (b − a)/2.

Combining the results of Theorem 3.17 and Theorem 3.19 and considering the sign condition
satisfied by λm and pm in the limit (see third equation in Theorem 3.19) we find that our sta-
tionarity system corresponds to a function space version of C-stationarity for mathematical
programs with equilibrium constraints; see [40], [42] and [53].
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4 Appendix

In this appendix we provide proofs of results given in Section 1. We start with the basic
Lemma 2.4.

Proof (of Lemma 2.4). Let (y, y∗) ∈ Y ×Y ∗ be given and define ψ := C(ϕ,X, Y,E).
Then we have that

(y, y∗) ∈ ∂ψ

⇐⇒ y ∈ dom ψ, 〈y∗ , v − y〉Y ≤ ψ(v) − ψ(y) ∀ v ∈ Y

⇐⇒ y ∈ dom ψ, u := E−1y, 〈E∗y∗ , x − u〉X ≤ ϕ(x) − ϕ(u) ∀x ∈ X

⇐⇒ (E−1y, E∗y∗) ∈ ∂ϕ.

This implies ∂ψ = (E∗)−1∂ϕE−1. Now assume that ϕ is proper, convex and lower-semicon-
tinuous and has bounded lower-level sets. It is clear that ψ is proper and convex. Let (yn) be
a sequence in Y that converges strongly to y ∈ Y . We have to show that ψ(y) ≤ lim ψ(yn).
If lim ψ(yn) = ∞, then the assertion is trivial. So let us assume that limψ(yn) < ∞.
Hence, it is possible to extract a subsequence (ym) of (yn) such that ym ∈ dom ψ and
lim ψ(yn) = lim ψ(ym). We set xm := E−1ym and since (ϕ(xm)) is bounded in R, (xm) has
to be bounded in X. Consequently, there exists a subsequence (xk) of (xm) that converges
weakly in X. The continuity and injectivity of E therefore imply that this weak limit is
E−1y. Since ϕ is convex and lower-semicontinuous, it is even weakly lower-semicontinuous.
This implies

ψ(y) = ϕ(E−1y) ≤ lim
k→∞

ϕ(xk) = lim
n→∞

ψ(yn)

and therefore finishes the proof. ¤

Next, the commutation rules and the regularity result for the bi-Laplace equations are es-
tablished.

Proof (of Proposition 2.7). Since ∂Ω is supposed to be sufficiently smooth, standard
regularity results imply that L3 : V3 → V1 is an isomorphism and that I1L3 = L1I3 (cf. [34]).
Furthermore, the unitarity of L1 and L3 is easily verified. Now let v0 ∈ V3 and v1 ∈ V1 be
given. From the symmetry of I1 and L1 it follows that

〈I∗
3L1v1 , v0〉V3

= 〈L1v1 , I3v0〉V1
= 〈L1I3v0 , v1〉V1

= 〈I1L3v0 , v1〉V1
= 〈I1v1 ,L3v0 〉V1

= 〈L∗
3I1v1 , v0〉V3

.

Thus, we have that I∗
3L1 = L∗

3I1. Consider y, v ∈ V1 and y∗, v∗ ∈ V ∗
1 . Since

(
L−1

1 I1y
∣∣∣v

)
V1

= 〈I1y ,v〉V1
,

(
(L∗

3)
−1I∗

3y
∗
∣∣v∗

)
V ∗

1

=
(
I1L

−1
1 y∗

∣∣∣L1L
−1
1 v∗

)
V ∗

1

=
〈

I1L
−1
1 y∗ ,L−1

1 v∗
〉

V1
,

the symmetry, positivity and injectivity of L−1
1 I1 and (L∗

3)
−1I∗

3 are obvious. By Rellich’s
Lemma, IV is compact and therefore also I1 and L−1

1 I1. The same applies to I3 and (L∗
3)

−1I∗
3

by Sobolev’s Embedding Theorem.



25

Assume that U1 is a closed subspace of V1 satisfying L−1
1 I1(U1) = U1. The continuity of L−1

1

implies that I1(U1) is closed in V ∗
1 as well. Since U1 is a Hilbert space with the induced inner

product of V1, we conclude from the spectral theory of selfadjoint, compact operators the
existence of a finite or countable sequence of orthonormal eigenvectors (vn)n∈N with N ⊂ N

in U1 of L−1
1 I1 for the eigenvalues (λn)n∈N such that U1 =

⊕
n∈N Rvn. Moreover, it holds

λn > 0 for all n ∈ N and λn → 0 for n→∞, n ∈ N . Since L1 : V1 → V ∗
1 is a unitary operator

and I1(U1) = L1(U1), the orthogonal projections PV1→U1
and PV ∗

1
→I1(U1) from V1 onto U1 and

from V ∗
1 onto I1(U1), respectively, are given by

PV1→U1
v =

∑

n∈N

(v |vn )V1
vn and PV ∗

1
→I1(U1)v

∗ =
∑

n∈N

(v∗ |L1vn )V ∗

1

L1vn.

We have L−1
1 I1vn = λnvn, hence λnL1vn = I1vn. Furthermore, it holds that

(I1v |L1vn )V ∗

1

= 〈I1v ,vn〉V1
= 〈I1vn , v〉V1

= λn〈L1vn , v〉V1
= λn(vn |v)V1

.

Altogether, this yields

I1PV1→U1
v = I1

( ∑

n∈N

(v |vn )V1
vn

)
=

∑

n∈N

(v |vn )V1
I1vn,

PV ∗

1
→I1(U1)I1v =

∑

n∈N

(I1v |L1vn )V ∗

1

L1vn =
∑

n∈N

λn(v |vn )V1

1

λn

I1vn,

L1PV1→U1
v = L1

( ∑

n∈N

(v |vn )V1
vn

)
=

∑

n∈N

(v |vn )V1
L1vn,

PV ∗

1
→I1(U1)L1v =

∑

n∈N

(L1v |L1vn )V ∗

1

L1vn =
∑

n∈N

(v |vn )V1
L1vn

and therefore I1PV1→U1
= PV ∗

1
→I1(U1)I1 and L1PV1→U1

= PV ∗

1
→I1(U1)L1. Similar arguments

can be used to prove I∗
3PV ∗

1
→U∗

1
= PV ∗

3
→I∗

3
(U∗

1
)I

∗
3 and L∗

3PV ∗

1
→U∗

1
= PV ∗

3
→I∗

3
(U∗

1
)L

∗
3. ¤

The following general integration by parts formula is a result of Gröger [35], cf. [57].

Proposition 4.1. Let V be a reflexive Banach space, H an arbitrary Hilbert space and
K ∈ L(V ; H) with dense range. We define E := K∗JHK ∈ L(V ; V ∗) and H := L2(T ; H),
V := L2(T ; V ), W := {y ∈ V : (Ey)′ ∈ V∗} with the standard norms and ||y ||W :=
(||y ||2V + ||(Ey)′ ||2V∗)1/2, respectively. Then the operator K maps W continuously into the
space C(T ; H), meaning that every class of equivalent functions in K(W) ⊂ L2(T ; H) pos-
sesses a representative that is continuous from T into H with continuous extension onto T .
Furthermore, in this sense the formulas

(
(Ky)(t2)

∣∣(Kv)(t2)
)
H −

(
(Ky)(t1)

∣∣(Kv)(t1)
)
H

=

∫ t2

t1

[
〈
(Ey)′(t) , v(t)

〉
V +

〈
(Ev)′(t) , y(t)

〉
V ] dt (4.1)

and in particular

||(Ky)(t2) ||2H − ||(Ky)(t1) ||2H = 2

∫ t2

t1

〈
(Ey)′(t) , y(t)

〉
V dt (4.2)

hold for all y, v ∈ W and t1, t2 ∈ T .
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Proof. 1. At first assume that y, v ∈ C1
c (R; V ). Let us define the functional ϕ(t) :=(

(Ky)(t)
∣∣(Kv)(t)

)
H =

(
Ky(t)

∣∣Kv(t)
)
H . It is easy to see that ϕ ∈ C1(R) and

ϕ′(t) =
(
Ky′(t)

∣∣Kv(t)
)
H +

(
Kv′(t)

∣∣Ky(t)
)
H =

〈
(Ey)′(t) , v(t)

〉
V +

〈
(Ev)′(t) , y(t)

〉
V .

Hence, equations (4.1) and (4.2) follow from the fundamental theorem of calculus.

2. Again, let us suppose that y ∈ C1
c (R; V ) and t, s ∈ R. By virtue of equation (4.2) and

Hölder’s inequality, we conclude

||(Ky)(t) ||2H ≤ ||(Ky)(s) ||2H + 2||(Ey)′ ||V∗||y ||V ≤ ||(Ky)(s) ||2H + 2||y ||2W .

After applying the square root on both sides and integrating over s ∈ supp y we can estimate

| supp y| ||(Ky)(t) ||H ≤ ||Ky ||L1(R;H) +
√

2 | supp y| ||y ||W .

Assume that | supp y| > 0. Since K ∈ L(L2(R; V ); L2(R; V )), we obtain

sup
t∈R

||(Ky)(t) ||H ≤ C(||y ||V + ||y ||W) ≤ C||y ||W (4.3)

for constant C only depending on | supp y|. If | supp y| = 0, this inequality obviously holds
as well.

3. Let y ∈ W be arbitrary. Since the restriction to T of the set of continuously differentiable
functions on R with values in V is dense in W , there exists a sequence (yn) in C1

c (R; V )
such that yn|T → y in W . From (4.3) it follows that Kyn is a Cauchy sequence in C(T ; H)
and therefore converges to some h ∈ C(T ; H). It is not difficult to see that Ky = h almost
everywhere on T . Hence, h is the continuous representative of Ky ∈ L∞(T ; H). Moreover,
in the estimation in steps 1 and 2 we can pass to the limit in order to obtain the assertion
for arbitrary y, v ∈ W. This completes the proof. ¤

Proof (of Proposition 2.8). From Proposition 4.1 and with L1 = JV we obtain that
for functions f, g ∈ V3 with Ef, Eg ∈ H1(T ; V ∗

3 ) for E = I∗
3L1I3 it holds that f, g admit

continuous respresentatives defined on T with values in V1 and
〈
(Ef)′ , g

〉
V3

+
〈
(Eg)′ , f

〉
V3

=
(
f(T )

∣∣g(T )
)
V1

−
(
f(0)

∣∣g(0)
)
V1

.

Proposition 2.7 implies
E = I∗

3L1I3 = L∗
3I1I3 = I∗

3I1L3.

For y, v as in the assertion, let us choose f := y ∈ V3 and g := L−1
3 v ∈ V3. Thus, we have

H1(T ; V ∗
1 ) ∋ y = (L∗

3)
−1Ef and H1(T ; V ∗

3 ) ∋ v = Eg and therefore Ef, Eg ∈ H1(T ; V ∗
3 ).

This implies that f = y and g = L−1
1 v can be regarded as continuous functions on T with

values in V1 (and hence also v with values in V ∗
1 ). Moreover, it follows that

〈
y′ , v

〉
V1

+
〈
v′ , y

〉
V3

=
〈
(L∗

3)
−1(Ef)′ ,L3g

〉
V1

+
〈
(Eg)′ , f

〉
V3

=
〈
(Ef)′ , g

〉
V3

+
〈
(Eg)′ , f

〉
V3

=
(
f(T )

∣∣g(T )
)
V1

−
(
f(0)

∣∣g(0)
)
V1

=
〈
(L1g)(T ) , f(T )

〉
V1

−
〈
(L1g)(0) , f(0)

〉
V1

=
〈
v(T ) , y(T )

〉
V1

−
〈
v(T ) , y(0)

〉
V1

.
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This completes the proof. ¤

Proof (of Theorem 2.9). Choose a complete orthonormal system of eigenvectors (en)n∈N

for the eigenvalues (λn)n∈N in V1 of the operator L−1
1 I1. We denote the span of e1, ..., en

by V1,n and V ∗
1,n := I1(V1,n) ⊂ V ∗

1 , V ∗
3,n := I∗

3 (V ∗
1,n) ⊂ V ∗

3 . The orthogonal projection of
V1, V

∗
1 and V ∗

3 onto the subspaces V1,n, V ∗
1,n and V ∗

3,n are denoted by PV1,n
, PV ∗

1,n
and PV ∗

3,n
,

respectively. Then it is not hard to show that PV1,n
y =: yn → y in V1, yn ∈ H1(T ; V1,n) and

PV ∗

3,n
y′ = y′

n → y′ in V∗
3 .

Moreover, the continuity of L3 and L1 implies that L∗
3L1yn →L∗

3L1y in V∗
3 . With λnen =

L−1
1 I1en = I3L

−1
3 en, it holds that en ∈ V3. Hence yn ∈ L2(T ; V3).

In order to prove the assertion, it suffices to show that (yn) and (y′
n) remain bounded in V3

and V∗
1 , respectively. From y′ + L∗

3L1y = f and Proposition 2.7 we obtain

y′
n + L1L3yn = PV ∗

3,n
[y′ + L∗

3L1y] = PV ∗

1,n
f.

and therefore using ||f ||V∗

1
≥ ||PV ∗

1,n
f ||V∗

1
also

||f ||2V∗

1

≥ ||y′
n + L1L3yn ||2V∗

1

= ||y′
n ||2V∗

1

+ 2
(
y′

n

∣∣L1L3yn

)
V∗

1

+ ||L1L3yn ||2V∗

1

.

The term in the middle on the right hand side can be transformed into

(
y′

n

∣∣L1L3yn

)
V∗

1

=
〈
y′

n ,L3yn

〉
V1

=
〈
L1yn , y′

n

〉
V1

=
(
yn

∣∣y′
n

)
V1

=
1

2

(
||yn(T ) ||2V1

− ||yn(0)||2V1

)
.

The sequence ||yn(0)||V1
is bounded by ||y(0)||V1

since by Proposition 2.7 it holds that
yn(0) = (PV1,n

y)(0). Because of ||L1L3yn ||V∗

1
= ||L3yn ||V1

= ||yn ||V3
, the proof is finished. ¤

Proof (of Remark 2.10). First notice that the eigenvectors (en) of L−1
1 I1 are elements

of V4. Then proceeding as above we obtain

||f ||2H ≥ ||y′
n + L2L4yn ||2H = ||y′

n ||2H + 2
(
y′

n

∣∣L2L4yn

)
H + ||L2L4yn ||2H.

Again, using analogous commutation rules as given in Proposition 2.7 we conclude that

(
y′

n

∣∣L2L4yn

)
H =

(
L2y

′
n

∣∣L2yn

)
H

=
1

2

(
||yn(T ) ||2V2

− ||yn(0)||2V2

)
.

Since ||yn(0)||V2
is bounded by ||y(0)||V2

, the assertion follows. ¤

In order to prove Proposition 2.11 we make use of a general result by Kampowsky [44] on
the continuous Fréchet differentiability in Lebesgue spaces and reduce the problem to this
case.

Theorem 4.2. Let (Ui)1≤i≤n, V be normed vector spaces, Ω ⊂ R
N a mesurable subset and

q, (pi)1≤i≤n numbers with 1 ≤ q < pi ≤ ∞ ∀ 1 ≤ i ≤ n. We define ri := (1
q
− 1

pi
)−1 (with
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1
∞

:= 0) and the spaces U := U1 × ...×Un, Ui := Lpi(Ω; Ui), U := U1 × ...×Un, V :=
Lq(Ω; V ) and Wi := Lri(Ω;L(Ui; V )) for all 1 ≤ i ≤ n. Assume that the mapping a :
Ω×U → V possesses all partial derivatives ∂ui

a =: ai : Ω×U → L(Ui; V ) in the Ui-
variables as Fréchet derivatives, that these fulfill the Carathéodory condition and that their
superposition operators

(Aiy)(x) := ai(x, y(x))

map U continuously into Wi. Then the superposition operator A : U → V of a is continuously
Fréchet differentiable and its derivative A′ : U ×L(U ;V) is given by

(A′(y; v))(x) =
n∑

i=1

A′
i(y)(x)[v(x)]

for all y, v ∈ U and almost all x ∈ Ω.

Proof (of Proposition 2.11). 1. In the first step we show that the superposition operator
A of a

(Ay)(x) := a(x, y(x))

mapping W 1,s2(Ω) into H1(Ω) is continuously Fréchet differentiable and its derivative A′ :
W 1,s2(Ω) → L(W 1,s2(Ω); H1(Ω)) is given by A′(y; r)(x) = a′(y(x))r(x).

For this purpose, choose 2 < p1 < ∞ such that 1
2
− 1

s2

≥ 1
p1

≥ 1
s2

− 1
N

. The assump-

tion guarantees that this is possible. Then, W 1,s2(Ω) embedds continuously into Lp1(Ω).
Moreover,

G : H1(Ω) → L2(Ω)×L2(Ω; RN), r 7→ Gr := (y,∇y)

is an isometric isomorphism from H1(Ω) onto a closed subspace H1 of L2(Ω)×L2(Ω; RN)
and the gradient ∇(a ◦ y) is given by a′(y)∇y. Instead of analyzing A directly, we define the
operator

Ã : Lp1(Ω)×Lp2(Ω; RN) → L2(Ω)×L2(Ω; RN)

(y, v) 7→ (a(y), a′(y)v)

with p2 := s2 and use that A can be decomposed into

W 1,s2(Ω) → Lp1(Ω)×Lp2(Ω; RN) → H1 → H1(Ω)

y 7→ (y,∇y) 7→ Ã(y,∇y) 7→ Ay = G−1Ã(y,∇y).

Since W 1,s2(Ω) ∋ y 7→ (y,∇y) ∈ Lp1(Ω)×Lp2(Ω; RN) and G−1 : H1 → H1(Ω) are linear,

continuous operators, it suffices to prove that Ã is continuously Fréchet differentiable, and
Ã′ : Lp1(Ω)×Lp2(Ω; RN) → L(Lp1(Ω)×Lp2(Ω; RN); L2(Ω)×L2(Ω; RN)) is given by

(Ã′(y, v)[r, s])(x) = (a′(y)r, a′′(y)rv + a′(y)s),

because then we have

Ã′(y,∇y)[r,∇r] = (a′(y)r, ∇(a′(y)r)) = G(a′(y)r).

From the fact that a is differentiable and Lipschitz continuous, it follows that y 7→ a(y) is
continuously Fréchet differentiable from Lp1(Ω) into L2(Ω) by Theorem 4.2 with derivative
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a′(y). Moreover, the mapping b : (f, h) 7→ a′(f)h from R×R
N into R

N possesses the total
differential (Db)(e, g) ∈ L(R×R

N ; RN), (Db)(e, g)[f, h] = a′′(e)fg + a′(e)h. We know that
a′′(R) and a′(R) are bounded subsets of R, that Db is continuous and

||(∂ub)(e, g) ||L(R;RN ) = |a′′(e)g| ≤ C|g|,
||(∂vb)(e, g) ||L(RN ;RN ) = |a′(e)| ≤ C.

Consequently, the corresponding superposition operators Bu, Bv satisfy

Bu : Lp1(Ω)×Lp2(Ω; RN) → Lp2(Ω;L(R; RN)) →֒ Lr1(Ω;L(R; RN ))

Bv : Lp1(Ω)×Lp2(Ω; RN) → L∞(Ω;L(R; RN )) →֒ Lr2(Ω;L(RN ; RN))

and are continuous with p2 = s2 ≥ r1 := (1
2
− 1

p1

)−1 and ∞ ≥ r2 := (1
2
− 1

p2

)−1. Theorem 4.2

now implies the continuous Fréchet differentiability of A from W 1,s2(Ω) into H1(Ω) with the
derivative as desired.

2. Now let us consider the superposition operator A of A itself and show its continu-
ous Fréchet differentiability. The superposition operator of A′ will be denote by B, i.e.
(Bu)(t) = A′(u(t)). If we are able to show that B maps Ls1(T ; W 1,s2(Ω)) continuously into
Lr(T ;L(W 1,s2(Ω); H1(Ω))) with 1

s1

+ 1
r

= 1
2
, then Theorem 4.2 applies and we are done.

Consider M := {y ∈ W 1,s2(Ω) : ||y ||W 1,s2 (Ω) ≤ 1} and for y, r ∈ W 1,s2(Ω)

||A′(y; r) ||2H1(Ω) = ||a′(y)r ||2H1(Ω)

= ||a′(y)r ||2L2(Ω) + ||a′′(y)r∇y ||2L2(Ω) + ||a′(y)∇r ||2L2(Ω)

≤ C
(
||r ||2L2(Ω) + ||r∇y ||2L2(Ω) + ||∇r ||2L2(Ω)

)
.

The second summand can be estimated with the help of the generalized Hölder’s inequality
(||fg ||Lp ≤ ||f ||Lq ||g ||Lr for 1

p
= 1

q
+ 1

r
) and the Sobolev embedding W 1,s2(Ω) →֒ Lp1(Ω) by

||r∇y ||L2(Ω) ≤ ||r ||Lp1(Ω)||∇y ||Lq1 (Ω) ≤ C||r ||W 1,s2 (Ω)||y ||W 1,s2 (Ω)

with q1 := (1
2
− 1

p1

)−1 ≤ (1
2
− (1

2
− 1

s2

))−1 = s2 by the choice of p1. Consequently, it holds
that

||A′(y) ||L(W 1,s2(Ω);H1(Ω)) = sup
{
||A′(y; r) ||H1(Ω) : r ∈ M

}
≤ C(1 + ||y ||W 1,s2 (Ω)).

Finally, we have r ≤ s1 by assumption, which implies that the operator B : Ls1(T ; W 1,s2(Ω)) →
Lr(T ;L(W 1,s2(Ω); H1(Ω))) is continuous. This finishes the proof. ¤
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