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Abstract

This work concerns the approximation of the shape operator of smooth surfaces
in R3 from polyhedral surfaces. We introduce two generalized shape operators
that are vector-valued linear functionals on a Sobolev space of vector fields and
can be rigorously defined on smooth and on polyhedral surfaces. We consider
polyhedral surfaces that approximate smooth surfaces and prove two types of
approximation estimates: one concerning the approximation of the generalized
shape operators in the operator norm and one concerning the pointwise ap-
proximation of the (classic) shape operator. We show experimental results that
confirm our estimates.

1. Introduction

The approximation of curvatures of smooth surfaces from discrete surfaces
plays an important role in various applications in geometry processing and re-
lated areas like physical simulation or computer graphics. Discrete curvatures
on polyhedral surfaces have proved to work well in practice and convergence
results in the sense of measures have been established, but estimates for point-
wise approximation are still missing. Instead, pointwise estimates could only be
established for special cases and negative answers and counterexamples to point-
wise convergence for certain discrete curvatures have been reported, see Meek
and Walton (2000); Borrelli et al. (2003); Xu (2004); Hildebrandt et al. (2006).

In this work, we introduce a generalization of the shape operator of smooth
surfaces in R3 that can be defined for smooth and for polyhedral surfaces. The
point of departure are two tensor fields on a smooth surface M :

S̄ : X → S(X>)−HN 〈X,N〉 and Ŝ : X → S(N ×X),

where S, H, and N denote the shape operator, the mean curvature, and the
surface normal field of M and X is a vector field on M with tangential part
X>. Both tensors have two properties: first, they have a simple weak form,∫
M

S̄(X) dvol =
∫
M

N divX dvol and
∫
M

Ŝ X dvol = −
∫
M

N curlX dvol,

and second, if at a point x ∈M the surface normal N(x) and either S̄(x) or Ŝ(x)
is known, then we can construct the shape operator S(x) by simple algebraic
operations.
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The first property allows us to generalize the tensors to polyhedral surfaces.
We introduce the generalized shape operators

Σ̄ : X →
∫
M

N divX dvol and Σ̂ : X → −
∫
M

N curlX dvol

that are vector-valued linear functionals on a Sobolev H1,1-space of weakly
differentiable vector fields and can be rigorously defined for smooth as well as
for polyhedral surfaces.

To establish approximation estimates, we consider a smooth surface M and
a polyhedral surface Mh nearby and use the orthogonal projection onto M to
construct a bi-Lipschitz mapping between Mh and M . This map allows to
pull-back objects from Mh to M , thus enables us to compare the objects. Our
first approximation result shows that in the operator norm the approximation
error of the generalized shape operators can be bounded by a constant times
the spatial distance of M and Mh and the supremum of the difference of the
surface normal fields.

To get pointwise approximation estimates, we introduce the concept of r-
local functions: for decreasing r the support of such a function gets more and
more localized around a point of the surface while the L1-norm equals one
and the H1,1-norm grows proportional to 1

r . Based on r-local functions, we
construct test vector fields for the generalized shape operators and use them
to deduce estimates for the pointwise approximation of the tensors S̄ and Ŝ
from the estimates in the operator norm. By combining these estimates with
approximation estimates for the surface normal, we obtain our main result:
estimates for the pointwise approximation of the shape operator of a smooth
surface from approximating polyhedral surfaces. The estimates are estabished
in a general setting, e. g., the vertices are not restricted to lie on the smooth
surface, and explicitly stated in terms of the spatial surface distance and the
supremum of the difference of the surface normal fields. Our approximation
results are confirmed by a number of numerical experiments.

1.1. Related Work
The approximation of curvatures of smooth surfaces from discrete data is

an active and exciting topic of research with a long history. Here, we can only
briefly outline some the work that has been most relevant for this paper. The
curvature of a twice continuously differentiable surface in R3 is encoded in the
shape operator. Together with the metric the shape operator already describes
a smooth surface up to rigid motions. The metric on a polyhedral surface in-
duced by ambient R3 is flat almost everywhere and has conical singularities at
the vertices. The classical example of Schwarz’s lantern shows that if a poly-
hedral surface Mh is close to a smooth surface M in the Hausdorff distance,
this does not imply that the area of Mh approximates the area of M . Mor-
van and Thibert (2004) prove that for polyhedral surfaces that are inscribed
to a smooth surface, the difference of the surface areas can be bounded by a
constant times the maximum of the circumradii of the triangles of the polyhe-
dral surface. Hildebrandt et al. (2006) show that if a sequence of polyhedral
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surfaces converges to a smooth surface in the Hausdorff distance, then the con-
vergence of the normal vectors is equivalent to the convergence of the metrics of
the surfaces. They extend this equivalence to the convergence of the Laplace-
Beltrami operator in the corresponding operator norm. As a consequence, the
mean curvature vector converges in a weak (or integrated) sense. Approxima-
tion estimates for the Laplace-Beltrami operator for inscribed meshes were also
obtained in a pioneering work by Dziuk (1988).

Since the normal field of a polyhedral surface in R3 is not differentiable, the
classic notion of curvature cannot be applied to polyhedral surfaces. Cohen-
Steiner and Morvan (2003) use the theory of normal cycles to define generalized
curvatures for a broader class of surfaces that includes smooth and polyhedral
surfaces. They prove that the generalized curvatures of a polyhedral surface
that is inscribed to a smooth surface approximate the generalized curvatures of
the smooth surface in the sense of measures. Pottmann et al. (2009) introduce
integral invariants defined via distance functions as a robust way to approximate
curvatures and present a stability analysis of integral invariants. In addition,
they propose schemes for the efficient computation of the integral invariants.
Both, the generalized curvatures and integral invariants have been used for many
applications in geometry processing, including: remeshing (Alliez et al. (2003);
Kälberer et al. (2007); Bommes et al. (2009)), surface smoothing (Hildebrandt
and Polthier (2004); Bian and Tong (2011)), registration (Gelfand et al. (2005)),
surface matching (Huang et al. (2006)), and feature detection (Hildebrandt et al.
(2005)).

Surface approximation with multivariate polynomials of order two or higher
is an alternative approach for curvature estimation, see e. g. Meek and Walton
(2000); Goldfeather and Interrante (2004); Cazals and Pouget (2005). Fitting
polynomials to sample points of a smooth surface yields an approximation of
the curvature at a point of the smooth surface, and the approximation order
depends on the degree of the polynomial. However, multivariate polynomial
fitting has two problems: one is that in addition to the polynomial degree used,
the approximation error depends (in a complex manner) on the location of the
samples; in an extreme case the polynomial to be fitted may not be unique, see
Xu et al. (2005) for an example. Common practice to get an upper bound for
this error is to restrict to certain types of sample point locations. The other
problem is that since polynomial fitting relies on a high approximation order,
the methods are sensitive against noise in the sampling data.

1.2. Contributions
The main contributions of the present work are: (i) we introduce generalized

shape operators that are rigorously defined for smooth and for polyhedral sur-
faces, (ii) we establish error estimates for the approximation of the generalized
shape operators of smooth surfaces from polyhedral surfaces in the operator
norm, and (iii) we prove pointwise approximation estimates for the approxima-
tion of the (classic) shape operator (including Gaussian and mean curvature
and the principal curvatures and directions) of smooth surfaces from polyhedral
surfaces. The estimates are derived in a general setting and they are explicitly
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stated in terms of the spatial distance of M and Mh and the supremum of the
difference of the surface normal fields.

The approximation results for the generalized curvatures, see Cohen-Steiner
and Morvan (2003), can be compared to our approximation estimates for the
generalized shape operators in the operator norm, where our setting is more
general since we do not require inscribed polyhedral surfaces. Furthermore,
we present pointwise approximation estimates which are still missing for the
generalized curvatures.

Since we focus on polyhedral surfaces, our approach differs from multivari-
ate polynomial fitting techniques, which use at least polynomials of degree
two. In particular, our setting is based on a lower order of approximation
then polynomial fitting approaches, but we still get pointwise approximation
estimates. For example, if we consider polyhedral surfaces with mesh size h,
then our estimates require that the normals of the polyhedral surface approxi-
mate the normals of the smooth surface with order O(h) (hence vertex positions
with O(h2)), whereas polynomial fitting schemes require surface normals that
converge with O(h2) (hence vertex positions with O(h3)). This indicates that
our discrete curvatures are more robust against noise in the vertex positions.
Furthermore, our setting is more general since it does not restrict sample lo-
cations and does not require the points to lie on the surface. In addition, our
approach can be combined with polynomial fitting techniques. For example, if
an O(h2) approximation of the surface normal field is known, this field could
be used for the generalized shape operators instead of the piecewise constant
normal field of the polyhedral surface and we would get the same approximation
order as polynomial fitting schemes.

2. Analytic Preliminaries and Notation

In this work, M denotes a smooth and Mh a polyhedral surface in R3. Both
surfaces are assumed to be compact, connected, and oriented. For statements
that refer to both types of surfaces we denote the surface by M.
Polyhedral surfaces. By a polyhedral surface in R3 we mean a finite set of
planar triangles in R3 that are glued together in pairs along the edges such
that the resulting shape is a two-dimensional manifold. The standard scalar
product of R3 induces a metric gMh

on a polyhedral surface Mh that is flat in
the interior of all triangles and edges and has conical singularities at the vertices.
More explicitly, every point of Mh has a neighborhood that is isometric to a
neighborhood of the center point of a Euclidean cone with angle θ, which is the
set

Cθ = {(r, φ) | r ≥ 0, φ ∈ R/θZ}/(0,φ)∼(0,φ̃)

equipped with the cone metric ds2 =dr2 + r2dφ2. For every vertex v of Mh the
angle θ of the cone equals the sum of the angles at v of the triangles incident
to v and for all other points the angle θ of the cone equals 2π. We define the
distance between two points x and y in Mh as

dMh
(x, y) = inf

γ
length(γ),
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where the infimum is taken over all rectifiable curves in R3 that connect x
and y and whose trace is contained in Mh. With this distance Mh is a path
metric space, and since Mh is compact, the Hopf-Rinow theorem for path metric
spaces, see Gromov (1999), ensures that for any pair of points in Mh there exists
a minimizing geodesic. We denote by Br(x) the open geodesic ball of radius r
around the point x.
Function spaces. We denote by Lp(M) and H1,p(M) the Lebesgue and
Sobolev spaces on a smooth or polyhedral surfaceM. For a definition and prop-
erties of Sobolev spaces on polyhedral surfaces we refer to Wardetzky (2006). By
a vector field onM, we mean a mapping from the surface to R3. We call a vector
field C∞, Lp, or H1,p-regular if the three coordinate functions are C∞, Lp, or
H1,p-regular, and we denote the spaces of such vector fields by X (M), XLp(M)
and XH1,p(M). The norms on the spaces XLp(M) and XH1,p(M) for 1 ≤ p <∞
are:

‖X‖pLp =
3∑
i=1

‖Xi‖pLp and ‖X‖pH1,p =
3∑
i=1

‖Xi‖pH1,p ,

where Xi are the coordinates of X with respect to the standard basis {e1, e2, e3}
of R3. On a smooth surface, we denote by TxM the tangent space and by T⊥x M
the normal space at a point x ∈M . T⊥x M is the one-dimensional subspace of R3

spanned by the surface normal N(x) and TxM is the subspace of R3 consisting of
all vectors that are orthogonal toN(x) in R3. We denote by X>(M) and X⊥(M)
the subspaces of X (M) consisting of tangential and normal vector fields, and for
a vector field X ∈ X (M), we denote by X>and X⊥ its tangential and normal
part. For a vector field X ∈ XL1(M) on a smooth or polyhedral surfaceM, we
define the vector-valued integral of X as∫

M
X dvol =

∑3

i=1
ei

∫
M
Xi dvol.

Shape operator of smooth surfaces in R3. Let D denote the flat connection
of R3. Since the surface normal field N of a smooth surface M has constant
length and points in normal direction, for every X ∈ X>(M), the derivative
DXN is a again a tangential vector field. The shape operator S is the tensor
field that for any x ∈M is given by

S(x) : TxM → TxM (1)
v → −DvN.

A basic property of the shape operator is that for every x ∈ M , S(x) is self-
adjoint with respect to the scalar product on TxM inherited from R3. The eigen-
values and eigendirections of S(x) are the principal curvatures κi(x) and the
principal curvature directions of M at x, and we call κmax(x) = max{|κ1| , |κ2|}
the maximum curvature. Furthermore, the trace and the determinant of S(x)
are called the mean curvature and the Gaussian curvature of M at x and are
denoted by H(x) and K(x). For our purposes, it is convenient to extend the
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shape operator to a tensor field on M × R3 by setting

S(x)v = S(x)v>

for any x ∈ M and v ∈ R3. We denote both tensor fields by S and rely on the
context to make the distinction. The coordinates of S(x) with respect to the
standard basis {e1, e2, e3} of R3 are given by

(S(x))ij = 〈ei, S(x)ej〉R3 .

Divergence and curl of vector fields. For a weakly differentiable vector
field X on a smooth or polyhedral surfaceM, we define the divergence of X as

divX =
∑3

i=1
〈gradXi, ei〉R3 a. e. (2)

and the curl of X as

curlX =
∑3

i=1
〈gradXi × ei, N〉R3 a. e., (3)

whereN is the normal field of the smooth or polyhedral surface and× is the cross
product of R3. For tangential vector fields on smooth surfaces, this definition
of divergence agrees with the usual divergence of 2-dimensional Riemannian
manifolds, and the contribution of the normal component of a vector field X to
the divergence has a simple geometric interpretation:

divX = divX> −H 〈X,N〉R3 . (4)

Furthermore, on a smooth surface the curl and the divergence of X are related
by the following equation:

curlX = div (X ×N), (5)

which implies that the curl of a normal vector field vanishes,

curlX = curlX>. (6)

3. Generalized Shape Operators

In this section, we define two generalized shape operators for smooth and
polyhedral surfaces, and we show the relation of the these operators to the shape
operator of a smooth surface.

Definition 1. We define the generalized shape operators Σ̄ and Σ̂ on a smooth
or a polyhedral surface M to be the linear operators

Σ̄ : XH1,1(M)→ R3 X →
∫
M
N divX dvol

and
Σ̂ : XH1,1(M)→ R3 X → −

∫
M
N curlX dvol.
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Figure 1: Mean curvature (middle) and Gaussian curvature (right) computed using the gen-

eralized shape operator Σ̂ and an r-local function on a 3d-scanned model. Color coding from
white (negative) to red (positive).

The next lemma shows that Σ̄ and Σ̂ are elements of the normed space
L(XH1,1(M),R3) of continuous linear maps from XH1,1(M) to R3.

Lemma 2. The operators Σ̄ and Σ̂ are continuous.

Proof. Consider a vector field X ∈ XH1,1 . Using Hölder’s inequality we have∥∥Σ̄(X)
∥∥

R3 =
∥∥∥∥∫
M
N divX dvol

∥∥∥∥
R3

≤ ‖N‖L∞ ‖divX‖L1 ≤ ‖X‖H1,1

and ∥∥∥Σ̂(X)
∥∥∥

R3
=
∥∥∥∥∫
M
N curlX dvol

∥∥∥∥
R3

≤ ‖N‖L∞ ‖curlX‖L1 ≤ ‖X‖H1,1

which proves the lemma.
On a smooth surface, we consider two (1, 1)-tensor fields on M × R3:

S̄ : X → S(X>)−HN 〈X,N〉 (7)

and
Ŝ : X → S(N ×X). (8)

The tensors have the property that if at a point x ∈M the surface normal N(x)
and either S̄(x) or Ŝ(x) is known, one can construct the shape operator S(x)
by simple algebraic operations. The tensor S̄ agrees with the shape operator S
for tangential vector fields, and it multiplies the normal part of a vector field
by the negative of the mean curvature. Applying the tensor field Ŝ to a vector
field equals first removing the normal part, then rotating the remaining tangen-
tial vectors by π

2 in the corresponding tangent planes, and applying the shape
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operator S to the result. At a point x ∈ M , let b1 and b2 be unit vectors that
point into principal curvature directions in TxM . Then, in the basis {b1, b2, N}
of R3 the matrix representations of S̄(x) and Ŝ(x) areκ1(x) 0 0

0 κ2(x) 0
0 0 −H(x)

 and

 0 −κ2(x) 0
κ1(x) 0 0

0 0 0

 .

The following lemma reveals the connection of the tensors S̄, Ŝ and the operators
Σ̄, Σ̂ and provides a justification of our definition of Σ̄ and Σ̂.

Lemma 3. The tensor field S̄ is the only (1, 1)-tensor field on M × R3 that
satisfies ∫

M

S̄ X dvol = Σ̄(X) (9)

for all X ∈ X (M) and Ŝ is the only (1, 1)-tensor field on M ×R3 that satisfies∫
M

Ŝ X dvol = Σ̂(X) (10)

for all X ∈ X (M).

Proof. To show that the tensor field S̄ fulfills equation (9), we apply the
divergence theorem and use equation (4)∫

M

S X> dvol = −
∫
M

DX>N dvol =
∫
M

N divX> dvol

=
∫
M

N divX dvol +
∫
M

〈HN,X〉R3 N dvol.

and show that the tensor field Ŝ fulfills equation (10), we apply the divergence
theorem and use equation (5)∫

M

Ŝ X dvol =
∫
M

S (N ×X) dvol =
∫
M

N div(N ×X) dvol

= −
∫
M

N curlX dvol.

To proof uniqueness of the solution, we assume that the tensor fields S̄ and T
are solutions of (9) for all X ∈ X (M). It follows that∫

M

(S̄ − T )X dvol = 0

holds for all X ∈ X (M), which, by the fundamental lemma of calculus of varia-
tions, implies that S̄ equals T . An analog argumentation shows the uniqueness
of Ŝ.
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Figure 2: An illustration of the map between the smooth and the polyhedral surface is shown.

4. Approximation of Smooth Surfaces by Polyhedral Surfaces

In this section, we introduce the orthogonal projection onto a smooth surface
M in R3 as a tool to construct a map between M and a polyhedral surface Mh

nearby. We shall use this mapping to compare properties of the two surfaces
and objects on them. The usage of this map is common practice, and similar
results to those derived in this section can be found for example in Dziuk (1988),
Morvan and Thibert (2004), and Hildebrandt et al. (2006).
Projection map. Let M be a compact smooth surface in R3. The distance
function δM : R3 → R+

0 is defined as

δM (x) = inf
y∈M
‖x− y‖R3 . (11)

Since M is compact, for every x ∈ R3 there is at least one point y ∈ M that
attains the minimum distance to x, i. e. δM (x) = ‖x− y‖R3 . Then, the straight
line passing through x and y meets M orthogonally; therefore, y is called an
orthogonal projection of x onto M . In general, y is not unique with this property;
however, there exists an open neighborhood UM of M in R3, such that every
point of UM has a unique orthogonal projection onto M . The induced projection
map πM : UM → M is smooth, a proof of this is contained in a note by Foote
(1984).
Reach of a surface. The reach of M is the supremum of all positive num-
bers r such that the orthogonal projection onto M is unique in the open r-tube
around M , where an open r-tube around M is the set of all points x in R3 that
fulfill δM (x) < r. Locally around a point y ∈M , the reach equals the reciprocal
of κmax(y). As a consequence, the reach of M is bounded above by

reach(M) ≤ inf
y∈M

1
κmax(y)

. (12)

The inequality is strict, e. g. equality holds if M is a sphere in R3, but in general
the reach additionally depends on global properties of the surface. Still, every
embedded smooth surface has positive reach. For a general treatment of sets
with positive reach we refer to the book of Federer (1969).
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Differential of the projection map. Let us compute the differential of the
projection map πM . We consider an open neighborhood UM of M that is a
subset of the reach(M)-tube around M . First, we look at the signed distance
function σM : UM → R that is given by

σM (x) = 〈x− πM (x), N(πM (x))〉R3 . (13)

Differentiating this equation at a point x into a direction v ∈ R3 yields

dxσM (v) = 〈N(πM (x)), v〉R3 , (14)

where we apply the fact that the images of dN and dπM are orthogonal to N
and x − πM (x) is parallel to N . Using the signed distance function, we can
represent the projection πM by

πM (x) = x− σM (x) N(πM (x)). (15)

Differentiation of this equation yields

dπM = Id− dσM N ◦ πM − σM DN ◦ dπM .

Using the definition of the shape operator (1) and equation (14), we get

(Id− σM S)dπM = Id− 〈N ◦ πM , ·〉R3 N ◦ πM .

The right-hand side of this equations describes the orthogonal projection in R3

onto the tangent plane of M ; we denote this map by P̄ . As a consequence
of equation (12), the linear map Id − σM (x)Sπ(x) is bijective on Tπ(x)M for
all x ∈ UM , thus, the inverse (Id− σM (x)Sπ(x))−1 exists and we have

dπM = (Id− σM S)−1P̄ . (16)

Furthermore, we can represent (Id− σM S)−1 as

(Id− σM S)−1 = Id+R, (17)

where the map R assigns to every point x ∈ UM a linear map on Tπ(x)M that
has the form

R(x) = σM (x)S(π(x)) (Id− σM (x)S(π(x)))−1. (18)

Normal graphs. Now, we consider a polyhedral surface Mh that approximates
a smooth surface M and use the orthogonal projection onto M to construct a
map between the surfaces.

Definition 4. A polyhedral surface Mh is a normal graph over a smooth sur-
face M if Mh is a subset of the open reach(M)-tube around M and the restric-
tion of the projection map πM to Mh is a bijection. We denote the restricted
projection map by Ψ.
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The following lemma list some properties of Ψ.

Lemma 5. The map Ψ is a homeomorphism of Mh and M , and for every
triangle T ∈ Mh the restriction of Ψ to the interior of T is a diffeomorphism
onto its image.

Proof. We first show that Ψ is a homeomorphism. Ψ is continuous, because it is
the restriction to Mh of the smooth map πM , and Ψ is bijective by assumption.
It remains to show that Ψ is a closed map. Since Mh is compact, a closed
subset A of Mh is compact; and since Ψ is continuous, Ψ(A) is compact in M
and hence Ψ(A) is closed.

To prove the second part of the lemma, consider a triangle T of Mh and a
point x in the interior of T . The differential of Ψ at x equals the restriction of
dxπM to the tangent plane of T , from equation (16) we get

dxΨ = (Id− σM (x) S(y))−1Px, (19)

where Px is the restriction of P̄ to the tangent plane of T and y = Ψ(x). The
map Px has full rank because by construction the tangent planes of T at x and
of M at Ψ(x) do not meet orthogonally and Id−σM S has full rank by equation
(12). This means that dxΨ has full rank and consequently the restriction of Ψ
to the interior of T is a diffeomorphism onto its image.

Let Φ denote the inverse map of Ψ, then Φ parametrizes Mh over M . We
can use Φ to pull-back the cone metric of Mh to M . More precisely, we define
a metric gh in the pre-image of the union of the interior of all triangles of Mh,
hence almost everywhere on M , by

gh(X,Y ) = 〈dΦ(X),dΦ(Y )〉R3 a. e., (20)

where X and Y are tangential vector fields on M .
Let y ∈ M be a point such that x = Φ(y) is in the interior of a triangle

of Mh. Then, the tangent plane TxMh of Mh at x is well-defined and agrees
with the plane of the triangle of Mh that contains x. The differential of Φ at y
is a linear map dyΦ : TyM → TxMh, and dxΨ is its inverse. The adjoint of dyΦ
is the linear map dyΦ× : TxMh → TyM that fulfills

〈dyΦ(v), w〉 =
〈
v,dyΦ×(w)

〉
for all v ∈ TyM and w ∈ TxMh , and dxΨ×, the adjoint of dxΨ, is the inverse
of dyΦ×. All four linear maps are defined for almost all y ∈M (resp. x ∈Mh).
From equation (19) we get

dxΨ× = P×x (Id− σM (x)S(y))−1 a. e., (21)

where P×x , the adjoint of Px, projects every vector v ∈ TyM orthogonally in R3

onto the tangent plane TxMh.
Let A denote the composition dΦ◦dΦ×. Then, A satisfies

gh(X,Y ) = g (AX,Y ) a. e., (22)
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which follows from eq. (20). We call A the metric distortion tensor. This
tensor has been studied by Hildebrandt et al. (2006) and we refer to this work
for additional properties of A. The volume form dvolh induced by the metric gh
satisfies

dvolh = αh dvol a. e., (23)

where αh =
√

det(A). Explicitly, αh is given by

αh(y) =
1− σM (x) 1

2H(y) + σ2
M (x)K(y)

〈N(y), NMh
(x)〉

a. e., (24)

which follows from the representation of dΨ and dΨ× given in equations (19)
and (21).

The metric gh induces altered Lp- and H1,p-norms on the spaces Lp(M) and
H1,p(M), for 1 ≤ p < ∞. We first introduce the norms ‖ ‖pLph and ‖ ‖p

H1,p
h

and

show that they are equivalent to ‖ ‖pLp and ‖ ‖pH1,p . The norm ‖ ‖pLph is defined
for functions u ∈ Lp(M) as

‖u‖pLph = ‖u ◦Ψ‖pLp(Mh) =
∫
M

|u|p αh dvol. (25)

To define the Sobolev norm ‖ ‖p
H1,p
h

, we consider the gradient of a function. The
gradients of M and of Mh are related through the adjoint of dΨ

gradMh
u ◦Ψ = dΨ×(gradu) a. e.,

and the length of the gradient is given by∥∥gradMh
u ◦Ψ

∥∥2

R3 =
∥∥dΨ×(gradu)

∥∥2

R3 =
〈
A−1 gradu, gradu

〉
R3 .

We define the norm ‖ ‖p
H1,p
h

for functions u ∈ H1,p(M) as

‖u‖p
H1,p
h

= ‖u ◦Ψ‖pH1,p(Mh) (26)

= ‖u‖pLph +
∫
M

〈
A−1 gradu, gradu

〉 p
2

R3 αh dvol.

Lemma 6. For every u ∈ Lp(M), we have

cL ‖u‖pLp ≤ ‖u‖
p
Lph
≤ CL ‖u‖pLp , (27)

where cL =
∥∥α−1

h

∥∥−1

L∞
and CL = ‖αh‖L∞ , and for every u ∈ H1,p(M), we have

cH ‖u‖pH1,p ≤ ‖u‖pH1,p
h

≤ CH ‖u‖pH1,p , (28)

where cH = cL +
∥∥α−1

h A
∥∥−1

∞ and CH = CL +
∥∥αhA−1

∥∥
∞.

Proof. The estimates follow from applying Hölder’s inequality to the integrals
in (25) and (26).

Finally, one can prove that the pull-back of functions is an isomorphism of
the Lp and H1,p-spaces of M and a normal graph Mh over M , see Wardetzky
(2006).
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5. Approximation of the Generalized Shape Operators

In this section, we derive error estimates for the approximation of the gener-
alized shape operators of a smooth surface M by the generalized shape opera-
tors of a polyhedral surface Mh that is a normal graph over M . We begin with
defining the distance between M and Mh and between the generalized shape
operators.

Since Mh is a normal graph over M , the height of Mh over M , given by
supx∈Mh

δM (x), is a canonical measure for the spatial distance of M and Mh.
This is confirmed by the following lemma that states that the height agrees with
the Hausdorff distance and the Fréchet distance of M and Mh.

Lemma 7. Let Mh be a normal graph over a smooth surface M and let δH(M,Mh)
and δF (M,Mh) denote the Hausdorff distance and the Fréchet distance of M
and Mh. Then, we have

δH(M,Mh) = δF (M,Mh) = sup
x∈Mh

δM (x).

Proof. Since Ψ is a homeomorphism of Mh and M , we have

δF (M,Mh) ≤ sup
x∈Mh

δM (x).

By definition, the Hausdorff distance ofM andMh is the maximum of supx∈Mh
δM (x)

and supx∈M infy∈Mh
‖x− y‖R3 . Hence, we have

sup
x∈Mh

δM (x) ≤ δH(M,Mh).

Furthermore, the Hausdorff distance of two surfaces is smaller than their Fréchet
distance,

δH(M,Mh) ≤ δF (M,Mh).

The combination of the three inequalities proves the lemma.
For our purposes, we prefer to use, instead of the height, the relative height

of Mh over M :
δ(M,Mh) = sup

x∈Mh

δM (x)κmax(Ψ(x)), (29)

which measures the spatial distance relative to the curvature of M . The re-
sulting statements do not lose generality, since for any smooth surface M , the
relative height of every normal graph Mh over M is bounded by a constant
times its height,

δ(M,Mh) ≤ ‖κmax‖L∞ sup
x∈Mh

δM (x),

where ‖κmax‖L∞ < ∞ since M is compact. The converse inequality does
not hold in general, e. g., the relative height of a two parallel planes van-
ishes whereas the height can be arbitrary large. The relative height has some
more properties: since Mh is in the open reach(M)-tube round M , we have

13



δM (x) < (κmax(Ψ(x)))−1 for all x ∈ Mh, which implies δ(M,Mh) ∈ [0, 1).
Furthermore, δ(M,Mh) is invariant under scaling of M and Mh.

In addition to the spatial distance, we measure the distance of the normals
of Mh and M . For this, we consider the value

‖N −Nh‖L∞ ,

where Nh = NMh
◦ Φ is the pull-back to M of the piecewise constant normal

NMh
of the polyhedral surface Mh.

To compare the generalized shape operators of Mh and M , we pull-back the
operators from Mh to M , more explicitly, we consider the operators Σ̄h and Σ̂h
given by

Σ̄h : XH1,1(M)→ R3

Σ̄h(X) = Σ̄Mh
(X ◦Ψ).

and

Σ̂h : XH1,1(M)→ R3

Σ̂h(X) = Σ̂Mh
(X ◦Ψ).

By construction, both operators, Σ̄h and Σ̂h, are continuous operators and there-
fore elements of L(XH1,1(M),R3). Then, we use the operator norm ‖ ‖Op of
L(XH1,1(M),R3) to measure the distance between Σ̄h and Σ̄ and between Σ̂h
and Σ̄.

Theorem 8. Let M be a smooth surface in R3. Then, for every ε ∈ (0, 1) there
exists a constant C such that for every polyhedral surface Mh that is a normal
graph over M and satisfies δ(M,Mh) < ε and ‖N −Nh‖L∞ < ε the estimates∥∥Σ̄− Σ̄h

∥∥
Op
≤ C (δ(M,Mh) + ‖N −Nh‖L∞) (30)

and ∥∥∥Σ̂− Σ̂h
∥∥∥
Op
≤ C (δ(M,Mh) + ‖N −Nh‖L∞) (31)

hold. The constant C depends only on ε and converges to 2 for ε→ 0.

Before we prove the theorem, we establish the following estimates for the
divergence and the curl. For this we consider the pull-back of the divergence
and the curl of Mh to M , given by

divh : XH1,1(M)→ L1(M)
divh(X) = divMh

(X ◦Ψ)

and

curlh : XH1,1(M)→ L1(M)
curlh(X) = curlMh

(X ◦Ψ).

14



Lemma 9. Let M be a smooth surface in R3 and ε ∈ (0, 1). Then, for every
polyhedral surface Mh that is a normal graph over M and satisfies δ(M,Mh) < ε
and ‖N −Nh‖L∞ < ε the estimates

‖div− divh‖Op ≤
(
‖Nh −N‖L∞ +

1
1− ε

δ(M,Mh)
)

and

‖curl− curlh‖Op ≤
(
‖Nh −N‖L∞ +

1
1− ε

δ(M,Mh)
)

hold, where ‖ ‖Op is the operator norm on L(XH1,1(M), L1(M)).

Proof. Let X ∈ XH1,1(M) be a vector field with ‖X‖H1,1 = 1, and let Xi be the
coordinates ofX with respect to the standard basis {e1, e2, e3} of R3. Employing
formula (2) and using the representation of dΨ×, described in equations (17)
and (21), we get

divhX =
∑3

i=1

〈
gradMh

Xi ◦Ψ, ei
〉

R3

=
∑3

i=1

〈
dΨ× gradXi, ei

〉
R3

=
∑3

i=1

〈
P×(Id+R) gradXi, ei

〉
R3

= divX −
∑3

i=1
〈 gradXi, Nh〉 〈Nh, ei〉R3 +

∑3

i=1

〈
P×R gradXi, ei

〉
R3 .

This yields an upper bound on the L1-norm of the difference of the divergence
operators

‖divX − divhX‖L1 ≤
∥∥∥∥∑3

i=1
〈 gradXi, Nh〉 〈Nh, ei〉R3

∥∥∥∥
L1

(32)

+
∥∥∥∥∑3

i=1

〈
P×R gradXi, ei

〉
R3

∥∥∥∥
L1

≤
∥∥N>h ∥∥L∞ + ‖R‖L∞ ≤ ‖Nh −N‖L∞ + ‖R‖L∞ ,

where we use∥∥N>h ∥∥2

R3 = ‖Nh − 〈Nh, N〉R3 N‖2R3 = 1 + 〈Nh, N〉2R3 − 2 〈Nh, N〉2R3

= 1− 〈Nh, N〉2R3 = (1 + 〈Nh, N〉R3) (1− 〈Nh, N〉R3)

≤ 2 (1− 〈Nh, N〉R3) = ‖Nh −N‖2R3 .

For any point y ∈M whose image Φ(y) is in the interior of a triangle of Mh, R(y)
is the symmetric linear map on TyM given by

R(y) = σM (Φ(y))S(y) (Id− σM (Φ(y))S(y))−1, (33)

see (18), and ‖R‖L∞ stands for the essential supremum of the function formed
by the pointwise maximum of the absolute values of the eigenvalues of R(y).
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For the curl we have

curlhX =
∑3

i=1

〈
dΨ× gradXi × ei, Nh

〉
R3

=
∑3

i=1

〈
P×(Id+R) gradXi × ei, Nh

〉
R3

=
∑3

i=1

〈(
gradXi − 〈 gradXi, Nh〉Nh + P×R gradXi

)
× ei, Nh

〉
R3

= curlX +
∑3

i=1
〈 gradXi × ei, Nh −N〉R3

+
∑3

i=1

〈
P×R gradXi × ei, Nh

〉
R3 ,

where we use
〈〈 gradXi, Nh〉Nh × ei, Nh〉R3 = 0

in the last step. Then, we get the same upper bound on the L1-norm of the
difference of the curl operators as the on the L1-norm of the difference of the
divergence operators:

‖curlX − curlhX‖L1 ≤
∥∥∥∥∑3

i=1
〈 gradXi × ei, Nh −N〉R3

∥∥∥∥
L1

(34)

+
∥∥∥∥∑3

i=1

〈
P×R gradXi × ei, Nh

〉
R3

∥∥∥∥
L1

≤ ‖Nh −N‖L∞ + ‖R‖L∞ .

It remains to establish a bound on ‖R‖L∞ . From (33) we get that R(y)
has the same eigenvectors as the shape operator S(y), and that the eigenvalues
λi(y) of R(y) are given by

λi(y) =
σM (Φ(y))κi(y)

1− σM (Φ(y))κi(y)
. (35)

By definition of δ(M,Mh), we have

σM (Φ(y))κi(y) ≤ δ(M,Mh)

for all y ∈M . Hence, we get

‖R‖L∞ ≤
1

1− ε
δ(M,Mh). (36)

Combining (36) with (32) and (34), we see that the estimates

‖div− divh‖Op ≤
(
‖Nh −N‖L∞ +

1
1− ε

δ(M,Mh)
)

and

‖curl− curlh‖Op ≤
(
‖Nh −N‖L∞ +

1
1− ε

δ(M,Mh)
)
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hold. This concludes the proof of the lemma.
Now, we prove the theorem.

Proof of Theorem 8. Let X ∈ XH1,1 be a vector field with ‖X‖H1,1 = 1.
Then, we have

∥∥Σ̄X − Σ̄hX
∥∥

R3 =
∥∥∥∥∫

M

(N divX −Nh divhX αh)dvol
∥∥∥∥

R3

(37)

≤ ‖(N − αhNh)divX ‖L1 + ‖αhNh(divX − divhX) ‖L1

≤ ‖N − αhNh‖L∞ ‖divX ‖L1 + ‖αh‖L∞ ‖div− divh‖Op
≤ ‖1− αh‖L∞ + ‖N −Nh‖L∞ + ‖αh‖L∞ ‖div− divh‖Op ,

and for the operator Σ̂ we get a similar upper bound∥∥∥Σ̂X − Σ̂hX
∥∥∥

R3
=
∥∥∥∥∫

M

(N curl X −Nh curlhX αh)dvol
∥∥∥∥

R3

(38)

≤ ‖(N − αhNh)curlX ‖L1 + ‖αhNh(curlX − curlhX) ‖L1

≤ ‖N − αhNh‖L∞ ‖curlX ‖L1 + ‖αh‖L∞ ‖curl− curlh‖Op
≤ ‖1− αh‖L∞ + ‖N −Nh‖L∞ + ‖αh‖L∞ ‖curl− curlh‖Op .

The ratio αh of dvol and dvolh is given by

αh(y) =
1− σM (Φ(y)) 1

2H(y) + σ2
M (Φ(y))K(y)

〈N(y), Nh(y)〉R3

, (39)

see eq. (24). Our assumptions directly imply

σM (Φ(y))
1
2
H(y) < δ(M,Mh), σ2

M (Φ(y))K(y) < ε δ(M,Mh)

and
〈Nh, N〉R3 = 1− 1

2
‖Nh −N‖2R3 .

This yields the upper bounds

‖1− αh‖L∞ <
2(1 + ε)δ(M,Mh) + ‖Nh −N‖2R3

2− ε2
(40)

and

‖αh‖L∞ < 1 +
2(1 + ε)δ(M,Mh) + ‖Nh −N‖2R3

2− ε2
. (41)

Combining (37), Lemma 9, (40), and (41), we get∥∥Σ̄− Σ̄h
∥∥
Op
≤ (‖1− αh‖L∞ + ‖N −Nh‖L∞) + ‖αh‖L∞ ‖div− divh‖Op
≤ C(δ(M,Mh) + ‖N −Nh‖L∞),
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where C is a constant that depends only on ε and satisfies C → 2 for ε → 0.
Similarly, using (38), Lemma 9, (40), and (41), we get∥∥∥Σ̂− Σ̂h

∥∥∥
Op
≤ (‖1− αh‖L∞ + ‖N −Nh‖L∞) + ‖αh‖L∞ ‖curl− curlh‖Op

≤ C(δ(M,Mh) + ‖N −Nh‖L∞).

This concludes the proof of the theorem.

6. Pointwise Approximation of the Shape Operator

In this section, we derive estimates for the pointwise approximation of the
shape operator of a smooth surface M in R3. They follow, as a corollary, from
an estimate on the pointwise approximation of the tensor field S̄. For sake
of brevity, we restrict our considerations to the tensor field S̄ and leave the
tensor field Ŝ aside. Still, an analog statement to Theorem 12 holds for the
approximation of the tensor field Ŝ as well.

Let us start with introducing some notation and constants. At any point
x ∈ M , S̄(x) and S(x) are (1, 1)-tensors on R3 and we measure the distance
between (1, 1)-tensors on R3 in the operator norm

‖T‖max = max
v∈R3,‖v‖R3=1

‖Tv‖R3

on the space of (1, 1)-tensors on R3. Here, we use the subscript max instead of op
to distinguish this norm from the operator norm on the space L(XH1,1(M),R3)
used in previous section. We consider two constants:

CS̄ = max
i,j∈{1,2,3}

∥∥(S̄)ij
∥∥
L∞
≤ 2 ‖κmax‖L∞ (42)

and
C∇S̄ = max

i,j∈{1,2,3}

∥∥grad (S̄)ij
∥∥
L∞

, (43)

where
(S̄)ij =

〈
ei, S̄ ej

〉
R3 = 〈ei, S ej〉R3 −H 〈N, ei〉R3 〈N, ej〉R3 . (44)

Both constants depend only on geometric properties of M , namely the curvature
and derivatives of the curvature of M .

The tool we use to obtain pointwise approximation estimates from the es-
timates in the operator norm are functions whose support gets more and more
localized while their L1-norm remains constant and the growth of the H1,1-norm
is bounded. We define:

Definition 10. Let M be a smooth or a polyhedral surface in R3, and let C∆

and CD be positive constants. For any x ∈ M and r ∈ R+, we call a function
ϕ :M→ R r-local at x (with respect to C∆ and CD) if the criteria
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(D1) ϕ ∈ H1,1(M),

(D2) ϕ(y) ≥ 0 for all y ∈M,

(D3) ϕ(y) = 0 for all y ∈M with dM(x, y) ≥ C∆ r,

(D4) ‖ϕ‖L1 = 1, and

(D5) |ϕ|H1,1(M) ≤
CD
r

are satisfied.

First, we consider only the smooth surface M . Let ϕ be an r-local function
around a point x ∈M , and let S̄ϕ denote the tensor on R3 that with respect to
the standard basis {e1, e2, e3} of R3 has the coordinates

(S̄ϕ)ij =
〈
ei, Σ̄(ϕej)

〉
R3 .

Then, S̄ϕ approximates S̄(x):

Lemma 11. Let M be a smooth surface in R3, and let ϕ be an r-local function
at x ∈M . Then, there is a constant C such that the estimate∥∥S̄(x)− S̄ϕ

∥∥
max
≤ C r

holds. Explicitly, C is given by C = C∇S̄ C∆, where C∆ is the constant for
which ϕ satisfies condition (D3) of Definition 10.

Proof. By the definition of Σ̄ on the smooth surface M , we have〈
ei, Σ̄(ϕej)

〉
R3 =

∫
M

ϕ (S̄)ij dvol. (45)

Using this identity, we get for any i, j ∈ {1, 2, 3}:

∣∣(S̄(x))ij − (S̄ϕ)ij
∣∣ =

∣∣∣∣(S̄(x))ij −
∫
M

ϕ (S̄)ij dvol
∣∣∣∣

=
∣∣∣∣∫
M

(
S̄(x)− S̄

)
ij
ϕdvol

∣∣∣∣ ≤ sup
y∈BC∆r(x)

∣∣(S̄(x)− S̄(y))ij
∣∣ ,

where we use properties (D2) and (D4) in the second step and Hölder’s inequal-
ity and (D4) in the last step. For any y in the open geodesic ball BC∆r(x) around
x, let γ be a (unit-speed parametrized) minimizing geodesic that connects x and
y. Then∣∣(S̄(y)− S̄(x))ij

∣∣ =
∣∣∣∣∫
γ

grad (S̄(γ(t)))ijdt
∣∣∣∣ ≤ C∇S̄ length(γ) ≤ C∇S̄ C∆ r.

This implies
sup

y∈BC∆ r(x)

∣∣(S̄(x))ij − (S̄(y))ij
∣∣ ≤ C∇S̄ C∆ r,
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which concludes the proof.
Now, we consider a polyhedral surface Mh. For a function ψ that is r-

local around a point y ∈ Mh we denote by S̄ψMh
the tensor on R3 that has the

coordinates
(S̄ψMh

)ij =
〈
ei, Σ̄Mh

(ψ ej)
〉

R3 . (46)

Then, if Mh is a normal graph over a smooth surface M , we get the following
approximation estimates.

Theorem 12. Let M be a smooth surface in R3, and let C∆,CD ∈ R+ and ε ∈
(0, 1) be arbitrary but fixed. For every pair consisting of a polyhedral surface Mh

that is a normal graph over M and satisfies δ(M,Mh) + ‖N −Nh‖L∞ < ε and
a function ψ that is r-local at a point y ∈Mh (with respect to CD and C∆), the
corresponding tensor S̄ψMh

satisfies the estimate∥∥∥S̄(x)− S̄ψMh

∥∥∥
max
≤ C(r + (δ(M,Mh) + ‖N −Nh‖L∞)(

1
r

+ 1)),

where x = Ψ(y) is the orthogonal projection of y onto M . The constant C
depends only on M , ε, CD, and C∆.

Proof. Let ϕ = ψ ◦ Φ be the pull-back to M of the function ψ. Then,(
S̄ψMh

)
ij

=
〈
ei, Σ̄h(ϕej)

〉
R3 , (47)

where Σ̄h is the pull-back to M of Σ̄Mh
. Using (45) and (47), we get∣∣∣(S̄(x)− S̄ψMh

)ij
∣∣∣ =

∣∣(S̄(x))ij −
〈
ei, Σ̄h(ϕej)

〉
R3

∣∣ (48)

≤
∣∣∣∣(S̄(x))ij −

∫
M

ϕ (S̄)ij dvol
∣∣∣∣+
∣∣〈ei, Σ̄(ϕej)

〉
R3 −

〈
ei, Σ̄h(ϕej)

〉
R3

∣∣ .
In the following, we derive bounds for both summands of the right-hand side
of (48). We start with the first summand. By assumption, the support of ψ is
contained in BC∆r(y), the open geodesic ball of radius C∆r around y. For any
point ỹ ∈ BC∆r(y), there is a minimizing geodesic γ̃ in Mh that connects y and
ỹ. Let x̃ = Ψ(ỹ) be the orthogonal projection of ỹ on M , then γ = Ψ ◦ γ̃ is a
curve in M that connects x and x̃. The length of γ is smaller than ‖A‖∞ C∆r,
where A is metric distortion tensor introduced in Section 4, and, therefore, the
support of the function ϕ satisfies

supp(ϕ) ⊂ B‖A‖∞C∆r(x). (49)

It follows from (19) and (21) that ‖A‖∞ can be bounded by a constant that
depends only ε:

‖A‖∞ ≤ CA. (50)
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The L1-norm of ϕ is not one, but there is a constant Cα depending only on ε
such that

|‖ϕ‖L1 − 1| =
∣∣∣‖ϕ‖L1 − ‖ϕ‖L1

h

∣∣∣ =
∣∣∣∣∫
M

ϕ− αh ϕdvol
∣∣∣∣ (51)

≤
∣∣∣∣∫
M

αh ϕ

(
1− 1

αh

)
dvol

∣∣∣∣ ≤ ∥∥∥∥1− 1
αh

∥∥∥∥
L∞

=
∥∥∥∥αh − 1

αh

∥∥∥∥
L∞

≤ Cαδ(M,Mh),

where we use (39) in the last step. Using (49), (50), and (51), we can derive a
bound for the first summand:∣∣∣∣(S̄(x))ij −

∫
M

ϕ (S̄)ij dvol
∣∣∣∣

=
∣∣∣∣ 1
‖ϕ‖L1

∫
M

ϕ
(
(S̄(x))ij − ‖ϕ‖L1 (S̄)ij

)
dvol

∣∣∣∣
≤ sup
y∈B‖A‖∞C∆r(x)

∣∣(S̄(x))ij − ‖ϕ‖L1 (S̄(y))ij
∣∣

≤ |1− ‖ϕ‖L1 | sup
y∈B‖A‖∞C∆r(x)

∣∣(S̄(y))ij
∣∣+ sup

y∈B‖A‖∞C∆r(x)

∣∣(S̄(x)− S̄(y))ij
∣∣

≤ CαC∇S̄ δ(M,Mh) + CAC∇S̄C∆ r.

To get a bound on the second summand of the last row of (48), we use Lemma 6
and the estimate ‖ϕ‖H1

h
≤ CD

r :∣∣〈ei, Σ̄(ϕej)
〉

R3 −
〈
ei, Σ̄h(ϕej)

〉
R3

∣∣ ≤ ‖ϕ‖H1

∥∥Σ̄− Σ̄h
∥∥
Op

≤ c−1
H ‖ϕ‖H1

h

∥∥Σ̄− Σ̄h
∥∥
Op
≤ c−1

H

CD
r

∥∥Σ̄− Σ̄h
∥∥
Op
.

Similar to the bound on ‖A‖∞, see (50), we can construct a bound on c−1
H that

depends only on ε. Furthermore, Theorem 8 provides the missing estimate for∥∥Σ̄− Σ̄h
∥∥
Op

, which concludes the proof of the theorem.

From the tensor S̄ψMh
, which approximates S̄(x), we can construct an ap-

proximation of S(x). The principle of the construction is to remove the normal
part of S̄ψMh

. In the case of a smooth surface, the definition of S̄(x) directly
implies

S(x) = (Id−N(x)N(x)T )S̄(x)(Id−N(x)N(x)T ). (52)

This motivates to define the tensor SψMh
as

SψMh
= (Id−NMh

(y)NMh
(y)T )S̄ψMh

(Id−NMh
(y)NMh

(y)T ). (53)

Since the piecewise constant normal of the polyhedral surface is discontinuous
at the edges and vertices, NMh

(y) is not well defined if y lies on an edge or
a vertex of Mh. To get a well defined tensor SψMh

, we specify what NMh
(y)
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means in this case: we set NMh
(y) to be normalized sum of the normals of

all triangles that are adjacent to the edge (respectively the vertex) on which
y lies. An alternative would be to assign a triangle to each vertex and each
edge and to use the normal of that triangle. For the our purposes here, all such
constructions yield the same asymptotic estimates. Now, we formulate our first
estimate for the pointwise approximation of the shape operator of M .

Corollary 13. Under the assumptions of Theorem 12, the tensor SψMh
satisfies

the estimate∥∥∥S(x)− SψMh

∥∥∥
max
≤ C(r + (δ(M,Mh) + ‖N −Nh‖L∞)(

1
r

+ 1)),

where C is a constant that depends only on M , ε, CD, and C∆.

Proof. For simplicity of notation, we leave out the point, x or y, where the
tensor and vector fields are evaluated, i.e., we write S instead of S(x) and N
and Nh instead of N(x) and Nh(x). Using the pull-back Nh to M of the normal
NMh

of Mh and equations (52) and (53), we get∥∥∥S(x)− SψMh
(y)
∥∥∥

max

=
∥∥∥(Id−NNT )S̄(Id−NNT )− (Id−NhNT

h )S̄ψMh
(Id−NhNT

h )
∥∥∥

max

=
∥∥(NhNT

h −NNT )S̄(Id−NNT ) + (Id−NhNT
h )S̄(NhNT

h −NNT )

+(Id−NhNT
h )(S̄ψMh

− S̄)(NhNT
h −NNT ) + (Id−NhNT

h )(S̄ − S̄ψMh
)(Id−NNT )

∥∥∥
max

≤ 2
∥∥NhNT

h −NNT
∥∥

max
CS̄ + (1 +

∥∥NhNT
h −NNT

∥∥
max

)
∥∥∥S̄(x)− S̄ψMh

∥∥∥
max

.

Combining this with Theorem 12 and the estimate∥∥NhNT
h −NNT

∥∥
max
≤
∥∥(Nh −N)NT

∥∥
max

+
∥∥Nh(NT

h −NT )
∥∥

max

≤ 2 ‖(Nh −N)‖L∞

proves the corollary.
The estimates in Theorem 12 and Corollary 13 depend on r and δ(M,Mh)+

‖N −Nh‖L∞ , and both quantities are independent. In the next lemma, we
consider only functions that are r-local with r =

√
δ(M,Mh) + ‖N −Nh‖L∞ .

Corollary 14. Under the assumptions of Theorem 12 and the additional as-
sumption that r =

√
δ(M,Mh) + ‖N −Nh‖L∞ , we get the estimate∥∥∥S(x)− SψMh

∥∥∥
max
≤ C

√
δ(M,Mh) + ‖N −Nh‖L∞ ,

where C is a constant that depends only on M , ε, CD, and C∆.
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Proof. The corollary immediately follows from Corollary 13 and the assumption
that r =

√
δ(M,Mh) + ‖N −Nh‖L∞ .

Let us consider a family {ψy}y∈Mh
of functions on Mh such that for every

point y ∈Mh the function ψy is r-local at y with respect to the same constants
CD and C∆. Then y → S

ψy
Mh

is a tensor field on Mh×R3 and we can show that
the pointwise approximation estimates hold uniformly on M .

Corollary 15. Let M be a smooth surface in R3, and let C∆,CD ∈ R+ and ε ∈
(0, 1) be arbitrary but fixed. For every pair consisting of a polyhedral surface Mh

that is a normal graph over M and satisfies δ(M,Mh) + ‖N −Nh‖L∞ < ε and
a family {ψy}y∈Mh

of functions on Mh such that for every point y ∈ Mh the
function ψy is r-local at y (with respect to CD and C∆), the corresponding tensor
field y → S

ψy
Mh

satisfies the estimate

sup
y∈Mh

∥∥∥S(x)− SψyMh

∥∥∥
max
≤ C(r + (δ(M,Mh) + ‖N −Nh‖L∞)(

1
r

+ 1)), (54)

where x = Ψ(y) is the orthogonal projection of y onto M and the constant C
depends only on M , ε, CD, and C∆.

Proof. From Corollary 13 we know that the estimate∥∥∥S(x)− SψyMh

∥∥∥
max
≤ C(r + (δ(M,Mh) + ‖N −Nh‖L∞)(

1
r

+ 1))

holds for all y ∈ Mh with the same constant C. Hence, the supremum over all
y ∈Mh satisfies the estimate as well.

We would like to remark that the estimates of Corollaries 13, 14, and 15 hold
as well for the approximation of the mean curvature, the Gaussian curvature,
and the principal curvatures and directions.

7. Inscribed Polyhedral Surfaces

In this section, we specialize the approximation estimates for the shape oper-
ator to polyhedral surfaces whose vertices lie on the smooth surface M , so-called
inscribed polyhedral surfaces.

Definition 16. We call a polyhedral surface Mh inscribed to a smooth surface
M if Mh is a normal graph over M and all vertices of Mh are on the surface M .

For inscribed polyhedral surfaces, the relative height, δ(M,Mh), and the
approximation of the normals, ‖N −Nh‖L∞ , can be bounded above in terms of
the mesh size h, the shape regularity ρ, and properties of M , compare Nédélec
(1976); Amenta et al. (2000); Morvan and Thibert (2004); Morvan (2008). We
summarize this in the following lemma.
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Lemma 17. Let M be a smooth surface in R3. Then, there exists an h0 ∈ R+

such that for every polyhedral surface Mh that is inscribed to M and satisfies h <
h0 the inequalities

δ(M,Mh) ≤ CH h2 (55)

and
‖N −Nh‖L∞ ≤ CN h (56)

hold, where CH and CN depend only on M and the shape regularity ρ of Mh.

By restricting our considerations to inscribed polyhedral surfaces and using
Lemma 17, we can obtain approximation estimates that depend on h instead of
δ(M,Mh) and ‖N −Nh‖L∞ .

Lemma 18. Let M be a smooth surface in R3. Then, there exists an h0 ∈ R+

such that for every polyhedral surface Mh that is inscribed to M and satisfies h <
h0 the inequalities∥∥Σ̄− Σ̄h

∥∥
Op
≤ C h and

∥∥∥Σ̂− Σ̂h
∥∥∥
Op
≤ C h

hold, where C depends only on M, h0 and the shape regularity of Mh.

Proof. To prove the lemma, we combine the estimates (30) and (31) of Theo-
rem 8 with (55) and (56) and choose h0 and C accordingly.

Furthermore, specializing Corollary 13 to inscribed meshes yields estimates
on the pointwise approximation that depend on the mesh size h.

Lemma 19. Let M be a smooth surface in R3, and let C∆ and CD ∈ R+ be
arbitrary but fixed. Then, there exists an h0 ∈ R+ such that for every pair
consisting of a polyhedral surface Mh that is inscribed to M and satisfies h < h0

and a function ψ that is r-local at a point y ∈Mh (with respect to CD and C∆)
with r =

√
h, the corresponding tensor SψMh

satisfies the estimate∥∥∥S(x)− SψMh

∥∥∥
max
≤ C

√
h (57)

where x = Ψ(y) is the orthogonal projection of y onto M and C is a constant
that depends only on M , h0, ρ, CD, and C∆.

Proof. The lemma immediately follows from combining Corollary 13 with
Lemma 17.

8. Experiments

In this Section, we show the results of three experiments concerning the error
and convergence rate of the approximation of the shape operator. In the first
example, we approximate the tensors S̄(x) and Ŝ(x) at a point x on the unit
sphere in R3 using inscribed polyhedral surfaces with decreasing mesh size h.
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Figure 3: Some of the surfaces used for the experiments are shown.

On each polyhedral surface Mh we consider two functions, ψ and ψ∗. Both
functions are continuous and linear on the triangles, hence, are determined by
their values at the vertices of Mh. At any vertex v of Mh, the functions take
the values

ψ(v) = max{1−
‖x− v‖R3√

h
, 0} (58)

and

ψ∗(v) = max{1−

∥∥∥x+
√
h

20 e− v
∥∥∥

R3√
h

, 0}, (59)

where h is the mesh size of Mh and e is a fixed unit vector in R3.
Using the two functions, we construct, as in (46), the tensors S̄ψMh

and ŜψMh

that, with respect to the standard basis {e1, e2, e3} of R3, have the coordinates

(S̄ψMh
)ij =

〈
ei, Σ̄Mh

(ψ ej)
〉

R3

‖ψ‖L1(Mh)

and (ŜψMh
)ij =

〈
ei, Σ̂Mh

(ψ ej)
〉

R3

‖ψ‖L1(Mh)

(60)

and the tensors S̄ψ
∗

Mh
and Ŝψ

∗

Mh
with coordinates

(S̄ψ
∗

Mh
)ij =

〈
ei, Σ̄Mh

(ψ∗ ej)
〉

R3

‖ψ∗‖L1(Mh)

and (Ŝψ
∗

Mh
)ij =

〈
ei, Σ̂Mh

(ψ∗ ej)
〉

R3

‖ψ∗‖L1(Mh)

. (61)

Table 1 lists the approximation errors of the four tensors (measured in the
norm ‖ ‖max) for inscribed polyhedral surfaces with decreasing mesh size h. In
addition, the table shows the experimental order of convergence. Let ehi and
ehi+1 be the approximation errors of some quantity for the decreasing mesh sizes
hi and hi+1. Then, the experimental order of convergence (eoc) of the quantity
is defined as

eoc(hi, hi+1) = log
ehi
ehi+1

(
log

hi
hi+1

)−1

.

All four approximations converge, but the order of convergence differs depending
on which function, ψ or ψ∗, we use. The experimental order of convergence of
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S̄ψ
∗

Mh
and Ŝψ

∗

Mh
is 1

2 , which confirms the sharpness of our estimates. Still, the
experiments indicate that with certain functions one may achieve even a higher
convergence rate.

h ‖S̄(x)− S̄ψMh
‖ eoc ‖S̄(x)− S̄ψ

∗

Mh
‖ eoc

0.0744108 0.0684689 − 0.0828663 −
0.0304109 0.0275034 1.00 0.0409642 0.79
0.0102627 0.0092561 1.00 0.0197543 0.67
0.0030374 0.0027360 1.00 0.0096611 0.59
0.0008309 0.0007480 1.00 0.0048014 0.54
0.0002176 0.0001959 1.00 0.0023992 0.52
0.0000557 0.0000501 1.00 0.0012003 0.51
0.0000146 0.0000132 1.00 0.0006122 0.50

h ‖Ŝ(x)− ŜψMh
‖ eoc ‖Ŝ(x)− Ŝψ

∗

Mh
‖ eoc

0.0744108 0.0114370 − 0.0181622 −
0.0304109 0.0045876 1.00 0.0101977 0.65
0.0102627 0.0015431 1.00 0.0055643 0.56
0.0030374 0.0004560 1.00 0.0029508 0.52
0.0008309 0.0001247 1.00 0.0015321 0.51
0.0002176 0.0000326 1.00 0.0007826 0.50
0.0000557 8.36× 10-6 1.00 0.0003958 0.50
0.0000146 2.20× 10-6 1.00 0.0002030 0.50

Table 1: Approximations of the tensors S̄(x) and Ŝ(x) at a point x on the unit sphere are
analyzed, the approximation error and experimental rate of convergence are shown.

From the approximations of the tensors S̄(x) and Ŝ(x), we can construct
approximations of the shape operator S(x) of M at x, see Corollary 14. The
second example is concerned with this. We consider a point x on a torus of
revolution (with radii 1 and 2) and polyhedral surfaces that are inscribed to
the torus. On each polyhedral surface we use the function ψ, see (58), to
compute the tensors S̄ψMh

and ŜψMh
, similar to the first example. In this example,

we additionally construct approximations of the normal of M at x: for every
polyhedral surface Mh we set

N ψ̃
Mh

=
1∥∥∥∫Mh

NMh
ψ̃ dvolh

∥∥∥
R3

∫
Mh

NMh
ψ̃ dvolh,

where ψ̃ is the continuous and piecewise linear function on Mh that at the
vertices v takes the values

ψ̃(v) = max{1−
‖x− v‖R3

2h
, 0}. (62)

We use N ψ̃
Mh

instead of evaluating NMh
(Φ(x)) to the avoid the need to compute

the point Φ(x). Using the estimated normal, we construct the following two
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h ‖S̄(x)− S̄ψMh
‖ eoc ‖S(x)− SψMh

‖ eoc
0.0442741 0.0175626 − 0.0155477 −
0.0241741 0.0095546 1.00 0.0084655 1.00
0.0102634 0.0040565 1.00 0.0035977 1.00
0.0035994 0.0014209 1.00 0.0012606 1.00
0.0010920 0.0004308 1.00 0.0003822 1.00
0.0003030 0.0001195 1.00 0.0001060 1.00
0.0000800 0.0000315 1.00 0.0000280 1.00
0.0000206 8.11× 10-6 1.00 7.19× 10-6 1.00

h ‖Ŝ(x)− ŜψMh
‖ eoc ‖S(x)− SψMh

‖ eoc
0.0442741 0.0027184 − 0.0036529 −
0.0241741 0.0014769 1.00 0.0020020 0.99
0.0102634 0.0006264 1.00 0.0008539 0.99
0.0035994 0.0002193 1.00 0.0002998 1.00
0.0010920 0.0000665 1.00 0.0000910 1.00
0.0003030 0.0000184 1.00 0.0000252 1.00
0.0000800 4.87× 10-6 1.00 6.66× 10-6 1.00
0.0000206 1.25× 10-6 1.00 1.71× 10-6 1.00

Table 2: The table shows the approximation error and experimental rate of convergence of
approximations of the shape operator at a point x on the torus of revolution.

approximations of S(x): the first is defined, analog to (53), by

SψMh
= (Id−N ψ̃

Mh
N ψ̃
Mh

T )S̄ψMh
(Id−N ψ̃

Mh
N ψ̃
Mh

T ), (63)

and the second (denoted by a calligraphic letter) is given by

SψMh
= ŜψMh

C
N ψ̃Mh

, (64)

where

C
N ψ̃Mh

=

 0 (N ψ̃
Mh

)3 −(N ψ̃
Mh

)2

−(N ψ̃
Mh

)3 0 (N ψ̃
Mh

)1

(N ψ̃
Mh

)2 −(N ψ̃
Mh

)1 0


is the matrix representation of the cross product with the vector −N ψ̃

Mh
. In our

experiments, both tensors, SψMh
and SψMh

, converge to S(x) with the same order
as S̄ψMh

and ŜψMh
converge to S̄(x) and Ŝ(x), see Table 2.

The third example concerns the approximation of the shape operator from
polyhedral surfaces that are corrupted by noise and are not inscribed anymore.
We consider the shape operator at a point x on the helicoid in R3 and compute
the tensor SψMh

(in the same way as in the second example) first on inscribed
polyhedral surfaces. Then, we disturb the polyhedral surfaces, by adding ran-
dom noise of order h2 to the vertex positions, and compute the operator again.
We denote the operator computed from the distorted surface by SψMh,noise

. In
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h ‖S(x)− SψMh
‖ eoc ‖S(x)− SψMh,noise

‖ eoc
0.0385465 0.0009560 − 0.0014489 −
0.0260549 0.0006113 1.10 0.0014966 −0.08
0.0141667 0.0003216 1.10 0.0004560 2.00
0.0060853 0.0001362 1.00 0.0001497 1.30
0.0021316 0.0000476 1.00 0.0000687 0.74
0.0006460 0.0000144 1.00 0.0000194 1.10
0.0001791 3.99× 10-6 1.00 5.22× 10-6 1.00

h ‖S(x)− Sψ̃Mh
‖ eoc ‖S(x)− Sψ̃Mh,noise

‖ eoc
0.0385465 0.0002335 − 0.0047959 −
0.0260549 0.0000971 2.20 0.0165850 −3.20
0.0141667 0.0000249 2.20 0.0062470 1.60
0.0060853 4.01× 10-6 2.20 0.0213477 −1.50
0.0021316 8.96× 10-7 1.40 0.0053238 1.30
0.0006460 7.97× 10-8 2.00 0.0132693 −0.76
0.0001791 6.00× 10-9 2.00 0.0204679 −0.34

Table 3: The table shows the error and the experimental rate of convergence for the approx-
imation of the shape operator at a point on the helicoid. The columns on the right show
results computed from polyhedral surfaces that are corrupted with noise.

our experiments, we found the same order of convergence for both operators, see
Table 3. In addition, the table lists approximation errors and eoc for the tensors
Sψ̃Mh

and Sψ̃Mh,noise
which were computed on the same surfaces but using the

function ψ̃, see (62), instead of ψ. The main difference between SψMh
and Sψ̃Mh

is that the regions on the surfaces that is used to compute SψMh
and SψMh,noise

is larger then the regions used to estimate Sψ̃Mh
and Sψ̃Mh,noise

; the support of
ψ is of order

√
h and the support of ψ̃ is of order h. When computed from the

surface without noise, the tensor Sψ̃Mh
converges to S(x) (even with order 2 in

our experiments), but when computed from the corrupted surface, the tensor
Sψ̃Mh

does not converge anymore.

9. Examples of r-local Functions

In this section, we discuss the existence of r-local functions, especially for
r → 0. By a family of r-local functions at x ∈M , we mean a family (φr)(0,ρ) such
that for all r ∈ (0, ρ), φr is r-local at x with respect to fixed constants CD and
C∆. We discuss two possible constructions: first, we consider a family of r-local
functions on R2 and then use the Riemannian exponential map to construct a
family of r-local functions on M , and, second, we construct a specific family of
r-local functions on M based on the extrinsic distance of points in R3.

Let φ ∈ H1,1(R2) be a non-negative function that vanishes in the comple-
ment of the open unit ball in R2 and satisfies ‖φ‖L1(R2) = 1. Then, φr defined
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by

φr(x) =
1
r2
φ(
x

r
)

is a family of r-local functions on R2, and the constants CD and C∆ assume
the values ‖φ‖H1,1(R2) and 1. Since the surface M is compact, the injectivity
radius i(M) of M is a strictly positive number. For a point x ∈ M and an r ∈
R+, let Br(x) be the open geodesic ball around x in M , and let Br(0) denote the
open ball of radius r around the origin 0 in TxM . The Riemannian exponential
map at the point x ∈M,

exp : Bi(M)(0) ⊂ TxM →M,

is a diffeomorphism of Bi(M)(0) and exp(Bi(M)(0)) = Bi(M)(x). Let ρ ∈ R+ be
strictly smaller than i(M). Then, the family (ϕr)r∈(0,ρ) given by

ϕr =
∥∥φr ◦ exp−1

∥∥−1

L1(M)
φr ◦ exp−1

is a family of r-local functions at x. The properties (D2) and (D4) of Defi-
nition 10 are clearly satisfied, and (D3) holds since exp is a radial isometry.
Since exp is a diffeomorphism on Bi(M)(0), (D1) follows from properties of
Sobolev spaces under smooth coordinate transformations, see (Adams, 1975,
Theorem 3.35). To show that (D5) holds, we use exp : Bi(M)(0) → M as
a parametrization of M around x. Since the support of ϕr is is contained
in exp(Bi(M)(0)) for all r ∈ (0, ρ), we can calculate ‖ϕr‖H1,1 using only the
chart exp. Analog to our discussion on the metric distortion introduced by the
cone metric of a polyhedral surface (see eq. (22)), we can represent the metric
distortion induced by exp through a metric distortion tensor Aexp and the dis-
tortion of the volume form by a function αexp =

√
det(Aexp). On the compact

set Bρ(0), αexp and the eigenvalues of Aexp are bounded above and below, and
since exp is a diffeomorphism, the lower bounds are strictly larger than zero.
Then, there are constants c and C such that

c ‖u‖L1(M) ≤
∥∥u ◦ exp−1

∥∥
L1(R2)

≤ C ‖u‖L1(M) (65)

holds for all u ∈ L1(M) whose support is contained in Bρ(0), and there are
constants c̃ and C̃ such that

c̃ ‖u‖H1,1(M) ≤
∥∥u ◦ exp−1

∥∥
H1,1(R2)

≤ C̃ ‖u‖H1,1(M) (66)

holds for all all u ∈ H1,1(M) whose support is contained in Bρ(x). Because the
support of ϕr is contained in the compact set Bρ(x), we have∥∥φr ◦ exp−1

∥∥
H1,1(M)

≤ C̃ ‖φr‖H1,1(R2) (67)

and ∥∥φr ◦ exp−1
∥∥
L1(M)

≥ c ‖φr‖L1(R2) = c (68)
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for all r ∈ (0, ρ). It follows that the estimate

‖ϕr‖H1,1(M) ≤
C̃ ‖φ‖H1,1(R2)

c

1
r

is satisfied for all r ∈ (0, ρ). This means (D5) holds as well.
The second construction of a family of r-local functions on M uses the dis-

tance of points in R3. We define the family of functions ψr : M → R by

ψr(y) =
ψ̃r(y)∥∥∥ψ̃r∥∥∥

L1(M)

,

where

ψ̃r(y) = max{1−
‖x− y‖R3

r
, 0},

and show that for small enough r, ψr is r-local. We discuss only properties (D3)
and (D5) since (D2), (D4), and (D1) are clearly satisfied. By construction,
ψr(y) vanishes for all y ∈M with ‖x− y‖R3 > r. To verify (D3), we show that
there is a constant C∆ such that dM (x, y) < C∆ ‖x− y‖R3 holds for all y ∈M .
Consider the function f : M → R given by f(y) = dM (x, y)/ ‖x− y‖R3 . Then, f
is continuous for all y 6= x because it is the quotient of two continuous functions
and ‖x− y‖R3 does not vanish (M is embedded in R3 and x ∈M); and f is con-
tinuous at x because we have limn→∞ f(yn) = 1 for any sequence (yn)n∈N, with
yn 6= x for all n, that converges to x. Since M is compact, C∆ = maxy∈M f(y)
is finite and (D3) holds. To show (D5), we choose an r0 such that ρ = r0C∆ is
strictly smaller than i(M). Since ‖x− y‖R3 ≤ dM (x, y) for all y, the function

ξr(y) = max{0, 1− dM (x, y)
r

}

satisfies
ψ̃r(y) ≥ ξr(y)

for all y. Then, for r ≤ r0 we have∥∥∥ψ̃r∥∥∥
L1(M)

≥ ‖ξr‖L1(M) ≥ c ‖ξr ◦ exp‖L1(R2) =
cπ

3
r2, (69)

where c is the constant discussed above, see (65). By construction, the gradient
of ψ̃r vanishes outside of BC∆r(x) and is bounded by∥∥∥grad ψ̃r

∥∥∥
R3
≤ 1
r

inside of BC∆r(x). Furthermore, the area of BC∆r(x) is smaller than C̃ πC2
∆r

2,
where is the C̃ is the constant discussed above, see (66). Then, we get∥∥∥ψ̃r∥∥∥

H1,1(M)
≤ C̃ C2

∆πr
2

r
= C̃ C∆πr. (70)
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Combining (69) and (70), we get the estimate

‖ψr‖H1,1(M) ≤
3C̃ C2

∆

c

1
r
,

which shows that (D5) holds for all r ∈ (0, r0).
Polyhedral surfaces. For a polyhedral surface Mh that is a normal graph
over a smooth surface M , the pull-back to Mh of an r-local family on M is an
r-local family on Mh (though the constants are different), which answers the
question of existence of r-local functions on Mh. For explicit constructions, it is
convenient to work with piecewise linear functions on Mh, then the gradient of
such a function is constant in each triangle and one can evaluate the generalized
shape operators by summing over the triangles in the support of the function.
In our experiments, see Section 8, we construct r-local functions based on the
extrinsic distance, analog to the second example described above. An alternative
would be to use geodesic distances (or approximate geodesic distance) on Mh

and a construction analog to the first example discussed above.

10. Conclusion

We have presented generalized shape operators that are linear operators
on function spaces of weakly differentiable vector fields and can be defined for
smooth and polyhedral surfaces. We have proved error estimates for approxima-
tion of the generalized shape operators in the operator norm and for pointwise
approximation of the classic shape operator of smooth surfaces from a polyhe-
dral surfaces. Our estimates are confirmed by numerical experiments.

Though based on different mathematical techniques, for applications our
generalized shape operators can be used in a similar manner as the generalized
curvatures or discrete curvatures. In applications, discrete curvatures provide
good results for the pointwise approximation of curvatures, e. g. to compute
principal curvatures or principal curvature directions. Our pointwise approxi-
mation estimates throw some light upon the question why this works and provide
a theoretical justification for such usage.

As an extension of this work, we plan to apply the presented technique
to obtain pointwise approximation estimates for the discrete Laplace-Beltrami
operator of polyhedral surfaces. Another open question is the following. Though
our experiments indicate that our estimates are sharp for a certain type of r-
local functions, many experiments have produced a higher experimental order
of convergence than expected. The question is whether one can prove a higher
order of convergence for the generalized shape operators combined with a certain
type of r-local functions.
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Nédélec, J.C., 1976. Curved finite element methods for the solution of singular
integral equations on surfaces in R3. Computer Methods in Applied Mechanics
and Engineering 8, 61 – 80.

Pottmann, H., Wallner, J., Huang, Q., Yang, Y.L., 2009. Integral invariants for
robust geometry processing. Comput. Aided Geom. Design 26, 37–60.

Wardetzky, M., 2006. Discrete Differential Operators on Polyhedral Surfaces -
Convergence and Approximation. Ph.D. thesis. Freie Universiät Berlin.

Xu, G., 2004. Convergence of discrete Laplace-Beltrami operators over surfaces.
Comput. Math. Appl. 48, 347–360.

Xu, Z., Xu, G., Sun, J.G., 2005. Convergence analysis of discrete differential
geometry operators over surfaces, in: Mathematics of Surfaces XI., p. 448457.

33


