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Abstract

We discuss the numerical solution of large scale nonlinear eigenvalue problems and fre-
quency response problems that arise in the analysis, simulation and optimization of acoustic
fields. We report about the cooperation with the company SFE in Berlin. We present the
challenges in the current industrial problems and the state-of-the-art of current methods.
The difficulties that arise with current off-the-shelf methods are discussed and several indus-
trial examples are presented. It is documented that industrial cooperation is by no means a
one-way street of transfer from academia to industry but the challenges arising in industrial
practice also lead to new mathematical questions which actually change the mathematical
theory and methods.
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1 Introduction

Traffic noise emissions by transport vehicles, such as cars, trains or airplanes are one of the key
factors restricting the quality of life in urban areas. Acoustic waves in dynamically moving vehicles
arise from many different sources, such as e.g. the noise of engines or the vibrations of the structure
due to external excitations like road contact or head wind. The reduction of such noise emissions
is therefore an important factor in the design and the economic success of new products.

To minimize potential noise emissions already in an early design phase of new products (avoid-
ing the costly production of prototypes), it is necessary to use simulation, optimization and control
techniques based on mathematical models of the vehicle. Performing these tasks requires math-
ematical models that describe the acoustic field associated with the structure of the complete
vehicle including its interaction with the environment such as, e.g., the air in and around the
vehicle or the road or rail contact. Furthermore, these models must allow to identify and influence
potential noise sources, and as a vision for the future they must allow to minimize the emissions.

Although much research is carried out in universities and industrial research and development
departments, the model based minimization of the noise emissions of a complete car or train
(not to mention airplane) including the majority of external and internal excitations is still a
vision for the future. To achieve this, a joint effort is needed that includes the identification of
sources, the construction of adequate mathematical models that incorporate all possible sources for
acoustic waves, the analysis of these models, concerning robustness of their descriptions and their
potential for optimization techniques, the development of numerical methods for the simulation
and optimization of these models, as well as the implementation of these techniques as production
software on modern high performance computers for industrial use.
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1.1 Modeling

The modeling of acoustic fields inside or outside of dynamically moving vehicles typically uses cou-
pled systems of partial differential equations (PDEs), e.g. for the generation of noise by vibrating
parts, surface contact, engine noise or head wind. These methods are well established in the engi-
neering community using commercial finite element packages [4, 35]. However, the techniques for
the resulting systems of PDEs still have many deficiencies, in particular the development of ap-
propriate solvers for the solution of the linear and nonlinear systems and eigenvalue problems that
have to be solved after discretization. These turn out to be extremely large and ill-conditioned
when a reasonably fine 3D model is used; they may consist of hundreds of millions of equations.

An even greater challenge is to use these models and methods within an optimization loop.
There is no chance to use classical off-the-shelf optimization methods for these problems, the
problem size is just too large. Instead, one currently applies model reduction techniques [5, 10] to
approximate the given fine model that is used for the simulation by a rather crude model that is
used in the optimization.

To make such an approach viable within a design environment, where not only the geometry and
topology of the vehicle and its material parameters are subject to changes, but also the interaction
with the environment is rather complicated, it is necessary to develop integrated mathematical
techniques for the modeling, simulation, and optimization that make as much as possible use of
the properties of the underlying physical model and to transfer this into numerical methods and
production codes.

1.2 Content of the paper

In this paper we will discuss some of the work and some of the challenges in a long-term cooperation
with the company SFE GmbH in Berlin, Germany, which produces software for the simulation
and optimization of acoustic fields.

The cooperation involves the development (and implementation on current high-performance
computers) of numerical methods for the solution of linear systems and nonlinear eigenvalue prob-
lems arising from discretized partial differential equations modeling noise emissions of cars and
trains.

The paper is organized as follows.
Section 2 briefly describes the modeling of acoustic fields inside a car as coupling of fluid

and structure vibrations. In Section 3 we study the direct frequency response problem, i.e., the
numerical solution of a series of large, sparse, complex symmetric linear systems with a varying
parameter. We will address in particular in-core/out-of-core storage methods, preconditioning and
parallel execution aspects.

Section 4 treats modal reduction to reduce the dimension of the generated models. This
requires the computation of all eigenvalues of a large sparse nonlinear eigenvalue problems in a
given region of the complex plane.

The described problems and results demonstrate many challenges in the transfer of state-of-
the-art numerical methods into the industrial practice, and show that there is mutual benefit from
such a cooperation between industry and academia.

2 Mathematical modeling of interior car acoustics

To model the propagation of acoustic waves inside a car, as illustrated in Figure 1, the 3-D lossless
wave equation is used, which can be obtained from the continuity equation (conservation of mass)

∂ρ̃

∂t
+∇(ρ̃v) = 0, (1)

together with the Euler equations of fluid dynamics

ρ̃(
∂v

∂t
+ (v · ∇)v) = −∇p̃. (2)
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Figure 1: (left) FEM model of the car structure and (right) of the fluid

Here v = v(x; y; z; t) is the particle velocity, ρ̃ = ρ̃(x; y; z; t) is the particle density, and p̃ =
p̃(x; y; z; t) denotes the pressure, depending on cartesian coordinates x, y, z and time t. Under
the simplifying assumptions that there is no temperature change, that the fluid is inviscid, i.e.,
no shear forces occur, that the influence of external forces is restricted to those coming from
displacements of the structure at the boundaries, that the fluid is adiabatic, i.e., there is no heat
exchange during compression, that we have an ideal gas, i.e., ρ = p

c2 , where c is the speed of sound,
and finally that (v · ∇)v and ρ∂v

∂t are small, we can make the Taylor expansions

p̃ = p0 + p(x; y; z; t), with p0 À p (p0 = 106p),
ρ̃ = ρ0 + ρ(x; y; z; t), with ρ0 À ρ.

Then from the Euler equation we obtain ρ0(∂v
∂t ) = −∇p or by differentiation ρ0∇(∂v

∂t ) = −∆p, and
from the continuity equation we get ∂ρ

∂t + ρ0∇v = 0. Altogether we obtain the highly simplified
system of partial differential equations

1
c2

∂2p

∂t2
+ ρ0∇

∂v

∂t
= ∆p + ρ0∇

∂v

∂t
= 0

to which we have to add appropriate initial and boundary conditions. In a closed structure like the
interior of the car, we can use the boundary conditions that are obtained from the displacement
of the structure to obtain the fluid structure interaction, in an open structure like the acoustic
waves emitted by the car to the outside, we have to incorporate appropriate far field conditions
or transparent boundary conditions [41].

Let u be the vector of displacements of the structure on the surface. Then v = ∂u
∂t and thus

with the outer normal ν we get

νρ0
∂2u

∂t2
= −ν∇p.

To obtain a variational formulation, we multiply the equations with a test function w, and use
integration by parts by integrating over control volumes V with surface elements S. This gives∫

V

1
c2

w
∂2p

∂t2
dV +

∫
V

(∇w)∇p dV = −ρ0

∫
S

νw
∂2u

∂t2
dS,

or equivalently ∫
V

1
ρ0c2

w
∂2p

∂t2
dV +

∫
V

1
ρ0

(∇w)∇p dV = −
∫

S

νw
∂2u

∂t2
dS.

One of the most difficult tasks in the modeling is the incorporation of appropriate damping and
absorption, because this depends in a rather complicated way on the materials used inside the
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car, the surface geometry of the interior and this is also one of the terms, where the influence of
the optimization is strong.

In the model treated here, damping and absorption was realized by an additional term∫
S

w
r

ρ2
0c

2

∂p

∂t
dS,

where r = r(α) is depending on the damping properties of the material (described by a parameter
vector α). We then obtain∫

V

1
ρ0c2

w
∂2

∂t2
p dV +

∫
S

w
r

ρ2
0c

2

∂p

∂t
dS

+
∫

V

1
ρ0

(∇w)∇pdV = −
∫

S

νw
∂2u

t2
dS.

To this variational formulation we can directly apply finite element discretization in space. This
leads (in time) to a second order system of implicit differential equations in descriptor form

Mf p̈d + Df ṗd + Kfpd + Dsf üd = 0, (3)

where Mf = MT
f is a positive definite mass matrix, Kf = KT

f is a positive definite stiffness matrix,
Df (α) is a symmetric positive semidefinite damping/absorption matrix, and Dsf describes the fluid
structure coupling.

It should be noted that for the fluid model, the finite element discretization applied to the
weak form of the partial differential equation is used. In contrast to this in the model describing
the vibration of the structure, in industrial and engineering practice, typically a direct discrete
finite element model is employed. This leads to one of the challenges that we will discuss below.

For the displacement vector ud in the different finite elements of the discretized structure,
assuming linear material laws, one directly obtains a linear second order system of differential-
algebraic equations given by

Msüd + Dsu̇d + Ksud = fe + fp, (4)

where fe is a (discrete) external load and fp is the pressure load. Here Ms is a symmetric positive
definite mass matrix, and Ds is a symmetric positive semidefinite damping matrix; both are real.
The matrix Ks has the form Ks = K1(ω) + ıK2 with real symmetric K1, K2, where K1 is the
positive semidefinite stiffness matrix. It is often frequency dependent to model nonlinear material
behavior. The matrix K2 models hysteretic damping, i.e., damping that is proportional to the
displacement (instead of the velocity), but is in phase with velocity [13]. Typically, the matrix K2

is of very small rank.
Although Ms is positive definite in theory, the matrix encountered in practice is highly singular

due to the fact that rotational masses are omitted. On the positive side, it is block diagonal with
small blocks.

It remains to further discuss the coupling of the fluid part and the structure part of the
system. The term fp originates from the pressure load Fp =

∫
S

pν dS. Finite element model-
ing/discretization yields fp = DT

sfpd and hence,

Msüd + Dsu̇d + Ksud −DT
sfpd = fe. (5)

If we combine all the equations then we obtain a second order system of differential-algebraic
equations[

Ms 0
DT

sf Mf

] [
üd

p̈d

]
+

[
Ds 0
0 Df

] [
u̇d

ṗd

]
+

[
Ks(ω) −DT

sf

0 Kf

] [
ud

pd

]
=

[
fs

0

]
. (6)

Typically in this model the format of Ms is a factor 1000− 10 000 larger than the format of Mf ,
the mass and stiffness matrices are highly dependent on the geometry and topology of the car,
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and the type of finite elements that are used. Since the structure is essentially modeled with a
fine (pretty much uniform) mesh, the matrices have dimensions of several millions. The stiffness
matrix depends also on the material parameters, while the damping and coupling matrices depend
on geometry, topology and material parameters.

3 Direct Frequency Response

Usually one of the first tasks in the analysis of acoustic fields is to solve the frequency response
problem, i.e., to simulate the behavior of the acoustic field under excitations (typically of the
structure). The classical approach for the frequency response analysis of linear vibrational systems
is to perform a Fourier ansatz [

ud

pd

]
=

[
û
p̂

]
eıωt, fs = f̂(ω)eıωt,

which then leads to a frequency dependent linear system of equations(
−ω2

[
Ms 0
DT

sf Mf

]
+ ıω

[
Ds 0
0 Df

]
+

[
Ks(ω) −DT

sf

0 Kf

]) [
û(ω)
p̂(ω)

]
=

[
f̂(ω)

0

]
. (7)

This linear system, which (for a reasonable structure) has several millions of equations, typically
has to be solved for a large frequency range ω = 0, . . . , 1000 Hz in small frequency steps and,
depending on the type of excitation, for many right hand sides (load vectors).

Based on the frequency response analysis it is then possible to detect places where the excitation
leads to large noise emissions (hot spots), and this approach can be used to improve or even
optimize the frequency response behavior within an optimization loop.

Before we discuss solution methods let us introduce an important modification of (7). For
nonzero frequencies we may multiply the second block row by ω−1 and introduce the new variable
v̂(ω) = ωp̂(ω). Then we obtain a new linear system(

−ω2

[
Ms 0
0 Mf

]
+ ıω

[
Ds ıDT

sf

ıDT
sf Df

]
+

[
Ks(ω) 0

0 Kf

]) [
û(ω)
v̂(ω)

]
=

[
f̂(ω)

0

]
, (8)

which now has complex symmetric coefficients and, to simplify notation, we write this as

P (ω)x(ω) :=
(
−ω2M + ıωD + K(ω)

)
x(ω) = b(ω). (9)

Since this system of equations has to be solved for many right hand sides and over a large
frequency range, and all this within an optimization loop, a very efficient solver is necessary. This
solver has to be able to recycle information from nearby problems (when stepping through the
frequency range and modifying parameters in an optimization) and has to work efficiently in a
modern multi-processor, multi-core hardware environment. Altogether, this is really a lot to ask
for from a linear system solver and makes the use of black box solvers extremely difficult.

3.1 State-of-the-art in linear system solvers

Modern techniques for the solution of linear systems in industrial applications are typically a
combination of methods, that use the best of each of the various available classes of methods.

The first class of methods are highly efficient direct solution methods that use Gaussian elimi-
nation with partial pivoting combined with other techniques from graph theory to achieve optimal
performance, make efficient use of the sparsity structure to avoid fill-in, and save storage. Many
of them are even implemented for the use on multiprocessor machines. Well known packages
include UMFPACK [17], PARDISO [40], MUMPS [3], WSMP [26], or the HSL collection (e.g.,
HSL MA78 [36]) to name a few. In view of possibly many right hand sides they are a clear op-
tion, despite the fact that for the size and type of problems considered in industrial practice, the
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storage demands are so high that they typically can only work in an out-of-core setting, i.e., the
matrix factors are stored on hard disk instead of main memory. Another difficulty is that a new
factorization has to be computed for every frequency or every modification in the optimization
loop. Finally also the bad scaling and the fact that the problems get increasingly ill-conditioned
for large frequencies presents a real challenge, because the desired solution accuracy may not be re-
alizable. Some of the packages provide specialized routines for complex symmetric systems, which
have the potential to half the storage and computational requirements, but may also increase the
complexity of pivoting strategies.

The second class of methods are iterative methods of the Krylov subspace type like the gener-
alized minimal residual method (GMRES) [39], the Bi-conjugate gradient method in its stabilized
form (BICGSTAB) [50], or the quasi-minimal residual method (QMR) [23]. A variant of the con-
jugate gradient method for complex symmetric systems like (9) is CSYM [14]. In principle these
methods would be very good candidates, since the linear systems are sparse and matrix vector
multiplications are relatively cheap. Also, if f̂ and K are independent of ω, then one can exploit
the shift invariance property of Krylov subspaces [25, 45]. However, often f̂ or K do depend on
ω and without a good preconditioner the convergence of iterative methods (in particular for large
frequencies) is dramatically slow or not realizable.

The third class of potential methods (exploiting the fact that there is a partial differential
equation in the background) are multigrid or multilevel methods [27, 31, 32]. Unfortunately,
despite the fact that they are efficiently used in the solution of wave propagation problems, such
as Helmholtz or Maxwell equations [19], they cannot be used in a simple way in the described
acoustic field problems, since the discrete FEM modeling of the structure does not provide a
nice hierarchy of basis functions. If such a hierarchy was available then these methods would
lead to very good preconditioners for the Krylov subspace methods. However, with the current
state of discrete FEM modeling (being engineering practice for decades) it is extremely difficult
to incorporate them into the current code solvers. This is even true for the algebraic multigrid
methods like the Ruge-Stüben method [37] or hypre [20], due to the difficulty of having to solve
for a large frequency range, many right hand sides and all this inside an optimization loop. It is
needless to say that also the incorporation of these solvers in a multiprocessor, multi-core industrial
software tool is another challenge.

The fourth class of methods which have made tremendous progress in the last decades are the
adaptive finite element methods, see e.g. [9]. These refine the computational grid according to a
priori and a posteriori error estimates and if implemented properly avoid globally fine meshes and
therefore the extremely large linear systems and eigenvalue problems in the first place. However,
the construction, analysis, and implementation of such methods for their use inside an industrial
package, including the treatment of a full frequency range and many right hand sides, is still in
its infancy and requires a major research effort which fortunately is currently addressed in several
research projects world-wide.

When our cooperation with SFE started, we essentially made the above analysis of the available
methods and realized the following major obstacles.

• The problems are badly scaled and get increasingly ill-conditioned when ω grows;

• for some parameter constellations the system becomes exactly singular with possibly incon-
sistent right hand sides;

• typically there are many right-hand sides;

• classical off-the-shelf iterative methods do not work well, or fail completely;

• direct solution methods have to work by storing the factors in out-of-core memory and cannot
easily recycle information from previous frequency or optimization steps;

• no multilevel or adaptive grid refinement is applicable, the methods must be matrix based;

• the matrices M,K1 are often slightly indefinite because of rounding errors during their
creation.
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3.2 What did we do?

With all the obstacles of the problem and all the deficiencies of the current methods, the devel-
opment and implementation of an appropriate linear solver for acoustic field frequency response
problems is a major challenge. Furthermore, as in all industrial projects, there was a deadline.
In such a circumstance, the only possibility is to compromise between the optimality of a given
method for a given problem, the provability of success, and the practical needs in the industrial
environment.

Our compromise, since we had to deal with given matrices (as opposed to partial differential
equations), was to develop and implement (in the SFE software environment) a preconditioned
subspace recycling Krylov subspace method which has the following features:

The initial search space for any frequency ω is chosen to contain the solutions for the last
few frequencies, an approach also used in [21]. For the preconditioner, whose construction and
application represent the dominant cost of the algorithm, we had to fulfill the requirement that it
had to run in a distributive setting, store its results out-of-core, support complex arithmetic, in
particular support complex symmetric systems. This is a tall order to ask for but fortunately we
were able to base the preconditioner on existing software, using the complex LDLT factorization
code of the MUMPS package [3]. The preconditioner was constructed from the symmetric real
part of the linear system (9), i.e., from

P̃ (ω) := −ω2

[
Ms 0
0 Mf

]
+

[
K1 0
0 Kf

]
.

For small values of ω up to ca 60 · 2π corresponding to a frequency of 60 Hz, typically only 3− 6
iteration steps per frequency were necessary and the preconditioner could be kept unchanged for
the whole frequency range. But the number of iteration steps per frequency grows substantially
the larger ω gets, so that more and more new preconditioners have to be computed. For large
frequencies close to 1000 Hz, the preconditioned Krylov method tends to be extremely slow or
not convergent at all. As a consequence we constructed a hybrid method, where from a certain
frequency on MUMPS is used as a direct solver for the system with the full matrix P (ω). In
Figure 2 we present a comparison of our solver with the solver from NX Nastran for a model with
219432 degrees of freedom, solved on 2 × AMD Opteron DualCore 2600MHz with 8GB RAM
under Suse Linux 10.0. Furthermore, it was decided to make use of the multi-core environment
and to treat several linear systems simultaneously in a distributed fashion. One group of processors
solves the systems corresponding to the lower frequencies using the described iterative recycling
method. Meanwhile, the other processor groups treat the high frequency systems with a full direct
solve for each value of ω.

3.3 Evaluation of our approach

Since there are commercial packages available, a question that may arise is why we need new
numerical methods and solvers in the first place. From the point of view of the company SFE
this is clear, they wanted their own solver in their product, and the solution method including the
implementation was satisfactory for their needs. But in many respects the current methods are
unsatisfactory from a scientific point of view. The discussed industrial problems present some of
the current grant challenges in the field and the commercial packages are by no means able to solve
these problems in a completely satisfactory way. To always get a more-or-less reasonable solution,
and to be efficient, they often compromise for accuracy of the results which is certainly inadequate
from a scientific point of view. Thus the cooperation with the industrial partner triggered new
research questions for the academic world.

It became clear during the project that the concept of recycling in iterative methods, i.e.,
the reuse of information that was already computed for other frequencies or in the course of an
optimization procedure is not well-enough understood. As a consequence, motivated by the project
with SFE, a new research project [2] in the DFG Research Center Matheon was started to further
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Figure 2: (left) Light blue bars: our solver, dark red bars: NX Nastran; on 1, 2, or 4 Cores
(DMP); for the range of frequencies (1Hz, . . . , 200Hz), (1Hz, . . . , 50Hz), (150Hz, . . . , 200Hz) in
1Hz steps; with 1 right hand side (RHS). (right) Light blue bars: 1 RHS, dark red bars: 5 RHS,
light yellow bars: 10 RHS; in every 3 consecutive bar groups: top group: our solver, middle group:
Nastran iterative solver, bottom group: Nastran direct solver; top 3 bar groups: Frequency range:
(1Hz, . . . , 200Hz) in 12.5Hz steps, 2nd 3 bar groups: (1Hz, . . . , 200Hz) in 1Hz steps, 3rd 3 bar
groups: (1Hz, . . . , 50Hz) in 1Hz steps, bottom 3 bar groups: (150Hz, . . . , 200Hz) in 1Hz steps;
all using 1 Core.

investigate the basic mathematical principles and to understand how they can be incorporated into
new efficient methods [24].

As a second major obstacle, we identified the use of discrete FEM modeling in structural
engineering. It would be much easier if adaptive FEM would be usable for the discussed class
of problems, and it would also be good to have a grid hierarchy that allows the use of efficient
multilevel preconditioners [27, 31, 32]. Despite the high research activity in this field this is a major
challenge for the described problem classes and almost no analysis or methods are available. We
will discuss this in more detail in the section devoted to eigenvalue computation, but again here
we see a need for a stronger cooperation between academia and industry in this area of structural
engineering, to transfer new ideas that are developed now into the industrial practice.

4 Modal reduction

We have seen in the previous section that due to the fine mesh used for the discrete FEM mod-
eling of the structure, the linear systems have very large dimensions. Typically, however, one is
interested in damping the low frequencies associated with the eigenvalues in the neighborhood of
0 (and the imaginary axis) of the complex symmetric matrix function

Q(λ) := λ2M + λD + K = Q(λ)T , (10)

with M, D, K as in (9). The methods discussed below assume that P is quadratic in λ for the
eigenvalue computation, i.e. the nonlinear dependency of K on the frequency is ignored. One easily
verifies that if λ0 is an eigenvalue of Q(λ), i.e., P (λ0)x = 0, then xT is the corresponding left eigen-
vector but essentially no other general properties of the eigenvalue problem are available, in partic-
ular, there is unfortunately no immediate variational property for the eigenvalues/eigenfunctions
available, as there is for the undamped case [33].

Since one is interested only in part of the spectrum, a natural idea is to identify a space asso-
ciated with eigenvectors and generalized eigenvectors associated with the important eigenvalues,
and to project the problem into this subspace. This is a model reduction approach called modal re-
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Figure 3: (left) A typical trapezoidal region within which all eigenvalues are sought. (right) The
trapezoidal region covered with a few circles.

duction which, if efficiently implemented, can save a huge amount of computing time and storage,
despite the fact that it is partially heuristic.

4.1 Complex symmetric quadratic eigenvalue problems

In view of the desire to do modal reduction, another task in the cooperation with SFE GmbH
was the computation of a small number, say `, eigenvalues in a trapezoidal region near zero, see
Figure 3 (a), and the corresponding subspace S` spanned by the eigenvectors and generalized
eigenvectors associated with these eigenvalues, i.e., S` = span {s1, . . . , s`}, where the si form an
orthonormal basis of this subspace, i.e., S` = [s1, . . . , s`] is an isometry.

The projected system would have the form

Q`(λ) := λ2M` + λD` + K` := λ2ST
` MS` + λST

` DS` + ST
` KS` (11)

and would still be complex symmetric. In the context of model reduction, the requirements for the
reduced model are that the projected system is a good approximation to the large scale system
for a large frequency range, and also for a large set of parameter variations. Furthermore, it has
to be of small enough dimension, so that classical methods for nonlinear nonsmooth optimization
can be applied. Again this is a lot to ask, since currently for large scale problems there are really
no methods available that guarantee to obtain all the eigenvalues of (10) in a specified region of
the complex plane. For small dense problems one could employ the sign function method, [8, 28]
but this would require storing full dense inverses of matrices of the given class, which is certainly
not possible in the described acoustic field problems.

The currently used industrial techniques typically solve a simplified problem, e.g., the eigen-
values and associated eigenvectors in the desired region for the undamped/uncoupled problem are
used for the projection or an algebraic multilevel substructuring method (AMLS) is used that ex-
ploits the structure of the matrices as they arise form the discrete FEM [11]. All these techniques
are partially heuristic, since there is no guarantee that all the desired eigenvalues are captured or
that the eigenvalues from the projected system are close to those of the original physical system
or of the FEM discretized system, i.e., in general, currently no error bounds are available. To
generate such error bounds is a major challenge for the academic community and research in this
direction has started in the project [1] with first results in [15, 34].

Furthermore, the numerical solution of the large scale nonlinear eigenvalue problem (10) itself
also presents a mathematical challenge, for several reasons.

First of all the mass matrix is singular, so the problem has eigenvalues at ∞ which often cause
convergence problems for the iterative methods, second of all, there are also several (typically six)
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eigenvalues at 0, corresponding to the six free degrees of motion, three each for translation and
rotation, of the whole structure. In industrial practice the eigensolver is furthermore also often
used for model verification, by checking whether there are exactly these 6 eigenvalues at 0. Then,
if the model is flawed, the singularity may be even higher.

The major challenge, however, is that we want the eigenvalues near 0 and it is well known
that classical iterative methods for large sparse eigenvalue problems, like the implicitly restarted
Arnoldi method [29], typically converge fast only to the eigenvalues at the periphery of the spec-
trum [38]. Thus, either a shift-and-invert technique that transforms the problem and maps the
desired eigenvalue to the periphery is necessary or other techniques like Newton’s method [43, 44]
or the Jacobi-Davidson method [46, 47] have to be used. All these methods require the solution
of linear systems of the form (λ̂2M + λ̂D + K)x = b with a given shift-point λ̂. But this is the
problem that we wanted to avoid in the first place and hence a vicious circle is closed.

4.2 What did we do?

Having assessed the various options and their potential advantages and drawbacks, we decided
to develop a new method based on the following concepts and to implement it into the SFE
environment.

First of all, since the methods that work directly on the quadratic eigenvalue problems, e.g., [12,
33, 49], are not yet as mature as those for linear eigenvalue problems, the problem is linearized by
introducing a new variable λx and turning (10) from a quadratic into a linear eigenvalue problem.

Since there is no method available that is guaranteed to find all eigenvalues in a region at
feasible costs, we had to revert to a partially heuristic approach. We are looking for eigenvalues in
the vicinity of target points which are scattered inside the region of interest. To find eigenvalues
close to a particular target σ, also called a shift, we use the shift-linearize-invert-ansatz [49] that
requires computation of the largest eigenvalues of the matrix

A :=
[
Q(σ)−1 0

0 I

] [
2σM + D M

−I 0

]
.

This is done by the block Arnoldi method [6] which requires the application of the matrix A to
given blocks of vectors during the generation of the Krylov subspace. This involves a solution of a
linear system with the complex symmetric matrix Q(σ). We again use the direct solver MUMPS
to compute a complex LDLT factorization.

The block Arnoldi method searches for eigenvectors of A within the block Krylov subspace

Km(A, B) := span{B,AB,A2B, . . . ,Am−1B}, (12)

which is known to contain, for increasing m, increasingly good approximations to eigenvectors
corresponding to eigenvalues of A of maximum absolute value — which correspond to the eigen-
values of Q(λ) closest to σ. In the classical Arnoldi method, the starting block B is a vector.
Otherwise, when B consists of several, say nb, columns, the resulting method is the block Arnoldi
method. The matrix B can be chosen in an (almost) arbitrary way, but if eigenvector or subspace
approximations are known, the use of these will speed up convergence. Among the advantages
of using the block method are that clusters of eigenvalues are handled better [30]. Furthermore,
all vector-vector operations become matrix-matrix operations which can be implemented much
more efficiently by use of BLAS level 3 routines [18] and the matrix-vector multiplication with the
large matrix A can be carried out with a block of vectors. Furthermore, the heuristic part of the
algorithm is more reliable in the block case, see below.

In the actual implementation of the block Arnoldi algorithm the terms AiB are never explicitly
formed. Instead an orthonormal basis Qm = [V1, V2, . . . , Vm] of Km(A, B) is generated by setting
V1 to be an orthonormal basis of span(B) followed by iteratively forming Vi+1 by orthonormal-
ization of AVi against V1, . . . , Vi. Classically, a variant of the Gram-Schmidt method is used
for this task [29], but any other orthonormalization procedure may be employed. We use block
Householder reflections [7, 42] that are very stable and attain high efficiency by using BLAS-3
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operations. Collecting all the Vi and the orthonormalization coefficients Hi,j results in the well
known Arnoldi relation AQm = QmHm +Vi+1Hm+1,mET

m with an (m×m)–block Hessenberg ma-
trix Hm = (Hi,j)m

i,j=1. The eigenvalues of Hm, called Ritz values, are used as approximations of
eigenvalues of A. Likewise, the eigenvectors of Hm, multiplied with Qm, are used as approximate
eigenvectors of A.

A drawback of the block Arnoldi method is the necessity to store the basis Qm which grows
for increasing m. A typical way out of this problem is to restart the algorithm at some point.
Instead of restarting with a single new starting block it is possible to restart with a whole Arnoldi
relation. For the vector Arnoldi method, two such implicit restarting schemes are common, one
using a filter polynomial [29] and one using a reordering of the Schur form of Hm [48]. We are
using the latter approach as the first one does not elegantly generalize to the block case [7].

The heuristic part of our method is that we assume that the block Arnoldi method really
finds all eigenvalues in a circle around the shift σ. While quite often the eigenvalues do indeed
appear and converge in the order of the distance to the shift, it is not rare that one or a group of
eigenvalues converge slower than other farer away eigenvalues. However, in these cases usually the
missed eigenvalues are present as (yet) unconverged Ritz values. Therefore, we use the unconverged
Ritz value that is closest to the shift as the radius of a circle that is trusted to contain no missed
eigenvalues.

In the implementation, we repeatedly run the block Arnoldi method for different shifts, possibly
several at once in a distributed setting. Figure 3 (right) shows the situation after a few iterations.
Large parts of the trapezoidal region are covered, leaving only some small remaining regions to be
searched. New shifts are placed inside the largest such white regions, until the whole trapezoidal
region of interest is covered by trusted circles.

Of course, with such a covering approach an eigenpair could be computed by more than one
Arnoldi run for different shifts. For that reason the freshly discovered eigenpairs have to be
checked for being copies of already previously found pairs. To achieve this we consider a new
eigenpair (λ∗, x∗) being a copy, if [xT

∗ , λ∗x
T
∗ ]T is almost linearly dependent to the span of the

vectors [xT
old, λoldxT

old]T corresponding to every known eigenvalue λold sufficiently close to λ∗.
We applied the solver to a car model, discretized by a regular mesh of 35mm leading to 219432

degrees of freedom. We were looking for eigenvalues within the triangle bordered by the lines
Im(λ) > 20Re(λ), Im(λ) > −20Re(λ), and Im(λ) < f · 2π, for f ∈ {50, 100, 150, 250}. The
following table lists the number of eigenvalues within these triangles, the number of used shifts,
i.e., used matrix factorizations, and the number of overall Arnoldi iterations, i.e., Matrix-block
products.

0Hz to 50Hz 100Hz 150Hz 200Hz 250Hz
number of found eigenvalues 20 52 129 217 346
number of shifts 1 3 3 5 7
number of iterations 39 139 136 294 437

The test was performed on a PC with an Intel Core2 Duo E6850 CPU clocked at 3.0GHz, with
4Gb RAM. One shift was addressed at a time using one processor. The blocksize was 5.

4.3 Evaluation of our approach

Our approach certainly does not use many novel ideas, but instead builds on mature and proven
concepts. The method can run in a distributed setting processing several shifts at once, each
one running in several processes. The matrix factorizations can be kept out-of-core. Moreover,
since the basis vectors are explicitly orthogonalized by a stable Householder scheme, the generated
block Arnoldi basis is orthonormal to working precision. This is in sharp contrast to the basis
generated by the nonsymmetric Lanczos method which typically looses linear independence after
enough iterations and leads to so-called spurious eigenvalues [16, 22].

In our experiments the heuristic choice of the radii of trusted circles worked very well. In
thousands of test cases with problems from SFE as well as randomly generated problems, it
happened only once that this approach missed an eigenvalue. This happened with a block size of
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one, i.e. with the vector Arnoldi method. The method worked fine for this case if a block size of
at lest two was used. In our implementation the default block size is 8.

Unfortunately, the improved robustness of the block-Arnoldi method compared with the stan-
dard Arnoldi method comes at the price of increased memory requirements to store the basis.
This downside is somewhat mitigated, however, by the use of restarts.

As another downside of our approach, so far only quadratic eigenvalue problems can be solved,
for truly nonlinear problems with ω dependence in K the methods is not directly applicable. On
the other hand, the method can be applied to fluid or structure subsystems separately, or to the
complete coupled system, and it tolerates a singular mass matrix.

5 Conclusions. The two-way street of industrial coopera-
tion

We discussed the modeling, simulation and (at least the vision) of the optimization of acoustic
fields. As an example of our industrial cooperation we studied frequency domain computations
and modal reduction methods for the acoustic field inside a car, as well as the challenges of
the resulting linear systems and eigenvalue problems. One lesson from the project was that the
methods to be used in industrial practice cannot be constructed and implemented using textbook
approaches. For instance, very often tricks have to be employed that increase the efficiency of the
computation, but that lack a full mathematical understanding. This can lead to misunderstandings
between engineers, programmers and mathematicians. A stronger communication and cooperation
between these groups is necessary to address the described challenges. If this is achieved then all
sides benefit from a cooperation. The work with SFE GmbH on the frequency response problem for
interior acoustic field computation started out as a clear transfer project (a one way street), with
the idea to transport the knowledge and know-how about current linear system and eigenvalue
solver technologies available in the academic environment into an industrial software environment.

But as we have discussed, already early on in the cooperation a lot of new research topics
appeared that could not be treated within the current project (two-way-street). Examples include
recycling methods for a sequence of slowly changing linear systems, updating of preconditioners,
guaranteed location of all eigenvalues inside a region of the complex plane, to name a few.
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