
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

MARTIN WEISER & SEBASTIAN GÖTSCHEL

State Trajectory Compression for
Optimal Control with Parabolic PDEs

ZIB-Report 10-05 (2010)

State Trajectory Compression for Optimal

Control with Parabolic PDEs

Martin Weiser Sebastian Götschel

Abstract

In optimal control problems with nonlinear time-dependent 3D PDEs,
full 4D discretizations are usually prohibitive due to the storage require-
ment. For this reason gradient and Newton type methods working on the
reduced functional are often employed. The computation of the reduced
gradient requires one solve of the state equation forward in time, and one
backward solve of the adjoint equation. The state enters into the adjoint
equation, again requiring the storage of a full 4D data set. We propose a
lossy compression algorithm using an inexact but cheap predictor for the
state data, with additional entropy coding of prediction errors. As the
data is used inside a discretized, iterative algorithm, lossy compression
maintaining a certain error bound turns out to be sufficient.

AMS MSC 2010: 49M29, 65K10, 65M60, 94A29

Keywords: optimal control, adjoint gradient computation, trajectory storage

1 Introduction

For the numerical solution of optimal control and variational data assimila-
tion problems governed by nonlinear, time-dependent PDEs on a 3-dimensional
spatial domain, methods working on the reduced objective functional are of-
ten employed. For the computation of the reduced gradient, one forward solve
of the state equation as well as one backward solve of the adjoint equation is
needed. As the state enters into the adjoint equation, the forward solution, a 4D
data set, has to be stored. For large scale problems, or fine time-discretization,
uncompressed storage makes this approach difficult.

But not only the sheer size of the data is a problem: as CPUs are getting
rapidly faster, memory access begins to be a bottleneck for large-scale compu-
tations. Reducing the memory requirements leads to shorter idle times of the
CPU while data is written to or read from mass storage devices.

So-called checkpointing techniques have been developed to overcome this
problem. The state is stored only at selected timesteps, from where on parts of
the trajectory are recomputed as needed. For the choice of these checkpoints,
several strategies exist. In [1], an approach called multilevel windowing has
been developed, based on a uniform distribution of the checkpoints. A more
sophisticated strategy, binomial checkpointing, yields a minimal amount of re-
computations [5], if the number of timesteps and checkpoints is fixed beforehand.

1

2

For l timesteps with varying temporal complexity, an optimal binomial check-
point distribution with c checkpoints can be calculated in O(cl2) operations.
For adaptive time-stepping schemes, a heuristic has been proposed in [7], which
causes only a slight increase in runtime compared to static optimal checkpoint-
ing. Recent work is concerned with optimality for a variable number of time
steps ([18]). Optimality is also lost, if the number of checkpoints is not fixed,
for example due to adaptive grid refinement during the forward solution.

Checkpointing techniques allow to restore the discretized state trajectory
exactly. The trade-off is between storage demand, storage bandwidth, and CPU
time needed for multiple forward solves. In an iterative optimization algorithm
using discretized and hence inexact state trajectories, exact reconstruction is
not required for convergence. Hence we propose to employ lossy compression
of state trajectories, which can be reconstructed up to a sufficiently small error
during the adjoint solve without incurring the need for repeated forward solves.
Employing computationally inexpensive compression schemes, the trade-off is
then between storage demand and accuracy.

Both lossless and lossy compression of PDE solutions mostly on structured
grids have been proposed, however, without being tailored to adjoint gradient
computations.

Lindstrom and Isenburg [9] suggest to traverse the simulation data in some
coherent order (e. g. row-by-row on a structured grid), and perform prediction
based on a subset of the already encoded data. They make no use of the geom-
etry of the domain, or the hierarchy of grids arising from adaptive (or uniform)
grid refinement in the course of the PDE solution. Shafaat and Baden [16]
propose a lossy compression strategy called adaptive coarsening. Starting from
a fine space discretization, their algorithm works by tentatively coarsening the
mesh, reconstructing the result, and removing points where the reconstructed
data approximates the original data with sufficient accuracy. If, however, the
mesh is constructed by an adaptive refinement procedure during the solution
progress for a given accuracy, virtually no coarsening is possible without vio-
lating the error bound. Schröder-Pander et. al. [15] make use of a sequence of
tessellations to reduce storage requirement of cell averages in finite volume meth-
ods. Prediction errors are stored for each level at full accuracy, but dropping
those cells with a prediction error below a prescribed tolerance.

The best-known lossy compression approach to time-varying data can be
found in the MPEG video compression standard [11]. Videos consist of a series of
single frames showing spatial and temporal correlations. The spatial correlations
are reduced by the discrete cosine transform applied to blocks of typically 8× 8
or 16 × 16 pixels. The resulting coefficients are then quantized in a way to
maintain a certain optical quality of the video. For example, the human visual
system is more sensitive to low spatial frequencies than high spatial frequencies,
allowing for a coarser quantization of high frequency components. Quantization
is done by dividing the coefficients by predefined factors and a rounding step.
Motion prediction is performed to construct a frame from previous (and possibly
later) frames, as mostly only small changes occur from one frame to the next.
Typically, the encoding process, in particular the motion compensation, is rather
time-consuming. There is a vast amount of literature on video compression, we
refer to [11, 14, 19] and the references therein.

The approach proposed in this paper is adapted to the specific needs of
adjoint gradient computation and hence differs from the algorithms above in

3

several ways. It is designed to be easily used on unstructured, adaptively refined
grids in two and three space dimensions. We aim to control the error in the
reduced gradient needed for the solution of optimal control problems. During
the adjoint solve, the stored data is accessed only backwards in time, which will
be exploited for temporal prediction. Compared to checkpointing, the aim is to
reduce the computational overhead required for state reconstruction, such that
only computationally inexpensive compression and decompression schemes will
be used.

This paper is organized as follows: The problem setting and the optimization
algorithm is specified in Section 2. In Section 3, the lossy compression algorithm
is described in detail. Section 4 is dedicated to a discussion of the trade-offs
between computation time, storage demand, and accuracy. Numerical examples
are given in Section 5.

2 Problem Setting

We consider the abstract optimal control problem

min
y∈Y,u∈U

J(y, u) subject to c(y, u) = 0,

with the equality constraint c : Y × U → Z? being a parabolic equation on
Hilbert spaces Y,U, Z. Denoting with y(u) the (at least locally) unique solution
of the state equation for a given control u, the reduced cost functional is defined
as j(u) = J(y(u), u). Minimizing j allows to use any solver for the state equation
as a black-box and avoids the need for a full 4D-discretization of the original
optimal control problem. As we consider the unconstrained case, i. e. there are
no control constraints, the first order necessary optimality conditions for a local
minimizer ū ∈ U are given as j′(ū) = 0.

The derivative of the reduced functional can be computed via the implicit
function theorem, and is given as

〈j′(u), δu〉U?,U = 〈Ju(y(u), u) + y′(u)?Jy(y(u), u), δu〉U?,U

with
y′(u) = −cy(y(u), u)−1cu(y(u), u).

Defining the adjoint state λ as the solution of

cy(y(u), u)?λ = Jy(y(u), u),

which is a backward-in-time parabolic equation, we get the derivative

j′(u) = Ju(y(u), u)− cu(y(u), u)?λ.

Depending on the objective functional and the state equation, the solution of
the forward state equation over the whole space-time cylinder is needed for the
adjoint equation, incurring the need of storing the state at every timestep.

A simple class of methods for computing solutions of the optimization prob-
lem are descent methods. In combination with additional requirements on the
step size, convergence can be shown if the descent directions δj satisfy the so-
called angle-condition

〈j′(u), δj〉U?,U ≤ −α ‖j
′(u)‖U? ‖δj‖U (1)

4

for some fixed α > 0 [6]. Defining the reduced gradient ∇j(u) with aid of the
Riesz isomorphism, δj = −∇j(u) is clearly an admissible descent direction. For
efficient numerical implementation, discretization, numerical quadrature and
iterative solution of the arising linear equation systems is necessary. Hence the
reduced gradient can not be computed exactly, i. e. only δj = −∇j(u) + e
can be chosen. For convergence of the inexact gradient method, we have the
following lemma.

Lemma 2.1. Let ε < 1
2 and compute δj = −∇j(u) + e such that ‖e‖ ≤ ε ‖δj‖.

Then δj satisfies the angle-condition (1).

Proof. As ‖δj‖ ≤ ‖−∇j(u)‖+ ‖e‖ ≤ ‖−∇j(u)‖+ ε ‖δj‖ , we get

〈j′(u), δj〉 = −‖∇j(u)‖2 + 〈j′(u), e〉 ≤ −(1− ε) ‖∇j(u)‖ ‖δj‖+ ‖∇j(u)‖ ‖e‖
≤ −(1− 2ε) ‖∇j(u)‖ ‖δj‖ ,

and thus (1) with α = 1− 2ε > 0.

To reduce storage size and time for memory access, we allow for another
source of inexactness in the adjoint equation, besides the aforementioned dis-
cretization and iteration errors. Of course the error in the reduced gradient
induced by inexact storage of the state values needs to be controlled to fulfill
the conditions of Lemma 2.1. For a linear state equation, the error can be com-
puted by solving the adjoint equation with the state quantization error as the
right hand side.

Example 2.2. Consider the following linear-quadratic boundary control prob-
lem.

min
1
2
‖y − yd‖2L2(Ω×(0,T)) +

α

2
‖u‖2L2(∂Ω×(0,T))

subject to

yt −∆y = 0 on Ω× (0, T), ∂νy + y − u = 0 on ∂Ω× (0, T), y(·, 0) = 0 in Ω.

The reduced gradient is given as

∇j(u) = αu+ λ

with the adjoint variable λ solving

−λt−∆λ = y−yd on Ω×(0, T), ∂νλ+λ = 0 on ∂Ω×(0, T), λ(·, T) = 0 in Ω,

see for example [20].
If now the exact state is perturbed by a quantization error, ỹ = y + δy, the

error in the reduced gradient amounts to δλ = λ̃−λ, with λ̃ the adjoint solution
to the right hand side ỹ − yd. Due to the linearity, δλ is the solution of

−δλt−∆δλ = δy on Ω×(0, T), ∂νδλ+δλ = 0 on ∂Ω×(0, T), δλ(·, T) = 0 in Ω.

Thus the error norm is bounded by the norm of the quantization error in the
state values, e. g. for δy ∈ L2(Ω× (0, T)), ‖δλ‖L2(0,T,H1(Ω)) ≤ c ‖δy‖L2(Ω×(0,T))

[20].

If the state equation is nonlinear, the coefficients of the adjoint equation may
depend on the state values, and are thus not exactly known.

For the remainder of this paper, we resort to bounding a weighted L∞-
quantization error of the state. Impact on convergence rates of optimization
algorithms will be thoroughly analyzed in a future paper.

5

3 Lossy Compression

3.1 Paradigm

For the compression algorithm, three main ingredients are used: prediction,
quantization of prediction errors, and entropy coding. First, a predictor is used
to construct an approximation to the finite element solution of the state equation
at the current time step. As we require the predictor to be cheap in terms of
computational complexity, an inexact predictor is used. Spatial correlations are
exploited using prolongation in mesh hierarchies, while temporal correlations are
exploited by taking values from the next time step into account. As the adjoint
equation is integrated backwards in time, these values are available. Uniform
quantization of the prediction error, and entropy coding of the quantized values
reduces the storage requirement at the price of a loss of information.

3.2 Multilevel compression in hierarchical meshes

Notation. We consider the following discretization of the parabolic state
equation. A time stepping scheme, e. g. the linearly implicit Euler method,
is used on a temporal grid 0 = t0 < · · · < tF = T . At each time step, the arising
elliptic sub-problems are discretized with linear finite elements on a hierarchic
mesh. To fix notation, we consider a nested family T0 ⊂ · · · ⊂ Tl of trian-
gulations, constructed from an initial triangulation T0 of a polygonal domain
Ω ⊂ Rd. To be more precise, Tj is generated by j levels of refinement, either
uniform, or adaptively via a posteriori error estimators. We refer to j as the
level of the triangulation Tj , and accordingly to Tj as the level-j-grid. Let Sj
be the space of piecewise linear finite elements over the triangulation Tj ,

Sj = {y ∈ C0(Ω̄) : y is a linear polynomial on each T ∈ Tj}, (2)

and Sh := Sl. The set of nodes on level j is denoted by Nj , in the following we
will sometimes write k ∈ Nj instead of xk ∈ Nj . With the nodal basis of Sh,

Φ = {ϕi : i = 0, . . . |Nl| − 1}, ϕi(xk) = δik for xk ∈ Nl, (3)

the solution of the PDE at a fixed timestep t is represented as

y(t, x) =
∑
k∈Nl

yk(t)ϕk(x). (4)

Prediction. The spatial predictor makes use of the grid hierarchy. Denote
by y(t) the coefficients at a fixed timestep of the finite element solution of the
state equation computed on the finest grid, and by yj(t) the restriction of these
coefficients to the level-j-grid. In the remainder of the section we leave out the
dependence on t as we are concerned with stationary compression only.

Instead of storing the coefficients y uncompressed the following operations
are performed:

• for each grid level j = 0, . . . , l:

1. Prolongate the solution from the previous level: ỹj = Pj ŷj−1

2. Calculate prediction error on level j: ej = yj − ỹj

6

3. Quantize the prediction error: qj = Q(ej)
4. Reconstruct the solution: ŷj = Pj ŷj−1 +Q†(qj)

In the algorithm, the reconstructed state (from the quantized coefficients)
is used for prolongation instead of the exact solution y on level l. This ensures
that the decompression routine can mirror this procedure, as only information
available to the decompression routine is used, and thus avoids error accumu-
lation. A similar technique is used in MPEG video compression, where the
reconstructed values (i. e. inverse quantization, inverse discrete cosine trans-
form, and in the latest standard application of in-loop deblocking filters) are
used for motion prediction in the encoder as well as in the decoder ([19]).

The simplest prolongation operator Pj is linear interpolation between the
grid levels, i. e. for a node k ∈ Nj+1,

Pj+1y
k
j =


ykj , if k ∈ Nj
1
2 (ymj + ynj), if k is dividing the edge between nodes m,n ∈ Nj .
0, if j = −1.

Of course higher order prolongation can be used for prediction as well.

Quantization. The essential step of the compression algorithm is the quanti-
zation of the prediction errors, denoted above by the operator Q. The algorithm
is the following:

• Let Ij = [emin
j , emax

j] be the range of the prediction errors on level j

• for every node k ∈ Nj \ Nj−1:

1. calculateNk
j , the number of quantization intervals necessary for keep-

ing a specified error bound δk:

Nk
j ≥

|Ij |
2δk

.

2. divide Ij into Nk
j equally sized subintervals and compute the subin-

terval index ikj of ekj

For reconstruction, a coefficient with interval index ikj is assigned the midpoint
of its subinterval, i. e.

Q†(ikj) = emin
j +

(
ikj +

1
2

)
emax
j − emin

j

Nk
j

. (5)

Note that for each grid level, the bounds of the range Ij have to be stored on
disk as well.

The quantization routine above allows to choose the number of quantization
intervals for each node individually, which makes it possible to perform spatially
nonuniform quantization and to bound the quantization error in weighted L∞-
norms.

For calculating the number of quantization intervals without further infor-
mation as described above, we note the following obvious observation:

Lemma 3.1. For a node k, |ykj − ŷkj | ≤ δk

2 , with δk the size of the quantization
intervals.

7

Entropy coding. The quantized coefficients are written to disk using range
encoding [10]. According to their different frequency of occurrence, the coef-
ficients are encoded with variable-sized symbols, assigning fewer bits to more
frequent coefficients. As the frequency distribution has a peak at 0, this in-
creases the compression factor. The frequency distribution can be computed
and stored before encoding, or continuously updated during encoding and de-
coding. While storing the frequency distribution introduces a minor overhead in
storage space, numerical experience shows that it may increase the performance
of the range coder and thus the overall compression factor more than updating,
at least for moderate problem sizes.

3.3 Backwards in time prediction

Up to now, only spatial correlations have been exploited for compression. But
of course the solution at each timestep depends on the previous times, and is
usually quite similar to the preceding one. As no random access is required,
the temporal correlation can be used to construct a second predictor, and use
differential encoding to further reduce the storage requirement. In the simplest
case, the temporal predictor assumes the quantized spatial prediction error to
be constant from one timestep to the next, i. e. the difference to be entropy
coded is calculated for tn < T as

dkj (tn) =

{
ikj (tn)− ikj (tn+1), if k ∈ Nj(tn) ∩Nj(tn+1)
ikj (tn), otherwise

. (6)

Care has to be taken, as grids may change between timesteps, if adaptive re-
finement is used. At final time,

dkj (T) = ikj (T) ∀k ∈ Nj(T). (7)

This ensures that decoding is possible backward in time. The number of different
values to be encoded is reduced by this approach, increasing the performance
of the range coder.

For avoiding error accumulation due to quantization, the prediction at the
timestep tn is performed not for the solution ŷ(tn), but for the quantized coef-
ficients of the prediction error. Note that when using backwards in time pre-
diction, the quantized finite element solution of at least one previous timestep
has to be kept in memory, as it is encoded only after the following timestep
is performed. For higher order predictors (linear, quadratic), more than two
timesteps have to be kept in memory, which is easily implemented, but only
feasible if the spatial discretization is not too large.

3.4 Reconstruction

With adaptive mesh refinement and time stepping, interpolation of the recon-
structed state values in space and time will be needed for the adjoint solution.
When storing the state values, the mesh needs to be stored additionally, see [8]
for an efficient method. During the adjoint computation, at a given timestep
first the corresponding state time needs to be found, tstate = T − tadjoint. Since
the time grids will in general be different, y(tstate) can be evaluated e. g. by
constant or linear interpolation from the nearest state time steps for which the

8

solution was stored. Secondly, the state mesh needs to be restored, such that
prediction, de-quantization and correction is performed at the correct nodes. In
space, the reconstructed finite element solution of the forward equation can be
evaluated by interpolation.

4 Quantization Error and Compression Rate

In this section, we will analyze the behaviour of our algorithm, and compare it
to checkpointing, the current state-of-the-art method. The compression factor,
or rate, measuring the performance of the algorithms is defined as the ratio
between uncompressed and compressed storage size.

4.1 A priori estimates for lossy compression

As seen in Section 3.2, the trade-off between compression and quantization error
depends on the range of prediction errors on each level. For ease of presentation,
we look at a simple model problem on a 2D domain. As in this section we
are concerned with spatial prediction only, we leave out the time dependence,
assume y ∈ W 2,∞(Ω), and use linear interpolation for prolongation. The semi-
norm | · |2,∞,Ω is given by

|y|2,∞,Ω = max
|α|=2

‖∂αy‖L∞(Ω) ,

with a multi-index α.
Let Ω ⊂ R2 be a polygonal domain, and T0, . . . , Tl a nested family of triangu-

lations of Ω as before, with Tj generated from T0 by j uniform refinement steps,
i. e. every triangle on level j − 1 is subdivided into four congruent triangles in
the jth refinement step. The maximum diameter of a triangle on level j is given
by hj = maxT∈Tj

diam(T).
From standard finite element theory, see e. g. [3], an estimate for the inter-

polation error is known:

Lemma 4.1. Let Tj be a shape-regular family of triangulations of a polyhe-
dral domain Ω, and denote by Ij := Ihj

the interpolation operator with linear
polynomials. Then for y ∈W 2,∞(Ω),

‖y − Ijy‖L∞(Ω) ≤ ch
2
j |y|2,∞,Ω. (8)

For uniform refinement, hj = h02−j with given initial mesh-width h0. For
an a priori estimate of the error-to-compression ratio of the lossy compression
algorithm, we are interested in the prediction error on level j + 1,

‖Ij+1y − Ijy‖L∞(Ω) ,

as the range of the prediction error determines the number of bits needed to
keep a given error bound.

Lemma 4.2. With the same assumptions as in Lemma 4.1, it holds

‖(Ij − Ij−1)y‖L∞(Ω) ≤ 4c
1

22j
|y|2,∞,Ω, (9)

with c independent of j.

9

Proof. With a generic constant c independent of hj ,

‖(Ij − Ij−1)y‖L∞(Ω) ≤ ‖y − Ij−1y‖L∞(Ω) ≤ ch
2
j−1|y|2,∞,Ω

≤ 4ch2
j |y|2,∞,Ω ≤ 4c

1
22j
|y|2,∞,Ω.

Let Sh be the space of piecewise linear finite elements over the family of
triangulations defined above, and consider the hierarchical basis splitting Sh =
V0 ⊕ · · · ⊕ Vl, with Vj = span{ψjk : k ∈ Nj\Nj−1}. Here, N−1 = ∅. With the
notation introduced in Section 3 the hierarchical basis ψjk is given as follows:

ψ0k(xi) = ϕk(xi), xi ∈ N0

ψjk(xi) = ϕk(xi), xi ∈ Nj\Nj−1,

see [21]. Hence, yh ∈ Sh can be written as

yh =
l∑

j=0

∑
k∈Nj\Nj−1

ajkψjk. (10)

This decomposition yields the coefficients

a0k = (I0y)(xk), xk ∈ N0 (11)
ajk = (Ijy − Ij−1y)(xk), xk ∈ Nj\Nj−1. (12)

With Lemma 4.2 we can estimate the `∞-norm of the coefficients of the hierar-
chical basis representation on a given level j > 0,

‖(ajk)k‖`∞ ≤ c2
−2(j−1)|y|2,∞,Ω. (13)

Quantization is chosen such that a given error bound δ is maintained, yield-
ing an interval length 2δ, and thus at most

2
(
4ch2

j |y|2,∞,Ω + δ
)

2δ
=

4ch2
j |y|2,∞,Ω
δ

+ 1 (14)

different quantized values on a given level j. The additive factor 2δ in the
numerator on the left is due to the inexact storage of the nodes on level j −
1, which will in the worst case differ from the original nodes by this value,
see Figure 1 for a sketch of the situation. For reaching a given discretization
accuracy, l refinements are needed. Allowing a quantization error of the same
magnitude as the interpolation error yields

δ = ‖y − Ily‖L∞(Ω) ≤ ch
2
l |y|2,∞,Ω. (15)

Thus, the number of quantized values on level j can be estimated as

4ch2
j |y|2,∞,Ω

ch2
l |y|2,∞,Ω

+ 1 = 22(l−j+1) + 1.

Each value can be stored using

ld(22(l−j+1) + 1) ≤ 2(l − j + 1) +
1

22(l−j+1)

10

y(x)

1
2
(y0j + y1j)

≤ δ

y1jy0j

≤
‚‚ajk

‚‚
`∞

ŷ0j
1
2
(ŷ0j + ŷ1j) ŷ1j

y0j+1

Figure 1: Prediction and quantization error

bits, where the estimate is due to the concavity of the logarithm. If higher
accuracy is desired, the number of bits can be estimated by scaling δ in the
previous computation.

Remark 4.3. The L∞-approximation error for discretization by linear finite
elements can be estimated as

‖y − yh‖L∞(Ω) ≤ ch
2| lnh||y|2,∞,Ω, (16)

which behaves like O(h2−ε) for any ε > 0 ([3],[2]). Hence, the number of bits
needed for achieving discretization error accuracy will be slightly smaller than
estimated above.

For a uniformly refined grid, there are approximately c2dj vertices on level
j, with c2dj − c2d(j−1) new vertices on that level. The overall number of bits
needed can thus be estimated as

l∑
j=1

c
(

2dj − 2d(j−1)
)(

2(l − j + 1) +
1

22(l−j+1)

)
+ c

(
2(l + 1) +

1
22(l+1)

)
(17)

≈ c2dl
(

23+3d − 13 · 22d + 5 · 2d + 23d − 1
(2d − 1)2(2d+2 − 1)

)
For the last estimate, terms with−dl contributing to the exponent were dropped.
With c2dl vertices in the finest mesh, the above estimate yields for d = 2 approx-
imately 2.9 bits/vertex on average, which is a compression factor of 22 compared
to storing double precision floating point data at 64 bit per value. In Figure 2,
the resulting relation between error and compression is shown.

Remark 4.4. If we just assume y ∈ H2(Ω), it holds

‖y − Ihy‖L∞(Ω) ≤ ch
2−d/2|y|H2(Ω)

as H2(Ω) ⊂W 2−d/2,∞(Ω) for d = 2, 3. The estimated number of bits per vertex
needed to reach discretization error accuracy can then be computed as

l∑
j=1

c
(

2dj − 2d(j−1)
)((

2− d

2

)
(l − j + 1) +

1
2(2−d/2)(l−j+1)

)
+

c

((
2− d

2

)
(l + 1) +

1
2(2−d/2)(l+1)

)
.

11

0.01

0.1

1

10

100

5 10 15 20 25 30 35 40 45

pe
rc

en
ta

ge
of

di
sc

re
ti

za
ti

on
er

ro
r

compression factor

2d
3d

Figure 2: Error vs. compression factor: a priori estimates for spatial compres-
sion

For 2D, this yields approximately 1.8 bits/vertex. Therefore, for a fixed number
of nodes, less bits are needed than in the estimate for y ∈W 2,∞(Ω) due to worse
approximation properties.

4.2 Comparison with checkpointing

In contrast to the lossy compression approach, the trade-off of the alternative
method, checkpointing, is between runtime and compression rate. For a fixed
number of timesteps l to be reversed and a given number of checkpoints c, the
following relation for the runtime increase is shown e. g. in [5].

Lemma 4.5. For the minimal total number of forward steps t(l, c), it holds

t(l, c) = rl − (c+ r)!
(c+ 1)!(r − 1)!

,

with r the unique integer satisfying

(c+ r − 1)!
c!(r − 1)!

< l ≤ (c+ r)!
c!r!

.

Thus, the ratio t/l measures the additional number of timesteps to be com-
puted overall, relative to the number of timesteps for a single state equation
solve. In Figure 3, the resulting increase in runtime for a range of compression
factors is shown, for a fixed number of timesteps (l = 100) and varying number
of checkpoints.

The number r in Lemma 4.5, the so-called repetition number, is the maxi-
mum number of times a single forward timestep is computed, and thus an upper

12

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50

t/
l

(s
ta

te
eq

ua
ti

on
so

lv
es

)

compression factor

Figure 3: Relative work vs. compression factor for checkpointing, l = 100
timesteps

bound of the cost of checkpointing relative to the cost of a forward solve. For
a given number of checkpoints, fixing r determines the maximum number of
timesteps that can be reversed using binomial checkpointing.

One appealing feature of checkpointing is the slow growth of the relative
work for an increasing number of timesteps. For r � c = const., r ≈ l1/c

([5]). This is very satisfactory for reversing a large number of timesteps, like
in algorithmic differentiation, where every single arithmetic operation has to be
reversed. In the context of optimal control with time-dependent PDEs, however,
the number of forward timesteps is often rather small in comparison, such that
the excellent limit behaviour of checkpointing is not that crucial.

The compression rate of the lossy compression approach on the other hand
is more or less independent of the number of timesteps, as every frame is com-
pressed. The only time-dependence of the compression rate enters through the
temporal prediction. The smaller the timesteps, the smaller will be the temporal
prediction error, and the less data will need to be stored.

Considering the size of the data which is actually written to disk, the per-
formance of the two approaches differs clearly. The compression rates of check-
pointing are reached by reusing checkpoints, such that the reduction of memory
accesses is much smaller than the reduction in storage size. In [17], the write
counts for checkpointing were considered, and explicit formulas derived for cer-
tain repetition rates, numbers of checkpoints and timesteps. In Figure 4, the
computed write counts are shown for l = 1000 timesteps, and c = 50, . . . , 100
checkpoints, leading to compression factors between 10 and 20. It is appar-
ent that the amount of data transferred to the storage device, and hence the
memory bandwidth, is barely reduced. However, there are settings for which

13

a reduction in memory bandwidth actually is achieved, e. g. for r = 2 and
l ≤ 2c + 1. For such a setting, the store-everything-approach, i. e. writing all
timesteps of the forward solution to disk, turns out to be more expensive in
terms of computation time than checkpointing, despite the need for recomputa-
tions, see [17]. Moreover, frequently accessed checkpoints can possibly be kept
in RAM, decreasing the runtime. Clearly, memory bandwidth has a significant
impact on the computational efficiency of the algorithm.

In contrast, the lossy compression approach reduces the memory access by
the same factor as the storage space, for all compression rates.

890

900

910

920

930

940

950

10 12 14 16 18 20

nu
m

be
r

of
ti

m
es

te
ps

w
ri

tt
en

compression factor

Figure 4: Actual write accesses for checkpointing and l = 1000 timesteps

Remark 4.6. Of course both approaches could easily be combined, using lossy
compression to reduce the size of each checkpoint. As more checkpoints can
be used with the same amount of available storage space, the computational
work of the checkpointing algorithm is reduced. However, neither optimality of
reversal schedules for dynamically varying checkpoint numbers, nor the impact
of error propagation due to inexact checkpoint storage is currently clear.

4.3 Impact of adaptive mesh refinement

Using adaptive mesh refinement instead of uniformly refined grids can lead to
a drastic reduction of degrees of freedom, and thus to less data. As there are
less nodes on higher levels in the mesh hierarchy, the expected compression
factors will be smaller than in the uniform refinement case. It might appear
that adaptivity renders compression ineffective. This, however, is not true. As
in the uniform refinement case, the prediction errors tend to be smaller on finer
levels, such that the range to be quantized contains fewer intervals. Moreover,
while adaptivity is used to control the error in the solution of the state equation,

14

the quantization error effects the solution of the adjoint equation. The different
error propagation mechanisms might lead to different tolerances to be chosen.

A numerical example can be found in Section 5.2.

5 Numerical Examples

For simplicity of exposition, we restrict ourselves to 2D examples. The lossy
compression algorithm is included in the finite element toolbox Kaskade 7 [4],
which is used for the solution of the optimal control problems.

5.1 Some auxiliary test functions

To demonstrate the effectivity of the lossy compression in a simple setting, we
consider the same two functions as in [15],

f1(x) = sin(12(x0 − 0.5)(x1 − 0.5))

f2(x) =

{
sin(x0) cos(x1), x0 > 0.5
cos(x0) sin(x1), otherwise

as well as two additional functions with different curvatures,

f3(x) = sin(50(x0 − 0.5)(x1 − 0.5))

f4(x) =
1
2

(x2
0 + x2

1)

As the functions only depend on x ∈ [0, 1]2, not on time, only spatial predic-
tion and lossy encoding of the prediction errors is performed. All functions
are interpolated with linear finite elements on different grids. The grids are
generated by uniform red refinement from an initial coarse mesh with 2 ele-
ments, resulting in 32768 cells and 16641 nodes on the finest level for seven
refinements, 131072 cells/66049 vertices for eight refinement steps, and 524288
elements/263169 nodes after nine refinements.

This setting allows to compare the a priori estimates from section 4 with the
numerical results, except for f2, which is discontinuous. The approximate L∞-
interpolation errors are shown in Table 1 together with the compression factors
for a quantization error tolerance of the same magnitude. One can notice a
rather good agreement with the a priori estimates. For function f4, which has
a very slight curvature, the linear interpolation used as a predictor performs
expectedly good, leading to higher compression factors.

For comparison with [15], errors and compression factors for f1 and f2 are
shown in Tables 2 and 3

As expected, for a fixed error bound δ the compression factor increases with
the number of grid levels, as the prediction error gets smaller each level, and
fewer bits need to be stored. In Figure 5, the reconstructed functions are shown
for 7 refinement levels and δ = 10−2.

5.2 Adaptive mesh refinement

Adaptive mesh refinement can be seen as a means of data compression itself.
To study the effect on the lossy storage approach, we consider adaptive interpo-
lation of f1 from Section 5.1. To reach an L∞-interpolation error of 1.9 · 10−4,

15

refine- function interpolation avg. bits/node overall compression
ments error factor

7
f1 7.8 · 10−4 2.56 22.8
f3 1.69 · 10−2 2.81 22.1
f4 1.5 · 10−5 1.55 42.3

8
f1 1.9 · 10−4 2.56 24.9
f3 4.2 · 10−3 2.87 22.8
f4 3.8 · 10−6 1.49 48.3

9
f1 4.9 · 10−5 2.56 26
f3 1.1 · 10−3 2.87 23.9
f4 9.5 · 10−7 1.49 49.1

Table 1: L∞-interpolation errors and compression factors for the different test
functions fi(x), i = 1, 3, 4. The average bits/node are counted after quantiza-
tion, the overall compression factor contains some overhead like interval bounds,
and benefits from entropy coding.

refinements δ compression factor saved storage
1.00 · 10−6 3.0 66.7%

7 1.00 · 10−5 5.2 80.8%
1.00 · 10−4 9.7 89.7%
1.00 · 10−6 7.8 87.2%

9 1.00 · 10−5 13.6 92.6%
1.00 · 10−4 30.1 96.7%

Table 2: Errors and compression factors for test function f1

eight uniform refinements were needed, leading to 66049 vertices. Using an
adaptive grid, the degrees of freedom could be reduced to 42893, a compression
factor of merely 1.5. Lossy storage of the nodal values led to overall compression
factors of 24.9 in the uniform case, and 13.8 for the adaptive interpolation.

For f1, adaptive interpolation had a rather small impact. We now consider
interpolation by linear finite elements of the 2D Gaussian function

f(x) = exp
(
− (x0 − 0.5)2 + (x1 − 0.5)2

2σ2

)
,

with σ = 0.025 on Ω = [0, 1]2. As f(x) exhibits a highly local peak, adaptive
mesh refinement leads to a drastic reduction of degrees of freedom, and thus
of values which need to be stored. For reaching an L∞-interpolation error
of approximately 0.0015, a uniformly refined mesh consists of 263169 vertices,
whereas the adaptive grid just needs 4237 nodes. This amounts to a compression
factor of ≈ 62. The compression factor of the lossy storage approach for a
quantization error bound of 0.0015 reduces from 54 on the uniform mesh to 12
for the adaptive grid. The latter still amounts to 91.7% saved storage space, the
combination of adaptive mesh refinement and lossy storage saves 99.9% space
and memory bandwidth.

16

refinements δ compression factor saved storage
1.00 · 10−6 7.0 85.7%

7 1.00 · 10−5 13.9 92.8%
1.00 · 10−4 34.1 97.1%
1.00 · 10−6 22.6 95.6%

9 1.00 · 10−5 83.9 98.8%
1.00 · 10−4 213.3 99.5%

Table 3: Errors and compression factors for test function f2

Figure 5: Reconstructed functions f1 (left) and f2 (right) at quantization error
10−2 and compression rates of 45 (f1) and 127 (f2) for 7 uniform refinements.

5.3 Boundary control of the linear heat equation

We now look at the model problem

min
1
2
‖y − yd‖2L2(Ω×(0,T)) +

α

2
‖u‖2L2(∂Ω×(0,T))

subject to

yt −∆y = f in Ω× (0, T)
∂νy + y = u on ∂Ω× (0, T)
y(·, 0) = 0 in Ω.

The above optimal control problem is solved with the aid of the compres-
sion algorithm in its basic form, i. e. spatial prediction by linear interpolation
between the grid levels, and constant prediction in time.

The given data are

Ω =]0, 1[×]0, 1[, T = 1, α = 10−5,

yd(x, t) = t((x0 − 1)2 + (x1 − 1)2), f(x, t) = (x0 − 1)2 + (x1 − 1)2 − 4t.

17

We apply an implicit Euler method for time stepping, with a fixed step size
dt = 0.05, and a spatial discretization with linear finite elements on a grid with
32768 cells on the finest level, generated by 7 uniform refinement steps from
the coarse grid. For minimization, a simple gradient-descent algorithm with
an Armijo step size rule is used (see e. g. [6],[13]). The discretization errors
in the reduced gradient and control are estimated by using a solution of the
problem on a fine mesh as reference. For comparison, we stop the optimization
after a certain number of iterations. We notice an increase in runtime of about
15% for a compression rate of 33.1 (i. e. 96.9% of the memory is saved) and a
relative L∞-error in the reduced gradient of 3.35 · 10−5, well below the relative
discretization error of approximately 3.31 · 10−4 (see Figure 6). The qualitative
behaviour predicted by the a priori estimates is clearly visible. Also, the impact
of the simple temporal prediction can be seen. Note that despite the relatively
small size all state values are written to disk, and are not kept in RAM. The
runtime-increase is due to the small problem size and will of course diminish
for larger problems, where the writing takes more time. Eventually, we expect
a decrease in runtime compared to uncompressed storage.

Of course the algorithm works without modifications on unstructured grids.
We consider the above boundary control problem on the domain shown in Fig-
ure 7. The finest mesh is generated by 6 refinement steps, resulting in 57344
cells (29121 nodes). For the same error bound, the compression factor for the
unstructured grid is not as good as for the structured grid. As there is one less
refinement level for the unstructured grid, this was to be expected. Nevertheless,
the results, shown in Figure 8, are quite satisfactory.

5.4 Control of a semilinear parabolic equation

We now consider an optimization problem with a semilinear parabolic equation
on the unit square, with the time-dependent control acting in five parts of the
domain (see Figure 9). The control is only varying in time and is constant in
space on each of the five shaded subdomains.

The optimal control problem is given by

min
1
2
‖y − yd‖2L2(Ω×(0,T)) +

α

2
‖u‖2L2(0,T ;R5)

subject to

yt − ε2∆y = y(y − a)(1− y) + u in Ω× (0, T)
∂νy = 0 on ∂Ω× (0, T)

y(·, 0) = y0 in Ω

and

Ω =]0, 1[×]0, 1[, T = 10, a = 0.1, α = 10−5, ε = 0.15

yd(x, t) =
1

1 + e

“
(‖x‖− 1

3)· 1
ε
√

2
−t

” , y0(x) = yd(x, 0).

This problem can be seen as a mock-up of optimization of cardiac defibrillation
for the monodomain equation, see e. g. [12], where the control is some external
current density stimulus applied only at parts of the domain.

18

As before, the optimal control problem is solved by a steepest descent
method, with the PDEs being discretized in time by a linearly implicit, ex-
trapolated Euler method with fixed step size dt = 0.1, and linear finite elements
in space. The grid hierarchy consists of 8 levels, with 32768 cells and 16641
nodes on the finest level. Again, we obtain good compression rates with relative
errors in the reduced gradient and computed control well below the discretiza-
tion error (see Figure 10), approximated as in Example 5.3. The optimization
algorithm is stopped after some iterations to be able to compare results for
different compression rates. Note that here, as before, the quantization error
tolerance is fixed, and not chosen according to the current size of the gradient
norm in each iteration.

Conclusion

In this paper we have presented an algorithm for the lossy compression of state
trajectories as needed for adjoint gradient computation. A considerable reduc-
tion of the required space can be achieved at negligible computational cost. The
errors introduced in the reduced gradient are well below the discretization error
for a wide range of practically relevant compression factors. Therefore, lossy
compression appears to be a viable alternative to checkpointing.

Acknowledgement. Partial funding by the DFG Research Center Math-
eon, project F9, is gratefully acknowledged.

References

[1] Roland Becker, Dominik Meidner, and Boris Vexler. Efficient numerical
solution of parabolic optimization problems by finite element methods. Op-
tim. Methods Softw., 22(5):813–833, 2007.

[2] Philippe G. Ciarlet. The finite element method for elliptic problems. North-
Holland, Amsterdam, 1978.

[3] Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite
Elements. Springer, New York, 2004.

[4] S. Götschel, M. Weiser, and A. Schiela. Solving optimal control problems
with the Kaskade 7 finite element toolbox. ZIB Report 10-25, 2010.

[5] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles
and techniques of algorithmic differentiation. SIAM, Philadelphia, 2008.

[6] Michael Hinze, Rene Pinnau, Michael Ulbrich, and Stefan Ulbrich. Opti-
mization with PDE constraints. Springer, Berlin, 2009.

[7] Michael Hinze and Julia Sternberg. A-revolve: an adaptive memory-
reduced procedure for calculating adjoints; with an application to com-
puting adjoints of the instationary navier-stokes system. Optim. Methods
Softw., 20(6):645–663, 2005.

19

[8] Felix Kälberer, Konrad Polthier, and Christoph von Tycowicz. Lossless
compression of adaptive multiresolution meshes. In Proc. Brazilian Sym-
posium on Computer Graphics and Image Processing (SIBGRAPI), vol-
ume 22, 2009.

[9] Peter Lindstrom and Martin Isenburg. Fast and efficient compression of
floating-point data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1245–1250, 2006.

[10] G.N.N. Martin. Range encoding: an algorithm for removing redundancy
from a digitised message. Presented at Video & Data Recording Conference,
Southampton, 1979.

[11] Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, and Didier J.
LeGall, editors. MPEG video compression standard. Chapmann & Hall,
New York, 1997.

[12] Chamakuri Nagaiah, Karl Kunisch, and Gernot Plank. Numerical solution
for optimal control of the reaction-diffusion equations in cardiac electro-
physiology. Comput. Optim. Appl., to appear.

[13] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
New York, 2006.

[14] Iain E. G. Richardson. Video codec design. Wiley, Chichester, 2002.

[15] Friederike Schröder-Pander, Thomas Sonar, and Oliver Friedrich. Gen-
eralized multiresolution analysis on unstructured grids. Numer. Math.,
86(4):685–715, 2000.

[16] Tallat M. Shafaat and Scott B. Baden. A method of adaptive coarsening for
compressing scientific datasets. In Bo K̊agström, Erik Elmroth, Jack Don-
garra, and Jerzy Wasniewski, editors, Proc. 8th International Workshop on
Applied Parallel Computing (PARA 06), Ume̊a, Sweden, 2007. Springer.

[17] Philipp Stumm and Andrea Walther. Multi-stage approaches for optimal
offline checkpointing. SIAM J. Sci. Comput., 31(3):1946–1967, 2009.

[18] Philipp Stumm and Andrea Walther. New algorithms for optimal online
checkpointing. SIAM J. Sci. Comput., 32(1):836–854, 2010.

[19] Gary J. Sullivan and Thomas Wiegand. Video compression – from concepts
to the H.264/AVC standard. Proceedings of the IEEE, 93(1):18–31, 2005.

[20] Fredi Tröltzsch. Optimale Steuerung partieller Differentialgleichungen.
Vieweg, Wiesbaden, 2005.

[21] Harry Yserentant. On the multi-level splitting of finite element spaces.
Numer. Math., 49(4):379–412, 1986.

20

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0 10 20 30 40 50 60 70 80 90 100

re
la

ti
ve
L
∞

-e
rr

or
re

du
ce

d
gr

ad
ie

nt

compression factor

without temporal prediction
with temporal prediction

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0 10 20 30 40 50 60 70 80 90 100

re
la

ti
ve
L
∞

-e
rr

or
co

nt
ro

l

compression factor

without temporal prediction
with temporal prediction

Figure 6: Relative error vs. compression rate for gradient (top) and control (bot-
tom) after 100 iterations for the linear problem, for different tolerances for the
quantization error. The horizontal line shows the approximated discretization
error. The temporal predictor yields a noticeable increase of the compression
factor at virtually no computational cost.

21

Figure 7: Initial triangulation of Ω for example 1b and desired state at final
time.

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0 5 10 15 20 25 30 35 40

re
la

ti
ve
L
∞

-e
rr

or

compression factor

reduced gradient
control

Figure 8: Relative error vs. compression rate for reduced gradient and control
after 100 iterations for the linear problem on the unstructured grid (example
1b). The horizontal lines show the approximated discretization errors for the
reduced gradient (solid) and control (dashed).

22

Figure 9: Domain Ω for example 2 and reconstructed state at t = 0.8 after 50
iterations (δ = 5 · 10−4, compression factor 56, 1.14 bits/double).

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0 5 10 15 20 25 30 35 40 45 50 55 60

re
la

ti
ve
L
∞

-e
rr

or

compression factor

reduced gradient
control

Figure 10: Relative error vs. compression rate for reduced gradient and con-
trol after 50 iterations for the semilinear problem. The horizontal line shows
the approximated discretization errors for the reduced gradient (solid) and the
control (dashed).

	Introduction
	Problem Setting
	Lossy Compression
	Paradigm
	Multilevel compression in hierarchical meshes
	Backwards in time prediction
	Reconstruction

	Quantization Error and Compression Rate
	A priori estimates for lossy compression
	Comparison with checkpointing
	Impact of adaptive mesh refinement

	Numerical Examples
	Some auxiliary test functions
	Adaptive mesh refinement
	Boundary control of the linear heat equation
	Control of a semilinear parabolic equation

	Conclusion

