Error boundsfor space-time discretizations of a
3D model for shape-memory materials
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Abstract This paper deals with error estimates for space-time digat®ons of
a three-dimensional model for isothermal stress-indutsformations in shape-
memory materials. After recalling existence and uniqusmesults, a fully-discrete
approximation is presented and an explicit space-time exg@nce rate of order
ha/2 4 t1/2 for somea € (0,1] is derived.

1 Introduction

This note is concerned with error control for fully-dis@etpproximations in the
context of solids undergoing martensitic transformatidngre specifically, we ad-
dress the description of the isothermal 3D quasistaticutian of shape-memory
alloys (SMAs). The latter are metallic alloys showing sonuepssing thermo-

mechanical behavior, namely, strongly deformed specimegain their original

shape after a thermal cyclshape-memory effectMoreover, within some specific
(suitably high) temperature range, SMAs argerelasticmeaning that they fully
recover comparably large deformations. These featuresangresent in most ma-
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terials traditionally used in Engineering and, thus, ar¢hat basis of innovative
and commercially valuable applications. Nowadays, SMAs aarccessfully used
in many applications among which biomedical devices (Vasatents, archwires,
endo-guidewires) and MEMS (actuators, valves, mini-ggigmnd positioners).

We will focus on a phenomenological, small-deformation elddr polycrys-
talline materials describing both the shape memory anduperslastic effect. In
the present isothermal reduction shape-memory effecttisaly not reproduced,
and we refer to [Mie07, MPP09] for models driven by tempemtd’he model
has been originally advanced bp8zA, MAMIYA , & ZOUAIN [SMZ98] and then
combined with finite elements byURiccHio and collaborators [AuS, AuP04]. The
state of the material is determined by its displacemen® — RY with respect to
the reference configuratio? ¢ RY (d = 2,3) and by a tensorial internal variable
2:Q— R‘d’gvd (deviatoricd-tensors) which represents the inelastic part of the defor-
matione, namelyz = € — C~ 1o whereC is the elasticity tensor and is the stress.
In fact, zcorresponds therientedeffective strain of detwinned martensit@sqduct
phasé with respect to twinned martensites and austeipigegnt phase

Our interest in this model is motivated by its ability to deise (at least to a qual-
itative extent) the thermomechanical behavior of SMAs byansof a small number
of easily fitted material parameters (7 material constan®bi). Another interesting
feature of the Souza-Auricchio model is that it turns outeagite naturally posed
in the frame of the variational theory of rate-independgsateams [Mie05]. This fea-
ture was indeed exploited in [AMSO08], where wellposednesaés for continuous
problems (constitutive relation and quasistatic evohjtas well as the convergence
of discretizations and regularizations has been discussegghrticular some fully-
discrete approximation@l; n, z; ) obtained by implicit Euler discretization in time
(1 is the fineness of the time-partition) and piecewise lingaiefielements in space
(his the mesh size) are proved in [AMS08, Theorem 7.1] to c@e/és the unique
solution of the time-continuous quasistatic evolutiontyeon.

The focus of this note is to provide explicit convergencesah space and time
for these fully-discrete approximations. In particulag eheck that

Ja € (0,1) & u—Urnlliqpa)+12- 2 plluygupoxe) < O(hT/241Y2).

In the special case of a convex polyhedf@mand homogeneous Dirichlet conditions
for the displacement the parametercan be chosen to he = 1. A more elaborate
and general theory will be developed in [MP*09].

The above quantitative control is, to our knowledge, the fessult in this direc-
tion in the context of the mechanics of solid-solid phasedfarmations. Note that
our error estimate is derived under natural regularity ireguents. Namely, it de-
pends solely on data and no extra-smoothness of the solutianis assumed. This
specific feature sets this result apart from the existirggdiure on error control for
time- or space-time discretizations of variational eviolutproblems (inequalities)
arising in elasto-plasticity (see [ACZ99, HaR99]).

Related numerical approaches to rate-independent maateé®BMA are given in
[KMRO5, MiR09, MPP09]. However, there the method [ofconvergence is em-
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ployed, which guarantees the convergence of subsequenbearal provides no
quantitative error estimates.

2 The mechanical model

We briefly review the model, the interested reader beingrmedeto the original
papers [SMZ98, AuP02, AuP04, ARSO07] for additional detdilst the reference
configurationQ be a non-empty, bounded, and connected polyhedrd&f'itd =
2,3). We assume the boundad\? to be partitioned in two disjoint open séfgey
and Ipjr with dlMyey = 0o (in dQ) such thatpjr has positive surface measure.

Adopting the framework of Generalized Standard Materiaée(e.g., [Mie06]
and within the small-strain regime), we additively decosmthe linearized defor-
matione = £(u) = %(Du+DuT), whereu is the displacement, into the elastic part
el € Rg;rﬂ and the inelastic (or transformation) part Rggvd. The free energy den-
sity of the material depends @only viagg = -z

W(e,2) = %C(s—z):(s—z) THZ) + %|Dz|2. 1)

Here,C is a positive definite elasticity tensor (for isotropic m&tks, for simplicity),
v > 0 is expected to measure some nonlocal interaction effethéinternal vari-
ablez, andOz stands for the usual gradient with respect to spatial vieesalindeed,
gradients of inelastic strains have already been considarthe frame of shape-
memory materials by REMOND [Fré02] and the reader is referred also taMoT
ET AL. [AGRO3], FRIED & GURTIN [FrG94], MIELKE & ROUBICEK [MiR03] for
examples and discussions on nonlocal energy contributkinally, thehardening
function H: R9%9 — R is given by

dev
/ ¢, 2, (2-ca)}
H(z) = c1y/p?+|2%+ = 2

where the user-defined parameger- 0 is small andcy, ¢z, andcz are given and
represent a superelastic-transformation stress-activégvel, a hardening modu-
lus with respect to the internal variabie and the maximum modulus of trans-
formation strain that can be obtained by alignment (detimigihof the marten-
sitic variants, respectively. One has to mention that thiscgic form of W can
be much generalized and is here fixed for definiteness onlpaltticular,W is

a p-approximation of the original choice of [SMZ98] which inrtucorresponds
to the limit (p,v) — (0,0) (see [AMSO08]). Note that the current choice léfis
just one of the many possible and it is motivated as a smaptbirthe harden-
ing function Hso(2) = 1|2 + 2|2 + x(2) originally introduced by Suza ET
AL. [SMZ98]. Therey : R§:% — [0, +o0] denotes the indicator function of the ball

{ze Rggvd :|z] < cs}. The proposed model in this note is a macroscopic phenomeno-

logical model for shape-memory polycrystalline materiatslergoing phase trans-
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formations driven by stress. The motivation as well as tkxtagxplanations for the
form of Hs, can be found in [AuP02].
The constitutive relations are given in the form

0=0W/de =C(e—-2), (3a)
& =—-0W/0z=C(e—2)—D;H(z) + vAz (3b)

whereé denotes the thermodynamic force associated wiffhe evolution of the
material will be described by the following classical redas:

£ cRIJ2, (3¢c)
divo+f=0inQ, on=T in Mes, U=0 in Ipj. (3d)

The latter equation gives the equilibrium equations, wHeaedT are a given body
force and a surface tension, respectively. The flow rule ¢8oesponds to the clas-
sicalgeneralized normality assumpti¢R > O is the fixedtransformation radiuk
and the symbaf stands for the subdifferential in the sense of convex aiglyi.,
EcRI|Z ifandonlyif —&:(w—2)+Rw —RZ >0 forallwe R

dev *

3 Thevariational formulation

For the admissible displacementand the internal stateswe choose the natural
function spaces
7 Z{ueH (Q;RY lu=00nlp; }, Z EHYQRYY), 2% x 2.

dev

Later we will also need the larger spagé = L2(Q,R% x R4:9). The symbok-,-)

denotes the duality pairing betwee?i and.2. For the loadingd andT in (3d) we
require that defined via

<£(t),q>d:ef/gf(t)-udx+ T(t)-ud,

MNeu

satisfies € C1([0,T]; 2”). Furthermore, we choose an initial datap= (uo, z) €
7 (0) where the set”(t) of stable states at timed [0, T] is defined as the set of all
g=(u,2) € 2 satisfying the condition

/ W(u,2)dx— (£(t), ) g/wci)dx—w(t),qw/ RZ—Zdx  (4)
JQ Q JQ

forallg= (u,2) € 2.
The variational formulation of (3) consists in finding [0, T] — 2 such that
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q(0) = do, (5a)
/QC(s(u)—z):s(v)dx:<£,v> forallve %, (5b)

/Q((C(z—s(u))+DZH(Z)):(W—'Z)+sz:D(w—'z))dx
+/Q R\w|dxf/QR|'z\dx20 forallwe 2, (50)

almost everywhere in time. The following wellposednesstem is proved in
[AMSO08], see also [Mie06, Sec. 5.3].

Theorem 1 (Wellposedness). For each ¢ € .»7(0) problem(5) admits a unique
solution g: [0, T] — -2, which even lies i€ ([0, T]; 2).

Using the general theory of rate-independent systems\@£0db]) it is still pos-
sible to show the existence of energetic solutions for cabese the elasticity tensor
C isz-dependent, as along @depends continuously arand lies between suitable
bounds. However, the uniqueness of the solutions and thechifz continuity in
time strongly depend on the fact thatis independent of.

4 Space-time discretization: main result

Let us now introduce our space-time discretization of (®)tfis aim, we choose
a sequencéll;) o of partitions{0 =1t <t! < ... < the = T} of the time in-
terval [0, T] with max{t —tk-1 : k=1,....k;} < r and a sequenceZ)n-o of
finite-dimensional spaces exhaustigy In particular, assume to be given a regu-
lar triangulation{ .7} of Q [QuV94] and choos&4, and Z, to be the subspaces
of continuous, piecewise polynomials of fixed degnee- 1 on {%}. Finally, let
D E 9, x %4, As for the initial value, we shall ask fapn € “h(0) where the set
of approximate stable statés defined as in (4) by replacing by 2.

Our space-time discretization of (5) consists in findig, = (U ,,2 ) € 2x
fori =0,1,...,k; such that

o = don, (6a)

/Q Ce(U ) —2 )i (Vh) dx = (£(t)), v for all vy € %4, (6b)

. (CU he(Ue ) +DaH (2 )2 (W02, ) + V2, w32 )
+/QR|wh|dx—/QR|6z'nh|dxzo for allwh € % (60)

fori=1,....k. Here we used the short-hand notatide} , = ~—— (7 ,—Z ),
=gt A,

which will also be used foqir y later on. Because of convexity the conditions (6b)-
(6¢) are equivalent to solving incremental minimizationlgems, see [Mie05].
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We shall denote by h = (Urn,Zrn) : [0, T] — Zn C 2 the piecewise-constant-
in-time interpolants of the above fully-discrete solugom particular, we have

Grn() Zoft for it <t<tf k=1..k and grn(T) = q,.

The above scheme has been proved to be wellposed and camverdaMSO08]
(but see also [MiT04] and the detailed analysis of [MP*09pApdix]).

Theorem 2 (Wellposedness, stability, and convergence). For all gon € -#4(0),
there exists a unique, ¢ solving(6). Moreover, there existsgap > 0 such that

Icf ll.2 + |8k p]| , < Cstan foralli =1,....k; andallh> 0.
If additionally g — qo in 2, then rr[I(% llarn(t)—q(t)||.e converges t® ast +
te|0, '
h— 0, where g [0, T] — 2 is the unique solution of Theorem 1.

The purpose of this work is to establish a quantitative cayesce result giving
explicit convergence rates with respect to the meshhsifehe spatial discretization
and the timestep. Our main result reads as follows:

Theorem 3 (Space-time convergence rates). There exista € (0,1] and G > 0
(all independent front and h) such that the following holds. For each €. (0)
there exists a sequencgfe -#1(0) of approximating initial data, such that

max HQ(t)—th(t)H,@ < Cerr(ha/z—i—'[l/z)
te[0,T]

where g and gy are the unique solutions db) and (6), respectively. In cas® is
convex and ey = 0, one can choose = 1.

A proof of this error estimate has been obtained in [MP*09%hi@ more general
setting of an abstract evolutionary inequality. In the presconcrete situation of
SMAs the error-control argument is somehow simpler. Heneake able to provide
a full proof below.

5 Proof of theerror estimate

Define the functionalg’: [0,T| x 2 - R, 7 : 2 — R, and¥ : 2 — [0, ] via

st [ W (@.q),
VACES /Q (H (z)—c—22|z\2> dx, O ES /Q R|z| dx.

In particular, note that there exisBy > 0 such that, for alg € 2, we have that
W(q) < Cy||ql| 2 LetA € Lin(2,2') be defined byAq = D& (t,q) — Dg2(q) +
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£(1), that is, for all(v,w) € 2,
(A(u,2), (v,w)) = /Q (C(s(u)—z):(s(v)—w) +CzwW+ VDZ:DW) dx.

Note thatA is symmetric and coercive, namely there exists 0 such thatAg, q) >
K||q\|§2 forallge 2. Finally, letPy, : 2 — 2y, be the Galerkin projector vi&, which
is defined such th&,q is the unique solution of

(APha, pn) = (Aq,pn)  forall ph € 2. (7)

The Galerkin projector®y, are uniformly bounded with respect hoand commute
with A, i.e.,P{A = APy.

The next lemma provides a useful approximation propertyhefGalerkin pro-
jectors. Note that this lemma crucially relies on the"Hregularity of the associated
linearized stationary problem for (5). Lebe the identity on2.

Lemma 1 (Approximation property). There existr € (0,1] and G > 0 such that
|(Ph—1)d|l2- <Cph?||g|le forallh >0andall ge 2. (8)
If Q is convex andney = 0 thena can be chosen as = 1.

Proof. Within this proof, the symboC stands for a generic positive constant, pos-
sibly depending on data only. Let us start by recalling thrathe present setting,
given f € L?(Q;RY), the unique solutiom € % of the boundary value problem of
linearized elastostatics

/Ce(v):s(u)dx:/‘ f-vdx forallve

Q Q

belongs to H*$(Q;RY) for somes € (0,1] ands = 1 for Q convex andyey = 0
[Gri92, Section 4.6, p. 148]. At the same time, givga L?(Q;RI:Y), the unique
solutionze £ of the elliptic system

/ (Cw:z+va:Dz+cgw:z) dx:/ gwdx forallwe &
Q Q

is such thaz € H*" (Q;R$xY) for somer € (0,1] with r = 1 if Q is convex [Gri92,
Corollary 2.6.7, p. 79].

Let nown = (f,g) € 2”7 be given andh = (u,z) € 2 be the unique solution of
A*¢ = n. By the very definition oA we get that

/ Ce(v):e(u)dx = / (f—div(Cz))-vdx forallve 7,
JQ JQ

/(CW:Z+VDW:Dz+czw:z)dx=/ (g+Ce(u)):wdx forallwe Z.
Q Q

Owing to the regularity theory we have tha& min{s,r} € (0,1] is such that
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181l a(0;r0poxa) < Cll(f=div(C2),g+Ce ()| 2+ < C(lIn| 27+ ¢] 2)

wherea = 1 for Q convex and ey = 0. In particular, as clearlf¢ || » <CJin
we have proved the regularity

2

||¢HH1+G(Q;Rd><Rg:\?) SCH’"”QM (9)

Next, we exploit the classical duality technique by Aubirdaditsche [Aub67,
Nit68]. Assume to be given a (linear) projectds, : 2 — 2, fulfilling

forallo € (0,1 3C >0forallp € 2 :

10
16—1481l2 < 1B hysso 0z (0

The latter can be realized, for instance, by takirfgpkojections and the interpola-
tion error control of (10) follows from [HP*05, Lemma 5.6]ektq € 2 be fixed and
define¢ € 2 as the unique solution &*¢ = (P,—1)g € 2. We have that, for all
¢h € D,

1(Ph—D)dll%- = (A*$, (Ph—1)a) = (A(Ph—1)a, 8) L (A(Ph—1)d, d—br)
< [|AllLin(2,2) [|(Ph=1)dl| 2]|¢ —¢nll 2 < Cl|al| 2||¢ —nl| 2-

By choosinggn £ Mp$ we get that

I(Ph—1)alll% < Cllall2ll¢—Mho| o

(10 o (C)] o

< Cllall oM 19 lhsssa g z0,zere) = Cllal2h®[[(Ph—1all
and the assertion follows.

The core of the proof of Theorem 3 is contained in the follayyamoposition.

Proposition 1 (Key estimate). There existr € (0,1] and Gey > 0 independent of
and h such that

max [|a(t)—rn(t)|| 2 < Crey(/|do—on|| 2+h®/2+1%2).

te[0,T]
Moreover, ifQ is convex andiney = 0 thena can be chosen ag = 1.
Proof. We clearly have that, for alle [0, T],
[gr,n(t)—a(t) 2, (11)

wheregy : [0, T] — 2 is a limit of a subsequence gf , ast tends to 0.
The first term in the above right-hand side can be estimateashng the same
ideas of [MiT04, Prop. 7.2, Theorem 7.3]. Namely, theretsxds > 0 such that

2 < | drn(t)—an(t)[| 2 +[[an(t)—q(t)

10z 7 (t)—0n(t)] 2 < CaT*2. (12)
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We estimate now the second term on the right hand side of §id¢eq andgy
solve(2,£,¥,qo) and(Zy, &, ¥, o), respectively, we have

(D& (t,0n(t)), Va—0n(t)) + ¥ (Vh) — ¥ (Gn(t)) > 0 for all vy € 2, (13)
(Dg€(t,q(t)),v—a(t)) + W(v) —w(q(t)) >0 forallve 2, (14)

which hold a.e. irff0, T]. Choosingv = gx(t) in (14) and adding it to (13) we obtain
(Dg&(t, an(t)),va—0n(t)) + (D&’ (t,q(t)), an(t)—a(t)) + ¥ (vh) — ¥(q(t)) = O,

for all vy € 2. Using the triangle inequality this implies

{Dg& (t,an(t)) —Dq& (t,q(t)), an(t) —4(t))

< (Dg& (t,an(t)), va—q(t)) + ¥ (vn—q(t)) forall vy € 2. (19)

Let us now evaluate the right-hand side of (15) by compufiogall v,, € 2},
(Dg&(t,an(t)), va—q(t)) + ¥ (va—q(t))
< (Ath(t),va—a(t)) + (IDg2 (an(t))[| 27 + |€(t)]| 27 +Cu) [Va—a(t) || 2
Using Dy# € CHP (2, 27') and lettingvy, = Phq((t), we findC, > 0 such that
(Adh(t)+Dg (an(t))—£(t), va—d(t)) + ¥ (va—q(t))
< (Adh(t), (Ph—1)q(t)) +Co(1+([an(t) [ 2+ a®) [ .2) [[(Ph—Da() || 2--
Theorems 1 and 2 givéich(t)]2 < Csab |a()[|2 < Csan and [|d(t)]2 < Cup.
Hence, using (7)-(8) and settiy < (0+C2Cp(1+2Cstap) ) Crip We infer from (15)

that
(Dg& (t,an(t))—Dqé(t,d(t)), Gn(t) —G(t)) < Csh”. (16)

Define y(t) & (Dqé (t, Gn(t))—Dqé (1,q(t)), ah(t)—a(t)) > K||an(t)—q(t)|2, where
the lower bound stems from the coercivityAdfand the convexity of#’. We have

y(t) = 2<Dqg<t7Qh)*Dq£](ta q)a Qh*@ + <at Dqé"(t,qh)fdthé"(t,q),thCD
Dqé (t,0)—Dqé (t,0h) +D3& (t, ) [0h—0] , )
Dqé (t,0h) —Dqé (t,d)+D3E (t, A) [d—0hn), G).-

Exploiting Dg# € C1HP (2, 2') and estimate (16) provid€y > 0 such that

+
+

y < 2C3h? +C4(0+]|4]l 2+ |6hl | 2) lah—al % 17)

Setting Cs £ max2Cs,C4(0+2Cjp)), we deduce from the definition of and
(17) that we have/(t) < Cs(h®+y(t)/k). Hence Gronwall's lemma yieldg(t) <
(5K —1)kha + €5t/Ky(0). As we readily infer thay(0) < Cs||don—0ol|%, with

def

Cs = ||AllLin(2.2/) +Co for Cyr = |Dg.# ||Lip, We have obtained that
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lan(®)—a(t)[|% < (€%/¥~1)h" + Cee™/* || go n—0o| /K. (18)
Carrying (12) and (18) into (11) we obtain the desired result

Once Proposition 1 is established, the proof of Theorem ®igladed by the
following approximation result for initial data.

Lemma 2 (Approximation of initial data). There exists &> 0 and a choice of
approximated initial conditionsgh € .#4(0) such that, for h small,

|do—donll2 < Coh®/? wherea € (0,1] is the same as i(B).

Proof. The approximationsjp, may be obtained by solving the following problem
doh = Argming c 5, {€(0,Gh)+%¥(Gh—Pndo) } . By the triangle inequality, we find

&(0,00,n) < &(0,0h) + ¥ (Gh—Pndo) — ¥(o.n—Pndo)
< &(0,Gh) + W (Gh—aon). (19)
for all G, € 2,. Namely, we have proved thegn € .74(0). Sinceqp € #(0), we

have&'(0,q0) + 5|G—do[|% < £(0,G) +W(G—0o) for all € 2. Letting G = don
and using the triangle inequality and the minimalityogf, we obtain

K
5ll60n—0o|% < &(0,don) — £(0,d0) + ¥ (don—Pado) +((Pn—1)go)

(19) N .
< &(0,Gh) — &(0,do) + W (Gh—Pndo) + ¥ ((Ph—1)do)

for all g, € 2. When choosingj, = Prgp we find
K
5 1900 —oll% < £(0,Prdo) —&(0,d0) +¥((Pa—1)dh)- (20)
Next, we evaluate the right hand side of (20) as follows
K
EHqO,h—QO”g@ < &(0,Pnto) — &£(0,00) + ¥ ((Pn—1)0o)

= (APn0p, (Ph_l)QO>_%<A(Ph—|)qO,(Ph—l)q0>

+ 7 (Pnto) — 7 (do) — (£(0), (Ph—1)00) + ¥ ((Ph—1)do)
0 2 (A(Pr—1)0k, (Pr—1)0o) —(£(0), (Ph—1 o) + ¥((Pr—1 o)
+/01<quf(QO+S(Ph—|)QO)a(Ph—l)QO> ds. (21)

The integral term in the above right-hand side can be estidnas follows
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1
/0 (Dg-# (Go+S(Ph—1)do), (Pn—1)do) ds
1
=/0 (Dg-# (o+S(Ph—1)do)—Dqg7(to), (Ph—1)do) ds

1
+ [ (st (o). (Py—1)co) cs

2 0s+[|Dgs7 (do)

1
S/O SCo || (Ph—1)0ol| 2/| (Ph—1)do 27||(Ph—1)ao]| 2 -

Hence, using (8) and (21), we find

K

2
Cr

2 (1€l 2+Cp+ =2 | (Pr—1)a0

K
EHQO,h*QOHg@JF I(Ph—1)a0]1%

(21) a
< Cph|go

2+IDg# (do) .+ ).
The assertion follows by takingsmall.

Our proof shows some flexibility in the choice of the hardgnfanction H,
which may just be asked to be convex and smooth and to havenaale growth.
Yet, we surely need the regularizing gradient term for otitgj the convergence
rate, since it makes the nonlinearity.2” and the nonsmoothness througHower
order. Moreover, the quadratic form of the elastic part plagrucial role. Thus, itis
not clear how this proof can be adapted in the caseisfz-dependent; in particular,
since we are not able to show uniqueness of solutions in #sie.c
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