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Abstract

In this paper we propose a new approach to constrained optimization that is based
on direct and adjoint vector-function evaluations in combination with secant updating.
The main goal is the avoidance of constraint Jacobian evaluations and the reduction
of the linear algebra cost per iteration to O(n +m)? operations in the dense, unstruc-
tured case. A crucial building block is a transformation invariant two-sided-rank-one
update (TR1) for approximations to the (active) constraint Jacobian. In this pa-
per we elaborate its basic properties and report preliminary numerical results for the
new total quasi-Newton approach on some small, equality constrained problems. A
nullspace implementation under development is briefly described. The tasks of identi-
fying active constraints, safe guarding convergence and many other important issues
in constrained optimization are not addressed in detail.

Keywords Secant updating, quasi-Newton, KKT system, constrained optimization,
Lagrangian gradient

1 Introduction

We begin by recapitulating a few well known facts from nonlinear optimization and
automatic differentiation to motivate our approach and introduce our notation.

The KKT System

Once the active constraints are known, optima of a nonlinearly constrained optimiza-
tion problem (NLP) are locally characterized as saddle points of the Lagrange function

Lz, = f+2Te(z) = f—}—Z)\(i)ci(x).
i=1

Here the scalar function f : R” — R is the objective, the vector function ¢ : R® — R™
represents the m < n active constraints, and A = (A\(®) __ denotes the correspond-
ing vector of Lagrange multipliers. Thus the optimal values of the primal and dual
variables z € R" and A € R™ can be found by solving the stationarity condition

0 = Va:,)\ﬁ(xa)‘) = [g(ma)‘)ac(m)]
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The Jacobian of this nonlinear system takes the partitioned form

2 m
V2Ll = | VIt
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Being a Hessian at a saddle point this (n + m) X (n + m) matrix is always symmetric
but neither positive nor negative definite. Only the reduced Hessian, i.e. the restriction
of V2L(x,\) = Vg(z,)) to the nullspace of Ve(z) can be expected to be positive
definite in the vicinity of local minimizers.

Recently a considerable effort has gone into solving the KKT system by iterative
solvers [16, 3]. For the most part these approaches work only if problem specific
knowledge allows the provision of suitable (block) preconditioners with the symmetry
of the system sometimes being ignored altogether. In this project we aim primarily
at developing a general purpose solver for medium size problems involving ”only” up
to a few hundred variables.

Jacobian Evaluation Costs

All general purpose nonlinear programming algorithms that we aware of are based
on the availability of the (active) constraint Jacobian Ve¢(zg) € R™*™ at every ma-
jor iterate zx € R™. For that purpose the Jacobian may be approximated by divided
differences, evaluated using automatic differentiation tools, or coded by the user. Un-
less sparsity can be exploited, the cost incurred by divided differences or the forward
mode of automatic differentiation is roughly equivalent to n extra evaluations of the
constraint function ¢(z). This must be considered a very significant computational
cost.

When m is much smaller than n, the reverse, or adjoint mode of automatic dif-
ferentiation offers some improvements as its cost grows only proportional to m rather
than n. Hence the Jacobian Ve(z) can always be obtained at a cost not exceeding a
small multiple of m = min(m,n) times the cost of evaluating c¢(z) by itself. We know
of no other general bound on the relative cost of evaluating Jacobians and there are
certainly no nontrivial lower bounds on that ratio. Amongst the reasons discussed
in [6] is that, depending on the structure of the procedure for evaluating c(z), there
are very many different ways in which the chainrule can be applied to accumulate the
Jacobian Ve(z). Sometimes a cross-country application of this basic rule of calculus
can yield Jacobians at a fraction of the cost required by the forward or reverse mode
[11]. In principle any user with sufficient insight and patience can play the same com-
binatorial games in coding Jacobians by hand. In practice we suspect that mostly the
forward mode with some local improvements will be employed. Anyway, the question
of how best to evaluate complete Jacobians and Hessians remains a thorny issue and
avoiding them altogether seems still a good idea.

Even if the constraint Jacobian can be computed quite cheaply at each new iterate
the computation of a suitable representation for its nullspace requires a number of
arithmetic operations of order mn? in the dense case. Overall, the approach advocated
here probably makes computational sense in situations where the calculation of the
Jacobian Ve(z) and/or the computation of its null space is many times more expensive
than evaluating F' = [f, c]. We believe this to be true for a very large class of practical
problems.



Adjoint Evaluation Costs

The required human and run-time costs for the Jacobian may seem justified to some
algorithm designers, because it already appears in the combined gradient

VL(z, M) = [g(,A),c(z)]

whose accurate evaluation is certainly a prerequisite for computing its roots with any
accuracy.
However, as is still not widely appreciated, the occurrence of the Jacobian Ve(x)
in the definition of
g(z,\) = Vf+ Ve(z)TA

does not imply at all that it must be evaluated in its entirety as an m x n matrix.
Instead one may call on the reverse mode of automatic differentiation to evaluate only
the vector g(z,\) as adjoint of F(x) at a small multiple of the cost of evaluating
the objective and constraints by themselves. Thus we pursue the aim of limiting the
function evaluation effort per major iteration to a couple of evaluations of F(z) and
g(z,)). At the same time we wish to limit the linear algebra cost per step to O(n+m)?2
or even O(k(n + m)) where k is the number of steps taken so far.

2 The total quasi-Newton Approach

The design goals mentioned above strongly suggest that we should approximate the
KKT Jacobian V2L by secant updating. Hence, we wish to sequentially generate sym-
metric matrices By, € R™*" approximating the Hessians V2L(zg, i) = Vg(zk, Ax)
and rectangular matrices Ay € R™*"™ approximating the constraint Jacobians Ve(zy),
at a sequence of iterates (zr, A\r). We will simply refer to the By, and the Ay as ap-
proximating Hessians and Jacobians, respectively. The notion of making do with
approximate Jacobians is not even broached in the recent text books [10] and [12].
We use the adjective total rather than the less dramatic full for our approach be-
cause the latter is sometimes used to describe secant updates of By rather than its
projection.

Suppose the initializations By and Ag are chosen such that for & = 0 the linear

system .
o [a] -1 ©

is easily solvable. Then, and if all corrections Bit1 — B and Agy1 — Ay are of low
rank, the same will be true for £ > 0 as one may employ a structured variant of
the Sherman-Morrison-Woodbury formula [5]. A nullspace variant currently under
development is sketched in Section 5.

We will try to get away with a rank three update overall and keep in mind that
for really large problems a limited memory version that stores and manipulates only a
fixed number of update vectors should be developed as well. In view of discretizations
of operator equations one should also be aware that grid invariant superlinear con-
vergence can only be achieved if in the limiting Hilbert space setting the discrepances
between the exact Frechet derivatives V2L (z«,A«) and Ve(z.) at the solution and
their initial approximations By and Ay are relatively compact operators [8].

Approximating the Hessian

The task of updating By, or a suitable projection/restriction has received considerable
attention in the optimization literature, and some of the established techniques should



be applicable here too. However, since in our scenario the constraint Jacobian is
also approximated, we can no longer expect that the final approach is essentially
tangential to the feasible set ¢=1(0). In other words, even during the final approach
to a local minimum the steps sy = z4+1 — x may have strong normal components,
and thus feasibility may not be approached much faster than optimality. This means
in particular that there is no need for the curvature s} V,L(zy, M) to ever be
positive. Hence Powell-like update conditions [13] may never be satisfied. In [15]
various strategies for updating approximations to one-sided projections of the Hessian
over not predominantly tangential steps were analyzed — with somewhat inconclusive
results.

Consequently, in our scenario a good choice might be the damped symmetric-rank-
one (SR1) update

(wy, — Bysy)(wy, — Bysg)”

By =B 4
k+1 = By + Bk (wr — Brs) sr ; (4)

which is designed to satisfy for 5y = 1 the secant condition
Bk+18k = Wi = g(l‘k+1,)\k) - g(xk,)\k) eR” , (5)

where z; and A denote the current point and Lagrange multipliers. The two vectors
on the right hand side can be evaluated as part of the optimization procedure without
— as we would like to stress again — the need to ever evaluate the full constraint
Jacobian Ve(z).

Toint [4] has used the SR1 formula with good success for updating approximations
to element Hessians of partially separable objective functions. As also suggested in
[12] he determined the scaling factor 8, using a test that involves norms of the vectors
occurring in the updating formula. At least aesthetically, this contingency measure
is not very pleasing because it destroys any prospect of maintaining invariance with
respect to linear transformations on the variable domain. In Section 5 we will sketch an
implementation where [ is selected such that the projection of By onto the nullspace
of Ay, stays positive definite.

Of course there is a large variety of other issues to be resolved but we will concen-
trate in this first proposal of the novel approach on the challenging task of designing
a suitable secant formula for the constraint Jacobian.

Approximating the Jacobian

In contrast with the theoretical and practical attractions of the BFGS formula for
positive definite Hessians, secant updates for nonsymmetric Jacobians have rarely met
with success across a wide range of problems. One possible explanation is that least
change updates like the good and the bad Broyden formula are strongly dependent on
inner product norms and hence the scaling in the domain or range of the underlying
vector function. In contrast the BFGS and all other updates of the Broyden class
including SR1 formula are known to be invariant with respect to linear transformations
on the variable domain, provided the initial By is adjusted accordingly.

The key ingredient that allows us to achieve (linear) transformation invariance here
is the imposition of the adjoint, or transposed, secant condition

oL Apy1r = pi = oFVe(wpy) with op = Agr — M ER™ (6)
Here uy can be calculated as

e = 9(Trt1, Mer1) — 9(Tey1, M) €R™ (7



In other words we assume that our optimization procedure generates distinct La-
grange multiplier vectors Ax and A;11 and involves the corresponding adjoint values
Jk+1 = 9(Tk+1, Ap+1) and g(Trr1, Ag) at the new iterate zyy; anyway.

Naturally, we will also impose the classical, or direct secant condition

Apy1sk = Yk = c(zpp1) —c(zg) with sp =3y — 3 € R (8)

Unless the constraint function c¢(x) is affine the two conditions will in general not be
exactly consistent. More specifically, the multiplication of (6) by sx from the right
and (8) by o from the left, respectively, yield the following alternative expressions
for o {Ak-i-l Sk

1
uEsy = ol [Ve(xrg1)] se 2 of [/ Ve(zy +asp)da| sy =olye . (9)
0

Obviously, the deviation between the two matrices in the middle and hence that
between the two dot products is only of order O(||ok]|||sx||?). Here we have tacitly
assumed that the Jacobian Ve(z) is at least Lipschitz continuous as we will do through-
out the paper. This level of discrepancy between approximating and exact Jacobians
is inherent in the quasi-Newton updating philosophy, which replaces tangents with
secants over increments of size ||sg||.

3 The TR1 update

It can be easily seen that the rank-one formula

(yr — Axse) (ug — of Ar)
ukTsk - U{Aksk

Apy1 = Ap + (10)
satisfies the direct secant condition exactly and the adjoint version up to O(|og|| ||skl])-
These roles are reversed if one replaces the dot product ,u{sk in the denominator by
oyk, a slight change that should not effect the quality of the update significantly.
Irrespective of the slight arbitrariness in the denominator we will refer to (10) as the
two-sided-rank-one (TR1) update. It generalizes the classical SR1, to which it reduces
when the Jacobian Ve(z) is in fact a symmetric Hessian because ¢(z) happens to be
a gradient. Not surprisingly, TR1 shares many desirable and some not so desirable
properties that are familiar from SR1.

Heredity and Termination

In contrast to the BFGS formula, SR1 is hereditary on affine gradients in that it
maintains the validity of all previous secant conditions and thus yields the exact
Hessian in at most n linearly independent but otherwise arbitrary, steps. Similarly,
we find here that in the affine case ¢(z) = ¢(0) + A4z the TR1 update is unique and
the discrepancy matrix Dy = Ay — A, satisfies the recurrence

DkSkO',{Dk

Dk 1= _Dk -
+ U%Dksk

(11)

provided the denominator a,{Dksk does not vanish. Any nullvector of Dy or its
transpose will also be a nullvector of Dy or its transpose, respectively. Thus the
update is indeed hereditary.



Moreover, provided angsk # 0, s, and o, become new null-vectors of D41 and
its transpose, respectively. Consequently the rank of Dj must be reduced by one
and after at most m = min(m,n) such updates the discrepancy vanishes exactly.
This property is at least theoretically very interesting, though even on medium size
problems one often does not wish to take ©(m) steps.

Transformation Invariance

Like SR1 the more general TR1 update has apparently no least change characterization
in terms of any particular matrix norm. However, one should note that the rank of
Dy, is a transformation invariant measure of discrepancy.

Let us be optimistic and suppose that from a given triplet (zo, Bo, Ag) and Ag =0
our method as defined by the relations (3), (4), and (10) yields a uniquely determined
infinite sequence of points (zy,Ar) and matrix pairs (Bg, Ag). In other words, we
simply exclude the contingency of zero denominators and assume that f(z) and c¢(z)
are well defined wherever they are to be evaluated.

Now let C' and R be any nonsingular square matrices of size n and m, respectively.
Then the transformed problem of optimizing f(Z)= f(C#) subject to
0 =¢(%) = Re(C £) is largely equivalent to the original optimization problem, which
is obtained when C' and R are the identity matrix of their respective dimension. Then
one can check by induction on k that the proposed method applied to the transformed
problem maintains the relations

Tk = C.’ﬁk, :\kTR = /\kT, Bk = CTBkC, Ak = RAkC (12)

provided they are true initially for £ = 0. This is a very desirable feature even though
the appropriate initialization of By and Ay may not be obvious at all. Not surprisingly,
as we will see in the next section for Ag, these initializations may be crucial for the
performance of an algorithm.

Blow-up and Special Steps

As in the case of SR1 a downside associated with heredity is that the TR1 update may
blow up due to the denominator being small or even zero. This happens in particular if
one of the discrepancies (yr — Agsy) or (ug — A} o)) vanishes exactly. If both happen
to vanish simultaneously, one could simply skip updating for the current step.

For a full quasi-Newton step (s, ox) on the KKT system as defined by (3) we have
Ay s, = —c(xg). Thus yr, = Ay sy, would imply exact primal feasibility at the new point
Tp+1 = T + Sk in that ¢(xk41) = 0. In principle this is a rather desirable effect but as
there is no reason why (ur — A7 o) should vanish simultaneously we must then come
up with another primal step 5 # 0 for the update. This could be any direction § for
which A3 does not agree with Ve(zg41)8k. This directional derivative can easily be
evaluated in the forward mode of automatic differentiation or possibly approximated
by divided differences. Such special updating steps were already utilized by M.J.D.
Powell [14] in the middle of the last century.

If on the other hand (uy — Al o) vanishes or is very small but (yx — Agsk) is
sizeable then we have to play the game the other way round by picking special adjoint
steps g with &,{Ak # 6,{Vc(:ck+1). The last vector can be evaluated in the reverse
mode of automatic differentiation, but not approximated by differences at a reasonable
cost. Since we have for a full quasi-Newton step Bysy, + AL oy, = —g(xk, M) one finds
after some elementary rearrangements that

9(Tkt1,Akt1) = (W — Brsg) + (g, — Afog) . (13)



Hence we observe that when the direct secant condition (5) for By and the adjoint
secant condition (6) for Ag41 are already satisfied by By and A then we must have
dual feasibility at the new point in that g(zg41, A1) = 0.

In summary, we observe the usual quasi-Newton dichotomy, namely that at each
major iteration significant progress is being made either in stepping towards the solu-
tion vector or in updating derivative matrices. Obviously much remains to be inves-
tigated, especially with regards to damping factors for stepping and updating.

4 Numerical Feasibility Test

To check whether the idea of approximating the constraint Jacobian by the proposed
twosided update TR1 has any merit we conducted two kinds of numerical experiments.
Both tests have preliminary character and were carried out in MATLAB. Firstly, to
investigate the properties of TR1 by itself we look at the special situation where
m = n. In such nonsingular square cases the nonlinear system c(z) = 0 has locally
just one feasible point z.. However, in addition to computing the solution x, itself,
an optimization method will simultaneously solve the adjoint equation

0=g(z,\) = Vf(x)+ Vex)TA

which is of course linear in the multiplier vector A. The solution vector A, might then
be used to compute the reduced derivative of the feasible value f(z.) with respect to
other problem parameters when they are considered variable after all. More generally,
one might interpret Lagrange multipliers and other intermediate adjoint variables as
impact factors with regards to the given target function f(z). These goal-oriented
sensitivities can be used to estimate errors from various sources and to ameliorate
their influence on target values by suitable modification, e.g. grid adaption [1].

When the square Jacobians Ve¢(zy) are exactly known the objective function f(x)
and its gradient have no impact on the Newton steps s, = —Ve(zr) (k). This will
certainly be true on the final approach to z., while earlier on the objective function
might conceivably cause a reduction in stepsize or a contraction of the trust region
radius. Possibly still a bit later the same effect is likely to occur when c¢(z) = 0 is
solved by classical secant methods like the good or bad Broyden formula.

In contrast the proposed TR1 update directly involves adjoint information and is
therefore strongly dependent on the objective function f via its gradient V f. In a very
optimistic mood one might hope that this weighting of the primal solution components
will guide the iteration such that the function values f(x) converge faster than the
error norm ||z — x«|| towards their limit f(z.).

Since the following results were obtained with MATLAB we plot iteration numbers
rather than timing results. Also, the problem considered is rather special, namely a
central difference discretization of the second order ODE

d? d
wm(t) + 5am(t) +vyexp(z(t) =0 for 0<t<1 (14)
with homogeneous Dirichlet boundary conditions z(0) =0 = z(1). It is well known
that for sufficiently small § and ~ this problem is elliptic and has therefore a unique
solution. If «y is increased the problem becomes more difficult and reaches a fold point
at a certain critical value v4(d). The numerical results displayed below were obtained
for the subcritical parameter values § =1 and y = 0.5 or v = 2.0 .
Throughout we used objective functions of the form

f(z) = / w(t)a(t)dt



and their discretization by the trapezoidal rule. The weighting function w(t) was
set constantly equal to 1 for the calculations reported in Figures 1 and 2. For the
calculation in Figure 3 we used an f; defined by wi(t) =8t(1 —t) and f» defined
by wa(t) =2 — 7.6¢(1 — t). All iterations were terminated when the max norm of the
constraints had been reduced below 10719,
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Figure 1: Iterations for Newton and quasi-Newton from ”simple” Initialization

The unit interval was uniformly subdivided into n + 1 intervals of length
h=1/(n+1). All calculations were started from the origin (z,\) =0 € R?™. The
approximating Jacobian Ay was initialized either as the identity scaled by —2/h? or
the tridiagonal matrix with —2/h? in the diagonal and 1/h? in the super- and sub-
diagonal. For the first simple choice the discrepancy I — Ay ' Ve(z.) acquires more
and more large singular values as n grows, whereas for the second smart choice, the
number of singular values above any particular threshold stays bounded irrespective
of n. In terms of functional analysis this means that the differential operator on the
left of (14) preconditioned by the inverse of its leading term zy is a compact pertur-
bation of the identity. Under these circumstances it can be shown [8] that Broydens
good method achieves superlinear convergence if started from the smart initialization
but at best linear convergence if started from the simple choice. Correspondingly one
would expect grid invariant iteration numbers to reach certain tolerances with the
smart initialization but a strong increase in over the iterations count with the simple
choice. A similar behavior is likely for other low rank updating methods though this
has not been established as far as we know.

As one can see in Figure 1 we get convergence of all four methods, i.e. Newton,
TR1, good Broyden and bad Broyden. In all cases full steps were taken throughout
and the simple initial A9 = —2I/h* was used. The TR1 update was used in the form
(10). Replacing u! s by o7y, made no noticeable difference for the number of steps.
While Newton exhibits a grid invariant convergence behavior, the three quasi-Newton
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methods need at least a number of steps proportional to discretized space dimension.
The supposedly bad Broyden update performs much better than the standard ” good”
version and both are slower than our favorite TR1.

As one can see in Figure 2 the three quasi-Newton methods become essentially
grid invariant like Newton’s method when Ay is initialized smartly to the tridiagonal
discretization of z;; but their relative performance ranking stays the same. As one
can see in Figure 3 solving the right adjoint system in tandem does actually improve
significantly the convergence speed of the function values. The triangles represent the
values attained by Newton’s method, which reaches the feasible solution z, and the
corresponding function value f;(z.) as defined above in just a few steps. The circles
represent the values of f; attained by the TR1 scheme when the adjoint is defined by
the correct gradient V f1(z). The plus signs depict the f; values attained by the TR1
scheme when the adjoint iteration solves the system Ve(z)TA = —V f2(z) correspond-
ing to the other objective function. Hence, at least on this particular example there
is some support for the optimism that the TR1 update guides the iterates in such a
way that they converge particularly fast in those components that strongly impact the
given objective function.

Equality Constrained Optimization

We tested the combination of TR1 for the approximating Jacobians A and SR1 for
the approximating Hessians By, on the set of small problems used originally by Wagner
and Todd [15]. The results are listed in Table 1 with n and m the number or variables
and constraints, respectively. The third and forth column were taken from [15] and
represent the number of steps required by a full Newton implementation and a mixed
quasi-Newton method based on the DFP related Hessian-update proposed in [15]. Here
mized means that the Hessian is approximated by secant updating but the Jacobian
is exactly evaluated, as is currently customary in constrained optimization.

Table 1: Iteration Counts for Newton, Mixed, and Total quasi-Newton Methods

n | m | Exact | W & T/G | STR1
Wright 2 |1 5 6 10
Himmelblau | 3 | 2 3 5 9
Powell 513 5 6 15
Wright 5|3 ok 13 9
HS100 712 11 13 19
HS111 10| 3 43 23 *%
HS104 8 | 4 5 8 *ok
Bryd 2 |1 9 7 10
Bryd 2|1 8 7 9
Yuan 2 |1 6 9 9
Yuan 2 11 5 7 7
HS39 4 |2 4 10 *ok
HS93 6 | 2 4 18 *ok

10
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The extra column labeled STR1 represents the number of iterations for our SR1-
TR1 combination, started with a finite difference initialization of both Jacobian and
Hessian. Asin [15] no update damping or step stabilization strategy was applied, which
explains in particular the convergence failures on problems HS111, HS104, HS39, and
HS93. The denominator of the TR1 formula was defined as either pgsy or a{yk,
whichever had the larger absolute value.

As one can see the number of iterations for the total quasi-Newton approach is on
some problems similar to and on some problems about twice as large as that for the
mixed quasi-Newton approach. With the exception of the problem ”Wright” the new
approach requires a few more steps then the schemes based on exact first and possibly
second derivative matrices. This effect was to be expected and is certainly acceptable
assuming each iteration is significantly cheaper for the total quasi-Newton approach.
To see that this is a realistic possibility we briefly sketch a null-space implementation
with quadratic complexity in the next section.

5 A possible Nullspace Implementation

Rather than dealing with the approximating Jacobian and Hessian Ay and By explic-
itly we suggest storing and manipulating the five matrices

Ykack € Rmxn , L € RmXxm , Zy € R(n—m)xn ; Ry € R(n—m)x(n—m)
such that Y}, and Zj, have orthonormal rows, Ly and Ry, are lower triangular and
LYy =Ay, YWZF =0, R{R,=ZiBZ", Cy=Y;By

The total storage requirement is m? + 3n?/2, which would be reduced by m?/2 if
Cr = Y}, By, was split into Y3 By Z{ and Y}, BY;!" with the latter stored in symmetric
mode.

Due to the orthogonality of [V, ZI] we have V,I'Y, + ZXZ), = I € R so that
for any vector v € R”

Byv =Y Crv+ Zif (RERvZrv + ZyCL Yy v)

This computation costs 3n2 + mn + m? operations and is thus only m? multiplications
less expensive than solving the KKT linearization (3) in the form

Sk = YkTEk - ZIZ'RI;IR,;TZ]E (gk + Cgék)
where ¢ = —L;lck. The corresponding Lagrange multiplier step is simply

ok = —L; " (Crsi + Yigr)

Updating Procedure

It can be easily checked that the determinant of the whole KKT matrix is equal to
[det(Ry) det(Ly)]* so that its conditioning can be partially controlled by the updates
for Ry, and L. Using well established techniques from linear algebra [2] we can update
the factorized form Ay = LY}, to

Apy1 = Lpp1 Yy = A +ript [0

where
T T T
e =Yk — Ak Sk, Pr = M — 0 Ak



and
T T
O Tk N O R p), Ok

Correspondingly we may update Z; by the Sherman-Morrison-Woodbury like formula
Zjy1 = Zy [I - Pkb{/(‘sk + bek)]
where for some oy, determined by a certain quadratic equation
b, = YL, v+ ZiE Zy pi,

The projected Hessian Z; By Z), = R} Ry, must be updated twice, first with 8, 1 > [|by||?
to the intermediate version
T
Ryy1Rips = Zir1 Be Ziy,y
Zkbkpr,? + kakbz ZIZ
(5k + kabk)

Zx pr i 2
2
(6 + pE o)

= Ry Ry, — + Bt

For this rank-two modification we may utilize well-established techniques for updating

Cholesky factorization of positive definite Hessians in unconstrained and constrained

optimization [12]. To maintain the semi-definiteness implicit in the Cholesky factor-

ization we may have to choose By 1 bigger than its natural value [16& 2.
Subsequently, we may apply the SR1 update (4) in the form

T T T T T
Rip1 Ria = Ry i Ry s + BeZiva2kzk Ziyr [ 2 Sk

where 2z = (wy, — Bgsi) can be computed after a full quasi-Newton step as
(gk+1 + V' LY o). Here B, may need to be chosen smaller than its natural value
1 to maintain positiv definiteness. In any case the composite transition from R} Ry
to RkT+1Rk+1 is a rank-three update as was to be expected.

The update of the cross term Cy = Y By, also proceeds in two stages. Firstly we
obtain C}, 41 by applying to C}, all the modifications that Y}, undergoes in its update
to Yi41. For that purpose we are currently using standard Givens rotations, which
will eventually be replaced by fast rotations. Subsequently we incorporate the effects
of the symmetric rank one formula (4) by the updates

T/, T
Cry1 = Ck+% + ,BkYkszzk /Zk Sk

The total effort for bringing the five matrices Y, Ck, L, Zx, and Ry up to date is
clearly quadratic in (n + m). For details see the fortcoming report [9]. A compact
representation as discussed in [12] for unconstrained limited memory methods would
be a possible alternative for very large problems.

6 Summary and Outlook

This paper probably raises more questions than it answers. However, our theoretical
and experimental investigations do strongly suggest that by combining the direct and
adjoint secant conditions (6) and (8) one obtains enough information to perform a
rather promising two-sided-rank-one update (10), which we call TR1. The inclusion
of adjoint information is not very expensive and makes this generalization of the well-
known SR1 update to rectangular Jacobians completely invariant with respect to linear
transformations on the domain and range of the underlying vector function, here the
constraint ¢(z). On affine problems the exact Jacobian is obtained in m = min(m,n)



steps, unless the update formula breaks down prematurely due to a zero or very small
denominator. Possible remedies for this contingency include damping factors and
special steps in domain or dual range.

In the rather special situation m = n the TR1 based coupled quasi-Newton it-
erations on the feasibility equation ¢(z) = 0 and a corresponding adjoint system
Ve(z)TA = =V f(z) converge quite nicely. However, as indicated by the function val-
ues displayed in Figure 3 the convergence is not very steady, so that some damping of
the update may be required. Newton’s method is of course superior in terms of the
iterations count but in general we would expect the exact Newton steps to be a lot
more expensive to compute. The same is likely to be true for the full KKT system
when m < n. On the very small set of equality constrained problems of Todd and
Wagner we found that the total quasi Newton approach required maximally twice
as many iterations as their mixed quasi-Newton approach. An implementation with
quadratic complexity is under development and was sketched in Section 5.

Some important questions that immediately come to mind are the following.

1. In the affine square case ¢(z) = A.x — ¢y and f(x) = bl'z, are there initial val-
ues of Ag € R™*™ and (g, Ag) € R?" for which our full quasi-Newton iteration
reduces to an Arnoldi-like process?

2. How does one decide whether the SR1 and TR1 updates are too drastic and then
dampen or completely skip them appropriately?

3. Are there update contenders for satisfying the three secant conditions By.y15 = wg,

Apy1s, = yr and AkTHak = uyj other than the seemingly natural SR1-TR1 com-
bination advocated here?

4. How does one ensure convergence in nonlinear cases by coordinating the updates
with line-searches and/or trust regions?

5. How does one deal with inequalities and determine active constraints?

6. How does a reasonable implementation of the advocated method fare against
established codes on small to medium sized test problems?

With regards to the last question one must certainly expect and accept that the
number of major iterations will be increased for a total quasi-Newton iteration. One
may also be concerned that the lack of accurate Jacobian information will prolong the
explicit or implicit procedure for determining the active constraints. Nevertheless, we
are confident that a total quasi-Newton algorithm can be developed that is globally
convergent under the usual assumption that rank(Ve) = m and that is especially
competitive when the Jacobian is rather expensive to form and factor explicitly.
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