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Abstract. In this paper we consider deflation and augmentation techniques for accelerating the
convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. The
two techniques are conceptually different from preconditioning. Deflation “removes” certain parts
from the operator, while augmentation adds a subspace to the Krylov subspace. Both approaches
have been used in a variety of methods and settings. For Krylov subspace methods that satisfy a
(Petrov-) Galerkin condition we show that augmentation can in general be achieved implicitly by
projecting the residuals appropriately and correcting the approximate solutions in a final step. In
this context, we analyze known methods to deflate CG, GMRES and MINREs. Our analysis reveals
that the recently proposed RMINRES method can break down. We show how such breakdowns can be
avoided by choosing a special initial guess, and we derive a breakdown-free deflated MINRES method.
In numerical experiments we study the properties of different variants of MINRES analyzed in this
paper.
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1. Introduction. Krylov subspace methods are among the most efficient tools
for solving large linear algebraic systems

Ax = b, (1.1)

where A € CNV*V is nonsingular and b € CV. There exist numerous approaches to
accelerate the speed of convergence of these methods. The most widely used approach
is preconditioning, in which the system (1.1) is modified using left- and/or right-
multiplications with a nonsingular matrix. The general goal of preconditioning is to
obtain a modified matrix that is in some sense “close” to the identity matrix.

In this paper we consider two approaches for convergence acceleration that are
different from preconditioning. The first one is deflation. Here one multiplies the
system (1.1) with a suitably chosen projection, with the general goal to “eliminate”
components that slow down convergence (e.g., small eigenvalues). Thus, the original
system (1.1) is modified using a singular matrix, which results in a singular linear
algebraic system to be solved. The second approach is augmentation. Here the search
space of the Krylov subspace method, which is at the same time the Galerkin test
space, is “enlarged” by a suitably chosen subspace that contains useful information
about the problem (e.g., the linear span of approximate eigenvectors of A).

The first deflation and augmentation techniques in the context of Krylov subspace
methods appeared in the papers of Nicolaides [16] and Dostél [3]. Both proposed de-
flated variants of the CG method [7] to accelerate the speed of convergence for sym-
metric positive definite matrices A arising from discretized elliptic partial differential
equations. Since these early works, deflation and augmentation have become widely
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used tools and have been exploited by several authors working in different fields of
numerical analysis. For nonsymmetric systems Morgan [12] extracted approximate
eigenvectors of A from the Krylov subspace produced by the GMRES method [19],
and then he augmented the Krylov subspace with these vectors; for related refer-
ences we refer to [6]. A comparable approach in the context of the CG method for
symmetric positive definite matrices A was described by Saad, Yeung, Erhel, and
Guyomarc’h [20]. In [9] Kolotilina used a twofold deflation technique for simultane-
ously deflating the r largest and the r smallest eigenvalues by an appropriate deflating
subspace of dimension r. An analysis of acceleration strategies (including augmenta-
tion) for minimal residual methods was given by Saad [18] and for restarted methods
by Eiermann, Ernst and Schneider [1].

In addition to deflation/augmentation spaces based on approximative eigenvec-
tors, other choices have been studied. Mansfield [10] showed how Schur complement-
type domain decomposition methods can be seen as a series of deflations. Nico-
laides [16] construced a deflation technique based on piecewise constant interpolation
from a set of r subdomains, and he pointed out that deflation might be effectively
used with a conventional preconditioner. In [11] Mansfield used the same “subdomain
deflation” in combination with damped Jacobi smoothing, and obtained a precondi-
tioner that is related to the two-grid method.

In [13, 14, 15] Nabben and Vuik described similarities between the deflation ap-
proach and domain decomposition methods. This comparison was extended in [22, 21].
In these papers comparison results are given for arbitrary deflation spaces.

As indicated by this brief survey, deflation and augmentation can be applied to
every Krylov subspace method. This resulted in a large variety of different methods
and implementations. The main goal of this paper is not to add further examples to
the existing collection (although we derive one apparently new method in the end),
but to mathematically characterize a number of different approaches. We focus on
Krylov subspace methods whose residuals satisfy a certain (Petrov-) Galerkin condi-
tion and show in what sense deflation and augmentation are mathematically equivalent
(Section 2). We then discuss known approaches to deflate CG (Section 3), GMRES
(Section 4), and MINRES (Section 5) in the light of our general equivalence theo-
rem. Among other results, this will reveal that a recent version of deflated MINRES,
suggested in [23] under the name RMINRES (“recycling MINRES”) can break down.
Based on our theoretical results we can give a modified version of this method, which
cannot break down (in exact arithmetic). We do not focus on specific implementations
and algorithmic details but on the mathematical theory of these methods. For the
numerical application of the methods we draw on the most robust implementations
of CG, MINRES and GMRES that are available.

2. A framework for deflated and augmented Krylov methods. In this
section we describe a general framework for deflation and augmentation, which simul-
taneously covers several Krylov subspace methods whose residuals satisfy a Galerkin
condition. Given an initial guess xg € CV, a positive integer n, an n-dimensional sub-
space S,, of CV | and a nonsingular matrix B € CV X we consider an approximation
X, to the solution x of the form

X € Xo + Sy, (2.1)
so that the corresponding residual satisfies

r, :=b - Ax, L BS,. (2.2)
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If the search space S, is the nth Krylov subspace generated by A and the ini-
tial residual rg := b — Axg, i.e., if S, = K, (A,rg) := span{rg, Arg,... A" ry},
then (2.1)—(2.2) mathematically characterize the CG method [7] when A is hpd and
B =1 If B=A, and A is hermitian or general (nonsingular), then (2.1)—(2.2)
mathematically characterize the methods MINRES [17] or GMRES [19], respectively.

Instead of a search space of the form S, = K,, (A,rg) we consider here an aug-

mented Krylov subspace generated by a matrix A that we consider as a deflated
version of A and by the corresponding initial residual To. For the moment, we let
A € CN*N (possibly singular) and Ty € CV be arbitrary, except for the requirement

o~

that the Krylov subspace K, (A,To) has dimension n. Examples for choices of A and
To that result in practical methods will be discussed in the later sections.
So, the augmented Krylov subspace is of the form

S, = Kn(A,To) + U, (2.3)

where U is the so-called augmentation space. We suppose that ¢/ has dimension k,
and denote by U € CV** a matrix whose columns form a basis of Y. Using this
matrix and a matrix V,, € CN*"™ whose columns form a basis of K,,(A,Tp), (2.1) can
be written as

X, = X9 + V,y, + Uy, (2.4)

for some vectors y, € C" and u,, € C*. Of course, U may be redefined when an
algorithm like GMRES is restarted, but we will not account for that in our notation.

In order to satisfy (2.2), the residual r,, = b — Axo must be orthogonal to both
BICR(K,?O) and BU, which means that it must satisfy the pair of orthogonality
conditions

r, L BK,(A,T) and r, L BU. (2.5)
Let us concentrate on the second condition, which in matrix-form can be written as
0 =U"B"r, = U"B" (ro — AV,,yn — AUu,) = U"'B" (ry — AV,y,) — Epuy,
where
Ep := U'BHAU ¢ C"*~. (2.6)

In the following, a general requirement will be that the matrix Eg is nonsingular. We
will discuss cases where this is satisfied in subsequent sections. If Eg is nonsingular,
then the second orthogonality condition is equivalent to

u, = Eg'U"'B" (rg — AV,.y,.). (2.7)
Using this in (2.4) gives
Xp =g+ Vpyn +U (EﬁlUHBH (I‘o - AVnyn))
= (I- UE5'U"B"A) (xo + V,,y,,) + UE5'U"B"Db, (2.8)

r, =19 — AV,y, — AU (E5'U"B" (r) — AV, y,))
= (I- AUER'U"B") (ry — AV,.y,,). (2.9)
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To simplify the notation we define the (N x N)-matrices

Qg := UEZ'U" = U (UMBHAU) ' UY,
Pg :=1—- AQgB", (2.10)
f’B =1 QBBHA.

We next state some basic properties of the matrices Pg and 1513. The proof of these
properties is straightforward, and is therefore omitted.
LEmMmA 2.1.
1. P4 =Py, PgAU =0, and UHBHPg = 0, i.e., Py is the projection onto
(BU)" along AU.
2. P2 = 1~)B, ISBU =0, and UHBHAINDB =0, e, 1~)B is the projection onto
(AMBU) ™ along U.
3. PpA = APg.
Using the matrices defined in (2.10), the equations (2.8) and (2.9) take the form

X, = Py (X0 + Vayn) + QeB'b, (2.11)
r, =Pp(rg — AV,y,) (2.12)

Note that imposing the second orthogonality condition in (2.5) on the residual r,, has
determined the vector u,,, which has therefore “disappeared” in (2.11)—(2.12).

It remains to impose the first orthogonality condition in (2.5), which will deter-
mine the vector y,. To this end, let

in =X + Vnyn € Xg + Kn(ga?O)v

then x,, = f’Bin + QB"b. Using the definition of Py in (2.10) and Condition 3
from Lemma 2.1, the orthogonality condition becomes

r, =b— Ax, = Pg(b — AX,) L BK,(A,T).

We summarize these considerations in the following theorem.
THEOREM 2.2. Using the previous notation, the following two sets of conditions,

Xn € Xo + ICn(fA,?o) +U,

~ (2.13)
r, :=b—Ax, 1L BK,(A,1y) + BU,
and
X, € X0+ K, K,? ,
0 (A,To) R (2.14)
Fn = PB(b — Ain) 1L BK:n(A,/I‘\())
are equivalent for n > 1 in the sense that
X, = f’Bin +QgB"b, and r, =7,. (2.15)

Note that A and U are in general unrelated. The conditions (2.13) represent
the standard augmentation approach, where the augmentation space U is explic-
itly included in the search space. The equivalent conditions (2.14) show that the
explicit inclusion of U can be omitted when instead we first construct the iterate
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X, € Xg + ICH(K,?O) so that the “projected residual” T,, = Pg(b — AX,) satisfies
the given orthogonality condition and then apply the affine correction (2.15) to X,
whose projected residual equals the one of x,,.

So far we have not specified the matrix A and the vector To. In the following
sections we will discuss suitable choices for A and Ty that depend on the properties
of the matrix A.

3. Hermitian positive definite matrices and CG. Throughout this section
we assume that A is hpd. We choose B = I and some k-dimensional augmenta-
tion space U with the corresponding matrix U. Then the matrix Ey = UMAU is
nonsingular, and thus our general requirement is satisfied; cf. (2.6)—(2.7).

We use the matrix U and the definitions from (2.10) to set up the deflated system

Ax=b, where A:=PiA, b:=Pib. (3.1)

Hence the deflated system results from a left-multiplication of the given system Ax =
b with the projection

P;=1- AU(U"AU) UM,

which projects onto U+ along Al. In the context of hpd matrices and the CG
method this is a commonly used technique; see, e.g., [22] for a survey of results.
Clearly, the deflated matrix A is hermitian and nonzero, but singular, since Py is
a nontrivial projection if 0 < k < N. We point out that A as defined in (3.1) is
completely determined by A and the choice of the augmentation space U. (Recall
that in Theorem 2.2 the matrix A and the subspace U can be unrelated.)

According to Nicolaides [16] and Kaasschieter [3], the CG method is well defined
(in exact arithmetic) for each step n until it terminates with the exact solution, when
it is applied to a consistent linear algebraic system with a real and symmetric positive
semidefinite matrix. This result easily generalizes to complex and hermitian positive
semidefinite matrices.

In our case the system (3.1) is consistent since it results from a left-multiplication
of the consistent system Ax = b with P;. We have already noted above that A is
hermitian, and this matrix is also positive semi-definite, since

viAv = viPAv = vI'P}Av = v'P(P1A)v = v Py (P1A)"v = v P1AP}v > 0

holds for any v € CV.

Mathematically, the nth step of the CG method applied to the deflated system
(3.1) with the initial guess xo and the resulting initial residual Ty = b — Axq is
characterized by the two conditions

X, € X0+ Kn(A,To),
T, =b— A%, = Py(b — AX,) L K,(A,T).
This is nothing but the set of conditions (2.14) with B = I. In the sense of rela-
tion (2.15) these conditions have been shown to be equivalent to (2.13), namely
Xn € X0 4 Kn(A,To) + U,
r, =b— Ax, L K,(A,To)+U.

This is the starting point of the deflated CG method developed in [20].



The goal is to obtain a deflated matrix A whose effective condition number is
smaller than the one of A, for example by “eliminating” the smallest eigenvalues of
A. A detailed analysis of spectral properties of PyA for different projections arising
from domain decomposition and multigrid methods was carried out in [14] and [22].
In particular, it was shown in these papers that the effective condition number of A
is less than or equal to the condition number of A for any augmentation space U.
Moreover, if U is an A-invariant subspace, the corresponding eigenvalues do not count
for this effective condition number of A.

In summary, for any augmentation space U, the CG method applied to the (sin-
gular) deflated system (3.1) is well defined for any iteration step n, and it terminates
with an exact solution X (in exact arithmetic). This computation is mathematically
equivalent to an explicit use of augmentation. Once CG has terminated with a so-
lution X of the deflated system, we can obtain the uniquely defined solution of the
original system using the final correction step

X = f’[ﬁ + Qb
(cf. (2.15)), which indeed gives
Ax = AP;X + AQb = PIAX + AQib = (P + AQ)b =b.

Of course, in practice we stop the CG iteration for the deflated system once the solu-
tion is appoximated sufficiently accurately. We then use the computed approximation
X, and (2.15) to obtain an approximation x, of the solution of the given system
Ax = b. Note that, according to (2.15), the residual T,, = b-— Kﬁn of the projected
system (3.1) is equal to the residual r,, = b — Ax,, of the original system (1.1).

4. Non-hermitian matrices and GMRES. In this section we consider a gen-
eral nonsingular matrix A, and B = A. A similar situation has been considered by
Morgan [12] and also Chapman and Saad [2]. They presented variations of GMRES
that can be mathematically described by (2.13) with A = A and To = b — Axp; that
is, they augmented the bases but did not deflate the matrix and project the linear
system into a subspace of CV.

Erlangga and Nabben [5] used two deflation matrices Y,Z for non-hermitian
matrices A. The resulting deflation technique is similar to the choice of B = I in our
setting. However, this choice needs the assumption of nonsingularity of YHAZ.

Here, we will consider a different approach. If B = A, then the matrix Ex =
U"AMAU is nonsingular for any (nontrivial) augmentation space U, so that again
our general requirement is satisfied; see (2.6)—(2.7). Analogously to the approach
for CG described in the previous section, we deflate the given system Ax = b by a
left-multiplication with

Ppo=1-AQaA" =1- AU(U"ARAU)TU"AN,

which projects onto (Al)* along AU. Note that this is an orthogonal projection,
and consequently P A is hermitian.
We now consider the application of GMRES to the deflated system

Ax = 13, where A := PAA, b :=Pab. (4.1)

If we start GMRES with an initial guess xo and the corresponding initial residual
To = b—Axy = Pa(b—Axg), then the iterate X,, and the residual T,, are characterized
by the two conditions

X, € X0+ Kn(A,Tp), and T, =b—AX, L AK,(A,T).
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If the columns of V,, form a basis of ICn(jA&,?o), then the second condition means that

0=VIA"T, = VIARPHT, = VIARP,P, (b - AX,) = VI'AMP, (b — AX,)
=VHArT,,

or, equivalently,
T L AK,(A,T).

Note that here the Krylov subspace is multiplied with A instead of A and that this
condition has precisely the form of the second condition in (2.14). Theorem 2.2 now
implies that the mathematical characterization of GMRES applied to the deflated
system Ax = b is equivalent to the explicit use of augmentation, i.e., the conditions

Xn € X0 + Kn(;&,/r\o) +U,
r, =b— Ax, L AK,(A,Ty) + Al, (4.3)

in the sense that
X, = PaX, + QaA"b, and r,=b— Ax, =b— AX, =T,. (4.4)

Again the deflated matrix A is singular if ¢ # {0}, and we have to discuss whether
the application of GMRES to the deflated system yields (in exact arithmetic) a well
defined sequence of iterates that terminates with a solution. This turns out to be
significantly more difficult than in the case of the CG method. Properties of GMRES
applied to singular systems have been analyzed by Brown and Walker [1], and the
following result is an extension of their Theorem 2.6.

TurEoREM 4.1. Consider an arbitrary matriz A € CV*N and a vectorb € Im (A)
(i.e., the linear algebraic system Ax = b is consistent). Then the following two
conditions are equivalent:

1. For each initial guess xo € CY the GMRES method applied to the system
Ax = b is well defined at each iteration step n and it terminates with a
solution of the system.

2. ker (A) Nlm (A) = {0}.

Proof. It has been shown in [1, Theorem 2.6] that Condition 2 implies Condition 1.
We prove the reverse by contradiction. We assume that ker (A)NIm (A) # {0}, and we
will construct an initial guess for which GMRES does not terminate with the solution.
For a nonzero vector y € ker (A) Nlm (A) there exists a nonzero vector y € CV, such
that y = Ay7 and since Ax = b is consistent, there exists a vector X € (CN with
b = AX. Then the initial guess xq := X —y gives rg = b-— Axo =b-Ax+ Ay y.
But since y € ker (A), we obtain Arg = 0, so that the GMRES method terminates
at the first iteration with the approximation xq, for which ro =y # 0. Thus, for
this particular initial guess xo the GMRES method cannot determine the solution of
Ax=b. 0O R

We next have a closer look at Condition 2 in Theorem 4.1. If we had ker (A) =
ker (A\H)7 then Im (A)J- = ker (AH) would imply

{0} =Im(A)" NIm(A) = ker (A") N Im (A) = ker (A) N Im (A),

so that Condition 2 would hold. For a general non-hermitian matrix, however, it
seems difficult to determine a deflated matrix with ker (A) = ker (A"). Nevertheless,



Theorem 4.1 gives a useful necessary and sufficient condition for the validity of the
deflation approach in the context of the GMRES method.

COROLLARY 4.2. Consider the deflated system (4.1). Then Condition 1 in Theo-
rem 4.1 is satisfied if and only if UN (AU)* = {0}. In particular, the latter condition
is satisfied when U is an exact A-invariant subspace, i.e., when AU =U.

Proof. Using the properties of the projection P from Lemma 2.1 and the fact
that A is nonsingular, we obtain

ker (A) = ker (PAA) = A 'ker (PA) = U,
Im(A) =Im (PAA) = Im (P4) = (AU)*,

and the result now follows from Theorem 4.1. If AU = U, then U N (AU)L = {0}
holds trivially. O

The situation that the GMRES method terminates without having found the
exact solution is often called a breakdown of GMRES. Such breakdown can only occur
when GMRES is applied to a linear algebraic system with a singular matrix, since
for a nonsingular matrix Condition 2 in Theorem 4.1 always holds. To illustrate the
problem of breakdowns in our context, we give an example that is adapted from [1].

ExaMPLE 4.3. Consider a linear algebraic system with

0 1 1
a1l e-lo]
so that the unique solution is given by the vector [0,1]T. Let the augmentation space
be defined by U; = [1,0]T, then

10 ~ 0 1 . 1
Pa=|y o] A=Pan=|{ | B-Pan=| (]

If xq is the zero vector, then Ty = b and AT, = 0, and thus GMRES applied to
the deflated system terminates at the very first iteration with the approximation xo.
Since Axo # b, this is a breakdown of GMRES. Furthermore, applying the correction
(2.11) to x¢ = %o does not yield the solution of the original system Ax = b because

5 0
Paxo+ QaA'b = QaA"b = U, U'AYb =0 # { . } )

5. Hermitian matrices and variants of MINRES. We will now apply the
results of Sections 2 and 4 to the case where A is hermitian, nonsingular, and possibly
indefinite. As in Section 4, we consider the choice B = A and the resulting deflated
system of the form (4.1),

Ax = 13, where A := PAA, b:= Pab.

5.1. The RMINRES method. For a hermitian matrix the GMRES method con-
sidered in Section 4 is mathematically equivalent to the MINRES method, which is
based on the hermitian Lanczos algorithm, and thus uses efficient three-term recur-
rences. If we start MINRES with an initial guess xo and the corresponding initial
residual Tp = b — Axg = Pa(b — Axg), then the iterate X,, and the residual T,, are
characterized by the two conditions

X, € X0+ Kn(A,Tp), and T, =b—AX, L AK,(A,T). (5.1)
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An attentive reader certainly has noticed that the deflated matrix A =PpA =
A — AQaA? is in general not hermitian, even when A is hermitian. However, since
P is a projection, a straightforward computation shows that

K:n(PAA,PAV) = K:n(PAAPA,PAV> (52)

holds for every vector v € C¥. The matrix PAAP4 is obviously hermitian (since
A and Pp are hermitian), and hence the Krylov subspaces we work with are also
generated by a hermitian matrix. It is therefore possible to implement a MINRES-like
method for the deflated system, which is based on three-term recurrences and which
is characterized by the conditions (5.1). As shown in Section 4, these conditions com-
bined with the correction step (4.4) are equivalent to the explicit use of augmentation,
i.e., conditions (4.2)—(4.3).

The latter conditions are the basis of the approach of Wang, de Sturler and
Paulino in [23]. They were interested in solving sequences of nearby linear algebraic
systems, and they suggested to reuse information from previous solves. More specifi-
cally, they determined harmonic Ritz vectors that correspond to harmonic Ritz values
close to zero, and used these approximate eigenspaces for augmenting the Krylov sub-
space (which have been shown here to be equivalent to solving the deflated system).
Their resulting method is called “recycling MINRES”, or briefly RMINRES. Here, we
omit the extraction of the augmentation space and concentrate on the method for
solving the systems.

We summarize the above and give two mathematically equivalent characteriza-
tions of RMINRES applied to the system Ax = b with initial guess xq:

1. The original approach used in [23] incorporates explicit augmentation, which
means to construct iterates x,, satisfying the two conditions

Xn€X0+ICn(PAA,PAr0)+Z/[, (5 3)

r,=b—Ax, L AK,(PAA,Parg) + AlU. '

2. A mathematically equivalent approach is to apply MINRES to the deflated
system

PAAX = PAb (54)

and correct the resulting iterates X,, according to x,, = P AX, + QaADb.
The RMINRES method as presented in [23] involves some interesting algorithmic
details. For example, the matrix U is modified using a QR factorization such that
Z; = AU is unitary, i.e., Z?Zk = I, and then P 5 simplifies to

Py =1- AU (UMAMAU) ' UNAY =1- 2, (202Z,) ' 2} =1- 2,2

Since RMINRES is mathematically equivalent to MINRES (and GMRES) applied
to the deflated system, Corollary 4.2 also applies to RMINRES. In particular, the
method can break down for specific initial guesses if (and only if) U N (AU)* # {0}.
Breakdowns cannot occur if U is an exact A-invariant subspace, but this is an unre-
alistic assumption in practical applications. Note that the matrix A in Example 4.3
is hermitian, thus it also serves as an example for a breakdown of RMINRES. In the
next subsection we will show how to suitably modify the RMINRES approach to get
a breakdown-free deflated MINRES solver.
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5.2. Deflated MINRES without breakdowns. We have seen above, that if
ker (A) = ker (AM), then Condition 1 in Theorem 4.1 is satisfied. Consequently, if we
can determine a hermitian deflated matriz A and a corresponding consistent deflated
system, MINRES applied to this system cannot break down for any initial guess.

Using the projections Pa and Pa from (2.10) we decompose the solution x of
Ax=Db as

x=Pax+ (I—Pa)x=Pax+ AQaAx =Pax+ AQab, (5.5)
X:f’AX-i-(I—f’A)XZf)AX-l-QAA?X:f)AX—i—QAAb. (5.6)

Using (5.6), the system Ax = b becomes A(Pax+ QaAb) = b. With the definition
of Po and APA = PaA (cf. Lemma 2.1) we see that this is equivalent to

PAAX = PAb.

We now substitute for x from (5.5) and obtain PA A(Pax + AQab) = Pab which
is equivalent to

PAAPAx = PAP'b. (5.7)

We can show the following result for the MINRES method applied to this sym-
metric system.

THEOREM 5.1. For each initial guess xo € CN the MINRES method applied to the
system (5.7) gives (in exact arithmetic) a well defined iterate X, at each step n > 1
until it terminates with a solution. Moreover, the sequence of iterates

X, = Pa (PaX, + AQab) + QaAb (5.8)

is well defined. It terminates (in exact arithmetic) with the exact solution x of the
original linear system Ax = b and its residuals are given by r, = b — Ax,, =
PAPib — PAAPAX,.

Proof. The first part follows from the fact that the system (5.7) is a consistent
system with a hermitian matrix PoAPAa, so that we can apply Theorem 4.1. It
remains to show the second part. The n-th residual of the original system Ax = b is
given by

r,=b—Ax,—=b—A (ﬁA (PaX, + AQab) + QAAb)

—b — AP, (PAX, + AQab) — AQaADb
= (I—AQaA)b—PAA (PaX, + AQab)
=Pab —PaAPsX, — PAA’Qab

=Pa (I-A%Qa)b—PAAPsX,

= PAPb - PAAPAX,.

We see that r,, is equal to the nth MINRES residual for the system (5.7). In particular,
this implies that the exact solution of (1.1) is given by (5.8) once a solution X, of
(5.7) is determined by MINREs. O

The following theorem shows that a modification of the initial guess suffices to
make the RMINRES method mathematically equivalent to MINRES applied to the
system (5.7).

THEOREM 5.2. We consider the following two approaches:
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1. RMINRES applied to Ax = b with the initial guess Xg := Paxo + AQab
and resulting iterates x,, and residuals r, = b — Ax,,.
2. MINRES applied to (5.7) with initial guess xo and resulting iterates X, and
residuals T,, ‘= PAf’Zb — PAAPAX,.
Both approaches are equivalent in the sense that x,, = ISA(PAE,L +AQab)+QaADb
andr, =T,.
Proof. Let us start with the MINRES method applied to (5.7), which constructs
iterates X,, = Xo + V¥, where V,, € CVN*" is of full rank n such that Im (V,,) =

Kn(PAAPA, Pf’Hro). Then PAV,, = V,, and the corrected iterates are

X = Pa(Pa (X0 + V,¥,) + AQab) + QaAb = PA (X + V,y,) + QaAb
=PaX, + QaAb, (5.9)

with X,, := Xg + V,,yn. For n > 0 the n-th residual of X,, with respect to the system
(5.7) is

T, = PAPY b — PAAPAX, = PA(Piib— APsxo — AV,y,)
- PA(b - A(PAXO + AQAb + VnYn)) = PAb - PAAin = i:n~

This is the residual of X,, with respect to the system (5.4). We also have
Ty = Pab — PAAX) = PAPib — PAAP % = Ty,

and thus the starting vectors of the Krylov subspace for both methods are equal.
Because of (5.2) also the Krylov subspaces are equal. From the definition of the
Krylov subspaces we immediately obtain

T, L PAAPAICn(PAAPA,fO) — 71, L PAAICH(PAA,Fo).

We can now see that the iterates X,, are the iterates of MINRES applied to (5.4) with
initial guess Xg. Along with the correction (5.9) this was shown to be equivalent to
RMINRES applied to Ax = b with initial guess X (cf. Section 5.1). O

This means that (in exact arithmetic) breakdowns in RMINRES can be prevented
by choosing the adapted initial guess Xq defined in Theorem 5.2.

6. Numerical experiments. In this section, we will show the numerical be-
haviour of selected Krylov subspace methods discussed above. Detailed numerical
experiments with the deflated CG method (cf. Section 3) and equivalent approaches
have been presented in [22]. Here, we will focus on the RMINRES method and the
deflated MINRES method (cf. Sections 5.1 and 5.2). Both methods are implemented
in MATLAB with three-term Lanczos recurrences and Givens rotations for solving the
least squares problem. All residuals have been computed explicitly in each iteration.

EXAMPLE 6.1. In this example we use a matrix A = WHDW ¢ R?mx2m,
m = 50, where D = diag(A1, ..., Aom) With Aj = V/J, Apyj = =V for j=1,....m
and W = [wy,..., Wa,,] is a randomly generated orthogonal matrix. We consider a
deflation matrix U = [uq, ..., ux] whose columns are pairwise orthogonal eigenvectors
of A,ie. AU = UDy and U"U = I, with a diagonal matrix Dy = diag(\;j,, ..., \j,)
for 0 < j; < -+ < Jr < 2m. This means that & = Im (U) is an exact A-invariant
subspace. Then a straightforward computation reveals that Py = P A =1-UUH,
which is obviously hermitian, and

PAAPA = PAAPA = PZA =PAA, PAPY =P =P,.
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F1G. 6.1. Convergence history for Example 6.1.

By comparing the correction steps of RMINRES and deflated MINRES (cf. Sections 5.1
and 5.2) and using PoAQa = 0, we can see that both methods are mathematically
equivalent if U/ is an exact invariant subspace.

We solve the system Ax = b with a random right-hand side b and the initial
guess xg = 0. In Figure 6.1 we show the relative residual norms of the solvers

e MINRES (solid line),
e RMINRES with explicit augmentation and deflation (dotted line) according
to Wang et al. [23]; cf. (5.3),
e RMINRES with deflation only (dash-dotted line), i.e., the residual norms of
MINRES applied to the system PoAx = Pab; cf. (5.4),
o deflated MINRES (dashed line), i.e., the residual norms of MINRES applied
to the system PAAPAx = PAf’Zb; cf. Section 5.2.
For the last three methods we used the matrix U = [wy,..., W5, W51, ..., Ws5] which
contains the eigenvectors associated with the 10 eigenvalues of A of smallest absolute
value. Thus the deflation space U has dimension 10 and is an exact A-invariant
subspace. The numerical experiment illustrates our theoretical result that the two
implementations of RMINRES and the deflated MINRES method are mathematically
equivalent. Note that all three convergence curves coincide in Figure 6.1.

EXAMPLE 6.2. In this example we investigate breakdowns and near-breakdowns
of the RMINRES method numerically. We use the same matrix A as in Example 6.1
and we construct a subspace U for which U N (AU)*+ # {0}. Thus, the condition that
guarantees a breakdown-free RMINRES computation is violated; cf. Section 5.1.

To construct the subspace U we choose an integer k, 0 < k < m, and we define
Wi = [w;,...,w;. ] and Wy = [Wy4iy, ..., Wipgq, ] for indices 0 < i3 < -+ < ig <
m. With Dy = diag(X\i,,- -, A, ) we obtain AW; = WDy and AW32 = —“W3Dy
because of the symmetry of the spectrum of A. We now choose the deflation and
augmentation matrix as U = W1 +Ws. Applying A yields AU = (W;—W>3)Dy and
using the fact that W is unitary shows that UNAU = 0, or equivalently & C (AU)*.
The proof of Theorem 4.1 gives us a way to construct an initial guess which leads
to an immediate breakdown of RMINRES. For an arbitrary 0 # u € U we choose
xo = A7}(b — u). Because of Y L AU we have Paou = u and the initial residual



13

10°
107
-
=
% 10"
é
v 10°
;:
<
= 10°
MINRES T
1070 e RMINRES (Defl/Aug) - N
----- RMINRES (Defl. only) \
— — — deflated MINRES ‘.
-12
10 Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 90
Iteration
(a) Unperturbed deflation space U
10° 1
107 .
s}
= .
% 10" 1
N
10 1
f=4
x
N
% 10’8 N
MINRES -
107°H RMINRES (Defl./Aug.) - E
----- RMINRES (Defl. only) N e e e e e e — -
— — — deflated MINRES - /|
10'12 I I I I I I I I
0 10 20 30 40 50 60 70 80 90

Iteration

(b) Perturbed deflation space U = UM + E

F1G. 6.2. Convergence history for Example 6.2.

of RMINRES is rg = Pab — PpoAxy = u. The breakdown then occurs in the first
iteration because PaoArg = PoAu = 0 since Au € AU = ker (Pa).

For these constructed initial guesses the RMINRES method indeed breaks down
immediately in numerical experiments, whereas the deflated MINRES method finds
the solution after one step. However, of greater interest are situations with per-
turbed initial guesses. Interestingly also random initial guesses lead to a breakdown
of RMINRES after a few steps.

In Figure 6.2 we again show the relative residual norms of the solvers listed above
applied to exactly the same A, b and x as in the previous example. For Figure 6.2(a)
we used the matrix UM = [wy + wsy, ..., Wi + Weo] whereas Figure 6.2(b) shows
the results for a perturbed matrix U® = UM 4+ E with a random E € C'90%10 and
||E||2 = 1071°. Then both deflation spaces again have dimension 10.
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Note that both RMINRES implementations suffer from a breakdown after a few
steps with both matrices UM and U®. With the unperturbed matrix UM the
deflated MINRES method converges to the solution with relative residual smaller than
10~'2, while in the case of the perturbed matrix U®) the method stagnates with a
relative residual of order 10~''. This stagnation of deflated MINRES seems to be
related to an unfavorable spectrum of Py AP o for these specifically constructed and
perturbed matrices like U®). Perturbing the matrix U from Example 6.1 whose
columns are exact eigenvectors of A does not cause stagnation. This behaviour is still
subject to further research.

7. Conclusions. In this paper we first analyzed theoretically the link between
deflated and augmented Krylov subspace methods whose residuals satisfy a (Petrov-)
Galerkin condition. For the CG method and GMRES/MINRES methods we have
seen that augmentation can be achieved without explicitly enhancing the Krylov sub-
space, but instead projecting the residuals appropriately and using a correction for
the approximate solutions.

The projections which arise from the augmentation can also used to obtain a
deflated system. We have seen that a left-multiplication of the original system with
the corresponding projection yields a deflated system for which the CG method and
GMRES/MINRES methods implicitly achieve augmentation. We proved that for non-
singular hermitian matrices the MINRES method for the deflated system is equivalent
to the RMINRES method introduced in [23]. While CG never breaks down, GM-
REs, MINRES and thus RMINRES may suffer from breakdowns when used with the
deflated systems. We stated necessary and sufficient conditions to characterize break-
downs of these minimal residual methods. For hermitian matrices, we introduced the
deflated MINRES method which also uses a hermitian deflated matrix and proved that
it cannot break down.

In numerical experiments we compared the MINRES, RMINRES and deflated
MiINRES methods. With exact invariant subspaces as deflation spaces the iterates of
RMINRES and deflated MINRES coincide as expected. Using a contrived deflation
space led to a breakdown of RMINRES for random initial guesses and even with small
perturbations of the deflation space. In this particular example, the deflated MINRES
method still converged when no perturbations have been added but suffered from
stagnation otherwise, which is under further investigation.
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