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Abstract

We introduce a numerical method for the numerical solutithe Lur’'e matrix equations

ATX + XA+ Q=K'K,
XB+C =KL,
R=L"L,

that arise, for instance, in linear-quadratic infinite tinmgizon optimal control. The method is based on the characte
ization of the solutions in terms of deflating subspaces aifitalsle even matrix pencil. Via a Cayley transformation,
the problem is transformed to the discrete-time case, atydtba infinite eigenvalues of the original problem asso-
ciated with ke€ are deflated. This leaves us with a symplectic problem witlersé Jordan blocks of eigenvalue 1
and even size, which arise from the remaining eigenvaluidiaity of the original problem. For the solution of this
modified problem, we use tharucture-preserving doubling algorith(®DA), an iterative scheme for the solution
of dense continuous- and discrete-time algebraic Riceptatons. Unlike other iterative schemes, this algorithm
converges also when the pencil has eigenvalues on the wucli¢,cas is the case in our problem. Implementation
issues such as the choice of the parameteithe Cayley transform are discussed. The numerical exesyksented
confirm the &ectiveness of this method.
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1. Introduction

A classical result of control theory is that fé&ty Q € R™, B,C € R™ R e R™ with Q = Q" R = R,
a linear-quadratic optimal control problem of type

Minimize
0o T
jM%w=%£ MM[S %Egkt (1a)

subject tou() : R* - R™and

(1) = AX(t) + Bu(t), x(0) = %o (1b)
fim X0 =0,
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leads to thealgebraic Riccati equation (ARE)
ATX + XA- (XB+C)R{(XB+C)" +Q=0. (2)

In particular, the existence of an optimal control is eql@aato solvability of (2), and the optimal control can be
constructed by a state feedback that involves a solWtiar (2) [1, 2]. Assembling the algebraic Riccati equation
however requires the invertibility of the matrik The case of singuldR is referred to as aingular optimal control
problenf3, 4, 5, 6] which may cause that the optimal control becomssildutional angor non-unique. Instead of
setting up the ARE, these equations are now formulated astaray

ATX + XA+ Q=K'K,
XB+C=K'L, (3
R=LTL,

which has now to be solved for the tripl¥,(K, L) € R™ x RP" x RP™ with X = XT andp as small as possible.
The nonlinear system is callddir'e equationsafter A.l. Lur’e [7] (see [8] for an historical overview). This type
of equations not only occurs in linear-quadratic optimaiteol, but the can be also used to analyze properties like
dissipativity of linear systems [9, 10, 11, 12]. Another onfant field of application is in balancing-related model
reduction, in particular positive real balanced truncaiad bounded real balanced truncation [13, 14, 15, 16, 17].

In the case wherR is invertible, we haven = p, and the matrice& andL can be eliminated by obtaining the
algebraic Riccati equation (2). Whereas this type is wefil@red both from an analytical and numerical point of view
[18, 1, 19], the case of singul& has been treated stepmotherly. However, the singularigisfoften a structural
property of the system to be analyzed [20] and can therefarbaexcluded by arguments of genericity.

From a theoretical point of view, Lur’e equations have bemestigated in [21, 8]. The solution set is completely
characterized in [22] via the consideration of the matrirgile

0 -sl+A B
S-A=|sl+AT  Q cl. (4)
BT c" R

This pencil has the special property of beggen that is& is skew-Hermitian andd is Hermitian, and it takes the role
of the Hamiltonian matrix for algebraic Riccati equatio®lvability of (3) is characterized via the eigenstructure
of this pencil, and furthermore there is a correspondentedsn the solutions of the Lur'e equations and certain
deflating subspacesf (4) [22]. Deflating subspaces are a generalization of trecept of invariant subspaces to
matrix pencils [23]. Under some slight additional condisoof the pair A, B), such as controllability of the system
(1b), it is shown in [22] that there exists a so-calfedximal solution X Here, maximality means thatis, in terms
of semi-definiteness, above all other solutions of the Lageations.

The aim of this work is to present a method for the numerichitsm of Lur'e equations. Before our approach is
presented, let us briefly review the known approaches feiptttiblem: Basically, these can be divided into elimination
and perturbation approaches:

a) The works [24, 25] present an iterative technique for tivaieation of variables corresponding to ker By
performing an orthogonal transformationRfand an accordant transformationlgfthe equations can be divided
into a regular part’ and a 'singular part’. The latter leadgn explicit equation for a part of the matix Plugging
this part into (3), on obtains Lur’e equations of slightlyadter size. After a finite number of steps this leads to an
algebraic Riccati equation. This also gives an equivalelveility criterion that is obtained by the feasibility of
this iteration.

b) The most common approach to the solution of Lur'e equatisrthe slight perturbation d® by l,, for some
£ > 0. Then by using the invertibility dR + I, the corresponding perturbed Lur'e equations are now etgriv
to the Riccati equation

ATX, + X,A— (XB+C)(R+ &) {(X.B+C)" + Q = 0. (5)



It is shown in [26, 27] that the corresponding maximal solnsX, then converge to the maximal solution of (3).

Whereas the first approach has the great disadvantage tekeéton successive nullspace computations (which may
be an arbitrarily ill-conditioned numerical problem), thig problem of the perturbation approach is that, so fargthe
exist no bounds for the perturbation erfjar— X.||. On top of that, the numerical condition of the Riccati equaf5)
increases drastically astends to 0.
The approach presented in this work is dfelient nature. Via a Cayley transformation, the probleneissformed to
the discrete-time case, and only timénfinite eigenvalues of the original problem associatedh\érE are deflated.
This leaves us with a symplectic problem with several Jotlaoks of eigenvalue 1 and even size, which arise from
the remaining eigenvalues at infinity of the original prabldt is indeed shown in [22] that a singulBrcauses the
presence of higher-order Kronecker block of odd size aagetiwith the eigenvalu¢ = c. For the solution of
this modified problem, we use tlsructure-preserving doubling algorithran iterative scheme for continuous- and
discrete-time algebraic Riccati equations [28]. It is shaw[29] that, unlike other iterative schemes, this aldorit
converges also when the pencil has eigenvalues (of everpiiaity) on the unit circle, as is the case in our problem.
The paper is organized as follows. Section 2 introducesdtegion and contains some required control and matrix
theoretic background, in particular a normal form for eveatnm pencils is introduced. In Section 3 we briefly present
some results from [22] which connect the spectral propedi¢he even pencil (4) to the solvability and the solutions
of the Lur'e equations. Section 4 outlines the basics of thectire-preserving doubling algorithm. This method
requires the matrices to be in a special structure, the bedcstandard symplectic-like fornwhich is for matrix
pencils introduced in Section 5. For pencils arising in thalgsis of Lur'e equations, this standard symplectic-like
form is considered in Section 6. Together with the previpusiroduced theory, this leads to an iterative method
for the numerical solution of Lur'e equations. Further dsteoncerning implementation and, in particular, stogpin
criteria for the iteration, are discussed in Section 7. THeoty and methods introduced in this article are finally
illustrated in Section 8 by means of several numerical exasap

2. Control and Matrix Theoretic Preliminaries

Throughout the paper real and complex numbers are denot®daoyl C, the open left and right half-planes by
C~ andCt, respectively. The symbalstands for the imaginary unit, and Eywe denote the complex conjugate of
z € C. Natural numbers excluding 0 are denoted\yThe space ofi x m complex matrices is denoted ™, and
the set of invertible compler x n matrices by GI(C). The matricesA” andA* denote, respectively, the transpose
and the conjugate transposeffE C™™. We denote by rank) the rank, by im) the image, by keK) the kernel,
by o-(A) the spectrum of a matriA. The symbolg| - ||, || - ||r respectively stand for the spectral and Frobenius matrix
norms. For Hermitian matricé® Q € C™", we writeP > Q (P > Q) if P — Q is positive (semi-)definite.
For a rational matrix-valued functioh : C\D — C™™, whereD c C is the finite set of poles, we define the normal
rank by normalrank = maxsc\p rank®(s).
With A € C™™ with m,n; € N U {0} fori = 1,...,k we denote the block diagonal matrix by didgy. .., Ax).
An identity matrix of orden is denoted by, or simply byl. The zeran x m (n x n) matrix is denoted by 0y, (resp.
On) or simply by 0. Moreover, fok € N we define the matriced, My, Nk € R¥¥, Ky, L, € R<1k as

1 0 1 1 1 0
Jk: R Kk: N Lk: N
1 I 0 1 1 0
1 0 1
Mc=| ] Ne= .
1 R
10 I 0l

Definition 1. Let &€ — A be a matrix pencil withS, A € R™". Then &€ — A is called regularif m = n and
normalrankés — A) = n. A pencil € — A is calledevenif & = -&" andA = A". A pencil withE, A € R is
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calledsymplecticf EIE™ = AJAT, where

Many properties of a matrix pencil can be characterizedrimseof theKronecker canonical form (KCF)

=15, 5

Type | Size Ci(9) Parameters
KL | kxk (5=l —Ng | kieN,1eC
K2 kj x K; SN, — Iy kieN
K3 (kj = 1) xkj | sKy — Lk ki e N
K4 | kjx(kj—1) | ski -Lg kieN

Table 1: Block types in Kronecker canonical form

Theorem 2. [23] For a matrix pencil £ — A with &, A € R™™, there exist matrices Lt Gly(C), U, € Gly(C), such

that

Ui(s€ - AU, = diag(Ca(9), . .., Ck(9)),

where each of the pencit$j(s) is of one of the types presented in Table 1.
The numbergd appearing in the blocks of type K1 are called {fgeneralized) eigenvalue$ sE— A. Blocks of type
K2 are said to be corresponding to infinite eigenvalues.

(6)

A special modification of the KCF for even matrix pencils, #wecalledeven Kronecker canonical form (EKCIE)
presented in [30]. Note that there is also a ‘realness-prigpversion’ of this result [31].

Type | Size Di(s) Parameters
ij,kj (/I_S)ij_ Nkj +
El 2k; x 2k; a+ S)ij_ NII; ij’ki kjeN,1eC
. ki e N,u e R,
E2 | kjxk &i((=is = 1) + My) e {—f 1
. ki € N,
E3 | kixk | elisMy + J) 6 c(-11)
(2k;—1)x O-1k-1  —SKi + Ly .
Hl@g-D | KA 0 o

Theorem 3. [30] For an even matrix pencil& — A with &, A € R™", there exists a matrix ¢ Gly(C) such that

Table 2: Block types in even Kronecker canonical form

U*(s& - A)U = diagD1(9), . . -, Dk(9)),

(7)



where each of the pencif§;(s) is of one of the types presented in Table 2.
The numbers; in the blocks of type E2 and E3 are called thieck signatures

The blocks of type E1 contains pairs, 1) of generalized eigenvalues. Together with realnes$ ahd A, this
implies that non-imaginary eigenvalues occur in quadsiflel, -1, —1). The blocks of type E2 and E3 respectively
correspond to the purely imaginary and infinite eigenvalBéscks of type E4 consist of a combination of blocks that
are equivalent to those of type K3 and K4. Note that regylafithe pencils€ — A is equivalent to the absence of
blocks of type E4.

Definition 4. A subspacel’ c CN is called(right) deflating subspader the pencil € — A with &, A € CMN if for
a matrix V€ CN¥ with full column rank andm V = <V, there exists an & k and matrices W CM | E, A € C'* with

(s& - AV = W(sE - A), (8)

Definition 5. An eigenvaluel of a matrix pencil is callea-stable c-critical or c-anti-stablaespectively iRe(?) is
smaller than, equal to, or greater than 0. A right deflatingspace is called-stablg(resp.c-anti-stablif it contains
only c-stable (resp. c-anti-stable) eigenvalues, argémi-stabléresp.c-semi-anti-stabldf it contains only c-stable
or c-critical (resp. c-anti-stable or c-critical) eigenitges. The same definitions hold replacing the prefix c- witifi d-
we replace the expressidgte() with 4] — 1.

Definition 6. Let M € C*k be given. A subspack c Ckis called M-neutralif x* My = Ofor all x, y € V.
Definition 7. Let a pair(A, B) € C™" x C™™ be given. Then
() (A, B)is calledcontrollableif rank[sI-A, B] = nforall se C;
(i) (A, B)is calledstabilizablef rank[sI-A, B] = nforall se C\C".
Definition 8. Giveny € R, v # 0, theCayley transfornof a regular pencil & — A is the pencil
5, - A,, & =A+yE,, A, =A-yE

In the scalar case, the Cayley transform reads

/l+y'

In particular, we hav@C(2)| = 1 if, and only if, A is infinity or on the imaginary axis. Note that in the case 0, we
have|C(2)| < 1 if, and only if, ReQ) > 0, whereas, in the case> 0, there hold$C(1)| < 1 if, and only if, Re@) < 0.

Via transformation into (even) Kronecker form, it can berstieat Cayley transform of a matrix pencil preserves
left and right eigenvectors and principal vectors, while gigenvalueg transform toC(1). In particular, blocks of
type K1 (W1) of sizek for 1 are mapped to blocks of same type and size, but no@ (ay.

3. Solvability of Lur'e equations

In this part we collect theoretical results being equivafenthe solvability of Lur'e equations. For convenience,
we sometimes refer to the symmetric maiXimlone as a solution of the Lur’e equations, instead of tipdet(X, K, L).
Note that, once having found a soluti¥nthe other matriceK andL can be obtained by a full rank factorization

KT

.
ATX+XA+Q XB+C :[LT][K L]. )

B'X+CT R
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Therefore, ifX solves the Lur’e equations (3), the matriteandK are unique up to the multiplication from the right
with some orthogonal matrix of sizex p. We now introduce some further concepts which are used t@actaize
solvability of the Lur’'e equations.

Definition 9. For Lur'e equations (3), thepectral density functigralso calledPopov functionis defined as

el - AV-1R]T _ A1
(-sl-A) B} [(?T CH(SI A) B} (10)

D(s) = I R

Im

Definition 10. For Lur'e equations (3), thassociated linear matrix inequality (LMf defined as

ATY +YA+Q YB+C T
[ BTY 4+ O R |20 Y=Y (11)
The solution set of the LMI is defined as
Sivi ={Y € C™ : Y is symmetric and (11) holds true 12)

The LMI (11) is calledeasibleif Sy # 0.

It can be readily verified that € S|y solves the Lur'e equations, if and only if, it minimizes ttank of (11). We
now collect some known equivalent solvability criteria laxequations. In the following we require that the paiy B)

is stabilizable. Note that this assumption can be furthexk@aed by reducing it teign-controllability[22]. This is
not considered here in more detail.

Theorem 11 ([22]). Let the Lur'e equations (3) with associated even matrix pes&— A as in (4) and spectral
density functior as in (10) be given. Assume that at least one of the claims

(i) the pair (A, B) is stabilizable and the penciEs- A as in (4) is regular;
(i) the pair (A, B) is controllable;
holds true. Then the following statements are equivalent:
1. There exists a solutiofX, K, L) of the Lur’'e equations.
2. The LMI (11) is feasible
3. For allw € R with iw ¢ o(A) holds®(iw) > O;
4

. In the EKCF of & — A, all blocks of type E2 have positive signature and even aizé all blocks of type E3
have negative sign and odd size.

5. In the EKCF of & — A, all blocks of type E2 have even size, and all blocks of typkd¥® negative sign and
odd size.

In particular, solutions of the Lur'e equations fulf{)k, K, L) € C™" x C™P x C™P with p = normalrankd.

It is shown in [22] thatm — normalrankd is to the number of blocks of type E4 in an EKCF s — A. In par-
ticular, the pencik&E — A is regular if and only ifd has full normal rank.
Now we place particular emphasis on the so-catiekimal solution

Theorem 12 ([22]). Let the Lur'e equations (3) be given with stabilizable p@r B). Assume thas, v, as defined
in (12) is non-empty. Then there exists a solutignoKthe Lur'e equations that is maximal in the sense that for al
Y € S mi holds

Y < X,.
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The following result states that the maximal solution carcbestructed via the c-stable deflating subspace of the
associated even matrix pensfl — A.

Theorem 13 ([22]). Let the Lur'e equations (3) be given with stabilizable p@ir B). Assume thaB, v, as defined
in (12) is non-empty. Then

X, 0
{n, 0 (13)
0 In

spans the unique # m-dimensional semi-c-stabfe— neutral subspace of the pen¢i).

The above theorem states that the maximal solution can lvegsqx in terms of a special deflating subspacg efA.
By means of the EKCF, this space can be constructed from tiiexnih € C2™M2™™M pringing the penciks& — A
into even Kronecker form (7). Considering the partitionthg- [ U1, ..., Ux] according to the block structure of the
EKCF, a matrixV € C2*™"™M gspanning the desired deflating subspace can be constrycted b

V=[Vi ... W] forv;=U;z, (14)
where
[, 01", if D;is of type E1,
Zj = [Tk/2s ij/z]T, if Djis of type E2,
[ +1y2> O(kj_l)/z]T, if Djis of type E3,
[ ij S ij+1]T, if DJ is of type E4.

In particular, the desired subspace contains all the vedietonging to the Kronecker chains relative to c-stable
eigenvalues, no vectors from the Kronecker chains rel&iveanti-stable eigenvalues, the fikst2 vectors from the
chains relative to c-critical eigenvalues, and the fikst{1)/2 from the chains relative to eigenvalues at infinity.

4. Outline of SDA

The structure-preserving doubling algorithm (SDA) is ammateration which computes two special deflating
subspaces of a matrix pencil, one semi-stable and one s#irstable. It was introduced by~derson [32] as an
algorithm for the solution of a discrete-time algebraic dit equation, and later adapted to many other equations
and explained in terms of matrix pencils in several paperd/ey-Wer Lix and others [28, 33, 29, 34]. Itis strongly
related to the sign function method and to the disc methodhfatrix pencils [35, 19].

Theorem 14 ([35]). Let &5 — A be a regular matrix pencil witliA, & € RN*MN+M "and let €, — A. be a regular
pencil of the same size witA.E = E.A. Then

1. the pencil £.& — A. A is regular and has the same right deflating subspacesas gl
2. its eigenvalues are the square of the eigenvalues of igaal pencil.

This result is far from surprising in the case in whiglis invertible: in this case, the eigenvalues and right defiat
subspaces o€ — A correspond to the eigenvalues and right invariant subspai@ A, and it is simple to check
that the conditions imposed @, A. imply (E.6) (A A) = (ELA)2. Thus the map&, A) — (E.6, A.A) is a
way to extend the concept of squaring to matrix pencils.
A pencil s& — A with &, A € RNMN+M 5 said to be irstandard symplectic-like form | (SSFifl)t can be written
as
az[lN —G}’ A= E O

ol (15)

0 F

where the block sizes are such tiilat RNN andF € RMM. Note that a pencil in SSF-I is always regular. When a
pencils€ — A is in SSF-1, a choice ofS, — A. satisfying the requirements of Theorem 14 is

e | ~E(N-GH'G| _ _[ E(n-GH™ 0
“Tl0 Flu-HG)™ |© " T |-F(m-HG)H Iy|’
7



and this choice yields a new pens#,& — A, A = s& — A which is still in SSF-1, as we have

E(In - GH)1E 0

g_[n —(G+E(y-GH)GF)
- : ~(H+F(ly - HG)HE) Iy|

0 F(ly — HG)1F ﬂz[
The only hypothesis needed here is thaGH andl — HG are nonsingular. In fact, by the Sherman-Morrison formula,
they are either both singular or both nonsingular.

The structured doubling algorithm, outlined as Algorithpt@nsists in repeating this transformation.

input : E, F, GandH defining the pencis€ — A with &, A as in (15)
output: He,,G., S0 that the subspaces in (16) are respectively the canaeicatd-stable and
semi-d-anti-stable deflating subspaces of the pesicil A

Eo = E;
Fo=F;
Go =G;
Ho = H;

for k=0,...,knaxdo
E. = Ex(In — GkHW) ™
F. = F(lv - HG)™;
Gis1 = Gk + E.GkFy;
Hir1 = Hi + FLHKEy;
Exi1 = E.Ex;
Fre1 = F.Fi

end

Hoo = Hi

Goo = kaax;

Algorithm 1: SDA-I

Forkmax large enough, the algorithm produces two matri¢esdY whose ranges are approximations of, respec-
tively, a semi-d-stable and a semi-d-anti-stable deflagimgspaces of the given pencil. Each step of the algorithm
costs¥ (M3 + N3) + BMN(M + N) floating point operations. This reduces¥iN? in the caseM = N.

The following convergence result is proved in [29] for thenpfectic case and in [34] for several specific matrix
equations, but its proof works without changes for our gliglore general case. We call a penaiakly d-splitf
there exists an such that:

¢ the lengths of the Kronecker chains relative to d-stableraiglues sum up tN —r;
e the lengths of the Kronecker chains relative to d-antidstaigenvalues sum up td —r;

e the lengths; of the Kronecker chains relative to d-critical eigenval@ehich must sum up tor2if the two
previous properties hold) are all even.

In this case, we define theanonicald-semi-stable (resp. d-semi-anti-stable) subspace asvthgant subspace
spanned by all the Kronecker chains relative to d-stabkp(rel-anti-stable) eigenvalues, plus the fig2 vectors
from each critical chain.

Theorem 15. Let the penci(15) be weakly d-split, and suppose that there are two matricéisariorm

I Ge
e} [5)

spanning respectively the canonical d-stable and d-aatie deflating subspace. Then for Algorithm 1 it holds that

e [|Edl = 0(27),



e [IFdl=0(27"),

o [IHe = Hdll = 0(279),

¢ [IGe — Gull = 0(27%).

Notice that, wherN = M, a pencil in SSF-1 is symplectic if and only " = F, G = G" andH = H'. In this
case, all the pencils generated by the successive stepsfoa&Dsymplectic, i.e., at each stkpve haveEI = Fy,
Gy = GI, Hy = H,I. The implementation can be slightly simplified, since theneo need to computéy,; andFy.1
separately, nor to invert botly — GyHy andly — HiGy, as the second matrix of both pairs is the transposed of the
first.

5. A method to compute the SSF-I of a pencil

One can transform a regular pencil into SSF-1 easily usiedalowing result.

Theorem 16. Let £ — A be a matrix pencil witt€, A € RN*MN+M "and partition both matrices as

=& &| A=|A A

with &1, A; € RNV*MN and &;, A, € RNMMM A SSFE-| pencil having the same eigenvalues and right deglati
subspaces of the original pencil exists if and only if

[81 ﬂz] (17)

is nonsingular; in this case, it holds

[_EH —FG}:[& A A &) (18)

Proor. We are looking for a matriQ such that
I -G E O
sl ool =y (5 9]

By taking only some of the blocks from the above equation, ete g

ol anef}

Qlér A= [(') ?}

thusQ must be the inverse of the matrix in (17).
On the other hand, taking the other two blocks we get

E -G
on-[5] e8]
which promptly yields (18).
This formula is strictly related to the principal pivot tifarm (PPT) [36].

We point out an interesting application of Theorem 16, whschot related to the rest of the paper. SDA is often
used in the solution of nonsymmetric algebraic Riccati éiqna (NARE) [37], where it is applied to the Cayley



transform of the matrix

w2

B -
with A, B, C, D blocks of suitable size associated with the feiceents of the problem. In pencil form, its Cayley
transform given bys(H + yl) — (H — yl), thus (18) becomes

D+yl -C | [D-y -C
B -A-yl B -A+yl|

E -G|_
-H F

(19)

This formulais more compact to write and more computatigrefective than the one suggested byoGr aL. [38].

In fact, their expressions for the starting blocks requireinversion of twd\ x N and twoM x M matrices, which
are indeed the (11) and (22) blocks of the matrix to be inverted in (19) and their Schamplements. Clearly, two
of these four inversions are redundant if we use (19), whecfuires more or less half of the computational cost with
respect to the original formulas in [38].

6. A reduced Lur’e pencil

Let s&€ — A be pencil (4) associated to the Lur'e equations (3). Througkhe remaining part, we employ the
following assumptions.

Al The Lur’e equations (3) are solvable.
A2 The pencil (4) is regular.
A3 The pair @, B) is stabilizable.

Note that, according to Theorem 11, assumptidh&ndA?2 are equivalent to the spectral density functioas in 10
having full normal rank and being pointwisely positive seafhafinite on the imaginary axis. Note that, for the optimal
control problem (1), this means that the optimal controhigue for anyxg € R". Using Theorem 12, assumpti&3
implies the existence of a maximal solution of the Lur’e dapres (3)

By assumptiorA2, there exists some € R such thaty& — A is invertible. Hence, we may build the SSF-I form
of its Cayley transform (assumirid = n+ m, N = n) which is, by Theorem 16, given by

-1

E -G [0 A-vyl B 0 A+vyl B
[—H F]:AT—yI Q C AT + 91 Q Cj. (20)
BT CcT R BT CcT R
Let now
~. 0 A—vl] 5. |B 10 1
[, 2 |9 [0l

Choosingy € R\{0} is a way that it is not an eigenvalue Afthe matrixA is invertible. Together with the invertibility
of the overall matrix, we also also have the invertibilityitsf Schur complement

S(y) =R - [ cT|A™ H

C [ (AT -y TQA- 1) (AT—Vl)‘lnB}
(AT — y1)1 0 C

Q -C|[-A"'B
&R

|m m

_ [(yl ~ A" 15}

Note thatS(y) is closely related to the spectral density functibim (10).
10



We can perform the inversion in (20) explicitly with the helpa block LDU factorization. We have

A B|l_[law O][A 0 |[lw AB
B* R| |BAL Inll0 Sm[|0o In |

thus
E -G| [A B|'[A+2yT B
-H F|7|B" R BT R
_[lza -AB|[AT 0O ln. O][A+2yT B
“lo Im 0 SO |-B"AT 1,|| BT R
N A 0
“-2yS()BTAIT Iy
where
A=l +2yA T + 2yA'BS(y) 'BTAIT. (21)

This means that we can identify an additional structure énttfocks used in SSF-I:

F O], G=[¢ o Hz['ﬂ,

*

F=

where the smaller blocks, G, H have sizen x n. It follows that a special right deflating subspace of thisgikis

[Oanm}
Im |’
whose only eigenvalue is 1 with algebraic and geometriciplidity m, while the deflating subspaces relative to the
other eigenvalues are in the form
\%
]

whereV has 21 rows and is a deflating subspace of the reduced pencil

I, -G E O
S 0 ﬂ—[_ﬁ |n:| (22)

Using (21) and the fact tha and.S(y) are symmetric, one sees thist is symmetric, too. This means that = F
andG = G™, H = HT, that is, the pencil (22) is symplectic.
The pencil (22) is given bPT (s& — A)P, whereP is the projection on

[spa{ ]] -

With this characterization, it is easy to derive the KCF d?)(fom that of the Cayley transform of (4). We see that
ker& is the space spanned by the first column of each block of typéak2 corollary, we see that there are exactly
m = dim kerE such blocks). These blocks are transformed into blocksps K1 withA = 1 by the Cayley transform.
Thus projecting on their orthogonal complement correspdadiropping the first row and column from each of the
blocks of type K1 corresponding to= 1. In particular, it follows that if the criteria in Theoreni hold, then for

the KCF of the pencil (22), every block of type K1 correspario an eigenvalue on the unit circle has even size.
Therefore, the reduced pencil (22) is weakly d-split. Bysidaring which vectors are needed from each vector chain

0
0

Im

11



corresponding to blocks in the KCF to form the subspace if &bdl, furthermore, incorporating assumptsd, we
get therefore the following result.

Theorem 17. Let“V be the uniquén+ m)-dimensional c-semi-stabé& neutral deflating subspace ¢4). Then, there
is a matrix \b € C™™M such that
V= spar{v1 0

V2 Im

where \{ spans the canonical d-semi-anti-stable subspace of thellp@2). Moreover, ifspany/;) admits a basis in
the form

X+

¢

then X is the maximal solution of the Lur'e equati@).

[l

b}

In other words X is the canonical weakly stabilizing solution of the DARE

X = EX(I - HX)'E" + G. (23)

7. Implementation of SDA for Lur'e Equations

Based on the results of the previous sections, we can usediid Slgorithm to compute the solution to a Lur'e
equation. The resulting algorithm is reported as Algorithm
As we saw in Section 4, the symplecticity of the pencil is preed during the SDA iterations, and helps reducing

the computational cost of the iteration. Moreover, in thés/we can preserve the eigenvalue symmetry of the original

pencil along the iteration.
The explicit computation of (a possible choice BfandL is typically not needed in the applications of the Lur'e
equations. If they are needed, they can be computed by ahklfactorization (9).

input : A, B, C, Q, Rdefining Lur’e equations (3) fulfillingA1-A3
output: An approximation of the maximal solutiog
Choose a suitable > 0;

Compute
0 A-yl B[ 0 A+qyl
T—|AT—yl Q@ cC| |[AT+yl Q |;
BT c'" R BT cT
Partition
E -G
T=|-H ET|;
k %

UseSDA-I onE, F = ET, G,H to computeG,., He;
ReturnX = G;
Algorithm 2: A structured doubling algorithm for the maximal solutioneofur'e equation

Algorithm 2 produces a sequendgjx of approximations of the maximal solutiof Corresponding sequences
Kk, Lk of L andK satisfying (3) can be constructed by performing a singudduier decomposition

_[Ull UIZ] 2 OHVM Vlz}

“[U2ai U0 2p||Vor Va2

ATX+ XA+ Q XB+C
B™Xc+CT R

(24)

e R™ Vi, Ul e RM, Vp,Ul, e R™™
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With approximationsy = £1/Viy, L = 1/?Vi,, theabsolute Lure residuatan be defined as

ATXk+XkA+Q XB+C KII
”[ BTXk +CT R - L'Ik' [Kk Lk] . (25)
We define theelative Lur’'e residuaks

ATX + XA+Q XB+C| [K] ke L

B X+ CT R LI X
= (26)

ATX + XA+Q XB+C
B™X, +CT R F

Adequate stopping criteria can be designed on the basig@flibve defined two quantities.

The accuracy of the computed solution depends also on am@age choice ofy. Following [28], we try
to minimize the error in the initial valueg, F, G, H; however, notice that, thanks to Theorem 18 and the nicer
expression (20) which it provides for the initial values triterion exposed there can be substantially simplifietl an
reduced to minimizing the function

f(y) = condes([&l 5‘(2])

where condes{( is the condition number estimate given byivas®. As an analytical solution is not readily avail-
able, following again the strategy in [28], we perform fiveps of the golden section search method [39]f¢n)

in order to get a reasonably good value of the objective fanavithout devoting too much time to this ancillary
computation.

8. Numerical experiments

We have implemented Algorithm 2 (SDA-L) usingaM.Aas®, and tested it on the following test problems.

P1 a Lur’e equation with a random stable matfbe R™", a randonC = B, Q = 0 andR them x m matrix with all
the entries equal to 1, with rariR(= 1. Namely,B was generated with the command

B=rand(n,m) ;
To generate a stabk, we used the following sequence of commands:

V=randn(n) ;
W=randn(n) ;
A=-VHV? W+ ;

P2 a set of problems motivated from real-world examples, takigh some modifications from the benchmark set
carex [40]. Namely, we took Examples 3 to 6 (the real-world apgheaproblems) of this paper, which are
a set of real-world problems varying in size and numericalrabteristics, and changed the valueRab get
a singular problem. In the original versions of all exampRss the identity matrix of appropriate size; we
simply replaced its (11) entry with O, in order to get a singular problem.

P3 a highly ill-conditioned high-index problem witm = 1, A = I, + Nj,, B = &, (the last column of the x n identity
matrix),C = -B,R=0and
-2 -1
-1 -2 -1

-1 -2 -1
-1 -2
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Figure 1: Relative residual fd?1
n m | SDA-L | R+Se=10°% R+Se=10° R+Se=101" | R+N g =108

10 3 | 5E-15 2E-8 4E-10 5E-6 2E-10
50 5| 1E-14 8E-9 2E-8 6E-3 4E-10
500 10| 2E-14 8E-9 8E-7 1E-1 *

Figure 2: Relative residual fd?2
Problem#| SDA-L | R+Se=10° R+Se=10°% R+Se=10"?| R+Ne=10"

3 6E-15 5E-2 5E-2 5E-2 9E-10
4 4E-15 6E-7 5E-9 1E-7 5E-9
5 2E-10 3E-7 1E-9 3E-8 1E-9
6 2E-15 6E-12 2E-13 1E-12 2E-13

Such a problem corresponds to a Kronecker chain of length Rassociated to an infinite eigenvalue, and its
canonical semi-stable solutionXs= |. Notice that the conditioning of the invariant subspacéefmm in this
case ise/"1) for an unstructured perturbation of the input data of trieonf the machine precisian[41,
section 16.5].

The results of SDA-L are compared to those of a regularinatiethod as the one described in (5), fdfelient
values of the regularization parameterAfter the regularization, the equations are solved usifgpAthm 1 after a
Cayley transform with the same parametéR+S), or with the matrix sign method with determinant scali,[43]
(R+N). We point out that the control toolbox of Matlab contairoanmandscare that solves a so-called generalized
continuous-time algebraic Riccati equation based on aipiaerecform equivalent to (4). In fact, this command is not
designed to deal with a singulRr nor with eigenvalues numerically on the imaginary axiser&fiore, when applied
to nearly all the following experiments, this command fagporting the presence of eigenvalues too close to the
imaginary axis.

For the probleniP3, where an analytical solutiod = | is known, we reported the values of the forward error

X=X
IXIe

ForP1andP2, for which no analytical solution is available, we compuitestead the relative Lur’e residual (26). A
starx in the data denotes convergence failure.
We see that in all the experiments our solution method obtalvetter result than the ones based on regularization.

9. Conclusion and open issues

In this work we have introduced a new numerical method forghleition of Lur’e matrix equations. Unlike
previous methods based on regularization, this approémhisabne to solve the original equation without introducing
any artificious perturbation.

Figure 3: Forward error foP3

n| SDA-L | R+Se=10°% R+Se=10% R+Se=102| R+Ne=108
1| 1E-8 1E-3 1E-4 1E-6 1E-4

2| 5E-5 3E-2 1E-2 3E-2 *

3| 2E-3 1E-1 5E-2 1E1 *

4| 1E-2 4E-1 1E-1 5E-1 *

5| 4E-2 1E+0 4E-1 2E-0 *
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The first step of this approach is applying a Cayley transfmmonvert the problem to an equivalent discrete-
time pencil. In this new form, the infinite eigenvalues carebsily deflated, reducing the problem to a discrete-time
algebraic Riccati equation with eigenvalues on the undeirFor the solution of this latter equation, the struatdre
preserving doubling algorithm was chosen, due to its godieur in presence of eigenvalues on the unit circle,
as proved by the convergence results in [29]. Direct methagdsh as the symplectic eigensolvers presented in [44],
could also be used for the solution of the deflated DARE.

The numerical experiments confirm thfeetiveness of our new approach for regular matrix penciiss hot
clear whether the same method can be adapted to work in castsch the pencil (4) is singular, which may indeed
happen in the contest of Lur'e equations. Another issue dirfqma method to exploit the low-rank structure @f
(when present). These further developments are currentignour investigation.
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