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Abstract

We introduce a numerical method for the numerical solution of the Lur’e matrix equations

ATX + XA+ Q = KTK,

XB+C = KTL,

R= LTL,

that arise, for instance, in linear-quadratic infinite timehorizon optimal control. The method is based on the character-
ization of the solutions in terms of deflating subspaces of a suitable even matrix pencil. Via a Cayley transformation,
the problem is transformed to the discrete-time case, and only the infinite eigenvalues of the original problem asso-
ciated with kerE are deflated. This leaves us with a symplectic problem with several Jordan blocks of eigenvalue 1
and even size, which arise from the remaining eigenvalues atinfinity of the original problem. For the solution of this
modified problem, we use thestructure-preserving doubling algorithm(SDA), an iterative scheme for the solution
of dense continuous- and discrete-time algebraic Riccati equations. Unlike other iterative schemes, this algorithm
converges also when the pencil has eigenvalues on the unit circle, as is the case in our problem. Implementation
issues such as the choice of the parameterγ in the Cayley transform are discussed. The numerical examples presented
confirm the effectiveness of this method.
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1. Introduction

A classical result of control theory is that forA,Q ∈ Rn,n, B,C ∈ Rn,m, R ∈ Rm,m with Q = QT R = RT ,
a linear-quadratic optimal control problem of type

Minimize

J(u(·), x0) =
1
2

∫ ∞

0

[
x(t)
u(t)

]T [
Q C
CT R

] [
x(t)
u(t)

]
dt (1a)

subject tou(·) : R+ → Rm and

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (1b)

lim
t→∞

x(t) = 0,
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leads to thealgebraic Riccati equation (ARE)

ATX + XA− (XB+C)R−1(XB+C)T + Q = 0. (2)

In particular, the existence of an optimal control is equivalent to solvability of (2), and the optimal control can be
constructed by a state feedback that involves a solutionX of (2) [1, 2]. Assembling the algebraic Riccati equation
however requires the invertibility of the matrixR. The case of singularR is referred to as asingular optimal control
problem[3, 4, 5, 6] which may cause that the optimal control becomes distributional and/or non-unique. Instead of
setting up the ARE, these equations are now formulated as a system

ATX + XA+ Q = KTK,

XB+C = KTL,

R= LTL,

(3)

which has now to be solved for the triple (X,K, L) ∈ Rn,n × Rp,n × Rp,m with X = XT and p as small as possible.
The nonlinear system is calledLur’e equationsafter A.I. Lur’e [7] (see [8] for an historical overview). This type
of equations not only occurs in linear-quadratic optimal control, but the can be also used to analyze properties like
dissipativity of linear systems [9, 10, 11, 12]. Another important field of application is in balancing-related model
reduction, in particular positive real balanced truncation and bounded real balanced truncation [13, 14, 15, 16, 17].

In the case whereR is invertible, we havem = p, and the matricesK andL can be eliminated by obtaining the
algebraic Riccati equation (2). Whereas this type is well-explored both from an analytical and numerical point of view
[18, 1, 19], the case of singularR has been treated stepmotherly. However, the singularity ofR is often a structural
property of the system to be analyzed [20] and can therefore not be excluded by arguments of genericity.

From a theoretical point of view, Lur’e equations have been investigated in [21, 8]. The solution set is completely
characterized in [22] via the consideration of the matrix pencil

sE − A =


0 −sI + A B

sI + AT Q C
BT CT R

 . (4)

This pencil has the special property of beingeven, that isE is skew-Hermitian andA is Hermitian, and it takes the role
of the Hamiltonian matrix for algebraic Riccati equations.Solvability of (3) is characterized via the eigenstructure
of this pencil, and furthermore there is a correspondence between the solutions of the Lur’e equations and certain
deflating subspacesof (4) [22]. Deflating subspaces are a generalization of the concept of invariant subspaces to
matrix pencils [23]. Under some slight additional conditions of the pair (A, B), such as controllability of the system
(1b), it is shown in [22] that there exists a so-calledmaximal solution X. Here, maximality means thatX is, in terms
of semi-definiteness, above all other solutions of the Lur’eequations.

The aim of this work is to present a method for the numerical solution of Lur’e equations. Before our approach is
presented, let us briefly review the known approaches for this problem: Basically, these can be divided into elimination
and perturbation approaches:

a) The works [24, 25] present an iterative technique for the elimination of variables corresponding to kerR: By
performing an orthogonal transformation ofR, and an accordant transformation ofL, the equations can be divided
into a ’regular part’ and a ’singular part’. The latter leadsto an explicit equation for a part of the matrixK. Plugging
this part into (3), on obtains Lur’e equations of slightly smaller size. After a finite number of steps this leads to an
algebraic Riccati equation. This also gives an equivalent solvability criterion that is obtained by the feasibility of
this iteration.

b) The most common approach to the solution of Lur’e equations is the slight perturbation ofR by εIm for some
ε > 0. Then by using the invertibility ofR+ εI , the corresponding perturbed Lur’e equations are now equivalent
to the Riccati equation

ATXε + XεA− (XB+C)(R+ εI )−1(XεB+C)T + Q = 0. (5)
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It is shown in [26, 27] that the corresponding maximal solutionsXε then converge to the maximal solution of (3).

Whereas the first approach has the great disadvantage that itrelies on successive nullspace computations (which may
be an arbitrarily ill-conditioned numerical problem), thebig problem of the perturbation approach is that, so far, there
exist no bounds for the perturbation error‖X−Xε‖. On top of that, the numerical condition of the Riccati equation (5)
increases drastically asε tends to 0.
The approach presented in this work is of different nature. Via a Cayley transformation, the problem is transformed to
the discrete-time case, and only them infinite eigenvalues of the original problem associated with kerE are deflated.
This leaves us with a symplectic problem with several Jordanblocks of eigenvalue 1 and even size, which arise from
the remaining eigenvalues at infinity of the original problem. It is indeed shown in [22] that a singularR causes the
presence of higher-order Kronecker block of odd size associated with the eigenvalueλ = ∞. For the solution of
this modified problem, we use thestructure-preserving doubling algorithm, an iterative scheme for continuous- and
discrete-time algebraic Riccati equations [28]. It is shown in [29] that, unlike other iterative schemes, this algorithm
converges also when the pencil has eigenvalues (of even multiplicity) on the unit circle, as is the case in our problem.

The paper is organized as follows. Section 2 introduces the notation and contains some required control and matrix
theoretic background, in particular a normal form for even matrix pencils is introduced. In Section 3 we briefly present
some results from [22] which connect the spectral properties of the even pencil (4) to the solvability and the solutions
of the Lur’e equations. Section 4 outlines the basics of the structure-preserving doubling algorithm. This method
requires the matrices to be in a special structure, the so-called standard symplectic-like form, which is for matrix
pencils introduced in Section 5. For pencils arising in the analysis of Lur’e equations, this standard symplectic-like
form is considered in Section 6. Together with the previously introduced theory, this leads to an iterative method
for the numerical solution of Lur’e equations. Further details concerning implementation and, in particular, stopping
criteria for the iteration, are discussed in Section 7. The theory and methods introduced in this article are finally
illustrated in Section 8 by means of several numerical examples.

2. Control and Matrix Theoretic Preliminaries

Throughout the paper real and complex numbers are denoted byR andC, the open left and right half-planes by
C− andC+, respectively. The symboli stands for the imaginary unit, and byz we denote the complex conjugate of
z ∈ C. Natural numbers excluding 0 are denoted byN. The space ofn×m complex matrices is denoted byCn,m, and
the set of invertible complexn × n matrices by Gln(C). The matricesAT andA∗ denote, respectively, the transpose
and the conjugate transpose ofA ∈ C

n,m. We denote by rank(A) the rank, by im(A) the image, by ker(A) the kernel,
byσ(A) the spectrum of a matrixA. The symbols‖ · ‖, ‖ · ‖F respectively stand for the spectral and Frobenius matrix
norms. For Hermitian matricesP,Q ∈ Cn,n, we writeP > Q (P ≥ Q) if P− Q is positive (semi-)definite.
For a rational matrix-valued functionΦ : C\D → C

n,m, whereD ⊂ C is the finite set of poles, we define the normal
rank by normalrankΦ = maxs∈C\D rankΦ(s).
With Ai ∈ Cni ,mi with mi , ni ∈ N ∪ {0} for i = 1, . . . , k, we denote the block diagonal matrix by diag(A1, . . . ,Ak).
An identity matrix of ordern is denoted byIn or simply byI . The zeron×m (n× n) matrix is denoted by 0n,m (resp.
0n) or simply by 0. Moreover, fork ∈ N we define the matricesJk,Mk,Nk ∈ R

k,k, Kk, Lk ∈ R
k−1,k as

Jk =



1

. .
.

1


, Kk =



0 1
. . .

. . .

0 1


, Lk =



1 0
. . .

. . .

1 0


,

Mk =



1 0

. .
.
. .
.

1 . .
.

0


, Nk =



0 1
. . .

. . .

. . . 1
0


.

Definition 1. Let sE − A be a matrix pencil withE,A ∈ Rm,n. Then sE − A is called regular if m = n and
normalrank(sE − A) = n. A pencil sE − A is calledevenif E = −ET andA = AT . A pencil withE,A ∈ R2n,2n is
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calledsymplecticif EJET = AJAT , where

J =

[
0 In

−In 0

]
.

Many properties of a matrix pencil can be characterized in terms of theKronecker canonical form (KCF).

Type Size C j(s) Parameters

K1 k j × k j (s− λ)Ik j − Nk j k j ∈ N, λ ∈ C

K2 k j × k j sNk j − Ik j k j ∈ N

K3 (k j − 1)× k j sKk j − Lk j k j ∈ N

K4 k j × (k j − 1) sKT
k j
− LT

k j
k j ∈ N

Table 1: Block types in Kronecker canonical form

Theorem 2. [23] For a matrix pencil sE −A with E,A ∈ Rn,m, there exist matrices Ul ∈ Gln(C), Ur ∈ Glm(C), such
that

Ul(sE −A)Ur = diag(C1(s), . . . ,Ck(s)), (6)

where each of the pencilsC j(s) is of one of the types presented in Table 1.
The numbersλ appearing in the blocks of type K1 are called the(generalized) eigenvaluesof sE− A. Blocks of type
K2 are said to be corresponding to infinite eigenvalues.

A special modification of the KCF for even matrix pencils, theso-calledeven Kronecker canonical form (EKCF)is
presented in [30]. Note that there is also a ‘realness-preserving version’ of this result [31].

Type Size D j(s) Parameters

E1 2k j × 2k j

[
0k j ,k j (λ−s)Ik j−Nk j

(λ+s)Ik j−NT
k j

0k j ,k j

]
k j ∈ N, λ ∈ C+

E2 k j × k j ǫ j((−is− µ)Jk j + Mk j )
k j ∈ N, µ ∈ R,

ǫ j ∈ {−1, 1}

E3 k j × k j ǫ j(isMk j + Jk j )
k j ∈ N,

ǫ j ∈ {−1, 1}

E4
(2k j−1)×
(2k j−1)

[
0k j−1,k j−1 −sKk j + Lk j

sKT
k j
+ LT

k j
0k j ,k j

]
k j ∈ N

Table 2: Block types in even Kronecker canonical form

Theorem 3. [30] For an even matrix pencil sE − A with E,A ∈ Rn,n, there exists a matrix U∈ Gln(C) such that

U∗(sE −A)U = diag(D1(s), . . . ,Dk(s)), (7)
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where each of the pencilsD j(s) is of one of the types presented in Table 2.
The numbersε j in the blocks of type E2 and E3 are called theblock signatures.

The blocks of type E1 contains pairs (λ,−λ) of generalized eigenvalues. Together with realness ofE andA, this
implies that non-imaginary eigenvalues occur in quadruples (λ, λ,−λ,−λ). The blocks of type E2 and E3 respectively
correspond to the purely imaginary and infinite eigenvalues. Blocks of type E4 consist of a combination of blocks that
are equivalent to those of type K3 and K4. Note that regularity of the pencilsE − A is equivalent to the absence of
blocks of type E4.

Definition 4. A subspaceV ⊂ CN is called(right) deflating subspacefor the pencil sE − A with E,A ∈ CM,N if for
a matrix V∈ CN,k with full column rank andim V = V, there exists an l≤ k and matrices W∈ CM,l , Ẽ, Ã ∈ Cl,k with

(sE − A)V =W(sẼ − Ã), (8)

Definition 5. An eigenvalueλ of a matrix pencil is calledc-stable, c-critical or c-anti-stablerespectively ifRe(λ) is
smaller than, equal to, or greater than 0. A right deflating subspace is calledc-stable(resp.c-anti-stable) if it contains
only c-stable (resp. c-anti-stable) eigenvalues, andc-semi-stable(resp.c-semi-anti-stable) if it contains only c-stable
or c-critical (resp. c-anti-stable or c-critical) eigenvalues. The same definitions hold replacing the prefix c- with d-if
we replace the expressionRe(λ) with |λ| − 1.

Definition 6. LetM ∈ Ck,k be given. A subspaceV ⊂ Ck is calledM-neutralif x∗My = 0 for all x, y ∈ V.

Definition 7. Let a pair(A, B) ∈ Cn,n × Cn,m be given. Then

(i) (A, B) is calledcontrollableif rank[sI−A , B ] = n for all s ∈ C;

(ii) (A, B) is calledstabilizableif rank[sI−A , B ] = n for all s ∈ C\C−.

Definition 8. Givenγ ∈ R, γ , 0, theCayley transformof a regular pencil sE −A is the pencil

sEγ −Aγ, Eγ = A+ γEγ, Aγ = A− γE.

In the scalar case, the Cayley transform reads

C : C ∪ {∞} → C ∪ {∞},

λ 7→
λ − γ

λ + γ
.

In particular, we have|C(λ)| = 1 if, and only if,λ is infinity or on the imaginary axis. Note that in the caseγ > 0, we
have|C(λ)| < 1 if, and only if, Re(λ) > 0, whereas, in the caseγ > 0, there holds|C(λ)| < 1 if, and only if, Re(λ) < 0.

Via transformation into (even) Kronecker form, it can be seen that Cayley transform of a matrix pencil preserves
left and right eigenvectors and principal vectors, while the eigenvaluesλ transform toC(λ). In particular, blocks of
type K1 (W1) of sizek for λ are mapped to blocks of same type and size, but now forC(λ).

3. Solvability of Lur’e equations

In this part we collect theoretical results being equivalent for the solvability of Lur’e equations. For convenience,
we sometimes refer to the symmetric matrixX alone as a solution of the Lur’e equations, instead of the triple (X,K, L).
Note that, once having found a solutionX, the other matricesK andL can be obtained by a full rank factorization

[
ATX + XA+ Q XB+C

BTX +CT R

]
=

[
KT

LT

] [
K L

]
. (9)
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Therefore, ifX solves the Lur’e equations (3), the matricesL andK are unique up to the multiplication from the right
with some orthogonal matrix of sizep× p. We now introduce some further concepts which are used to characterize
solvability of the Lur’e equations.

Definition 9. For Lur’e equations (3), thespectral density function, also calledPopov function, is defined as

Φ(s) =

[
(−sI − A)−1B

Im

]T [
Q C
CT R

] [
(sI − A)−1B

Im

]
(10)

Definition 10. For Lur’e equations (3), theassociated linear matrix inequality (LMI)is defined as
[
ATY+ YA+ Q YB+C

BTY+CT R

]
≥ 0, Y = YT . (11)

The solution set of the LMI is defined as

SLMI = {Y ∈ C
n,n : Y is symmetric and (11) holds true}. (12)

The LMI (11) is calledfeasibleif SLMI , ∅.

It can be readily verified thatY ∈ SLMI solves the Lur’e equations, if and only if, it minimizes the rank of (11). We
now collect some known equivalent solvability criteria Lur’e equations. In the following we require that the pair (A, B)
is stabilizable. Note that this assumption can be further weakened by reducing it tosign-controllability[22]. This is
not considered here in more detail.

Theorem 11 ([22]). Let the Lur’e equations (3) with associated even matrix pencil sE − A as in (4) and spectral
density functionΦ as in (10) be given. Assume that at least one of the claims

(i) the pair (A, B) is stabilizable and the pencil sE −A as in (4) is regular;

(ii) the pair (A, B) is controllable;

holds true. Then the following statements are equivalent:

1. There exists a solution(X,K, L) of the Lur’e equations.

2. The LMI (11) is feasible

3. For all ω ∈ R with iω < σ(A) holdsΦ(iω) ≥ 0;

4. In the EKCF of sE − A, all blocks of type E2 have positive signature and even size,and all blocks of type E3
have negative sign and odd size.

5. In the EKCF of sE − A, all blocks of type E2 have even size, and all blocks of type E3have negative sign and
odd size.

In particular, solutions of the Lur’e equations fulfill(X,K, L) ∈ Cn,n × Cn,p × Cm,p with p= normalrankΦ.

It is shown in [22] thatm− normalrankΦ is to the number of blocks of type E4 in an EKCF ofsE − A. In par-
ticular, the pencilsE − A is regular if and only ifΦ has full normal rank.

Now we place particular emphasis on the so-calledmaximal solution.

Theorem 12 ([22]). Let the Lur’e equations (3) be given with stabilizable pair(A, B). Assume thatSLMI as defined
in (12) is non-empty. Then there exists a solution X+ of the Lur’e equations that is maximal in the sense that for all
Y ∈ SLMI holds

Y ≤ X+.
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The following result states that the maximal solution can beconstructed via the c-stable deflating subspace of the
associated even matrix pencilsE − A.

Theorem 13 ([22]). Let the Lur’e equations (3) be given with stabilizable pair(A, B). Assume thatSLMI as defined
in (12) is non-empty. Then 

X+ 0
In 0
0 Im

 (13)

spans the unique n+m-dimensional semi-c-stableE − neutral subspace of the pencil(4).

The above theorem states that the maximal solution can be expressed in terms of a special deflating subspace ofsE−A.
By means of the EKCF, this space can be constructed from the matrix U ∈ C2n+m,2n+m bringing the pencilsE − A
into even Kronecker form (7). Considering the partitioningU = [ U1 , . . . , Uk ] according to the block structure of the
EKCF, a matrixV ∈ C2n+m,n+m spanning the desired deflating subspace can be constructed by

V =
[
V1 . . . Vk

]
for V j = U jZ j , (14)

where

Z j =



[ Ik j , 0k j ]T , if D j is of type E1,

[ Ik j/2 , 0k j/2 ]T , if D j is of type E2,

[ I(k j+1)/2 , 0(k j−1)/2 ]T , if D j is of type E3,

[ Ik j , 0k j+1 ]T , if D j is of type E4.

In particular, the desired subspace contains all the vectors belonging to the Kronecker chains relative to c-stable
eigenvalues, no vectors from the Kronecker chains relativeto c-anti-stable eigenvalues, the firstk j/2 vectors from the
chains relative to c-critical eigenvalues, and the first (k j + 1)/2 from the chains relative to eigenvalues at infinity.

4. Outline of SDA

The structure-preserving doubling algorithm (SDA) is a matrix iteration which computes two special deflating
subspaces of a matrix pencil, one semi-stable and one semi-anti-stable. It was introduced by Anderson [32] as an
algorithm for the solution of a discrete-time algebraic Riccati equation, and later adapted to many other equations
and explained in terms of matrix pencils in several papers byWen-Wei Lin and others [28, 33, 29, 34]. It is strongly
related to the sign function method and to the disc method formatrix pencils [35, 19].

Theorem 14 ([35]). Let sE − A be a regular matrix pencil withA,E ∈ RN+M,N+M , and let sE∗ − A∗ be a regular
pencil of the same size withA∗E = E∗A. Then

1. the pencil sE∗E −A∗A is regular and has the same right deflating subspaces as sE − A

2. its eigenvalues are the square of the eigenvalues of the original pencil.

This result is far from surprising in the case in whichE is invertible: in this case, the eigenvalues and right deflating
subspaces ofsE − A correspond to the eigenvalues and right invariant subspaces ofE−1A, and it is simple to check
that the conditions imposed onE∗,A∗ imply (E∗E)−1(A∗A) = (E−1A)2. Thus the map (E,A) 7→ (E∗E,A∗A) is a
way to extend the concept of squaring to matrix pencils.

A pencil sE−A with E,A ∈ RN+M,N+M is said to be instandard symplectic-like form I (SSF-I)if it can be written
as

E =

[
IN −G
0 F

]
, A =

[
E 0
−H IM

]
, (15)

where the block sizes are such thatE ∈ RN,N andF ∈ RM,M. Note that a pencil in SSF-I is always regular. When a
pencilsE −A is in SSF-I, a choice ofsE∗ −A∗ satisfying the requirements of Theorem 14 is

E∗ =

[
IN −E(IN −GH)−1G
0 F(IM − HG)−1

]
, A∗ =

[
E(IN −GH)−1 0
−F(IM − HG)−1H IN

]
,
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and this choice yields a new pencilsE∗E − A∗A = sẼ − Ã which is still in SSF-I, as we have

Ẽ =

[
IN −(G+ E(IN −GH)−1GF)
0 F(IM − HG)−1F

]
, Ã =

[
E(IN −GH)−1E 0

−(H + F(IM − HG)−1HE) IN

]
.

The only hypothesis needed here is thatI−GH andI−HG are nonsingular. In fact, by the Sherman-Morrison formula,
they are either both singular or both nonsingular.

The structured doubling algorithm, outlined as Algorithm 1, consists in repeating this transformation.

input : E, F, G andH defining the pencilsE −A with E,A as in (15)
output: H∞,G∞ so that the subspaces in (16) are respectively the canonicalsemi-d-stable and

semi-d-anti-stable deflating subspaces of the pencilsE −A
E0 = E;
F0 = F;
G0 = G;
H0 = H;
for k = 0, . . . , kmax do

E∗ = Ek(IN −GkHk)−1;
F∗ = Fk(IM − HkGk)−1;
Gk+1 = Gk + E∗GkFk;
Hk+1 = Hk + F∗HkEk;
Ek+1 = E∗Ek;
Fk+1 = F∗Fk;

end
H∞ = Hkmax;
G∞ = Gkmax;

Algorithm 1: SDA-I

Forkmax large enough, the algorithm produces two matricesX andY whose ranges are approximations of, respec-
tively, a semi-d-stable and a semi-d-anti-stable deflatingsubspaces of the given pencil. Each step of the algorithm
costs14

3 (M3 + N3) + 6MN(M + N) floating point operations. This reduces to64
3 N3 in the caseM = N.

The following convergence result is proved in [29] for the symplectic case and in [34] for several specific matrix
equations, but its proof works without changes for our slightly more general case. We call a pencilweakly d-splitif
there exists anr such that:

• the lengths of the Kronecker chains relative to d-stable eigenvalues sum up toN − r;

• the lengths of the Kronecker chains relative to d-anti-stable eigenvalues sum up toM − r;

• the lengthsk j of the Kronecker chains relative to d-critical eigenvalues(which must sum up to 2r if the two
previous properties hold) are all even.

In this case, we define thecanonicald-semi-stable (resp. d-semi-anti-stable) subspace as theinvariant subspace
spanned by all the Kronecker chains relative to d-stable (resp. d-anti-stable) eigenvalues, plus the firstk j/2 vectors
from each critical chain.

Theorem 15. Let the pencil(15)be weakly d-split, and suppose that there are two matrices inthe form
[

IN

H∞

]
,

[
G∞
IM

]
, (16)

spanning respectively the canonical d-stable and d-anti-stable deflating subspace. Then for Algorithm 1 it holds that

• ‖Ek‖ = O(2−k),
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• ‖Fk‖ = O(2−k),

• ‖H∞ − Hk‖ = O(2−k),

• ‖G∞ −Gk‖ = O(2−k).

Notice that, whenN = M, a pencil in SSF-I is symplectic if and only ifET = F, G = GT andH = HT . In this
case, all the pencils generated by the successive steps of SDA are symplectic, i.e., at each stepk we haveET

k = Fk,
Gk = GT

k , Hk = HT
k . The implementation can be slightly simplified, since thereis no need to computeEk+1 andFk+1

separately, nor to invert bothIN −GkHk and IM − HkGk, as the second matrix of both pairs is the transposed of the
first.

5. A method to compute the SSF-I of a pencil

One can transform a regular pencil into SSF-I easily using the following result.

Theorem 16. Let sE − A be a matrix pencil withE,A ∈ RN+M,N+M , and partition both matrices as

E =
[
E1 E2

]
A =

[
A1 A2

]

with E1,A1 ∈ RN+M,N and E2,A2 ∈ RN+M,M. A SSF-I pencil having the same eigenvalues and right deflating
subspaces of the original pencil exists if and only if

[
E1 A2

]
(17)

is nonsingular; in this case, it holds
[

E −G
−H F

]
=
[
E1 A2

]−1 [
A1 E2

]
. (18)

Proof. We are looking for a matrixQ such that

sQ
[
E1 E2

]
− Q
[
A1 A2

]
= s

[
I −G
0 F

]
−

[
E 0
−H I

]
.

By taking only some of the blocks from the above equation, we get

QE1 =

[
I
0

]
, QA2 =

[
0
I

]
,

i.e.,

Q
[
E1 A2

]
=

[
I 0
0 I

]
,

thusQ must be the inverse of the matrix in (17).
On the other hand, taking the other two blocks we get

QA1 =

[
E
−H

]
, QE2 =

[
−G
F

]
,

which promptly yields (18).

This formula is strictly related to the principal pivot transform (PPT) [36].
We point out an interesting application of Theorem 16, whichis not related to the rest of the paper. SDA is often

used in the solution of nonsymmetric algebraic Riccati equations (NARE) [37], where it is applied to the Cayley
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transform of the matrix

H =

[
D −C
B −A

]
,

with A, B, C, D blocks of suitable size associated with the coefficients of the problem. In pencil form, its Cayley
transform given bys(H + γI ) − (H − γI ), thus (18) becomes

[
E −G
−H F

]
=

[
D + γI −C

B −A− γI

]−1 [
D − γI −C

B −A+ γI

]
. (19)

This formula is more compact to write and more computationally effective than the one suggested by Guo et al. [38].
In fact, their expressions for the starting blocks require the inversion of twoN × N and twoM × M matrices, which
are indeed the (1, 1) and (2, 2) blocks of the matrix to be inverted in (19) and their Schur complements. Clearly, two
of these four inversions are redundant if we use (19), which requires more or less half of the computational cost with
respect to the original formulas in [38].

6. A reduced Lur’e pencil

Let sE − A be pencil (4) associated to the Lur’e equations (3). Throughout the remaining part, we employ the
following assumptions.

A1 The Lur’e equations (3) are solvable.

A2 The pencil (4) is regular.

A3 The pair (A, B) is stabilizable.

Note that, according to Theorem 11, assumptionsA1 andA2 are equivalent to the spectral density functionΦ as in 10
having full normal rank and being pointwisely positive semi-definite on the imaginary axis. Note that, for the optimal
control problem (1), this means that the optimal control is unique for anyx0 ∈ R

n. Using Theorem 12, assumptionA3
implies the existence of a maximal solution of the Lur’e equations (3)

By assumptionA2, there exists someγ ∈ R such thatγE − A is invertible. Hence, we may build the SSF-I form
of its Cayley transform (assumingM = n+m, N = n) which is, by Theorem 16, given by

[
E −G
−H F

]
=


0 A− γI B

AT − γI Q C
BT CT R



−1 
0 A+ γI B

AT + γI Q C
BT CT R

 . (20)

Let now

Ã :=

[
0 A− γI

AT − γI Q

]
, B̃ :=

[
B
C

]
, T :=

[
0 I
I 0

]
.

Choosingγ ∈ R\{0} is a way that it is not an eigenvalue ofA, the matrixÃ is invertible. Together with the invertibility
of the overall matrix, we also also have the invertibility ofits Schur complement

S(γ) =R−
[
BT CT

]
Ã−1

[
B
C

]

=R−
[
BT CT

] [−(AT − γI )−1Q(A− γI )−1 (AT − γI )−1

(AT − γI )−1 0

] [
B
C

]

=

[
(γI − A)−1B

Im

]T [
Q −C
−CT R

] [
(γI − A)−1B

Im

]
.

Note thatS(γ) is closely related to the spectral density functionΦ in (10).
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We can perform the inversion in (20) explicitly with the helpof a block LDU factorization. We have

[
Ã B̃
B̃∗ R

]
=

[
I2n 0

B̃∗Ã−1 Im

] [
Ã 0
0 S(γ)

] [
I2n Ã−1B̃
0 Im

]
,

thus

[
E −G
−H F

]
=

[
Ã B̃
B̃T R

]−1 [
Ã+ 2γT B̃

B̃T R

]

=

[
I2n −Ã−1B̃
0 Im

] [
Ã−1 0
0 S(γ)−1

] [
I2n 0

−B̃T Ã−1 Im

] [
Ã+ 2γT B̃

B̃T R

]

=

[
Â 0

−2γS(γ)−1B̃T Ã−1T Im

]

where

Â =I + 2γÃ−1T + 2γÃ−1B̃S(γ)−1B̃T Ã−1T. (21)

This means that we can identify an additional structure in the blocks used in SSF-I:

F =

[
F̂ 0
∗ Im

]
, G =

[
Ĝ 0

]
, H =

[
Ĥ
∗

]
,

where the smaller blockŝF, Ĝ, Ĥ have sizen× n. It follows that a special right deflating subspace of this pencil is
[
02n×m

Im

]
,

whose only eigenvalue is 1 with algebraic and geometric multiplicity m, while the deflating subspaces relative to the
other eigenvalues are in the form [

V
∗

]
,

whereV has 2n rows and is a deflating subspace of the reduced pencil

s

[
In −Ĝ
0 F̂

]
−

[
E 0
−Ĥ In

]
. (22)

Using (21) and the fact that̃A andS(γ) are symmetric, one sees thatÂT is symmetric, too. This means thatET = F
andG = GT , H = HT , that is, the pencil (22) is symplectic.

The pencil (22) is given byPT(sE −A)P, whereP is the projection on

span




0
0
Im







⊥

= (kerE)⊥.

With this characterization, it is easy to derive the KCF of (22) from that of the Cayley transform of (4). We see that
kerE is the space spanned by the first column of each block of type K2(as a corollary, we see that there are exactly
m= dim kerE such blocks). These blocks are transformed into blocks of type K1 withλ = 1 by the Cayley transform.
Thus projecting on their orthogonal complement corresponds to dropping the first row and column from each of the
blocks of type K1 corresponding toλ = 1. In particular, it follows that if the criteria in Theorem 11 hold, then for
the KCF of the pencil (22), every block of type K1 corresponding to an eigenvalue on the unit circle has even size.
Therefore, the reduced pencil (22) is weakly d-split. By considering which vectors are needed from each vector chain
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corresponding to blocks in the KCF to form the subspace in (14) and, furthermore, incorporating assumptionA3, we
get therefore the following result.

Theorem 17. LetV be the unique(n+m)-dimensional c-semi-stableE-neutral deflating subspace of(4). Then, there
is a matrix V2 ∈ C

n,m such that

V = span

[
V1 0
V2 Im

]
,

where V1 spans the canonical d-semi-anti-stable subspace of the pencil (22). Moreover, ifspan(V1) admits a basis in
the form [

X+
In

]
,

then X+ is the maximal solution of the Lur’e equation(3).

In other words,X is the canonical weakly stabilizing solution of the DARE

X = EX(I − ĤX)−1ET + Ĝ. (23)

7. Implementation of SDA for Lur’e Equations

Based on the results of the previous sections, we can use the SDA-I algorithm to compute the solution to a Lur’e
equation. The resulting algorithm is reported as Algorithm2.

As we saw in Section 4, the symplecticity of the pencil is preserved during the SDA iterations, and helps reducing
the computational cost of the iteration. Moreover, in this way we can preserve the eigenvalue symmetry of the original
pencil along the iteration.

The explicit computation of (a possible choice of)K andL is typically not needed in the applications of the Lur’e
equations. If they are needed, they can be computed by a full rank factorization (9).

input : A, B, C, Q, R defining Lur’e equations (3) fulfillingA1–A3
output: An approximation of the maximal solutionX
Choose a suitableγ > 0;
Compute

T ←−


0 A− γI B

AT − γI Q C
BT CT R



−1 
0 A+ γI

AT + γI Q
BT CT

 ;

Partition

T =


E −G
−H ET

∗ ∗

 ;

UseSDA-I on E, F = ET , G,H to computeG∞, H∞;
ReturnX = G∞;

Algorithm 2: A structured doubling algorithm for the maximal solution ofa Lur’e equation

Algorithm 2 produces a sequence (Gk)k of approximations of the maximal solutionX. Corresponding sequences
Kk, Lk of L andK satisfying (3) can be constructed by performing a singular value decomposition

[
ATXk + XkA+ Q XkB+C

BTXk +CT R

]
=

[
U11 U12

U21 U22

] [
Σ1 0
0 Σ2

] [
V11 V12

V21 V22

]
,

Σ1 ∈ R
m,m, V11,U

T
11 ∈ R

n,m, V21,U
T
12 ∈ R

m,m.

(24)
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With approximationsKk = Σ
1/2
1 V11, Lk = Σ

1/2
1 V12, theabsolute Lur’e residualcan be defined as

∥∥∥∥∥∥

[
ATXk + XkA+ Q XkB+C

BTXk +CT R

]
−

[
KT

k
LT

k

] [
Kk Lk

]∥∥∥∥∥∥
F

. (25)

We define therelative Lur’e residualas
∥∥∥∥∥∥

[
ATXk + XkA+ Q XkB+C

BTXk +CT R

]
−

[
KT

k
LT

k

] [
Kk Lk

]∥∥∥∥∥∥
F∥∥∥∥∥∥

[
AT Xk + XkA+ Q XkB+C

BTXk +CT R

]∥∥∥∥∥∥
F

. (26)

Adequate stopping criteria can be designed on the basis of the above defined two quantities.
The accuracy of the computed solution depends also on an appropriate choice ofγ. Following [28], we try

to minimize the error in the initial valuesE, F, G, H; however, notice that, thanks to Theorem 18 and the nicer
expression (20) which it provides for the initial values, the criterion exposed there can be substantially simplified and
reduced to minimizing the function

f (γ) = condest
([
E1 A2

])

where condest(·) is the condition number estimate given by Matlab R©. As an analytical solution is not readily avail-
able, following again the strategy in [28], we perform five steps of the golden section search method [39] onf (γ)
in order to get a reasonably good value of the objective function without devoting too much time to this ancillary
computation.

8. Numerical experiments

We have implemented Algorithm 2 (SDA-L) using Matlab R©, and tested it on the following test problems.

P1 a Lur’e equation with a random stable matrixA ∈ Rn,n, a randomC = B, Q = 0 andR them×m matrix with all
the entries equal to 1, with rank(R) = 1. Namely,B was generated with the command

B=rand(n,m);

To generate a stableA, we used the following sequence of commands:

V=randn(n);

W=randn(n);

A=-V*V’-W+W’;

P2 a set of problems motivated from real-world examples, takenwith some modifications from the benchmark set
carex [40]. Namely, we took Examples 3 to 6 (the real-world applicative problems) of this paper, which are
a set of real-world problems varying in size and numerical characteristics, and changed the value ofR to get
a singular problem. In the original versions of all examples, R is the identity matrix of appropriate size; we
simply replaced its (1, 1) entry with 0, in order to get a singular problem.

P3 a highly ill-conditioned high-index problem withm= 1, A = In+Nn, B = en (the last column of then× n identity
matrix),C = −B, R= 0 and

Q =



−2 −1
−1 −2 −1

. . .
. . .

. . .

−1 −2 −1
−1 −2



.
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Figure 1: Relative residual forP1
n m SDA-L R+Sε = 10−6 R+Sε = 10−8 R+S ε = 10−12 R+N ε = 10−8

10 3 5E-15 2E-8 4E-10 5E-6 2E-10
50 5 1E-14 8E-9 2E-8 6E-3 4E-10
500 10 2E-14 8E-9 8E-7 1E-1 ⋆

Figure 2: Relative residual forP2
Problem # SDA-L R+Sε = 10−6 R+Sε = 10−8 R+Sε = 10−12 R+N ε = 10−8

3 6E-15 5E-2 5E-2 5E-2 9E-10
4 4E-15 6E-7 5E-9 1E-7 5E-9
5 2E-10 3E-7 1E-9 3E-8 1E-9
6 2E-15 6E-12 2E-13 1E-12 2E-13

Such a problem corresponds to a Kronecker chain of length 2n+ 1 associated to an infinite eigenvalue, and its
canonical semi-stable solution isX = I . Notice that the conditioning of the invariant subspace problem in this
case isǫ1/(2n+1), for an unstructured perturbation of the input data of the order of the machine precisionǫ [41,
section 16.5].

The results of SDA-L are compared to those of a regularization method as the one described in (5), for different
values of the regularization parameterε. After the regularization, the equations are solved using Algorithm 1 after a
Cayley transform with the same parameterγ (R+S), or with the matrix sign method with determinant scaling [42, 43]
(R+N). We point out that the control toolbox of Matlab contains acommandgcare that solves a so-called generalized
continuous-time algebraic Riccati equation based on a pencil in a form equivalent to (4). In fact, this command is not
designed to deal with a singularR, nor with eigenvalues numerically on the imaginary axis. Therefore, when applied
to nearly all the following experiments, this command failsreporting the presence of eigenvalues too close to the
imaginary axis.

For the problemP3, where an analytical solutionX = I is known, we reported the values of the forward error
∥∥∥X̃ − X

∥∥∥
F

‖X‖F
.

For P1 andP2, for which no analytical solution is available, we computedinstead the relative Lur’e residual (26). A
star⋆ in the data denotes convergence failure.

We see that in all the experiments our solution method obtains a better result than the ones based on regularization.

9. Conclusion and open issues

In this work we have introduced a new numerical method for thesolution of Lur’e matrix equations. Unlike
previous methods based on regularization, this approach allows one to solve the original equation without introducing
any artificious perturbation.

Figure 3: Forward error forP3
n SDA-L R+Sε = 10−6 R+Sε = 10−8 R+Sε = 10−12 R+N ε = 10−8

1 1E-8 1E-3 1E-4 1E-6 1E-4
2 5E-5 3E-2 1E-2 3E-2 ⋆

3 2E-3 1E-1 5E-2 1E+1 ⋆

4 1E-2 4E-1 1E-1 5E-1 ⋆

5 4E-2 1E+0 4E-1 2E+0 ⋆
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The first step of this approach is applying a Cayley transformto convert the problem to an equivalent discrete-
time pencil. In this new form, the infinite eigenvalues can beeasily deflated, reducing the problem to a discrete-time
algebraic Riccati equation with eigenvalues on the unit circle. For the solution of this latter equation, the structured-
preserving doubling algorithm was chosen, due to its good behaviour in presence of eigenvalues on the unit circle,
as proved by the convergence results in [29]. Direct methods, such as the symplectic eigensolvers presented in [44],
could also be used for the solution of the deflated DARE.

The numerical experiments confirm the effectiveness of our new approach for regular matrix pencils. It is not
clear whether the same method can be adapted to work in cases in which the pencil (4) is singular, which may indeed
happen in the contest of Lur’e equations. Another issue is finding a method to exploit the low-rank structure ofQ
(when present). These further developments are currently under our investigation.
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