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Abstract

Open Pit Mine Planning problems are usually considered in a Mixed Integer Programming
context. Characterizing each attainable profile by a continuous function yields a continuous
framework. It allows for a more detailed modeling of slope constraints and other material
properties of slanted layers. Although the resulting nonlinear programming problems are
in general non-convex and non-differentiable, they provide certain advantages as one can
directly compute sensitivities of optimal solutions w.r.t. small data perturbations. In this
work duality results are derived for the stationary problems of the continuous framework
employing an additional condition called convex-likeness.

1 Introduction

In the continuous framework for Open Pit Mine planning any profile is described by a continuous
function. A profile 𝑝 is called feasible if it satisfies the Dirichlet boundary condition 𝑝(𝑥)−𝑝0(𝑥) = 0
for 𝑥 ∈ ∂Ω, the nonnegativity condition 𝑝(𝑥) − 𝑝0(𝑥) ≤ 0 for all 𝑥 ∈ Ω and the so called slope
constraint

Λ𝑝(𝑥) = lim sup
�̂�→𝑥←�̃�

∣𝑝(�̂�) − 𝑝(�̃�)∣
∥�̂�− �̃�∥ ≤ 𝜔(𝑥, 𝑝(𝑥)) (1)

with an upper semi continuous parameter 𝜔. By construction, Λ𝑝(⋅) is an upper semi continuous
functional ([11, Theorem 9.2]). The feasible set 𝒫 ⊂ 𝐶(Ω) contains all those profiles. The
stationary Capacitated Final Open Pit Problem (CFOP) for a given effort constraint 𝐸 ∈ ℝ+

reads
min −𝐺(𝑝)
𝑠.𝑡. 𝑝 ∈ 𝒫

�̂�(𝑝) ≤ 0
(CFOP)

with �̂�(𝑝) = 𝐸(𝑝) − 𝐸 and

𝐺(𝑝) ≡
∫
Ω

𝑝(𝑥)∫
𝑝0(𝑥)

𝑔(𝑥, 𝜏)𝑑𝜏𝑑𝑥

𝐸(𝑝) ≡
∫
Ω

𝑝(𝑥)∫
𝑝0(𝑥)

𝑒(𝑥, 𝜏)𝑑𝜏𝑑𝑥

representing the gain generated by a certain profile 𝑝 and the effort which is necessary to create
it. Here, the densities 𝑔, 𝑒 ∈ 𝐿∞(Ω×𝑍) are only assumed to be essentially bounded and the effort
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density has to be strictly positive, i.e. 𝑒(𝑥, 𝑧) ≥ 𝑒0 > 0 which is a natural assumption. For the
analysis of general optimization problems in Banach spaces one normally needs at least continuous
Fréchet differentiability or convexity of the objective functional and the constraint mapping [8].
Problem (CFOP) usually exhibits neither continuous Fréchet differentiability (consequence of [2,
Proposition 5(ii)] as Gateaux differentiability is necessary for Fréchet differentiability) nor convex-
ity (consequence of [2, Lemma 1] as this property is obtained only for rather artificial choices of 𝜔).

Although certain additional assumptions on the parameters of the model ensure these proper-
ties, they are not taken into account in this work.

In block models [4] the bound on the slope 𝜔 is represented by precedence relations, which effec-
tively restricts its value to the simple rationals 𝑚/𝑛 with m and n typically not exceeding 3. A
major advantage of the continuous model is the possibility to vary 𝜔 continuously and to obtain
a Lagrange multiplier in the sense of a measure of the sensitivity for the slope constraint. This
is important as the parameter 𝜔 can only be derived by geostatistic tools and hence carry uncer-
tainties about the exact value. Because the mapping representing the slope condition is expected
to be neither differentiable nor convex an alternative to the concepts named above needs to be
applied. As it is not even expected to be Lipschitz continuous the direct application of subdiffer-
ential calculus will not yield satisfactory results either.

The article reviews duality results for so called convex-like optimization problems [8, 9] as these
cover a slightly wider class of problems than the properly convex ones. It is organized as follows.

Section 2 recalls the basic definitions needed for the analysis of convex-like optimization prob-
lems. Moreover basic duality theorems for this class will be given. It closes with the presentation
of a characterization of solutions as saddle points of the Lagrange functional.

Section 3 applies the duality theory for convex-like optimization problems to the problem for-
mulation of (CFOP) presented above with 𝑝 ∈ 𝒫 being considered as an implicit hard constraint,
i.e. the optimization is done by only considering feasible profiles. This formulation is a continuous
analog to the well known discrete ones as the values for 𝜔 are prescribed and hence equal some
kind of pointwise predecessor relation. Moreover an example shows that the characteristic convex-
likeness is not generally given. The section closes with a more general theorem which covers at
least some instances of the type given in the example.

In Section 4 the stability constraint is included as a non-implicit constraint in the optimization
process. After the definition of the corresponding range space of the constraint and the appropriate
dual space we may apply again duality results for convex-like optimization problems.

2 Preliminaries

In general an optimization problem defined on a Banach space 𝑋 is given by

min 𝐹 (𝑥)
s.t. 𝑔(𝑥) ∈ −𝐶𝑌

𝑥 ∈ 𝒮
(P)

where 𝐹 : 𝑋 → ℝ is the objective functional, 𝑔 : 𝑋 → 𝑌 a vector space valued constraint mapping
with 𝑌 being partially ordered by some cone 𝐶𝑌 and 𝒮 is a nonempty subset of 𝑋 . To justify the
investigation of (P) the feasible set 𝒮 = {𝑥 ∈ 𝒮∣𝑔(𝑥) ∈ −𝐶𝑌 } is assumed to be nonempty as well.
Problem (P) will be referred to as primal problem throughout.
A more intuitive access for this problem is obtained when (P) is reformulated as a penalized
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optimization problem given in terms of

min
𝑥∈𝒮

sup
𝑦∈𝐶∗

𝑌

𝐹 (𝑥) + ⟨𝑦, 𝑔(𝑥)⟩. (P′)

Here 𝐶∗𝑌 ≡ {𝑦 ∈ 𝑌 ∗∣⟨𝑦, 𝑥⟩ ≥ 0 for all 𝑥 ∈ 𝐶𝑌 } represents the so called dual cone w.r.t. the duality
pairing ⟨⋅, ⋅⟩𝑌 ∗,𝑌 . Throughout the indices 𝑌 ∗, 𝑌 will be left out as it will be clear from the context
for which spaces the pairings are considered.
While if (P) and (P′) are not equivalent in general, it is well known that this is guaranteed if the
ordering cone 𝐶𝑌 is closed (e.g., see [8, Lemma 6.5]). Now one introduces the dual problem of (P′)
as

max
𝑦∈𝐶∗

𝑌

inf
𝑥∈𝒮

𝐹 (𝑥) + ⟨𝑦, 𝑔(𝑥)⟩. (D)

For any feasible element �̃� ∈ 𝑆 of the primal problem and any feasible element of the dual problem
𝑦 ∈ 𝐶∗ one obtains the weak duality relation

inf
𝑥∈𝒮

𝐹 (𝑥) + ⟨𝑦, 𝑔(𝑥)⟩ ≤ 𝐹 (�̃�).

Consequently a lower bound for the optimal value of (P) as the relationship has to hold for the
supremum of the left hand side w.r.t. all elements of the dual cone as well. Note, that so far this
infimum might be −∞ and hence it is not possible to obtain quantitative properties of the solution
of the primal problem. As (P) is neither a convex problem nor 𝐹 and 𝑔 are once continuously
Fréchet differentiable, one has to generalize one of this concepts to obtain characterizations of the
solutions. One generalization of the well known concept of convexity is the so called convex-like
behavior first introduced in [9]. Here not a function is assumed to be convex but a set which is
constructed with the help of it.

Definition 2.1 (convex-like). Let 𝒮 be a nonempty subset of a vector space 𝑋. Moreover let 𝑌
be a partially ordered vector space with ordering cone 𝐶𝑌 .
A mapping 𝑔 : 𝒮 → 𝑌 is called convex-like if the set 𝑀𝑔 = 𝑔(𝒮) + 𝐶𝑌 is convex in 𝑌 .

The concept of convex-likeness indeed covers slightly more functions than the ones just being
convex. For example consider the function 𝑔 : ℝ → ℝ

2, 𝑔(𝑥) = (𝑠𝑖𝑛(𝑥), 𝑥) which is convex-like
w.r.t. the positive orthant but obviously not convex. The next step for the introduction of duality
results is to ensure of a constraint qualification. As it is well known, the Slater condition was
originally defined for convex problems but can be generalized to convex-like problems as well.

Definition 2.2 (generalized Slater condition). Problem (P) satisfies the generalized Slater
condition (GSC) if there exists 𝑥 ∈ 𝒮 such that 𝑔(𝑥) ∈ −𝑖𝑛𝑡(𝐶𝑌 ).

The following duality result applies the definitions introduced above and can be found in [8,
Theorem 6.7].

Theorem 2.1 (Duality Theorem applying convex-likeness). Consider an optimization problem of
form (P). Moreover, let the ordering cone 𝐶𝑌 be closed and contain interior points, i.e. 𝑖𝑛𝑡(𝐶𝑌 ) ∕=
∅. Furthermore, let the mapping (𝑓, 𝑔) : 𝒮 → ℝ×𝑌 be convex-like w.r.t. the ordering cone ℝ+×𝐶𝑌

in the product space ℝ× 𝑌 .
If (P) is solvable and the generalized Slater condition holds, there exist a solution of the dual
problem (D) as well and the extremal values of both problems coincide.

Essentially, the proof uses the convexity of the set

𝑀 = (𝑓, 𝑔)(𝒮) + 𝐶𝑌

and the fact, that due to the generalized Slater condition this set contains interior points. We may
thus apply the classical Eidelheit separation theorem ([7, Theorem 1.3]) on 𝑖𝑛𝑡(𝑀) and (𝑓(𝑥∗), 0𝑌 )
with 𝑥∗ being the optimal solution of (P).
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One speaks of strong duality when (P) and (D) have solutions whose optimal values coincide. For
optimal solutions of (P) the following characterization can be given where the proof is adapted
from [6, Corollary 5.3].

Theorem 2.2 (Characterization of solutions). Consider a problem of form (P).
Moreover let the composite mapping (𝐹, 𝑔) : 𝒮 → ℝ × 𝑌 be convex-like w.r.t. the product cone
ℝ+ × 𝐶𝑌 , 𝐶𝑌 be closed with 𝑖𝑛𝑡(𝐶𝑌 ) ∕= ∅ and (GSC) be satisfied.
Then the following assertions are equivalent

(i) �̄� is an optimal solution of (P)

(ii) ∃𝑦 ∈ 𝐶∗𝑌 s.t. (�̄�, 𝑦) is a saddle point of the Lagrange functional

𝐿(𝑥, 𝑦) = 𝐹 (𝑥) + ⟨𝑦, 𝑔(𝑥)⟩

in the sense of 𝐿(�̄�, 𝑦) ≤ 𝐿(�̄�, 𝑦) ≤ 𝐿(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝒮 × 𝐶∗𝑌 .

Proof. (𝑖) ⇒ (𝑖𝑖)
By Theorem 2.1 the dual problem is solvable and the extremal values coincide. Hence one has

min
𝑥∈𝒮

sup
𝑦∈𝐶∗

𝑌

𝐹 (𝑥) + ⟨𝑦, 𝑔(𝑥)⟩ ≤ 𝐹 (�̄�) + ⟨𝑦, 𝑔(�̄�)⟩ ≤ max
𝑦∈𝐶∗

𝑌

inf
𝑥∈𝒮

𝐹 (𝑥) + ⟨𝑦, 𝑔(𝑥)⟩

By 𝑔(�̄�) ∈ −𝐶𝑌 and the definition of the infimum it follows

𝐿(�̄�, 𝑦) ≤ 𝐿(�̄�, 𝑦) ≤ 𝐿(𝑥, 𝑦)

i.e. the Lagrange functional admits a saddle point.
(𝑖𝑖) ⇒ (𝑖)
As 𝐿 admits an saddle point in (�̄�, 𝑦) it follows

⟨𝑦, 𝑔(�̄�)⟩ ≤ ⟨𝑦, 𝑔(�̄�)⟩∀𝑦 ∈ 𝐶∗𝑌 .

Consequently, 𝑔(�̄�) ∈ −𝐶𝑌 and thus �̄� is a feasible point of (P). Now the saddle point provides
the assertion by

𝐿(�̄�, 𝑦) ≤ 𝐿(𝑥, 𝑦).

3 Partial Dual w.r.t. Capacity Constraint

Obviously, (CFOP) is a problem of the general class (P). 𝒫 ⊂ 𝐶(Ω) is a nonempty subset of
a vector space because at least the initial profile is an element of this set. For this profile the
Dirichlet boundary and the nonnegativity condition are trivially satisfied. The slope constraint
has to be satisfied as we assume the initial surface to be stable. The range space of the inequality
constraint �̂� : 𝒫 → ℝ is a totally ordered vector space where the ordering is characterized by
the cone ℝ+ = [0,∞). The dual cone is ℝ+ as well. The feasible set 𝒮 contains all profiles in 𝒫
satisfying the capacity constraint. Hence one has

𝒮 := {𝑝 ∈ 𝒫∣�̂�(𝑝) ∈ −ℝ+}.

By �̂�(𝑝0) = −𝐸 the set 𝒮 is nonempty for any effort bound providing a well defined optimization
problem, i.e. for all 𝐸 ≥ 0. As the ordering cone 𝐶𝑌 = ℝ+ is closed w.r.t. any norm, one can
pass from (CFOP) to the equivalent penalized form

min
𝑝∈𝒮

sup
𝑦∈ℝ+

−𝐺(𝑝) + ⟨𝑦, �̂�(𝑝)⟩. (2)
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The corresponding dual problem

max
𝑦∈ℝ+

inf
𝑝∈𝒫

−𝐺(𝑝) + ⟨𝑦, 𝐸(𝑝)⟩ (3)

gives at least a lower bound on the extremal value of the primal problem (CFOP). The following
proposition shows, how strong duality can be achieved.

Proposition 3.1 (strong duality under additional conditions). If the composite mapping (−𝐺, �̂�)(𝒫)
is convex-like w.r.t. to the product cone ℝ+ × 𝐶𝑌 , then the dual problem (3) is solvable and the
extremal values of both problems coincide.

Proof. That (CFOP) is a problem of the form (P) has been discussed already. Obviously the
ordering cone ℝ+ contains interior points and is closed. By [2, Proposition 3.1] the primal problem
is solvable. Hence it remains to show the existence of a profile 𝑝 ∈ 𝒫 such that �̂�(𝑝) ∈ 𝑖𝑛𝑡(𝑅+)
which is synonymous to �̂�(𝑝) < 0. Consider the initial profile 𝑝0. Obviously this profile is an
element of the set of feasible profiles 𝒫 . As 𝐸(𝑝0) = 0 holds, one has �̂� < 0 as long as the capacity
of the open pit mine is greater than zero, i.e. 𝐸 > 0. In the case of 𝐸 being equal to zero, the only
feasible solution for the resulting problem is the initial profile itself. So no duality analysis has to
be done and nothing is to show. Hence 𝐸 > 0 is a proper assumption and hence the existence of
an element satisfying the (GSC) is ensured.
The application of Theorem 2.1 completes the proof.

Hence under additional requirements strong duality can be realized in the sense of Theorem 2.1,
i.e. there is no duality gap. In the case of continuous gain and effort densities the class of problems
which can be considered is significantly larger than only the convex problems. Unfortunately, the
set of problems which does not meet this requirement is also of significant size.

The following example describes a simple situation where the requirement of convex-like behav-
ior of (−𝐺, �̂�) is no longer satisfied because of a special property of the gain functional. However
the investigation of convex-like problems is justified as it covers a fairly large subclass of problems.
For the investigation of the example it is necessary to consider the gain-optimal combinations of
the image of the composite mapping.

Definition 3.1 (gain-optimal combinations). For any 𝑝 ∈ 𝒫 the pair (−𝐺(𝑝), �̂�(𝑝)) is called
combination of gain and effort for the problem (CFOP).
Under all combinations for a certain effort �̃� a unique gain-optimal combination maximizes
the gain, i.e. max{𝐺(𝑝)∣𝑝 ∈ 𝒫 , 𝐸(𝑝) = �̃�}.
Note, that the existence of the gain-optimal combinations is guaranteed analogously to the proof
of existence for solutions of (CFOP).

Example 1 (not convex-like): For simplicity consider Ω ⊂ ℝ
1. Hence all profiles are located

in a rectangle Ω × 𝑍 with the characteristics shown in Figure 1. The parameters defining the
optimization problem are given as follows.

𝜔 ≡ 1 uniformly in Ω× 𝑍.

e ≡ 1 uniformly in Ω× 𝑍.

g

{≡ 1 areas indicated by dark gray
≡ 0 areas indicated by light gray

The Figures 1 to 6 show profiles representing gain-optimal combinations. Figure 7 summarizes
the development of the gain-optimal combinations and highlights particular combinations realized
by the following profiles. The sum of this graph and the positive orthant ℝ

2
+ would have to be

convex if (−𝐺, �̂�) were convex-like.
W.l.o.g. gain-optimal combinations will be considered for 𝐸 = 25 as the shape of (−𝐺,𝐸) + ℝ

2
+

remains constant.
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Figure 1 shows the unique profile realizing an gain-optimal combination for �̃� = 0. This combi-
nation, (0,−25), is denoted by a in Figure 7.
Figure 2 depicts a profile representing the gain-optimal combinations for �̃� = 9. Any feasible
profile with −𝐺(𝑝) = −9 is a representative of this combination. In figure 7 it can be found at
point b.
Figure 3 displays the unique profile yielding the gain-optimal combination for �̃� = 21. Any profile
excavating less material from the dark gray in favor of more from the light gray would generate
a smaller gain and any profile excavating more of the dark gray area would violate the slope con-
straint.
As there is no feasible profile generating more than 𝐺(𝑝) = 21 with �̃� = 22, Figure 4 shows a
realization of the gain-optimal combination (−21,−3).
The excavation process along the gain-optimal profiles is continued by extending the latter profile
such that as much as possible of the valuable material in layer three is excavated. Figure 5 shows
an intermediate state on this excavation process.
This procedure continues until the profile which is obtained fulfills the stability condition as an
equality everywhere. The corresponding profile can be seen in Figure 6.

Figure 1: (a) Figure 2: (b) Figure 3: (c) Figure 4: (d) Figure 5: (e) Figure 6: (f)
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Figure 7: development of gain-optimal combinations

Obviously, the set 𝑀 which is generated by addition of the first quadrant to this graph is not
convex as for example the line connecting the points 𝑐 and 𝑓 cannot be in the resulting set 𝑀 .

A remedy for the lack of convex-likeness is applying the convex hull operator on the image of the
composite mapping. This extends the class of problems for which strong duality can be shown.
Recall, that the convex hull of a set 𝒦 is the smallest convex set containing 𝒦. With the help of
this operator, now one is able to establish the following weakened form of Theorem 2.1.

Theorem 3.1. If the set (−𝐺, �̂�)(𝑝) with 𝑝 ∈ 𝒫 has a supporting tangent at (−𝐺, �̂�)(𝑝∗) where 𝑝∗

represents the optimal solution of (CFOP), then Theorem 2.1 remains valid without the assumption
of convex-likeness on (−𝐺,𝐸).

Proof. The main argument of the proof of Theorem 2.1 consist of the fact that

𝑀 = (𝑓, 𝑔)(𝒮) + ℝ+ × 𝐶𝑌
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is convex under the additional assumption of convex-likeness of the composite mapping. Then
(𝑓(𝑝∗), 0) can be separated from 𝑀 .
To avoid the convex-likeness of the composite mapping, one has to ensure, that (𝑓(𝑝∗), 0) still can
be separated from a convex set containing all combinations (−𝐺, �̂�)(𝒮). Consider the set

𝑀𝐶 = 𝑐𝑜𝑛𝑣
(
(−𝐺,𝐸)(𝒮)

)
+ ℝ+ × 𝐶𝑌 .

As a direct sum of two convex sets it is convex as well. By definition, (−𝐺,𝐸)(𝑝∗) is an ele-

ment of the convex hull 𝑐𝑜𝑛𝑣
(
(−𝐺, �̂�)(𝒮)

)
and by optimality one has (−𝐺,𝐸)(𝑝∗) /∈ 𝑖𝑛𝑡(𝑀𝐶).

Consequently, with
𝑀 :=𝑀𝐶 + ℝ

2
+

one proofs the claim analogously to Theorem 2.1.

By Example 1 it will be shown, that the given condition indeed covers a wider class of problems
than the convex-like ones.
As one can observe in Figure 7 all convex combinations of the points 𝑐 and 𝑓 for the weights
𝜆 ∈ (0, 1) are not contained in 𝑀 .
If one applies Theorem 3.1 one can separate the point (−𝐺(𝑝∗), 0) from the set �̃� by a linear
functional as long as the upper bound on the total effort is 𝐸 ≤ 21. In Figure 8 this can be
observed for 𝐸 = 20. In fact, it depends strongly on the effort bound �̄� whether strong duality
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Figure 8: separation of (0, 20) by a linear functional

can be obtained or not. From this connection one can derive the following corollary for (CFOP).
Let 𝑝∞ denote the globally optimal profile.

Corollary 1. If the global minimum of −𝐺 within 𝒮 is attained by a profile 𝑝∞ ∈ 𝒫 that satisfies
the capacity constraint of the open pit, i.e.

min
𝑝∈𝒫

−𝐺(𝑝) = min
𝑝 ∈ 𝒫

�̂�(𝑝) ≤ 0

−𝐺(𝑝),

there is no duality gap between the primal and the dual problem.

Proof. Obviously, (−𝐺,𝐸)(𝑝∞) has to be an element on the boundary of 𝑀𝐶 . Hence Theorem
3.1 is applicable.

Thus a characterization of the global minimizer can be obtained if 𝑝∞ can be reached without
violating the effort constraint. In the next Corollary, 𝑝𝑈 denotes the so called ultimate pit repre-
senting the maximal profile in the sense of the lattice structure of 𝒫 (see [2, Proposition 3]) which
can be reached without considering any effort constraint or gain optimality.
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Corollary 2. If 𝐸 ≥ 𝐸(𝑝𝑈 ) holds, there is no duality gap between the primal and the dual problem.

Proof. The global minimizer of the objective has to be attained by the feasible profiles satisfying
the capacity constraint because 𝑝𝑈 is an upper bound for all profiles in the optimization process.
Hence one can apply Corollary 1.

A mining engineer can be expected to define the capacity of the mine large enough to be able to
excavate the global minimizer 𝑝∞ but not the ultimate pit 𝑝𝑈 .

All in all one concludes that the investigation of the gain-optimal profiles is one of the main
challenges in the dualization theory for (CFOP). In the opinion of the authors, the approach
presented by Matheron [10] provides the best framework for this task.

According to Theorem 2.2 the following saddle point property holds for (CFOP) in the case
of (−𝐺, �̂�) being convex-like.

Proposition 3.2 (Saddle Point of the Lagrangian). If the composite mapping (−𝐺, �̂�)(𝒫) → ℝ×ℝ

is convex-like w.r.t the product cone ℝ+×ℝ+, 𝑝∗ is a solution of (CFOP) if and only if there exist
a 𝑦 ∈ ℝ+ s.t. (𝑝∗, 𝑦) is a saddle point of

𝐿(𝑝, 𝑦) = −𝐺(𝑝) + ⟨𝑦, �̂�(𝑝)⟩.

4 Full Dual w.r.t. capacity constraint and slope constraint

So far, the slope constraint was given implicitly as this condition is included in the definition of
the feasible set. Hence one only obtains a dual variable for the capacity but not for the stability
constraint. A main advantage of the continuous approach is the possibility to obtain a dual vari-
able for this one and get information about the sensitivity for this constraint.

In the following section an extended problem formulation will be analyzed. In this formulation
the stability condition is not longer given implicitly but as an inequality constraint. The problem
is given by

min −𝐺(𝑝)

𝑠.𝑡. 𝑝 ∈ 𝒫
Λ̂(𝑝(⋅)) ≤ 0

𝐸(𝑝) ≤ 0

(CFOP′)

where Λ̂(𝑝(⋅)) = Λ𝑝(⋅)− 𝜔(⋅, 𝑝(⋅)) represents the difference of the local slope of the profile and the

value which it is allowed to be at most in a pointwise manner. Moreover, 𝒫 denotes a special
subset of the vector space of continuous functions. In general continuous functions do not have
to admit a bounded Λ𝑝 (e.g., 𝑔(𝑥) = 𝑥3/2 sin(1/𝑥)). If this quantity is not bounded one is not

able to make any assertion on the difference Λ̂. Hence one has to pass from 𝐶(Ω) to a subset
of functions satisfying certain regularity conditions. This functions will be in the subspace of
Lipschitz continuous functions 𝐿𝑖𝑝(Ω) which is dense in 𝐶(Ω) and guarantees the operator Λ𝑝(𝑥)
at least to be finite for all considered profiles 𝑝 and all 𝑥 ∈ Ω. The feasible set is now

𝒫 ≡ {𝑝 ∈ 𝐿𝑖𝑝(Ω)∣𝑝 satisfies boundary and nonnegativity condition}
For the investigation of the duality properties of problem (CFOP′) one has to know about the
range space of the constraint mapping. The first component is, as shown above, the space of real
numbers ℝ

1. For the difference of local Lipschitz constant and 𝜔 the following Lemma answers
this question.

Lemma 4.1 (range space of the slope constraint). The difference representing the slope constraint

Λ̂(𝑝(⋅)) = Λ𝑝(𝑥) − 𝜔(𝑥, 𝑝(𝑥))
is an element of 𝐿∞(Ω) for any profile 𝑝 ∈ 𝒫.
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Proof. The proof is obvious and hence omitted.

To be able to describe the Lagrange multipliers concerning (CFOP′), the dual space of 𝐿∞(Ω) has
to be introduced. According to Yosida and Hewitt [12] this is the space of finitely additive signed
measures or shortly 𝑏𝑎 space which is a notation introduced in [5, IX.2.15]. Here 𝑏𝑎 is short for
bounded additive. The space of the finitely additive signed measure endowed with the norm of
total variation ∥𝜇∥𝑣𝑎𝑟 is a Banach space and will be referred to as (𝑏𝑎(Ω), ∥ ⋅ ∥𝑣𝑎𝑟). To verify that
it is indeed a Banach space see e.g., [1, section 4.19]. The space of bounded linear functionals on
𝐿∞(Ω) can be identified with this space as it can be found in [12, Theorem 2.3].

The ordering cone on the vector space 𝐿∞(Ω) contains all functions which are not negative almost
everywhere, i.e.

𝐶𝐿∞(Ω) ≡ {𝑓 ∈ 𝐿∞(Ω)∣𝑓(𝑥) ≥ 0 for almost all 𝑥 ∈ Ω}. (4)

It is well known that this cone is closed and it’s interior is the set of all essentially bounded func-
tions with an essentially infimum being strictly greater than zero.

The extended problem formulation (CFOP′) is a problem which is equivalent to (P) as well.
𝒫 ⊂ 𝐿𝑖𝑝(Ω) is a nonempty subset of a vector space as at least the initial profile is contained in it.
The range space of the constraint mapping (�̂�, Λ̂𝑝) : 𝒫 → ℝ × 𝐿∞(Ω) is a totally ordered vector

space with ordering cone ℝ+ ×𝐶𝐿∞(Ω). The feasible set 𝒮 contains all profiles in 𝒫 satisfying the
capacity constraint and the slope constraint, i.e. one has

𝒮 = {𝑝 ∈ 𝒫∣(�̂�, Λ̂)(𝑝) ∈ −(ℝ+ × 𝐶𝐿∞(Ω))}
This set is nonempty as well as again the initial profile has to be an element of it in the case of
𝐸 ≥ 0. To determine the dual cone of the range space of the inequality constraint recall the dual
space of it.

ℝ+ × 𝑏𝑎(Ω)

The dual cone of the space of essentially bounded functions contains all finitely additive signed
measures assigning any measurable subset of Ω a non negative real number, i.e.

𝐶∗𝐿∞(Ω) ≡ {𝜇 ∈ 𝑏𝑎(Ω,ℬ(Ω))∣𝜇(𝐴) ≥ 0 for all 𝐴 ∈ ℬ(Ω)}. (5)

Here ℬ(Ω) denotes the set of all Borel sets in Ω. The claim will be proven by contradiction. Let 𝜇
be a finitely additive signed measure in the dual cone with 𝜇(𝐴) < 0 for at least one measurable
subset 𝐴 ⊂ Ω. The indicator function 𝜒𝐴 of this set is an element of the ordering cone of the
essentially bounded functions 𝐶𝐿∞(Ω) as it only attains the values 0 and 1. For this function one
obtains

⟨𝜇, 𝜒𝐴⟩ =

∫
Ω

𝜒𝐴(𝑥)𝑑𝜇(𝑥) =

∫
𝐴

1𝑑𝜇(𝑥) = 𝜇(𝐴) ≤ 0

what contradicts the definition of the ordering cone.

As the ordering cone ℝ+ × 𝐶𝐿∞(Ω) is closed one might pass from (CFOP′) to the equivalent
penalized form

min
𝑝∈𝒮

sup
𝑙 ∈ ℝ+

𝜇 ∈ 𝐶∗
𝐿∞(Ω)

−𝐺(𝑝) + ⟨𝑙, �̂�(𝑝)⟩ + ⟨𝜇, Λ̂(𝑝)⟩. (6)

The corresponding dual problem

max
𝑙 ∈ ℝ+

𝜇 ∈ 𝐶∗
𝐿∞(Ω)

inf
𝑝∈𝒮

−𝐺(𝑝) + ⟨𝑙, �̂�(𝑝)⟩ + ⟨𝜇, Λ̂(𝑝)⟩ (7)
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gives at least a lower bound on the extremal value of problem (CFOP′). Moreover, under certain
additional requirements, it is possible to show the validity of strong duality what is proven by the
following proposition.

Proposition 4.1 (Duality and the Extended Problem). If the composite mapping (−𝐺, (𝐸, Λ̂))(𝒫)
is convex-like w.r.t. the product cone ℝ+×𝐶𝑌 and (GSC) is satisfied the Theorem 2.1 is applicable.
Hence the dual problem (7) is solvable and the extremal values of both problems coincide.

Proof. The proof is analogous to Theorem 2.1.

In the setting of (CFOP′) the existence of a profile in the interior points of the ordering cone is
a non trivial property. As the product cone 𝐶𝑌 = ℝ+ × 𝐶𝐿∞(Ω) is endowed with the product
topology, an element lies in the interior of it if it is an element of the interior points of both
original cones. As the existence of a profile 𝑝 with �̂�(𝑝) ∈ 𝑖𝑛𝑡(ℝ+) is ensured easily as seen in the
preceding section, this is not clear for the slope condition. For example consider a volume with
a vertical part where no slope is possible for a profile. A two dimensional sketch of this scenario
can be found in Figure 9.

Figure 9: volume with vertical inclusion

Here one can observe immediately, that any profile 𝑝 has to satisfy

Λ̂(𝑝)(𝑥) = 0

for all 𝑥 with 𝜔(𝑥, ⋅) = 0. In this case there cannot exist a profile in the interior of the negative
ordering cone of −𝐶𝐿∞(Ω) as these elements has to be strictly smaller than zero almost everywhere.

A possible remedy is to assume the initial profile 𝑝0 to be an element of the feasible profiles
which does strictly fulfill the slope condition anywhere according to [2, Proposition 2.3]. Then a
profile in the interior of the product cone would be guaranteed.
According to Theorem 2.2 the following characterization of solutions for the extended problem
formulation (CFOP′) in the case of (−𝐺, (𝐸, Λ̂)) being convex-like can be given.

Proposition 4.2 (Saddle Point property). If the composite mapping (−𝐺,𝐸, Λ̂)(𝒫) → ℝ × ℝ×
𝐿∞(Ω) is convex-like w.r.t the product cone ℝ+ × ℝ+ × 𝐶𝐿∞(Ω), 𝑝

∗ is a solution of (CFOP′) if
and only if there exist a (𝑦1, 𝑦2) ∈ ℝ+ × 𝑏𝑎(Ω) s.t. (𝑝∗, (𝑦1, 𝑦2)) is a saddle point of

𝐿(𝑝, 𝑦1, 𝑦2) = −𝐺(𝑝) + ⟨𝑦1, �̂�(𝑝)⟩ + ⟨𝑦2, Λ̂(𝑝)⟩.

5 Conclusions

We were able to apply the duality theory for convex-like optimization problems to the stationary
problem (CFOP) and the extended problem formulation (CFOP′). Correspondingly the existence
of Lagrange multipliers for the effort constraint and also the slope constraint was proven.
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Unfortunately this Lagrange multiplier in general only is a measure. This lack of functional
regularity provides a challenge for numerical methods. Typical remedies are known, e.g. from
PDE constraint optimization and can be distinguished into two main concepts. The first is to
consider an a priori discretized problem as in [3]. The second one is to regularize the constraint
yielding a Lagrange multiplier that is a function and can thus be conveniently represented and
manipulated numerically.

Suitable numerical schemes are currently under investigation.
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