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Abstract

R is a language and environment for statistical computing and graphics. It can be con-
sidered an alternative implementation of the S language developed in the 1970s and 1980s
for data analysis and graphics (Becker and Chambers, 1984; Becker et al., 1988). The R
language is part of the GNU project and offers versions that compile and run on almost
every major operating system currently available. We highlight several R packages built
specifically for the analysis of neurocimaging data in the context of functional MRI, diffusion
tensor imaging, and dynamic contrast-enhanced MRI. We review their methodology and
give an overview of their capabilities for neuroimaging. In addition we summarize some of
the current activities in the area of neuroimaging software development in R.

Introduction

The rapid progress of research in the neuroscience and neuroimaging fields has been accom-
panied by the development of many excellent analysis software tools. These are implemented in
a variety of computer languages and programming environments, such as Matlab, IDL, Python,
C/C++ and others. This diversity has developed over time through a combination of user prefer-
ences and the strengths/weaknesses of the computing environments. Many of these software
tools are freely available, like SPM (Ashburner et al., 2008), AFNI (Cox, 1996), FSL (Smith et al.,
2004), Freesurfer, or BrainVISA, some are commercial like BrainVoyager and Analyze. Typically,
the software tools can be extended by the user to fit their needs in the data analysis. For ex-
ample, the NIPY project is written in Python and explicitly allows for the integration, modification
and extension of code (Millman and Brett, 2007).

R is a free software environment for statistical computing and graphics (Ihaka and Gentleman,
1996; R Development Core Team, 2010). It compiles and runs on almost every UNIX platform,
Windows, and Mac OS. Access to R, and its packages/extensions, is provided via the Com-
prehensive R Archive Network (CRAN, http://cran.r-project.org) and R-Forge
(https://r-forge.r-project.org). R provides a wide range of statistical (linear
and nonlinear regression modeling, classical statistical tests, time-series analysis, classifica-
tion, clustering, etc.) and graphical techniques, and is highly extensible. As of November 2010,
the CRAN package repository features over 2600 separate packages contributed by R users. A
recent community website (http://crantastic.orqg) provides the facilities to search
for, review and tag CRAN packages. Several mailing lists are maintained in order to provide
updates and access to literally thousands of R users. This is in addition to a complete set of
open-access manuals about the R language.

Why is it worthwhile to consider another programming environment for neuroimaging? R is the
free and platform-independent quasi-standard computational environment within the statistics



community. R grants access to many well-developed statistical tools needed for the analysis
of neuroimaging data. R offers the use of other software from within R and R can be used
within a more general workflow. Finally, special R packages for neuroimaging provide enhanced
functionality which is not available elsewhere.

In this paper, we report on several R packages built for the analysis of neuroimaging data in
various contexts. We will shortly review the methodology of each package to give an impression
of their capabilities for neuroimaging. We will present results created using the packages. The
paper is organized by the type of data which is to be analyzed and covers functional Magnetic
Resonance Imaging (fMRI), Diffusion Tensor Imaging (DTI), and Dynamic Contrast-Enhanced
MRI (DCE-MRI). In the discussion we want to summarize some of the activities in the area of
neuroimaging software in R in general.

On features of R

R is a high-level programming environment which provides both command-line and graphical
interfaces. It allows for interactive data analysis as well as scripting in order to process large
amounts of data offline. R is the quasi-standard environment for the development of new statis-
tical methods, often overtaking commercial statistical packages, such as, SAS, SPSS, etc. Yet
its matrix computational capabilities also compare well with those in, for example, Matlab.

The concept of packages as extensions to the R base system is one of its greatest strengths.
R easily integrates compiled code written in low-level languages, like C/C++ or FORTRAN,
providing the basis for efficient programming of computationally expensive algorithms combined
with an easy-to-use interface at the scripting level.

Memory usage in R can be a source of difficulty when handling neuroimaging data sets, since
the multi-dimensional data arrays are generally stored in double precision, and in computer
main memory. However, there are several projects and packages for R to overcome the mem-
ory limitations for very large data sets. One of them is the f (Adler et al., 2010) which provides
flexible data structures that are stored on disk but behave (almost) as if they were in RAM by
transparently mapping only a section (page-size) in main memory. Another example is the Big-
Memory project (http://www.bigmemory.orqg) which supports the creation, storage,
access, and manipulation of massive matrices. Work is ongoing to incorporate these capabili-
ties into the packages described in this paper. A reference type has recently been introduced in
R (2.12.0) which will minimize the need to generate a copy of the data every time a function is
called.

R supports modern concepts like object-oriented programming, which is provided as implemen-
tation of so-called S4-classes and methods (Chambers, 2008). While not as strict as in low-level
languages like C/C++ it allows for class/method definition, data encapsulation, polymorphism,
etc.

The analysis of huge data sets with sophisticated methodology comes at the cost of large com-
putational expenses. R provides the possibility to parallelize code natively in R, or within the
C/C++ code. It is also possible to include computation on a graphic card (GPU) instead of CPU,



which in appropriate cases may benefit by orders of magnitude from the speed of modern GPUs.

Data Input/Output

The industry standard format, for data coming off a clinical imaging device, is DICOM (Digi-
tal Imaging and Communications in Medicine, http://medical .nema.org). The DI-
COM *“standard” is very broad and very complicated. Roughly speaking each DICOM-compliant
file is a collection of fields organized into two four-byte sequences (group,element) that are
represented as hexadecimal numbers and form a tag. The (group,element) combination an-
nounces what type of information is coming next. There is no fixed number of bytes for a DI-
COM header. The packages oro.dicom (Whitcher, 2010), fmri (Tabelow and Polzehl, 2010c)
and tractor.base (Clayden, 2010b) provide R functions that read DICOM files and facilitate their
conversion to ANALYZE or NIfTI formats.

Although the industry standard for medical imaging data is DICOM, another format has come
to be heavily used in the image analysis community. The ANALYZE format was originally devel-
oped in conjunction with an image processing system (of the same name) at the Mayo Founda-
tion (Biomedical Imaging Resource, 2001). An Analyze (7.5) format image is comprised of two
files, the “img” and “hdr” files, that contain the data and information about the acquisition itself.
A more recent adaption of this format is known as NIfTI-1 and is a product of the Data For-
mat Working Group (DFWG) from the Neuroimaging Informatics Technology Initiative (NIfTI).
The NIfTI-1 data format is almost identical to the ANALYZE format, but offers a few improve-
ments: merging of the header and image information into one file (.nii), re-organization of the
348-byte fixed header into more relevant categories and the possibility of extending the header
information. The packages AnalyzeFMRI (Marchini and Lafaye de Micheaux, 2010), fmri, trac-
tor.base, and oro.nifti (Whitcher et al., 2010) all provide functions that read/write ANALYZE
and NIfTI files.

Additionally, the fmri package provides capabilities to read and write AFNI's HEAD/BRIK files.

Functional MRI

Functional magnetic resonance imaging (fMRI) has become the most informative tool for in vivo
examination of human brain function on small spatial scales. It is nowadays utilized both in re-
search as well as in clinical applications such as diagnosis, surgical planning and the treatment
of brain lesions.

Package AnalyzeFMRI

AnalyzeFMRI is a package originally written by Marchini (2002) for the processing and anal-
ysis of large structural and functional MRI data sets under the ANALYZE format. It has been
updated since 2007 to include new functionalities: conversion from ANALYZE to NIfTl, complete



X © FMRI visualisation: /nome/backup/OrganisationDesFichiers ©® @ &

Palette values

X O Associated time course —— 00 ®

3
Neurological cenvention -ﬁme
A

Figure 1 — Visualization of temporal ICA results. Bottom left: One of the extracted temporal compo-
nents. Right: Its associated spatial map of activations. Top left: corresponding anatomical image

NIfTI input/output, functions to obtain spatial coordinates from voxel indices and vice-versa,
various geometrical utilities, cross-platform visualization based on Tcl/Tk components, and spa-
tial/temporal independent component analysis (ICA) via a graphical user interface (GUI).

Independent component analysis is a statistical technique that can recover hidden underlying
source signals from an observed mixture of these sources (Hyvérinen et al., 2001). The only
hypothesis made to solve this problem, known as the blind source separation problem, is that
the sources are statistically mutually independent and not Gaussian. ICA is now used to an-
alyze fMRI data since the late 1990’s (McKeown et al., 1998) and has been detailed in many
papers (see e.g. Stone, 2002; Thomas et al., 2002). Note that ICA can be defined in two dual
approaches: spatial ICA (sICA) and temporal ICA (tICA), the latter is not really used in fMRI
studies due to the computational difficulties in diagonalizing the large correlation matrix. This is
why as far as we know tICA has never been applied to an entire fMRI acquisition, but only on
a few slices of the brain or on a very reduced portion of it (Calhoun et al., 2001; Seifritz et al.,
2002; Hu et al., 2005). Yet, supposing that we have temporally independent source signals can
be seen as a natural assumption in several fMRI studies. The R package AnalyzeFMRI uses a
property of the singular value decomposition that permits one to obtain the non-zero eigenval-
ues of the aforementioned correlation matrix and their associated eigenvectors. It then becomes
feasible to perform tICA for fMRI data on the whole brain volume. The theoretical details, as well
as a complete analysis of simulated and real data, can be found in Bordier et al. (2010).

Results from a tICA are presented in Figure 1, and have been obtained using the GUI in
AnalyzeFMRI. Note that a sICA also could have been performed. The data used here are
a 128 x128x 30 array of voxels, with a spatial resolution of 1.6875x1.6875x3mm?, coming



from a typical fMRI block design visual experiment by alternating the presentation of a set of
chromatic rectangles (Mondrian like patterns) and the same patterns in an achromatic version.
A mask file (128 x33x30) has been used to limit the search of the associated spatial maps
of temporal components in interesting areas, although this is not a required step for the tICA
method. The number of temporal components to be extracted has been estimated to be 20 us-
ing PCA. Then a cross-correlation between each extracted component and the temporal signal
of the stimulus was performed: the highest correlation was associated with the third compo-
nent, which is displayed in Figure 1. lts associated spatial activation map is also shown on the
right of Figure 1. Note that the GUI visualization tool also displays the anatomical images, thus
enabling the anatomical localization of the most active voxels via a cross-clicking link with ICA
spatial maps. These are located in the ventral cortical region V4-V8, known to be sensitive to
color perception.

Package fmri

The R package fmri adopts the common view (Friston et al., 1995; Worsley et al., 2002) of a
linear model for the time series Y; in each voxel ¢

Yi= XBi+e, (1)

where X denotes the design matrix and &; the error vector (Polzehl and Tabelow, 2007). The
package requires pre-processing steps such as motion correction, registration, and normal-
ization to be performed by third-party tools. Note, that within the workflow using the package
smoothing is not considered to be pre-processing. Smoothing as a pre-processing step is prone
to a loss in detailed information that is needed in the structural adaptation approaches employed
within fmri. The fMRI data should therefore not be smoothed in advance.

The package includes functions for input/output of data in standard imaging formats (ANALYZE,
NIfTI, AFNI, DICOM). Linear modeling of the data according to (1) includes the description of
temporal correlations with an autoregressive AR(1) model. The estimated correlation param-
eters are bias corrected (Worsley et al., 2002) and can be smoothed (Worsley, 2005). The
linear model of the pre-whitened data results in a statistical parametric map (SPM) which is
a voxel-wise array of the estimated parameter  and its estimated variance. This information
is then used to perform a structural adaptive smoothing (Tabelow et al., 2006). The result of
this algorithm is twofold: it improves the estimates of 5 by reducing their variance and it sim-
plifies the inherent multiple testing problem by introducing a specified smoothness under the
null hypothesis. The fmri package uses random field theory to determine thresholds for the test
statistics (Worsley et al., 1996). The method allows for a significant signal enhancement and
reduction of false positive detections without reducing the effective spatial resolution, in contrast
to traditional non-adaptive smoothing methods. Note, that the smoothing method accounts for
the intrinsic spatial correlation of the data (Tabelow et al., 2006). This has been demonstrated
in a series of papers (Voss et al., 2007; Tabelow et al., 2008b), especially for the analysis of
high-resolution functional MRI (Tabelow et al., 2009).

The structural adaptive smoothing algorithm has been refined and now integrates both the
smoothing and the signal detection step (Polzehl et al., 2010). It is based on a multi-scale



Figure 2 — Signal detection in the package tmri using different smoothing methods (multiple test cor-
rected p = 0.05): a) signal detection using Gaussian smoothing, b) signal detection using structural
adaptive smoothing with signal detection by random field theory, c) results using structural adaptive
segmentation. Since the algorithm provides only two segments (activation/no-activation) additional
information can be overlayed in color. Here the estimated 3 is shown. See Polzehl et al. (2010) for
more details.

test performed in the iterative smoothing procedure. The algorithm has been named structural
adaptive segmentation since it divides the region of interest into a segment of no activation and
a segment where the null hypotheses has been rejected. Figure 2 shows the signal detection
results using different smoothing methods. The images were produced using the packages fmri
and adimpro (Tabelow and Polzehl, 2010a).

It is worth noting that the computational time for a complete single-subject fMRI analysis includ-
ing linear modeling, smoothing signal detection and graphical output is usually in the order of
one minute. Although the structural adaptive smoothing algorithm is in principle computationally
expensive through its iterative nature, the fact that it operates on the estimated SPM rather than
the individual volumes makes it very efficient.

Diffusion Tensor Imaging (DTI)

While functional MRI focuses on the brain’s gray-matter functionality in cortical regions, diffu-
sion weighted imaging (DWI) measures directional water diffusion which is highly anisotropic
in the brain’s white matter. Among the models for DWI data is the widely used diffusion tensor
model, where the directional dependence is described by a local diffusion tensor. The estimated
anisotropy can be directly associated with the anatomical structure in the brain; mainly (but not
solely) with white matter fiber structure.



Package dti

The R package dti has been written for the analysis of diffusion-weighted MRI data (Tabelow
and Polzehl, 2010b). Using a Gaussian model of diffusion, the data can be described by a rank-2
diffusion tensor D, which is represented by a symmetric positive definite 3 x 3 matrix

Daca: Dmy sz
D=| Dy Dy D, . (2)
sz Dyz Dzz

Assuming tissue homogeneity within a voxel of the diffusion-weighted image, signal intensities
Sy associated with a gradient direction g and a b-value b are related to unweighted signal inten-
sities Sy by

Sy = Spe b9 Dd 3)

This model is known as diffusion tensor imaging (DTI, Basser et al., 1994a,b).

The package dti uses the package fmri for reading diffusion-weighted MRI data from DICOM
or NIfTI files. The package provides estimates of diffusion tensors using non-linear regression
(Polzehl and Tabelow, 2009) or a linearization of (3). Inference on the diffusion tensor is pro-
vided by estimating rotationally invariant tensor characteristics like mean diffusivity, fractional
anisotropy (FA), main diffusion direction, etc. The package can be used (in combination with
the R package adimpro and ImageMagick) to create publication ready images of color-coded
directional FA maps or 3D tensor visualizations in common image formats like JPEG, PNG and
many others.

One key feature of the dti package is the implementation of a structural adaptive smoothing
method for the analysis of diffusion-weighted data in the context of the DTl model. Due to its
edge-preserving properties these smoothing methods are capable of reducing noise without
compromising significant structures like fiber tracts (Tabelow et al., 2008a). Smoothing is per-
formed directly on the diffusion-weighted images using information from the low-dimensional
space of the diffusion tensors for adaptation of weights. At each iteration the diffusion tensor is
re-estimated from the smoothed diffusion-weighted images. The iterative process is performed
from small to larger scales. In contrast to other smoothing methods based on Partial Differential
Equations (Ding et al., 2005) the method exhibits an intrinsic stopping criterion. See Figure 3
for color-coded FA images of one slice before and after smoothing.

The dti package also provides methods for the analysis of high angular resolution diffusion
imaging (HARDI) data (Tabelow et al., 2010). The reconstruction of the orientation distribution
function (ODF) from a spherical harmonic expansion of the diffusion-weighted data can be per-
formed as well as the estimation of mixed-tensor models and the expansion of the weighted ODF
into central angular Gaussian distribution functions. The package also implements a streamline
fiber tracking algorithm for single- and mixed-tensor models. Three-dimensional visualization is
provided using the package rgl (Adler and Murdoch, 2010) that provides an interface to the
OpenGL specification (http://www.opengl.org).

The package is completely written using the S4 object-oriented model in R. As for the package
fmri, the implementation of structural adaptive smoothing methods is potentially computation-
ally expensive through its iterative nature. A typical DTI analysis, including structural adaptive



Figure 3 — Application of the structural adaptive smoothing algorithm in (Tabelow et al., 2008a) to a
brain scan: a) color coded directional map weighted with FA of an axial slice obtained by voxel-wise
analysis of the DWI data consisting of 55 diffusion weighted images and b) directional map resulting
from structural adaptive smoothing. In all images, black regions inside the brain denote areas in
which at least one of the eigenvalues was negative. The color coding is red for right-left, green for
anterior-posterior and blue for inferior-superior. See Tabelow et al. (2008a) for more details.

smoothing, takes approximately 30 minutes on common hardware. However, as the amount of
data for diffusion-weighted imaging is rather large, a large amount of memory is advisable. This
issue will be solved in future versions of the package by using efficient memory management via
ff (Adler et al., 2010) or bigmemory (Kane and Emerson, 2010). For a more complete survey
on algorithmic and computational details we refer the reader to Polzehl and Tabelow (2009).

The TractoR project

The TractoR (Tractography with R) project provides tools for working with diffusion MRI and
fiber tractography, with a strong focus on group-wise analysis. The project is currently built upon
four R packages, but also provides an interface for performing common tasks without direct
interaction with R. Full source code is available at the project web site (http://code.
google.com/p/tractor).

The tractor.base package provides data structures and functions for reading images from DI-
COM, ANALYZE or NIfTI storage formats, visualizing and manipulating images—for example, by
thresholding or masking—and writing images back to file. The second package tractor.utils pro-
vides a variety of utility functions, primarily for use by the project interface. The tractor.session
package provides a file hierarchy abstraction, designed to facilitate working with a large num-
ber of data sets; and also provides R interfaces to third-party image analysis software pack-



Figure 4 — Rejection of false positive streamlines using a predefined reference tract and statistical
shape model (Clayden et al., 2009a). After “pruning” (right) the main curve of the arcuate fasciculus
appears without any superfluous branching structures.

ages, including FSL (Smith et al., 2004) and Camino (Cook et al., 2006). Finally, the tractor.nt
package provides reference implementations of “neighborhood tractography” methods, which
use anatomical prior information and probabilistic models to segment white-matter structures in
groups with high robustness and consistency.

Neighborhood tractography overcomes a number of problems with standard diffusion tractog-
raphy methods, particularly the difficulty of choosing suitable seed points to initialize tracking,
by introducing anatomical prior information in the form of reference tracts (Clayden et al., 2006,
2007; Munoz Maniega et al., 2008). In this way, high levels of reproducibility and consistency
can be achieved for diffusion-based measurements within white matter tracts, without time-
consuming and error-prone manual intervention (Clayden et al., 2009b). Finally, the approach of
explicitly modeling tract shape variability across individuals offers a natural solution to the com-
mon problem of false positive pathways generated by tractography methods (Fig. 4; Clayden
et al., 2009a). The statistical pedigree of R makes it an ideal environment in which to develop
and apply machine learning techniques for neuroimaging.

Dynamic Contrast-Enhanced MRI (DCE-MRI)

The dcemriS4 package contains a collection of data classes and functions to perform quantita-
tive analysis from a dynamic contrast-enhanced MRI (DCE-MRI) acquisition on a voxel-by-voxel
basis. Patients undergoing a DCE-MRI acquisition have several minutes of T1-weighted scans
performed, with a typical temporal resolution between 3-15 seconds, where a bolus of gadolin-
ium is injected after a sufficient number of pre-contrast scans have been acquired. Assuming
that the biology is explained by a system of linear differential equations, the model of contrast
agent concentration over time is given by a sum of exponentials convolved with an arterial input
function.



The workflow may be defined by the following steps: motion correction and/or co-registration, T1
estimation, conversion of signal intensity to gadolinium contrast-agent concentration and kinetic
parameter estimation. The S4 object classes for common medical image formats, specifically
ANALYZE and NIfTI, are provided by the oro.nifti package (Whitcher et al., 2010) along with
the ability to extend the NIfT| data format header via extensions. Users are allowed to add
extensions to newly-created NIfTI S4 objects using various functions and the XML package
(Temple Lang, 2010). All operations that are performed on a NIfTI object will generate a so-
called audit trail that consists of an XML-based log. Each log entry contains information not
only about the function applied to the NIfTI object, but also various system-level information;
e.g., version of R, user name, date, time, etc. When writing NIfTl-class objects to disk, the
XML-based NIfTl extension is converted into plain text and saved appropriately (ecode = 6).

The estimation of voxel-wise T1 relaxation, and subsequent conversion of the signal intensity to
contrast agent concentration for the dynamic acquisition, has been implemented using the rela-
tionship between signal intensity and flip angle for spoiled gradient echo (SPGR) sequences and
fitting the non-linear curve to all available flip-angle acquisitions (Buckley and Parker, 2005). The
estimated T1 values are then used to convert signal intensity into contrast agent concentration
C}(t) for the dynamic acquisition using

ad) = - (i _ i) @)
B 1 \Th Tio ’

where 7 is the spin-lattice relaxivity constant and 77 is the spin-lattice relaxation time in the
absence of contrast media (Buckley and Parker, 2005). For computational reasons, we follow
the method of Li et al. (2000).

Whereas quantitative PET studies employ arterial cannulation on the subject to characterize
the arterial input function (AIF) directly, it has been common to use literature-based AlFs in the
DCE-MRI literature. Examples include

Cy(t) =D (ale_mlt + a2€_m2t) , (5)

where D is the dose of the contrast agent and 6 = (ay, my, as, my) are parameters taken
from the literature (Weinmann et al., 1984; Tofts and Kermode, 1984; Fritz-Hansen et al., 1996).
There has been progress in measuring the AlF using the dynamic acquisition and fitting a para-
metric model to the observed data. The dcemriS4 package has incorporated these literature-
based models and a data-driven model given by

C,(t) = Apte "P' + Ag (e‘“Gt + e_“Bt) (6)

(Orton et al., 2008), which is applied to the observed data using nonlinear regression using the
Levenberg-Marquardt algorithm.

A common parametric model for DCE-MRI data is the “extended Kety model” given by
Cilt) = vpCy(t) + K" [Cp(t) @ exp(—kept)] , (7)

where C}(t) is the concentration of the contrast agent in tissue as a function of time ¢, v,, is the
volume of contrast agent in the plasma, K" is the transfer rate constant from plasma to EES
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(extravascular extracellular space) and k., is the rate parameter for transport from the EES to
plasma (Parker and Buckley, 2005). The parametric model (7) may be applied to all voxels in
a pre-specified region of interest (ROI), independently, using two distinct procedures: nonlinear
regression with the Levenberg-Marquardt algorithm, using the minpack.lm package (Elzhov
and Mullen, 2009), and Bayesian estimation (Schmid et al., 2006). Voxel-wise analysis of DCE-
MRI can be very time consuming and dcemriS4 supports parallel computing by incorporating
the multicore package (Urbanek, 2010). Computations are easily spread across multiple CPUs
by setting mult icore=TRUE in all functions that provide parameter estimates.

Figure 5 — Perfusion characteristic K", the transfer rate constant from plasma to extravascu-

lar extracellular space, estimated via non-linear regression in a dynamic contrast-enhanced MRI

acquisition. Displayed values are in the range [0,0.15] min~—*.

An illustration of the parametric model is provided via the National Biomedical Imaging Archive
(NBIA,http://cabig.nci.nih.gov/tools/NCIA). Figure 5displays the estimated

11



K" values for a region-of-interest (ROI) approximately covering a brain tumor. The uptake of
the contrast agent varies drastically across the tissue in the ROI, exhibiting a hypovascular re-
sponse in the core of the tumor and a potentially hypervascular response in the tumor rim. While
statistical images provide an invaluable tool for exploratory data analysis, longitudinal assess-
ment of disease progression or treatment response would have to be evaluated using a suitable
scalar summary of the tumor ROI; e.g., using hierarchical models (Schmid et al., 2009).

Additional R Packages for Neuroimaging

The following paragraphs provide brief descriptions to additional R packages that are relevant
to neuroimaging.

The R package neuroim provides an object-oriented implementation to manipulate volumetric
brain imaging data (Buchsbaum, 2010). The Rniftilib package provides read/write capabilities
for the NIfTI-1 format (Granert, 2010) using the C reference library provided by the Neuroimag-
ing Informatics Technology Initiative. The aim of this package is to serve as a common basis for
working with multi-dimensional volumetric (neuro)imaging data.

PTAK (Principal Tensor Analysis on £ modes) is an R package that uses a multi-way method to
decompose a tensor (array) of any order, as a generalization of the singular value decomposition
(SVD), and supports non-identity metrics and penalizations (Leibovici, 2010). A two-way SVD
with these extensions is also available. The package includes additional multi-way methods:
PCAn (Tucker-n), PARAFAC/CANDECOMP and FCAk (multi-way correspondence analysis).

An important issue in the analysis of fMRI is how to account for the spatial smoothness of acti-
vated regions. The R-Forge project arf uses a method to accomplish this by modeling activated
regions with Gaussian shapes. Hypothesis tests on the location, spatial extent, and amplitude
of these regions are performed instead of hypothesis tests of individual voxels (Weeda et al.,
2009).

As previously mentioned R is capable of making use of parallel computing techniques, CPU
as well as GPU based. CUDA (Compute Unified Device Architecture) is a software platform for
massively parallel high-performance computing on NVIDIA GPUs. The cudaBayesreg package
provides a CUDA implementation of a Bayesian multilevel model for the analysis of fMRI data
(Ferreira da Silva, 2010). The CUDA programming model uses a separate thread for fitting
a linear regression model at each voxel in parallel. The global statistical model implements
a Gibbs Sampler for hierarchical linear models with a Gaussian prior. This model has been
proposed by Rossi et al. (2005, Chapter 3) and is referred to as “rhierLinearModel” in the R
package bayesm (Rossi, 2010).

General-purpose image registration tools have recently been made available in R through the
RNiftyReg package (Clayden, 2010a), which provides an interface to the NiftyReg image reg-
istration tools (http://sourceforge.net/projects/niftyreqg/).

12



Discussion

A number of packages specific to medical imaging, and in particular neuroimaging, have been
developed within the R community. In this paper we have concentrated on packages that have
reached a level of maturity that guarantees the stability of the package’s capabilities. New
functionality is expected to be added and the underlying code is expected to improve, espe-
cially concerning memory management and computational speed, over time. The packages
described in the present paper cover functional magnetic resonance imaging (fMRI), diffusion
tensor imaging (DTI), and dynamic contrast-enhanced MRI (DCE-MRI). However, there is much
more activity concerning structural and functional neuroimaging in R, with up-to-date information
presented in the CRAN Medical Imaging task view (http://cran.r-project.org/
web/views/MedicalImaging.html). This website provides a brief overview of exist-
ing packages and a categorization with respect to their main area of application, without going
into the details of methodology or implementation.

Package Data type Main features License

oro.nifti, oro.dicom general Reading/writing DICOM, NIfTI BSD
and ANALYZE files

AnalyzeFMRI fMRI spatial/temporal ICA analysis GPL > 2
for fMRI data

fmri fMRI Linear modeling, structural GPL > 2
adaptive  smoothing, signal
detection for single subject
fMRI data

dti DWI Diffusion tensor analysis for GPL > 2
diffusion-weighted MR data,
structural adaptive smoothing,
Modeling of HARDI data

tractor DWI Diffusion tensor analysis for GPL
diffusion-weighted MR data,
probabilistic tractography,
segmentation of specific tracts

dcemriS4 DCE-MRI Voxel-wise quantitative analysis BSD
of dynamic contrast-enhanced
or diffusion-weighted MRI data

Table 1 — Main features and licenses of the R packages described in this paper.
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In Table 1 we summarize the main features of the packages described in the present paper and
give the applicable license.

Conclusions

The R language provides an excellent environment for all levels of analysis with neuroimag-
ing data, from basic image processing to advanced statistical techniques via the current list
of contributed packages in the Medical Imaging task view. These packages can assist user-
guided data analysis for fMRI, DCE-MRI, and DWI data as well as automated bulk analysis of
imaging data. The user is free to create additional data structures or analysis routines using
the programming environment in R—making it easily customizable. It is very easy to link R to
compiled C/C++/Fortran code for computational efficiency. R may be run in either interactive or
batch-processing modes in order to scale with the application, and may be combined with other
computing environments (e.g., Matlab or NIPY) to allow even greater flexibility.
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