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Abstract

In this paper, mean curvature type equations with general potentials and contact an-

gle boundary conditions are considered. We extend the ideas of Ural’tseva, formulating

sharper hypotheses for the existence of a classical solution. Corner stone for these re-

sults is a method to estimate quantities on the boundary of the free surface. We moreover

provide alternative proofs for the higher-order estimates, and for the existence result.

1 Introduction

We consider the problem to determine the shape and position of a free surface S parameterized
by a function ψ : G ⊂ Rn → R (n = space dimension), obeying on S the relation

divS σq(·, −∇ψ, 1) = φ(·, ψ) , (1)

where divS is the surface divergence operator, σ : G × Rn+1 → R, (x, q) 7→ σ(x, q) is a
potential, and σq := ∇qσ. In the case of constant isotropic potential σ0(q) = |q|, the equation
(1) reduces to the problem of surfaces with prescribed mean curvature. The right-hand side
φ : G× R → R is a given function.

Since the free surface S is represented as the graph of the function ψ, the equation (1) on the
manifold S can be reduced to a problem posed in the domainG of parameterization. We define
for x ∈ G, p ∈ Rn

F (x, p) := σ(x, −p, 1), Fp := ∇pF . (2)

Under the assumption that σ is twice continuously differentiable, we can define

R(x, p) :=

n+1∑

i,j=1

σ0
qi
(x, −p, 1) σ0

qj
(x, −p, 1) σqi,xj

(x, −p, 1) , (3)

and introduce a function Φ : G× R × Rn via

Φ(x, xn+1, p) := φ(x, xn+1) +R(x, p) . (4)

In the domain G, we consider the contact angle problem

− divFp(·, ∇ψ) = Φ(·, ψ, ∇ψ) in G, (5)

−Fp(·, ∇ψ) · nG = κ on ∂G, (6)
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with the (generalized) angle of contact κ. Under the assumption that the potential σ is positively
homogeneous of degree one in the q−variable, the equation (5) is equivalent to (1) (cf. Lemma
B.1).

Physical applications of the model (1), respectively (5), (6) are to find for instance in thermody-
namical context. The equation (1) is known as generalized Gibbs-Thomson relation. The surface
S typically represents a phase transition, and σ is the surface tension on S. The right-hand side
φ in (1) may involve quantities such as chemical potential, temperature and mechanical stresses
on S: see the book [Vis96], Ch. IV for models in crystallization, or [LM89], [GK10] for related
mathematical developments. Technical applications for the model (1) are for instance processes
in industrial crystal growth, where curvature effects on the crystallization interface are assumed
to be responsible for the formation of defects (cf. [DDEN08]).

The problem (5) has been thouroughly studied in the seventies, in connection with either the
Dirichlet or the contact angle problem: see [Gia74], [Ger74], [Giu76] among others for the BV
approach, see [Fin65], [Ser69], [Ura73], [Ura75], [SS76] a. o. for the classical approach, which
is going to retain our attention in this paper.

To our knowledge a local L∞ estimate on ∇ψ was first obtained in the papers [Mir67], [BDM69]
for the problem of minimal surfaces (that is φ = 0, σ(q) = |q|). The local boundedness of the
gradient was then proved for general singular quasilinear equations in [LU70] on the basis of
profound results of geometric measure theory. Local estimates employing other methods were
also derived early (cf. [Tru73]) by the authors of [GT01] (see Chapter 16). It is to note that the
a priori estimate derived in these papers for C2 solutions being local, they did not lead to the
solvability of (5), (6).

The global estimate on the gradient for the contact angle problem (5), (6) was first obtained in
the papers [Ura71], [Ura73], [Ura75] for general σ = σ(q), mainly via extension of the methods
of [LU70]. In connection with at that time advanced continuation methods in Banach-spaces, the
estimate also allowed to prove the classical solvability. In [Ura71] the validity of these results was
restricted to (strictly) convex C2,α−domainsG, and a vanishing angle of contact. The theory for
convex domains and a constant nonvanishing angle of contact κ was introduced in [Ura73];
Finally, the results were extended in [Ura75] to variable κ and nonconvex C3−domains, but only
for the case σ = |q| (mean curvature equation).

With respect to the φ−data, it was in these papers necessary to assume that φ ∈ C1,α(G×R)
satisfies the strict inequality

−γ0 := esssup
G×R

φxn+1 < 0 . (7)

Other approaches to the results of [Ura75] for the mean curvature equation were later discussed
in the papers [SS76], Th. 3 or in [Ger79], that state the gradient estimate for (nonconvex) C4

domains. The case of singular contact angles is discussed in [KS96]. More recent studies are
more often related to the Dirichlet problem for the mean curvature equation: see [Mar10] and
references. Note, also in connection to the Dirichlet problem, the interesting generalizations of
(5) considered in [SW87].

In this paper, we generalize the ideas of Ural’tseva on classical solvability of (5), (6) to potentials
σ = σ(x, q). Note that in this case, the functionR defined in (3) in general does not vanish. We
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moreover significantly weaken the required hypotheses regarding the regularity of the domain
G (allowed to be C2,α and nonconvex) and of the function φ. In particular, we allow for disconti-
nuities of ∇φ in G×R, which might be important in case that the function φ involves quantities
that satisfy transmission conditions on the surface S. The key-point for these new results is a
method (lacking in the references) to estimate quantities on the boundary of S.

Our hope is that these improvements will in particular allow to tackle coupled problems involving
(5). In this context, we also propose a new method to estimate max |ψ|, a quite important point
if the quantity φ is defined only in a bounded cylinder G×] −M, M [. Finally, we provide new
proofs under sharper hypotheses for the higher-order estimates, and for the existence result.

2 Notations and statement of the main result

In this section, we introduce the basic notation and state the main hypotheses and results of our
paper.

Let n ≥ 2 denote the space dimension, and let the parameterization domainG ⊂ Rn be simply
connected and belong to the class C2. To fix the notation, we recall that

G× Rn+1 := {(x, q) : x ∈ G, q ∈ Rn+1}
G× Rn := {(x, p) : x ∈ G, p ∈ Rn} .

(8)

For the potential σ : G× Rn+1 → R appearing in (1), and for the function F : G× Rn → R

defined in (2), it is convenient to introduce the abbreviations

σqi := ∂qiσ for i = 1, . . . , n+ 1, Fpi
= ∂pi

F for i = 1, . . . , n , (9)

Moreover, if p : G→ Rn, we use the symbol d
dx

with the convention

d

dx
F (x, p(x)) = Fx(x, p) + Fp(x, p) · ∇xp . (10)

Throughout the paper, the function σ is assumed to satisfy

σ ∈ C4,α(G× Rn+1 \ {0}) (α > 0) . (11)

We assume that there exist positive constants νj (j = 0, 2) and µi (i = 0, . . . , 4) such that for
all (x, q) ∈ G× Rn+1

ν0 |q| ≤ σ(x, q) ≤ µ0 |q| (12a)

|σq(x, q)| ≤ µ1 (12b)

ν2

|q| |ξ|
2 ≤

n+1∑

i,j=1

σqi,qj(x, q) ξi ξj ≤
µ2

|q| |ξ|
2

for all ξ ∈ Rn+1 such that ξ · q = 0

(12c)

n+1∑

i=j

σqi,qj(x, q) qj = 0 for i = 1, . . . , n+ 1 (12d)
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|σq,x(x, q)| ≤ µ3 , |σq,x,x(x, q)| ≤ µ4 . (12e)

Note that the hypotheses (12a), (12b), (12c) and (12d) are in particular satisfied if σ is positively
homogeneous of degree one in the q variable (cf. [LU70], [Ura71] for a proof). For the function
φ : G× R → R, the regularity

φ ∈W 1,∞(G× R) , (13)

is at least required. Moreover, the gradient of Φ should have traces on manifolds. However, it
is too restrictive to assume continuous differentiability, if, for instance in a coupled problem, the
function φ involves quantities satisfying some transmission conditions on a surface S ′ ⊂ G×R.
Therefore, in addition to (13), we assume that there is ψ′ ∈ C0,1(G) such that

φ ∈ Vψ′ ⇔ φ ∈W 2,1(G× {xn+1 < ψ′}) and φ ∈W 2,1(G× {xn+1 > ψ′}) . (14)

An important property of the class Vψ′ is stated in Lemma A.2. We at last assume that

κ ∈ C1,α(∂G) (α > 0) . (15)

The main result on existence, uniqueness and regularity for the problem (5), (6) is formulated in
the following theorem, that extends the Theorems 1 and 2 of [Ura73].

Theorem 2.1. Assume that G ⊂ Rn is a domain of class C2,α (α > 0). Let σ satisfy the
assumptions (11), (12), and assume that φ ∈W 1,∞(G× R) ∩ Vψ′ (cp. (14)) satisfies (7). Let
Φ be given by (4). Let κ ∈ C1,α(∂G) satisfy ‖κ‖L∞(∂G) < ν0.

Then, there exists a solution ψ ∈ C2,α(G) to the problem (5), (6). If µ3 < 2 γ0 ν2, the function
ψ is the unique (weak) solution to (5), (6) in the class W 1,1(G).

Our second main result states an exact dependence on ‖ψ‖L∞(G) with regard to the φ data.

Theorem 2.2. Same assumptions as in 2.1. Let ψ denote the unique classical solution to (5),
(6). Define γ0 > 0 as in (7). Then, there exist constants M, c > 0 independent on φ such that

‖ψ‖L∞(G) ≤M + c γ−1
0 (1 + ‖φ‖L∞(G×[−M,M ])) .

In our last main result, we prove that the condition (7) can be relaxed, and that the strong
monotonicity is actually needed only for large arguments.

Theorem 2.3. Same assumptions as in 2.1 except for (7). Assume instead that there isM > 0
such that

esssup
G×R

φxn+1 ≤ 0 , (16)

−γ0 := esssup
G×{|xn+1|>M}

φxn+1 < 0 . (17)

Then there exists a solution ψ ∈ C2,α(G) to the problem (5), (6). If µ3 = 0, the solution is
unique in this class provided that there is G′ ⊆ G of positive measure, such that

φxn+1 < 0 almost everywhere in G′ × R . (18)
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3 Preliminary propositions

We begin this section by stating a few elementary consequences of the hypotheses formulated
in the preceding section; They are are already to find in [LU70] or [Ura73], and are recalled for
convenience. Afterwards we state a boundary inequality on the manifold S.

Note first for p ∈ Rn that q := (−p, 1) ∈ Rn+1 \ B1(0), and therefore, the definitions (2), (3)
and the assumption (11) imply that

F ∈ C4,α(G× Rn), R ∈ C2,α(G× Rn) . (19)

Moreover, using (12e), the definitions (3) and (4) immediately yield

|R(x, p)| ≤ µ3 , |Φ(x, xn+1, p)| ≤ |φ(x, xn+1)| + µ3 . (20)

Due to (12a) and the Taylor formula, there is for all (x, q) ∈ G× Rn+1 \ {0} a λ ∈]0, 1[ such
that1

0 = σ(x, 0) = σ(x, q) − σq(x q) q +
1

2
σqi,qj(x, λ q) qi qj .

The property (12d) therefore implies for all q ∈ Rn+1 \ {0} that σ(x, q) = σq(x, q) · q, and it
follows from (12a) that

σq(x, q) · q ≥ ν0 |q| for all q ∈ Rn+1 . (21)

For p ∈ Rn, q := (−p, 1), it follows from (21) and the definition (2) that

Fp(x, p) · p = σq(x, q) · q − σqn+1(x, q)

= σ(x, q) − σqn+1(x, q) .

Using (12a) and (12b), one therefore obtains from the previous assumptions on the growth of σ
that

Fp(x, p) · p ≥ ν0

√
1 + |p|2 − µ1 for all (x, p) ∈ G× Rn . (22)

Since σq(x, q) · q = σ(x, q), the assumption (12e) also implies that

|σx(x, q)| ≤ µ3 |q| for all q ∈ Rn+1 . (23)

For ξ ∈ Rn, let ξ̂ := (ξ1, . . . , ξn, 0) be the projection onto Rn+1. For (x, xn+1) ∈ G × R,
define a vector field ξ̃ := ξ̂ − nS (ξ̂ · nS) ∈ Rn+1. Denoting by (·)n, | · |n the Euclidean scalar
product and the Euclidean norm in Rn, one has

|ξ|2n = |ξ̂|2n+1 = |ξ̃|2n+1 + (ξ̂ · nS)2
n+1 . (24)

1Whenever confusion is impossible, we use the convention that repeated indices imply summation.
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Therefore, if ξ ∈ Rn

|ξ̃|2n+1 = |ξ̂|2n+1 − (ξ̂ · nS)2
n+1 ≥

|ξ̂|2n+1

1 + |∇ψ|2 =
|ξ|2n

1 + |∇ψ|2 in G× R . (25)

The condition (12d) implies for x ∈ G that

n∑

i,j=1

Fpi,pj
(x, ∇ψ) ξi ξj =

n+1∑

i,j=1

σqi,qj(x, −∇ψ, 1) ξ̂i ξ̂j

=
n+1∑

i,j=1

σqi,qj(x, −∇ψ, 1) ξ̃i ξ̃j ,

and it follows from (12c) that

ν2 |ξ̃|2n+1

(1 + |∇ψ|2)1/2
≤ Fpi,pj

(x, ∇ψ) ξi ξj ≤
µ2 |ξ̃|2n+1

(1 + |∇ψ|2)1/2
, (26)

In particular, the relation (26) and (25) imply that

ν2 |ξ|2
(1 + |∇ψ|2)3/2

≤ Fpi,pj
(x, ∇ψ) ξi ξj for all ξ ∈ Rn . (27)

Using the hat-projection operator for n−vectors, we associate with functions v and vector fields
w defined in the domain G extensions v̂ and ŵ defined in G× R setting

v̂(x, xn+1) := v(x), ŵ(x, xn+1) = ŵ(x) . (28)

Observe that, ∇̂v = ∇v̂ for all v ∈ C1(G). We also need extensions into G of the data nG
and κ given on ∂G. Note the following Remark.

Remark 3.1 (Data extension). Since G has a C2,α boundary, the unit normal has an extension
nG := ∇ dist(·, ∂G) into G such that nG ∈ [C1,α(G)]n. Under the assumption (15), it is
possible to assume that κ ∈ C1,α(G). See the Lemma A.1 in the appendix. With the help of the
hat-operator (28), we then obtain extensions nG ∈ [C1,α(G× R)]n+1 and κ ∈ C1,α(G× R)

We now want to prove an inequality associated with the surface S. For ψ ∈ C0,1(G), the graph
S ⊂ Rn+1 of ψ is the set

S := {(x, xn+1) ∈ G× R : xn+1 = ψ(x)} . (29)

A unit normal on the surface S is given almost everywhere by

nS(x, ψ(x)) :=
1√

1 + |∇ψ(x)|2

(
−∇ψ(x)

1

)
. (30)

The natural surface measure on the surface S is given by

dHn :=
√

1 + |∇ψ|2 dλn . (31)
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For f ∈ C1(Rn+1), the differential operator

δ f := ∇f − (∇f · nS)nS , (32)

plays a crucial role in the problem (5), (6). On S, it is identical with the surface gradient. For
v ∈ C1(G), we also introduce

δ v := ∇v − ∇v · ∇ψ
1 + |∇ψ|2 ∇ψ in G . (33)

The definitions (28), (32) and (33) imply for v ∈ C1(G) that (cp. (24))

|∇v|2n = |∇v̂|2n+1 = | δ v̂|2n+1 + (∇v̂ · nS)2
n+1 . (34)

The identity (34) thus implies that

| δ v̂|2n+1 = |∇v|2n − (∇v̂ · nS)2
n+1 = | δ v|2n . (35)

Moreover, the definition (33) yields the important property (cp. (25))

| δ v|2 ≥ (1 + |∇ψ|2)−1 |∇v|2 in G . (36)

Throughout the paper, we denote

∂S := {(x, xn+1) ∈ Rn+1 : x ∈ ∂G, xn+1 = ψ(x)} . (37)

An important quantity related to ∂S is the tangential gradient of ψ on ∂G given by

ψt := ∇ψ − (∇ψ · nG)nG on ∂G . (38)

Ifα denotes the angle of contact between S and ∂G (that is, cosα := −∇ψ·nG/
√

1 + |∇ψ|2
on ∂G), then

sinα =

(
1 + |ψt|2
1 + |∇ψ|2

)1/2

on ∂G . (39)

Denote dHn−1 the standard surface measure on ∂G. Then, a natural surface measure on ∂S
is defined by

dHn−1 =
√

1 + |ψt|2 dHn−1 . (40)

With these preliminaries, we can state the following inequality, which is a corner stone of the
proof of Theorem 2.1.

Lemma 3.2. Assume that G is a bounded domain of class C2 in Rn. Let S ⊂ Rn+1 denote the
graph of the function ψ ∈ C2(G) that satisfies (5), (6). Assume moreover that ‖κ‖L∞(∂G) <
ν0. Taking into account the assumptions (12b) and (12e) and the Remark 3.1, introduce the
positive constant

c0 = c0(G, Φ) := ‖Φ‖L∞(S) + 2µ1 ‖∇nG‖L∞(G) + µ3 . (41)

Then, for every nonnegative f ∈ C1(Rn+1)
∫

∂S

sinα−1 f dHn−1 ≤ (ν0 − ‖κ‖L∞(∂G))
−1

(∫

S

|δ f | dHn + c0

∫

S

f dHn

)
,

where δ is defined by (32). The function sinα and the measure dHn−1 are defined in (39) and
(40), and satisfy in particular sinα−1dHn−1 =

√
1 + |∇ψ|2 dHn−1 on ∂S.
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Proof. Throughout the proof, we abbreviate σq = σq(x, −∇ψ, 1). We draw the attention of
the reader on the definition (28) of the hat-extension operator, and on the Remark 3.1. On the
surface S, define vector fields (cf. also (39))

T := −(n̂G · nS) σq + (σq · nS) n̂G, n∂S := sinα−1 (n̂G − (nS · n̂G)nS) . (42)

Note that T and n∂S are tangent vectors to the surface S. Due to the divergence theorem in
Lemma B.2, the identity

∫

S

T · δ f dHn +

∫

S

divS T f dHn =

∫

∂S

(T · n∂S) f dHn−1 , (43)

is valid. Using the definitions (42) and the property (21), one easily verifies that

T · n∂S = sinα−1 (σq − κ n̂G) · nS
≥ (ν0 − ‖κ‖L∞(∂G)) sinα−1 on ∂S .

(44)

Denote q := (∇ψ, −1). Since all quantities appearing in the definition of the vector field T
only vary in the domain G, the equivalent expression (129) for the operator divS implies that

√
1 + |∇ψ|2 divS T = div((nG · ∇ψ) σq − (σq · q)nG)

=

n∑

i,j=1

{∂xi
nG,j ∂jψ σqi + nG,j ∂

2
j,iψ σqi + nG,j ∂jψ

dσqi
dxi

}

−
n∑

i,j=1

σqj ∂xi
qj nG,i −

n∑

i=1

n+1∑

j=1

{dσqj
dxi

qj nG,i + σqj qj ∂xi
nGi

} .

(45)

For i ∈ {1, . . . , n}, the property (12d) yields

n+1∑

j=1

dσqj
dxi

qj =

n+1∑

j=1

{σqj ,xi
qj − σqj ,qk ∂

2
k,iψ qj} =

n+1∑

j=1

σqj ,xi
qj .

Using on the other hand that ∂xi
qj = ∂2

i,jψ, the relation (45) is equivalent to

√
1 + |∇ψ|2 divS T = (nG · ∇ψ) div(σq) − div nG (σq · q)

+
n∑

i,j=1

σqi ∂xi
nG,j ∂xj

ψ −
n∑

i=1

n+1∑

j=1

nG,i qj σqj ,xi
.

(46)

Therefore, using also the equation (5), it follows from (46) that

divS T = −(n̂G · nS) Φ − (σq · ∇)n̂G · nS + div nG (σq · nS) −
nG,i qj σqj ,xi√

1 + |∇ψ|2
,

and, with the help of (12b) and (12e), that

| divS T | ≤ ‖Φ‖L∞(S) + 2µ1 ‖∇nG‖L∞(G) + µ3 . (47)

As a consequence of (43), (44) and (47), the claim follows.
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4 A priori estimates on ψ in Lp

The natural W 1,1 estimate, and the global boundedness of weak solutions to (5) have been
discussed in different papers. For the contact angle problem (6), the monotonicity condition (7),
theC1,α regularity of the data nG, κ and the inequality ‖κ‖L∞(∂G) < ν0 are sufficient to obtain
such bounds (this was proved in [Ura71]). In the two next Lemma, we show that it is possible to
relax these conditions, assuming only that there are γ0 and M > 0 such that (17) is valid.

Lemma 4.1. Assume that G is of class C0,1. Let ψ ∈ W 1,1(G) satisfy (5), (6) in the weak
sense, where Φ is given by (4), with φ ∈ C0,1(G× R) satisfying (14) and (17). Then, there is
a constant c depending on G, n and on ‖κ‖L∞(∂G), ν0 such that

ν0 ‖∇ψ‖L1(G) + γ0 ‖ψ‖2
L2(G) ≤ c (M2 γ0 + γ−1

0 (1 + ‖φ‖2
L∞(G×[−M,M ]))) .

Proof. We denote Fp = Fp(x, ∇ψ). By assumption, the integral relation

∫

G

Fp · ∇ξ +

∫

∂G

κ ξ =

∫

G

(φ(·, ψ) +R(·, ∇ψ)) ξ , ∀ ξ ∈W 1,1(G) (48)

is valid. Denote TM (ψ) the truncature of ψ at the levels M and −M . For all x ∈ G, the
fundamental theorem of integration implies that

φ(x, ψ) = φ(x, TM (ψ)) +

∫ 1

0

φxn+1(x, t ψ + (1 − t)TM(ψ)) dt (ψ − TM(ψ)) . (49)

The assumption (17) and Young’s inequality then imply that

φ(x, ψ) (ψ − TM(ψ)) ≤ φ(x, TM (ψ)) (ψ − TM(ψ)) − γ0 (ψ − TM(ψ))2

≤ −γ0

2
(ψ − TM(ψ))2 +

1

2γ0
|φ(x, TM(ψ))|2 . (50)

It follows that

φ(x, ψ)ψ ≤ −γ0

2
(ψ − TM (ψ))2 +

1

2γ0

|φ(x, TM (ψ))|2 + φ(x, ψ)TM(ψ)

≤ −γ0

2
(ψ − TM(ψ))2 +

1

2γ0
|φ(x, TM(ψ))|2 + φ(x, TM(ψ))TM(ψ) .

(51)

The estimate (20) and Young’s inequality yield

R(x, ∇ψ)ψ ≤ γ0

4
(ψ − TM(ψ))2 + γ−1

0 µ2
3 + µ3M . (52)

On the other hand, the formula (22) implies that

Fp · ∇ψ ≥ ν0

√
1 + |∇ψ|2 − µ1 . (53)
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Inserting ξ = ψ into (48), and using (51), (52) and (53) yield

ν0

∫

G

√
1 + |∇ψ|2 +

γ0

4

∫

G

(ψ − TM(ψ))2

≤ (µ1 + γ−1
0 µ2

3 +M µ3) meas(G) +

∫

∂G

|κ| |ψ|

+
1

2γ0

∫

G

|φ(x, TM(ψ))|2 +

∫

G

φ(x, TM(ψ))TM(ψ) .

(54)

Since W 1,1(G) →֒ L1(∂G) compactly, it follows for arbitrary δ > 0 that there is c = c(δ) such
that
∫

∂G

|κ| |ψ| ≤ ‖κ‖L∞(∂G) ‖ψ‖L1(∂G) ≤ ‖κ‖L∞(∂G) (δ ‖∇ψ‖L1(G) + c(δ) ‖ψ‖L1(G)) .

Therefore, if κ 6= 0, we choose δ = ν0/2‖κ‖L∞(∂G), c̃ := c(δ), and using Young’s inequality
again, it follows that
∫

∂G

|κ| |ψ| ≤ ν0

2
‖∇ψ‖L1(G) +

γ0

8
‖ψ − TM (ψ)‖2

L2(G) + (γ−1
0 c̃2 + c̃M) meas(G) ,

and, due to (54), that

ν0

2

∫

G

√
1 + |∇ψ|2 +

γ0

8

∫

G

(ψ − TM(ψ))2 ≤ (µ1 + γ−1
0 c̄2 + c̄M) meas(G)

+
1

2γ0

∫

G

|φ(x, TM(ψ))|2 +M

∫

G

|φ(x, TM (ψ))| ,

with c̄ = c̃+ µ3, yielding the claim.

For the following L∞ estimate, weaker assumptions are needed than in the classical references
[Ura71], [Ura73]. A restriction on ‖κ‖L∞(∂G) is neither needed.

Lemma 4.2. Same assumptions as in Lemma 4.1. Define m0 := min{γ0, ν0}. Then, there is
a constant c = c(G, n) depending continuously on the constants νi, µi in (12) such that

‖ψ‖L∞(G) ≤M + cm−1
0 (1 + γ−1

0 (1 + ‖φ‖2
L∞(G×[−M,M ]))) meas(G)1/(n−1) .

Proof. The proof is to carry out with arguments very similar to the natural estimate of Lemma
4.1, and the well-known technique of Lemma C.2.

Remark 4.3. The estimates in Lemma 4.1 and 4.2 depend on the φ data via the quantity
‖φ‖L∞(G×[−M,M [)/γ

1/2
0 . The bounds are therefore not invariant on proportional increment of φ

and its gradient (choose for instance a sequence {φk} where φk(x, xn+1) = −γ0 k xn+1 with
k ∈ N).

In the following Lemma, we prove for more regular data another type ofL∞ estimate, that proves
the invariance mentioned in Remark 4.3. Note that the assumptions in Lemma 4.4 are exactly
the usual ones for proving the boundedness of ψ in this problem ([Ura71], Th. 3).
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Lemma 4.4. Assumptions of the Theorem 2.1. If ψ ∈ W 1,1(G) ∩ C(G) is a weak solution
to (5), (6), then, there is a function ψ0 ∈ C2,α(G) determined only by σ, G and κ, such that
ψ0 = 0 on ∂G and such that

‖ψ − ψ0‖C(G) ≤ γ−1
0 (‖φ(·, ψ0) −K0‖L∞(G) + µ3) ,

with K0 := divFp(x, ∇ψ0) ∈ Cα(G), and µ3 from (12e).

Proof. According to the Remark 3.1, the data nG and κ can be extended into the domain G.
For s ∈ R and x ∈ G, define

H(x, s) := Fp(x, s nG(x)) · nG(x) + κ(x) . (55)

One computes

∂xi
H(x, s) =∂xi

nG,j Fpj
(x, s nG) + nG,j Fpj ,xi

(x, s nG)

+ nG,j Fpj ,pk
(x, s nG) s ∂xi

nG,k + ∂xi
κ .

Let q ∈ Rn+1 be the vector q := (−s nG, 1). The assumption (12d) implies for k = 1, . . . , n
that

nG,j Fpj ,pk
(x, s nG(x)) s = −

n+1∑

j=1

σqj ,qk(x, q) qj + σqn+1,qk(x, q) = σqn+1,qk(x, q) ,

and therefore, if i ∈ {1, . . . , n}

∂xi
H(x, s) =∂xi

nG,j Fpj
(x, s nG) + nG,j Fpj ,xi

(x, s nG)

+ σqn+1,qk(x, −s nG, 1) ∂xi
nG,k + ∂xi

κ . (56)

On the other hand, the assumption (12c) implies that

∂sH(x, s) = nG,j Fpj ,pk
(x, s nG)nG,k

=
n+1∑

j,k=1

σqj ,qk(x, −s nG, 1) n̂G,j n̂G,k ≥
ν2

(1 + s2)3/2
.

(57)

Due to (22), one moreover has for |s| > 0

Fp(x, s nG(x)) · nG(x) = s−1 Fp(x, s nG(x)) · s nG(x) ≥ s−1 (ν0

√
1 + s2 − µ1) .

It follows that

lim
s→+∞

Fp(x, s nG(x)) · nG(x) ≥ ν0, lim
s→−∞

Fp(x, s nG(x)) · nG(x) ≤ −ν0 .

Due to the property ‖κ‖L∞(G) < ν0 (cf. Lemma A.1) there is for each x ∈ G some s(x) ∈ R

such that H(x, s(x)) = 0, and

∂xi
s = (nG,j Fpj ,pk

(x, s nG)nG,k)
−1 ∂xi

H(x, s) . (58)

11



From (56), (57), we at first conclude that s ∈ C1(∂G), with estimate

|∇s| ≤ ν−1
2 (1 + s2)3/2 (µ3 + (µ1 + µ2) ‖∇nG‖L∞(G) + ‖∇κ‖L∞(G)) .

The regularity assumption on nG, F and κ then imply together with (58) that s ∈ C1,α(∂G).
Denote by s̃ ∈ C1,α(G) the solution to

−△s̃ = 0 in G, s̃ = s on ∂G . (59)

Let µ0 > 0 and d(x) = dist(x, ∂G) according to Lemma A.1. Let f ∈ C∞
c ([0, µ0[) satisfy

f(0) = 0, f ′(0) = 1. The function ψ0 := s̃ f(d) then satisfies

−△ψ0 = 2∇s̃ · ∇d+ s̃△d ∈ C0,α(G) in G , ψ0 = 0 on ∂G . (60)

Therefore, classical results for linear second order elliptic equations (cf. the case (4) of The-
orem C.1) imply that ψ0 ∈ C2,α(G). Obviously, ∇ψ0 = f(d)∇s + f ′(d)∇d s. Therefore,
∇ψ0(x) = s(x)nG(x) for all x ∈ ∂G, and it follows that

−Fp(x, ∇ψ0(x)) · nG(x) = −Fp(x, s(x)nG(x)) · nG(x) = κ(x) .

Define K0 := divFp(x, ∇ψ0). If ψ ∈ W 1,1(G) is a solution to the problem (5), (6), then for
all ξ ∈W 1,1(G)

∫

G

(Fp(x, ∇ψ) − Fp(x, ∇ψ0)) · ∇ξ =

∫

G

(Φ(x, ψ, ∇ψ) −K0) ξ . (61)

For 1 ≤ q <∞, choose in (61) ξ = |ψ − ψ0|q−1 (ψ − ψ0), and use the definition (4) and the
assumption (12c) to obtain that

−
∫

G

|φ(x, ψ) − φ(x, ψ0)| |ψ − ψ0|q ≤
∫

G

|φ(x, ψ0) −K0 +R| |ψ − ψ0|q .

Due to (7) and Hölder’s inequality, it obviously follows that

γ0 ‖ψ − ψ0‖q+1
Lq+1(G) ≤ ‖φ(x, ψ0) −K0 +R‖Lq+1(G) ‖ψ − ψ0‖qLq+1(G) .

The claim follows letting q → ∞ and using (20).

5 Global L∞− estimate on ∇ψ

In this section, we are concerned with a priori estimates satisfied by ∇ψ in L∞, where the
function ψ satisfies (5), (6) and is assumed to belong to C2(G). With respect to φ, we only
assume that φ is given in C0,1(G × R), and in the class Vψ′ (cp. (14)). Moreover, we are
going to prove a gradient estimate for the cases (7) as well as (16). The results of this section
have been proved in [Ura73] for convex C2,α domains G ⊂ Rn, σ = σ(q) (that is in particular
R = 0) and κ = const. The proof was extended in [Ura75] to arbitrary C3 domain and a variable
angle of contact, but only for the particular case σ(q) = |q|. Slightly weaker estimates are to
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find in [SS76], [Ger79] for the case σ(q) = σ0(q) = |q|: A C4 boundary is required, and the
weakening (16) of the condition (7) is not discussed.

We show that the method of [Ura73] yields the global gradient estimate also for general σ,
variable angle of contact and domains of class C2. Our contribution is to apply the Lemma 3.2
in this context. The remaining part of the estimate is obtained following the lines of [Ura73],
Lemma 3 and 4, even though we consider a more general situation.

We denote by nG and κ the extensions constructed in Remark 3.1. It was noticed for the first
time in [Ura73] that under the condition ‖κ‖L∞(∂G) < ν0, it is sufficient to estimate the quantity

v := F (x, ∇ψ) + κ∇ψ · nG , (62)

in view of the inequalities

(ν0 − ‖κ‖L∞(∂G))
√

1 + |∇ψ|2 ≤ v ≤ (µ0 + ‖κ‖L∞(∂G))
√

1 + |∇ψ|2 in G , (63)

which are clear consequences of the condition (12a).

Throughout this section, we apply the convention that integration on the surfaces S and ∂G is
always performed with respect to the standard surface measures dHn and dHn−1. The integrals
on ∂S are performed with respect to the measure dHn−1 (cf. (40)) occurring in the Lemma 3.2
and B.2.

Lemma 5.1. Assume that G ∈ C2 and that ψ satisfies (5), (6) and belongs to C2(G). Assume
that φ is given in C0,1(G × R) and in Vψ′ , and that Φ is defined by (4). Let v be the function
(62). Then, there are nonnegative numbers ci (i = 1, . . . , 4) such that for all η ∈ C1(G)

∫

G

Fpi,pj
∂jv ∂iη − (ν0 − ‖κ‖L∞(∂G))

∫

G

φxn+1

√
1 + |∇ψ|2 η

≤ c1

∫

G

| δ η| + c2

∫

G

|η| + c3

∫

G

| δ v|√
1 + |∇ψ|2

+ c4

∫

∂G

|η| .

Here, ci are continuous functions of the constants appearing in the conditions (12), and of
‖∇(κnG)‖L∞(G). The constant c2 is depends linearly on ‖∇φ+,−‖L∞(S) (cf. the Lemma A.2).

Proof. For k = 1, . . . , n, the relation (5) implies that

∫

G

dFp
dxk

· ∇ξ =

∫

G

dΦ

dxk
ξ +

∫

∂G

nG · dFp
dxk

ξ , (64)

for all ξ ∈W 1,1(G). For i, k ∈ {1, . . . , n}, observe that

dFpi

dxk
= Fpi,xk

+ Fpi,pj
∂2
j,kψ . (65)

On the other hand, if v is defined by (62), the relation

∂jv = (Fpk
+ κnG,k) ∂

2
j,kψ + Fxj

+ ∂kψ ∂j(nG,k κ) , (66)
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is valid. In (64), consider a testfunction of the form ξ = [Fpk
(·, ∇ψ) + κnG,k] η, with k ∈

{1, . . . , n} and η ∈ C1(G) arbitrary. Due to (65) and (66), summation over k = 1, . . . , n
implies for each i ∈ {1, . . . , n} that

[Fpk
+ κnG,k]

dFpi

dxk
=Fpi,pj

(∂jv − Fxj
− ∂kψ ∂j(nG,k κ))

+ [Fpk
+ κnG,k]Fpi,xk

,

and it follows from (64) that

∫

G

{Fpi,pj
(∂jv − Fxj

− ∂kψ ∂j(nG,k κ)) + [Fpk
+ κnG,k]Fpi,xk

} ∂iη

+

∫

G

{(Fpi,xk
+ Fpi,pj

∂2
j,kψ) (Fpk,pl

∂2
l,iψ + Fpk,xi

+ ∂i(κnG,k))} η

=

∫

G

dΦ

dxk
[Fpk

+ κnG,k] η +

∫

∂G

[Fpk
+ κnG,k]

dFpi

dxk
· nG η .

(67)

With the abbreviations

b
(1)
i := −Fpi,pj

(Fxj
+ ∂j(κnG,k) ∂kψ), for i = 1, . . . , n ,

b(2) := Fpi,pj
Fpk,pl

∂2
j,kψ ∂

2
l,iψ + Fpi,pj

∂2
j,kψ (Fpk,xi

+ ∂i(κnG,k))

+ Fpk,pl
Fpi,xk

∂2
l,iψ ,

b(3) := Fpi,xk
(Fpk,xi

+ ∂i(κnG,k)) ,

(68)

the relation (67) reads

∫

G

Fpi,pj
∂jv ∂iη +

∫

G

b
(1)
i ∂iη +

∫

G

{b(2) + b(3)} η

=

∫

G

dΦ

dxk
[Fpk

+ κnG,k] η +

∫

∂G

[Fpk
+ κnG,k]

dFp
dxk

· nG η .
(69)

The claim will follow from appropriate estimates on the functions b(i). Using for j = 1, . . . , n
the abbreviation ξj := Fxj

+ ∂j(κnG,k) ∂kψ, the Cauchy-Schwarz inequality yields

|b(1)i ∂iη| = |Fpi,pj
∂iη (Fxj

+ ∂j(κnG,k) ∂kψ)|
≤
(
Fpi,pj

∂iη ∂jη
)1/2

(Fpi,pj
ξi ξj)

1/2 .

Thanks to (12c), the property (23) and (26), it follows that

|b(1)i ∂iη| ≤ µ2 | δ η| (µ3 + ‖∇(κnG)‖L∞(G)
|∇ψ|

(1 + |∇ψ|2)1/2
) ≤ c1 | δ η| . (70)

On the other hand, Lemma 3 of [Ura73] (cp. the Lemma D.1 in the appendix) yields

b(2) ≥ −ĉ1
| δ v|√

1 + |∇ψ|2
− ĉ2 . (71)
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The assumptions (12e) moreover imply that

|b(3)| ≤ µ3 (µ3 + ‖∇(κnG)‖L∞(G)) . (72)

Due to Lemma D.2 (see the appendix for the proof)

dΦ

dxk
[Fpk

+ κnG,k] ≤ĉ3 + ĉ4
| δ v|√

1 + |∇ψ|2

+ (ν0 − ‖κ‖L∞(∂G))φxn+1

√
1 + |∇ψ|2 .

(73)

Define c4 := ĉ1 + ĉ4, and c2 := ĉ3 + ĉ2 + µ3 (µ3 + ‖∇(κnG)‖L∞(G)).

We at last consider in (69) the surface integral, which was estimated in [Ura71], [Ura73], [Ura75]
only for special cases of F , κ and G. Due to the condition (6), the operator [Fpk

+ κnG,k]
d
dxk

is a tangential differential operator. If {τ (k)}k=1,...,n−1 is a system of orthonormal tangential
vectors on ∂G, then, the relation (6) implies that

∫

∂G

[Fpk
+ κnG,k]

dFp
dxk

· nG η =

∫

∂G

(Fp · τ (l)) (τ (l) · ∇)Fp · nG η

=

∫

∂G

(Fp · τ (l)) (τ (l) · ∇κ) η −
∫

∂G

(Fp · τ (l)) (τ (l) · ∇)nG · Fp η

=

∫

∂G

(Fp · τ (l)) (τ (l) · ∇κ) η −
∫

∂G

(Fp · τ (l)) (Fp · τ (j)) (τ (l) · ∇)nG · τ (j) η

−
∫

∂G

(Fp · τ (l)) (Fp · nG) (τ (l) · ∇)nG · nG η . (74)

Note that (τ (l) · ∇)nG · nG = 0, and that the eigenvalues of the symmetric matrix al,j :=
(τ (l) · ∇)nG · τ (j) (j, l = 1, . . . , n− 1) are nothing else but the principal curvatures ki of ∂G.
In the paper [Ura73], Lemma 2 these facts and the assumption κ = const. were used to prove
that the surface integral has a sign for all nonnegative η. In the general case, it follows that

∫

∂G

[Fpk
+ κnk]

dFp
dxk

· nG η ≤ (‖∇κ‖L∞(∂G) + µ2
1 sup
i=1,...,n−1

|ki|)
∫

∂G

|η| . (75)

Using the estimates (70), (71), (72), (73), (75) and the relation (69), the claim follows.

5.1 The gradient estimate I

In this subsection, we show on the base of Lemma 5.1 that under the strong monotonicity
condition (7), the estimate on ∇ψ is only polynomial in the norm of the data.

Lemma 5.2. Same assumptions as in Lemma 5.1. Assume moreover that ‖κ‖L∞(∂G) < ν0.
Then, there is K > 0 such that for all 1 ≤ q ≤ ∞

∫

G

vq−4 |∇v|2 − (ν0 − ‖κ‖L∞(∂G))
2

ν2 q

∫

G

φxn+1 v
q+1 ≤ K

∫

G

vq . (76)

The number K is a continuous function of the constants in the conditions (12), of the constants
ci of Lemma 5.1, and on ν0 − ‖κ‖L∞(∂G). Moreover, K depends linearly on ‖∇φ+,−‖L∞(S)

and on ‖φ‖L∞(S).
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Proof. For f ∈ C1(]0,∞[) nonnegative and increasing, choose in Lemma 5.1 η = f(v). The
estimates (63) imply that

∫

G

f ′(v)Fpi,pj
∂jv ∂iv − (ν0 − ‖κ‖L∞(∂G))

2

∫

G

φxn+1 v f(v)

≤ c1

∫

G

| δ v| f ′(v) + c2

∫

G

f(v) + c3

∫

G

| δ v| f(v)√
1 + |∇ψ|2

+ c4

∫

∂G

f(v) .
(77)

Due to the identity (cp. (38), (39))
∫

∂G

f(v) =

∫

∂G

sinα−1 f(v)√
1 + |∇ψ|2

√
1 + |ψt|2 , (78)

the inequality (63) implies that (cf. (40) for the definition of the measure dHn−1)
∫

∂G

f(v) ≤ (µ0 + ‖κ‖L∞(∂G))

∫

∂G

sinα−1 f(v)/v
√

1 + |ψt|2

= (µ0 + ‖κ‖L∞(∂G))

∫

∂S

sinα−1 f(v)/v dHn−1 .

Applying Lemma 3.2, it follows that
∫

∂G

f(v) ≤ µ0 + ‖κ‖L∞(∂G)

ν0 − ‖κ‖L∞(∂G)

(∫

S

| δ(f(v)/v)| + c0

∫

S

f(v)/v

)

≤ µ0 + ‖κ‖L∞(∂G)

ν0 − ‖κ‖L∞(∂G)

(∫

S

f ′(v) v + f(v)

v2
| δ v| + c0

∫

S

f(v)/v

)
.

Writing the surface integrals over G again, the property (35) and the inequality (63) yield
∫

∂G

f(v) ≤ µ0 + ‖κ‖L∞(∂G)

(ν0 − ‖κ‖L∞(∂G))2

(∫

G

(f ′(v) + f(v)/v) | δ v| + c0

∫

G

f(v)

)
. (79)

Define

c̃1 := c1 + c4
µ0 + ‖κ‖L∞(∂G)

(ν0 − ‖κ‖L∞(∂G))2
c̃2 := c2 + c4 c0

µ0 + ‖κ‖L∞(∂G)

(ν0 − ‖κ‖L∞(∂G))2
,

c̃3 :=
c3

(ν0 − ‖κ‖L∞(∂G))
+ c4

µ0 + ‖κ‖L∞(∂G)

(ν0 − ‖κ‖L∞(∂G))2
.

The estimates (77) and (79) together imply that
∫

G

f ′(v)Fpi,pj
∂jv ∂iv − (ν0 − ‖κ‖L∞(∂G))

2

∫

G

φxn+1 v f(v)

≤ c̃1

∫

G

| δ v| f ′(v) + c̃2

∫

G

f(v) + c̃3

∫

G

| δ v| v−1 f(v) .

(80)

From Young’s inequality and (63), it follows that
∫

G

| δ v| v−1 f(v) ≤ ν2

4 c̃3

∫

G

| δ v|2 f ′(v)√
1 + |∇ψ|2

+
c̃3

ν2 (ν0 − ‖κ‖L∞(∂G))

∫

G

f 2(v)

f ′(v) v
,

∫

G

| δ v| f ′(v) ≤ ν2

4 c̃1

∫

G

| δ v|2 f ′(v)√
1 + |∇ψ|2

+
c̃1

ν2 (ν0 − ‖κ‖L∞(∂G))

∫

G

f ′(v) v .

(81)
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Due to (26), it follows from (80) and (81) that

ν2

2

∫

G

f ′(v)
| δ v|2√

1 + |∇ψ|2
− (ν0 − ‖κ‖L∞(∂G))

2

∫

G

φxn+1 v f(v)

≤ c̃3
ν2 (ν0 − ‖κ‖L∞(∂G))

∫

G

f 2(v)

f ′(v) v
+

c̃1
ν2 (ν0 − ‖κ‖L∞(∂G))

∫

G

f ′(v) v

+ c̃2

∫

G

f(v) .

(82)

Choose now f(v) = vq with q ≥ 1 in (82). Then

q ν2 (µ0 + ‖κ‖L∞(∂G))
−1

∫

G

vq−2 | δ v|2 − (ν0 − ‖κ‖L∞(∂G))
2

∫

G

φxn+1 v
q+1

≤ (c̃2 + (ν2 (ν0 − ‖κ‖L∞(∂G)))
−1 (c̃1 q + c̃3/q))

∫

G

vq .

Using the property (36), the claim follows.

Proposition 5.3. Same assumptions as in Lemma 5.2. Assume moreover that (16) is valid. Let
q0 > n arbitrary. Then, there exist a constant c5 = c5(q0) and positive numbers ζi = ζi(q0)
(i = 1, 2, 3) such that

max
G

v ≤ c5 (Kζ1 + meas(G)ζ2)) ‖v‖ζ0Lq0(G) . (83)

Proof. Due to the condition (16), Lemma 5.2 implies that

∫

G

|∇v(q−2)/2|2 ≤ K (q − 2)2

4

∫

G

vq . (84)

We add ‖v(q−2)/2‖2
L2(G) on both sides of (84). Thanks to Hölder’s inequality, it follows that

∫

G

{|∇v(q−2)/2|2 + |v|q−2} ≤ K (q − 2)2

4

∫

G

vq + meas(G)2/q ‖v‖q−2
Lq(G) . (85)

Define χ := q0−2
n−2

n
q0

if n > 2, and χ := 2 if n = 2. The choice of q0 implies that χ > 1 and
that

2χ q

q − 2
≤ 2n

n− 2
for all q0 ≤ q <∞ .

It follows that the embedding W 1,2(G) →֒ Lr(G) for r := 2χq/(q − 2) is continuous, and
that the embedding constant are uniformely bounded. The relation (85) implies that

‖v‖q−2
Lχ q(G) = ‖v(q−2)/2‖2

Lr(G) ≤ c ((q − 2)2K ‖v‖qLq(G) + meas(G)2/q ‖v‖q−2
Lq(G))

≤ c max{(q − 2)2K, meas(G)2/q} max{‖v‖qLq(G), ‖v‖
q−2
Lq(G)} . (86)
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For m ∈ N, set qm := χ qm−1, Am := ‖v‖Lqm (G), λm := qm/(qm − 2), and define

ξm :=

{
λm if Am ≥ 1

1 otherwise
, cm := c [(qm − 2)2K + meas(G)2/qm] . (87)

As a consequence of (86), one finds the recursive inequalities

Am+1 ≤ c1/(qm−2)
m Aξmm ,

=⇒ Am+1 ≤ c1/(qm−2)
m {

m−1∏

i=0

[ci]
ξi+1/(qi−2)}A

Qm
i=0 ξi

0 .
(88)

As usual for Moser-iteration-type arguments, we now provide (rough) bounds for the products
appearing in (88). Note first that

log(
m∏

i=0

ξi) ≤
m∑

i=0

log(qi/(qi − 2)) ≤ 2
m∑

i=0

1

qi − 2
≤ 2

q0 − 2

∞∑

i=0

χ−i ,

Thus ζ0 :=
∏∞

i=0 ξi satisfies the estimate ζ0 ≤ exp(2χ/(q0 − 2)(χ− 1)). Observe also that

log(

m−1∏

i=0

[ci]
ξi+1/(qi−2)) =

m−1∑

i=0

ξi+1

qi − 2
log(ci),

log(ci) ≤ log c+ logK + 2 log(qi − 2) + 2/qi log meas(G) .

(89)

Using the estimate

ξi+1 ≤ λi+1 =
χi+1 q0

χi+1 q0 − 2
≤ q0
q0 − 2

for i ∈ N ,

we can bound

m−1∑

i=0

ξi+1

qi − 2
log(qi − 2) ≤ q0

q0 − 2

m−1∑

i=0

i logχ + log q0
χi q0 − 2

≤ q0 log q0
(q0 − 2)2

(

m−1∑

i=0

i+ 1

χi
) ,

and

ζ1 :=
∞∑

i=0

ξi+1

qi − 2
≤ q0
q0 − 2

∞∑

i=0

1

χiq0 − 2
≤ 2 q0 χ

(q0 − 2)2 (χ− 1)
,

ζ2 :=

∞∑

i=0

2 ξi+1

qi (qi − 2)
≤ 2

q0
q0 − 2

∞∑

i=0

1

χi (χi q0 − 2)
≤ χ2 q0

(χ2 − 1) (q0 − 2)2
.

Therefore, (89) implies that
∏m−1

i=0 [ci]
ξi+1/(qi−2) ≤ c1(q0) (Kζ1 + meas(G)ζ2) , and the claim

follows from (88).

Everything is therefore reduced to estimating the Lq0−norm of v for a q0 > n. We directly
obtain this bound, if we require the strong monotonicity condition (7).
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Proposition 5.4. Same assumptions as in Lemma 5.2 and (7). Then, there is a positive number
c = c(G) such that for all 2 < t <∞,

‖v‖Lt(G) ≤
ν2 (1 + t)

(ν0 − ‖κ‖L∞(∂G))2
meas(G)1/t K

γ0
, (90)

where K is the constant of Lemma 5.2.

Proof. Use Lemma 5.2 and Hölder’s inequality, to obtain for q ≥ 1 that

(ν0 − ‖κ‖L∞(∂G))
2 γ0

q ν2

∫

G

vq+1 ≤ K

∫

G

vq ≤ K ‖v‖qLq+1(G) meas(G)1/(q+1) .

5.2 Gradient estimate II. The limiting case γ0 = 0

Ural’tseva has proved in [Ura73], [Ura75] for the gradient estimate that the assumption (7) can
be replaced by (16) either if the domainG is convex and κ is a constant, or if σ = σ0(q) = |q|.
Here, we prove the validity of these results in a more general situation. The key-point in the proof
is the Sobolev embedding theorem on the manifold S recalled in the appendix under Lemma
B.3.

An important feature is that the gradient estimate here depends on lower-order norm of ψ, in
particular on ‖ψ‖L∞(G), whereas in the preceding section, the condition (7) guaranteed an
independent estimate on ∇ψ (cp. Proposition 5.4). Note also that the estimate in this section is
exponential in the data.

Lemma 5.5. Let v be defined by (62), and w := log v. Under the assumptions of Lemma 5.2,
there is a constant c such that for all ζ ∈ C1(G) and all q ∈ [1,∞[

∫

S

ζ2 | δ[w+](q+1)/2|2 ≤ c (q + 1)2

∫

S

([w+]q−1 + [w+]q/q) (ζ + | δ ζ |)2 . (91)

The constant c is a continuous function of the constants νi, µi in the conditions (12), of the
constants ci in Lemma 5.1, and depends linearly on ‖∇φ+,−‖L∞(S) and on ‖φ‖L∞(S).

Proof. We start from the Lemma 5.2, choosing η := ζ2 v f(w), with f ∈ C1(R) positive and
nondecreasing. The assumption (16) yields

∫

G

f(w) ζ2Fpi,pj
∂jv ∂iv +

∫

G

v2 f ′(w) ζ2Fpi,pj
∂jw ∂iw ≤ c2

∫

G

f(w) v ζ2

− 2

∫

G

v f(w) ζ Fpi,pj
∂jv ∂iζ + c3

∫

G

ζ2 |f(w)| | δ v| v√
1 + |∇ψ|2

+ c4

∫

∂G

v f(w) ζ2

+ c1

∫

G

{ζ2 |f(w)| | δ v| + ζ2 f ′(w) v | δ w| + 2ζ v f(w) | δ ζ |} . (92)
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Using Young’s and Cauchy-Schwarz’s inequalities

∣∣∣∣
∫

G

v f(w) ζ Fpi,pj
∂jv ∂iζ

∣∣∣∣

≤ 1

4

∫

G

f(w) ζ2Fpi,pj
∂jv ∂iv +

∫

G

f(w) v2Fpi,pj
∂jζ ∂iζ

≤ 1

4

∫

G

f(w) ζ2Fpi,pj
∂jv ∂iv + µ2 (µ0 + ‖κ‖L∞(∂G))

∫

G

f(w) v | δ ζ |2 ,

where we used the assumption (12c) in the second line. Using also (63), it follows from (92) that

∫

G

f(w) ζ2Fpi,pj
∂jv ∂iv +

∫

G

v2 f ′(w) ζ2Fpi,pj
∂jw ∂iw ≤ c4

∫

∂G

v f(w) ζ2

+ c

∫

G

{ζ2 |f(w)| | δ v| + ζ2 f ′(w) v | δ w| + v f(w) (| δ ζ | + ζ)2} . (93)

The inequality (63) and Lemma 3.2 imply that (cp. (78))

∫

∂G

v f(w) ζ2 ≤ (ν0 − ‖κ‖L∞(∂G))
−1

∫

∂S

sinα−1 f(w) ζ2 dHn−1

≤ (ν0 − ‖κ‖L∞(∂G))
−2 (

∫

S

{f ′(w) ζ2 | δ w| + 2 ζ f(w) | δ ζ |} + c0

∫

S

f(w) ζ2) .

Therefore, there is a constant c such that the inequality (93) is preserved dropping the boundary
term. Estimating

∫

G

ζ2 |f(w)| | δ v| ≤ ν2

4 c

∫

G

f(w) ζ2 | δ v|2√
1 + |∇ψ|2

+ c ν−1
2 (ν0 − ‖κ‖L∞(∂G))

−1

∫

G

ζ2 f(w) v

∫

G

ζ2 f ′(w) v | δ w| ≤ ν2

4 c

∫

G

ζ2 |f ′(w)| v2 | δ w|2√
1 + |∇ψ|2

+ c ν−1
2 (ν0 − ‖κ‖L∞(∂G))

−1

∫

G

ζ2 |f ′(w)| v ,

the property (12c) yields

ν2

2

(∫

G

f(w) ζ2 | δ v|2√
1 + |∇ψ|2

+

∫

G

v2 f ′(w) ζ2 | δ w|2√
1 + |∇ψ|2

)

≤ c

∫

G

v {f ′(w) + f(w)} (| δ ζ | + ζ)2} .

It follows from (63) that

ν2

2

∫

G

v f ′(w) ζ2 | δ w|2 ≤ c

∫

G

v (f ′(w) + f(w)) (| δ ζ | + ζ)2 . (94)
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For q ∈ [1,∞[ and s ∈ R, define f(s) = max{s, 0}q. Then, writing the integrals in (94) over
S, we obtain that

q

∫

S

ζ2 [w+]q−1 | δ w+|2 ≤ c

∫

S

(q [w+]q−1 + [w+]q) (| δ ζ | + ζ)2 , (95)

and the claim follows.

Lemma 5.6. Same assumptions as in Lemma 5.5. Then, there is ζ ∈]0, 1] such that w+ ≤
c ‖w+‖ζL2(S). The constant c depends on the constants νi, µi and ci. Additionally c depends

on Hn(S) and on the constant β of Lemma B.3.

Proof. Observe at first that
∫

S

ζ2 | δ[w+](q+1)/2|2 ≥
∫

S

| δ(ζ [w+](q+1)/2)|2 −
∫

S

[w+]q+1 | δ ζ |2 . (96)

For s = 2n/(n− 2) if n = 2, s <∞ arbitrary if n = 2, Theorem B.3 yields

‖ζ [w+](q+1)/2)‖2
Ls(S) ≤ c

∫

S

| δ(ζ [w+](q+1)/2)|2 ,

and it follows from Lemma B.3 that

‖ζ [w+](q+1)/2)‖2
Ls(S)

≤ c (q + 1)2

∫

S

{[w+]q−1 + [w+]q/q + [w+]q+1/(q + 1)2} (ζ + | δ ζ |)2 . (97)

Setting χ := n/(n− 2) for n > 2, χ > 1 arbitrary if n = 2, it follows that

(∫

S

ζ2χ [w+]χ (q+1)

)1/2

≤ c (q + 1)2

∫

S

{[w+]q−1 + [w+]q/q + [w+]q+1/(q + 1)2} (ζ + | δ ζ |)2 .

(98)

From (98), the claim follows from fairly standard arguments. For x0 ∈ G and 0 < r < R, we
choose η ∈ C∞(G) so that η = 1 onBr(x0), η = 0 inG\BR(x0), and |∇η| ≤ c0 (R−r)−1.
We then define ζ := η̂, Sr := {(x, ψ(x)) : x ∈ G ∩ Br}. The relation (98) and Hölder’s
inequality yield

(∫

Sr

[w+]χ (q+1)

)1/2

≤ c
(q + 1)2

(R− r)2
Nq(S)

(∫

SR

[w+]q+1

)λq

, (99)

where

λq ∈ {(q − 1)/(q + 1), q/(q + 1), 1},

Nq(S) :=






Hn(S)2/(q+1) if λq = (q − 1)/(q + 1)

q−1Hn(S)1/(q+1) if λq = q/(q + 1)

(q + 1)−2 if λq = 1 .

(100)
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For m ∈ N, choose αm = χm, rm = r (1 + 2−m). Putting in (99) the choice q + 1 = αm,
r = rm+1 and R = rm yields

(∫

Srm+1

[w+]αm+1

)1/αm+1

≤ [c
χ2m 4m+1

r2
Nm(S)]1/χ

m

(∫

Srm

[w+]αm

)λm/αm

, (101)

with the iterative structure

Am+1 ≤ [c
χ2m 4m+1

r2
Nm(S)]1/2

m

Aλm
m . (102)

We obtain

Am+1 ≤ [c
χ2m 4m+1

r2
Nm(S)]1/2

m
m−1∏

i=0

[c
χ2i 4i+1

r2
Ni(S)]λi+1/2i

A
Qm

i=0 λi

0 . (103)

Here λm ≤ 1. The claim follows with similar methods as for Proposition 5.3.

Thanks to Lemma 5.6, the problem of estimating w+ is reduced to obtaining bounds on Hn(S)
and on ‖w+‖L2(S). This can be done exactly as in the paper [Ura73], Lemma 5.

Remark 5.7. Since the estimate of ‖w+‖L2(S) in [Ura73], Lemma 5 depends on the number
‖ψ‖L∞(G), it seems that a truly a priori bound can be obtained only via a strong monotonicity
such as (7) or (17).

6 Higher-order estimates

The gradient bound is crucial in the problem (5), (6). Higher-order estimates can be derived
whenever a L∞−bound on the derivatives of ψ has been proved, since the equation (5) is then
a uniformely elliptic equation of quasilinear type, due to (cp. (27))

Fpi,pj
ξi ξj ≥ ν2 (1 + sup

G
|∇ψ|2)−3/2 |ξ|2 for all ξ ∈ Rn .

Define a0 := supG |∇ψ|. Here, and also in the next section about existence, we provide alter-
native proofs to the ones of the literature. We at first state an auxiliary proposition, whose proof,
technical, is to find in the appendix, section D.

Lemma 6.1. Let ∂G be a n − 1 dimensional manifold of class C2,α (α ∈ [0, 1]). Then there
exist k ∈ N and a family {T (1), . . . , T (k)} of vector fields, such that T (l) ∈ [C1,α(G)]n and
such that

div T (l) = 0 in G, T (l) · nG = 0 on ∂G , (104)

for l = 1, . . . , k. Moreover, if τ ∈ [C1,α(∂G)]n is such that τ · nG = 0 on ∂G, there exist
λ1, . . . λk ∈ [C1,α(G)]n such that

τ =

k∑

l=1

λl T
(l) on ∂G . (105)
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The following Lemma states the Hoelder continuity estimate on ∇ψ.

Lemma 6.2. Assume that G is a domain of class C2,α, (0 < α ≤ 1). Let ψ ∈ C2(G) be a
solution to (5), (6). Then, for all β ∈ [0, 1[, there is c = c(G, a0, β) such that

‖∇ψ‖C0,β(G) ≤ c (1 + ‖∇(nG κ)‖L∞(G) + ‖φ‖L∞(S)) ,

Proof. Due to Remark 3.1 and Gauss’ theorem, the relation (48) is equivalent to
∫

G

(Fp + κnG) · ∇ξ =

∫

G

(Φ − div(κnG)) ξ ∀ ξ ∈W 1,1(G) . (106)

For l = 1, . . . , n, we insert the testfunction ∂xl
ξ for ξ ∈ C1(G) in (106). Using integration by

parts, it follows that

−
∫

G

{Fpi,pj
∂2
xj ,xl

ψ + ∂xl
(κnG,i)} ∂xi

ξ +

∫

∂G

(Fpi
+ κnG,i) ∂xi

ξ nG,l

=

∫

G

(Φ − div(κnG)) ∂xl
ξ .

(107)

Let τ ∈ {T (1), . . . , T (k)}, where k and the family {T (i)} are given by Lemma 6.1.

Defineψτ := τ ·∇ψ. In (107), choose ξ = τl η, with η ∈ C1(G). Summation over l = 1, . . . , n
yields

−
∫

G

Fpi,pj
∂xj

ψτ ∂xi
η +

∫

G

Fpi,pj
∂xj

τl ∂xl
ψ ∂xi

η −
∫

G

Fpi,pj
∂2
xj ,xl

ψ ∂xi
τl η

= −
∫

∂G

(Fpi
+ κnG,i) ∂xi

τl nG,l η +

∫

G

∂xl
(nG,i κ) ∂xi

(τl η)

+

∫

G

(Φ − div(κnG)) ∂xl
(τl η) .

Since τ is divergence-free in G according to the Lemma 6.1, it follows that
∫

G

Fpi,pj
∂2
xj ,xl

ψ ∂xi
τl η =

∫

G

dFpi

dxl
∂xi
τl η −

∫

G

Fpi,xl
∂xi
τl η

=

∫

∂G

Fpi
∂xi
τl η nG,l −

∫

G

Fpi
∂xi
τl ∂xl

η −
∫

G

Fpi,xl
∂xi
τl η ,

−
∫

∂G

κnG,i ∂xi
τl nG,l η = −

∫

G

∂xl
(κnG,i) ∂xi

τl η −
∫

G

κnG,i ∂xi
τl ∂xl

η ,

and therefore

−
∫

G

Fpi,pj
∂xj

ψτ ∂xi
η +

∫

G

Fpi,pj
∂xj

τl ∂xl
ψ ∂xi

η +

∫

G

Fpi
∂xi
τl ∂xl

η

+

∫

G

Fpi,xl
∂xi
τl η = −

∫

G

κnG,i ∂xi
τl ∂xl

η +

∫

G

∂xl
(nG,i κ) τl ∂xi

η

+

∫

G

(Φ − div(κnG)) τl ∂xl
η .
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Equivalently
∫

G

Fpi,pj
∂xj

ψτ ∂xi
η =

∫

G

{w η + V · ∇η} , (108)

with w := Fpi,xl
∂xi
τl, and with a vector field V given by

Vk :=Fpk,pj
∂xj

τl ∂xl
ψ + Fpi

∂xi
τk + κnG,i ∂xi

τk − ∂xl
(nG,k κ) τl

− (Φ − div(κnG)) τk for k = 1, . . . , n . (109)

Using in particular the growth assumption (12b), it follows that

|Vk| ≤(µ2 + µ1 + ‖κ‖L∞(∂G)) ‖∇τ‖L∞(G) + ‖∇κ‖L∞(G)

+ ‖κ‖L∞(∂G) ‖∇nG‖L∞(G) + ‖Φ‖L∞(S) for k ∈ {1, . . . , n} .

According to the case (1) of Theorem C.1, there is for 0 ≤ β < 1 arbitrary a constant c
depending only on β, G, the ellipticity constant of the matrix {Fpi,pj

} and its norm in L∞ such
that

‖ψτ‖C0,β(G) ≤ c (‖V ‖[L∞(G)]n + ‖w‖L∞(G)) . (110)

Let {τ (1), . . . , τ (n−1)} be an orthonormal basis of the tangential space on ∂G. Using Lemma
6.1, a representation

∇ψ − (nG · ∇ψ)nG =

n−1∑

i=1

(τ (i) · ∇ψ) τ (i) =

n−1∑

i−1

(
k∑

l=1

λ
(i)
l (T (l) · ∇ψ)

)
τ (i) ,

is valid, with λ
(i)
l ∈ C1,α(G). With the help of the result (110), it follows that ψt := ∇ψ− (nG ·

∇ψ)nG ∈ C0,β(G).

We finally show that also ψn := nG · ∇ψ satisfies a Hölder condition. For x ∈ G, y ∈ R,
define (cp. (55))

H(x, y) := Fp(x, ψt(x) + nG(x) y) · nG(x) + κ(x) .

Using the growth condition (12b),

|H(x, y)| ≤ µ1 + ‖κ‖L∞(∂G) ∀(x, y) ∈ G× R .

Moreover, for x1, x2 ∈ G, y ∈ R

|H(x1, y) −H(x2, y)| ≤‖∇2
p,xF‖L∞ |x1 − x2|

+ ‖∇2
p,pF‖ (|ψt(x1) − ψt(x2)| + |y| |nG(x1) − nG(x2)|) ,

so that the following estimate holds:

|H(x1, y) −H(x2, y)|
|x1 − x2|β

≤ c (1 + ‖ψt‖C0,β(G) + |y| ‖nG‖C0,β(G)) . (111)
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By virtue of the condition (12c), note that

∂yH(x, y) = Fpi,pj
nG,j(x)nG,i(x) ≥ ν2 (1 + |∇ψ|2)−1/2 (1 − (nS · nG)2)

≥ ν2 (1 + a0)
−3/2 . (112)

On the other hand, the boundary condition (6) implies that H(x, ψn(x)) = 0 on ∂G. For
x, x′ ∈ ∂G arbitrary, it follows that

ν2 (1 + a0)
−3/2 (ψn(x) − ψn(x

′)) ≤
∫ ψn(x′)

ψn(x)

∂yH(x, s) ds

= H(x, ψn(x
′)) −H(x, ψn(x)) = H(x, ψn(x

′)) −H(x′, ψn(x
′)) .

The latest yields

|ψn(x) − ψn(x
′)|

|x− x′|β ≤ c
|H(x, ψn(x

′)) −H(x′, ψn(x
′))|

|x− x′|β . (113)

Therefore, taking (111) into account

‖ψn‖C0,β(∂G) ≤ c (1 + ‖ψt‖C0,β(G) + a0 ‖nG‖C0,β(G))

which finally implies that ∇ψ ∈ C0,β(∂G). Return to (107) for ξ ∈ C1
0 (G)

−
∫

G

{Fpi,pj
∂2
xj ,xl

ψ + ∂xl
(κnG,i)} ∂xi

ξ =

∫

G

(Φ − div(κnG)) ∂xl
ξ . (114)

With the help of the case (1) of Theorem C.1, it now follow that ∂xl
ψ ∈ C0,β(G) for l = 1, . . . n

with corresponding norm estimate.

The estimate in C2,α is obtained with similar ideas.

Lemma 6.3. Same assumptions as in Lemma 6.2. Then, the norm of ∇ψ in C1,α(G) is
bounded by a constant that depends on the constants in the conditions (12), on ‖φ‖C0,α(S)

and a0.

Proof. Consider the relation (108). Lemma 6.2 implies that Fpi,pj
∈ C0,β(G) for all β ∈ [0, 1[.

Analogously, Φ ∈ C0,β(G) for all β ∈ [0, 1[ (cf. (4) and (19)).

The definition (109) together with Lemma 6.2 now implies that V ∈ [C0,α(G)]n (cp. (109)).
Thus, the case (2) of Theorem C.1 now yields

‖ψτ‖[C1,α(G)]n ≤ c (‖V ‖[C0,α(G)]n + ‖w‖L∞(G)) ,

and it follows from Lemma 6.1 that

‖ψt‖C1,α(G) = ‖∇ψ − (nG · ∇ψ)nG‖C1,α(G) ≤ c ‖V ‖[C0,α(G)]n . (115)
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We are now allowed to differentiate the relation H(x, ψn(x)) = 0 in any tangential direction τ
over ∂G, which yields

∂yH(x, ψn(x)) (τ · ∇ψn) = τ · ∇xH(x, ψn(x)) for x ∈ ∂G .

Due to (115), the regularity of ∂G and the preceding Proposition 6.2, the function τ ·∇xH(x, ψn(x))
belongs to C0,α(∂G). For the same reasons, and (112), the function [∂yH(x, ψn(x))]

−1 be-
longs to C0,α(∂G) as well. Thus, the mixed-derivatives ψt,n belongs to C0,α(∂G), with corre-
sponding continuity estimates.

We now want to show that also ψn,n ∈ C0,α(∂G). Using integration by parts, the relation (107)
in particular implies for l = 1, . . . , n that

−
∫

∂G

nG,i {Fpi,pj
∂2
xj ,xl

ψ − ∂xl
(κnG,i)} ξ +

∫

∂G

(Fpi
+ κnG,i) ∂xi

ξ nG,l

=

∫

∂G

nG,l (Φ − div(κnG)) ξ .

Choosing ξ = η nG,l and summing up for l = 1, . . . , n, it follows after straightforward simplifi-
cations that

∫

∂G

nG,i nG,l Fpi,pj
∂2
xj ,xl

ψ η =

∫

∂G

(Fpi
+ κnG,i) ∂xi

η −
∫

∂G

(Φ − κ div(nG)) η .

Denoting div∂G the surface divergence on ∂G, the latest yields

nG,i nG,l Fpi,pj
∂2
xj ,xl

ψ = − div∂G(Fp + κnG) − Φ + κ div(nG) on ∂G . (116)

If τ is a tangential vector on ∂G, then for i = 1, . . . , n

τ · ∇(Fpi
− κnG,i) = τl (Fpi,xl

+ Fpi,pj
∂2
j,lψ − ∂l(κnG,i))

= τl Fpi,xl
+ Fpi,pj

τ · ∇ψxj
+ τ · ∇(κnGi

) .

Using the preceding results, div∂G(Fp + κnG) involves only mixed tangential normal second
derivatives of ψ and therefore belongs to C0,α(∂G) with estimate. Note also that

nG,i nG,l Fpi,pj
∂2
xj ,xl

ψ = nG,i Fpi,pj
∂xj

ψn − nG,i Fpi,pj
∂xj

nG,l ∂xl
ψ

= (nG,i Fpi,pj
nG,j) (nG · ∇ψn) + nG,i Fpi,pj

ψtj ,n − nG,i Fpi,pj
∂xj

nG,l ∂xl
ψ .

The relation (116) implies that

(nG,i Fpi,pj
nG,j) (nG · ∇ψn) ∈ C0,α(∂G) .

Since nG,i Fpi,pj
nG,j ≥ ν2 (1 + a0)

−3/2, then the function (nG,i Fpi,pj
nG,j)

−1 belongs also
toC0,α(∂G). We finally can conclude that (nG ·∇ψn) ∈ C0,α(∂G). SinceD2ψ ∈ C0,α(∂G),
the relation (114) yields the claim (case (2) of Theorem C.1).
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7 Existence

It was shown for the first time in [Ura71] that a priori estimates on the gradient of C2 solutions
to (5), (6) joined to the Hoelder estimate of Lemma 6.2 leads to an existence theorem via
continuation methods in Banach-spaces exposed in [LU68], Ch. 10.

We are able to generalize these ideas and to significantly improve the hypotheses on φ, required
to satisfy only (13) and (14) instead of being Hoelder continuously differentiable. Moreover, once
the a priori estimate of Lemma 6.3 is given, existence is obtained more directly via the following
simple continuation Lemma.

Proposition 7.1. Let X, Y be two Banach spaces such that Y →֒ X with compact embed-
ding. Let S : X → X be a Fréchet differentiable mapping. Assume that there are a, K > 0
such that for all λ ∈] − a, 1[, all solutions x ∈ X to the equation

λS(x) = x , (117)

belong to BK(0;Y ). Then S has a fixed-point in BK(0;Y ).

Proof. Define a mapping G : X×]−a, 1[→ X by G(x, λ) = λS(x)−x. Since S is Fréchet
differentiable on X , G is Fréchet differentiable on X×] − a, 1[.

Define M ⊆ [−a, 1] by

M := {λ ∈ [−a, 1] : ∃x ∈ X, G(x, λ) = 0} .

The set M is nonvoid since G(0, 0) = 0. Moreover λ∗ := supM belongs to M . To see this,
choose {λk}k∈N ⊆ M , λk → λ∗. By definition, there is xk ∈ X such that G(xk, λk) = 0.
By assumption xk ∈ BK(0;Y ) for all k ∈ N, and therefore, there is a subsequence xkj

that
strongly converges in X to some x∗. Obviously, G(x∗, λ∗) = 0, implying λ∗ ∈M .

Seeking a contradiction, assume that λ∗ < 1. Then, due to the implicit function theorem (see
[GT01], Th. 17.6), there is an open neighborhood ]λ∗ − ǫ, λ∗ + ǫ[ in ] − a, 1[ such that the
equation G(x, λ) = 0 defines a unique implicit vector-valued function λ 7→ x(λ) ∈ X .
Therefore λ∗ 6= supM , the contradiction.

Theorem 7.2. Assumptions of the Theorem 2.1. Then, there is ψ ∈ C2,α(G) that solves (5),
(6).

Proof. At first, the fundamental theorem of integration implies that

Fpi
(x, p) =

∫ 1

0

Fpi,pj
(x, t p) dt pj + Fpi

(x, 0)

=: ai,j(x, p) pj + bi(x) .

(118)

Due to (118), the problem (5), (6) is equivalent to

−∂xi
(ai,j(x, ∇ψ) ∂xj

ψ) = Φ(x, ψ, ∇ψ) + ∂xi
bi(x) in G

−nG,i(x) ai,j(x, ∇ψ) ∂xj
ψ = κ(x) + nG,i(x) bi(x) on ∂G .
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Let w ∈ C2,β(G), with β < α be given. Consider the following semilinear Neumann-problem
for the unknown u:

−∂xi
(ai,j(x, ∇w) ∂xj

u) = φ(x, u) +R(x, ∇w) + ∂xi
bi(x) in G

−nG,i(x) ai,j(x, ∇w) ∂xj
u = κ(x) + nG,i(x) bi(x) on ∂G . (119)

Since ∇w is in C1,β , the coefficient matrix {ai,j(x∇w)} is uniformely elliptic, and it moreover
belongs [C1,β(G)]n×n. In Lemma D.4 hereafter, we prove that the problem (119) is uniquely
solvable in the space C2,β(G), and that the nonlinear mapping S : C2,β(G) → C2,β(G)
given by Sw := u is Fréchet differentiable in C2,β(G).

Let a > 0 arbitrary, let λ ∈]−a, 1]\{0}, and assume thatw ∈ C2,β(G) satisfies λS(w) = w.
The latest means that

−∂xi
(ai,j(x, ∇w) ∂xj

w) = λΦ(x, w/λ, ∇w) + λ ∂xi
bi(x) in G

−nG,i(x) ai,j(x, ∇w) ∂xj
w = λ (κ(x) + nG,i(x) bi(x)) on ∂G . (120)

Introduce

Φ̄λ(x, xn+1, p) := λΦ(x, xn+1/λ, p) + (λ− 1) ∂xi
bi(x) ,

κ̄λ := λ κ(x) + (λ− 1)nG,i(x) bi(x) .

Taking into account the definitions (118), (120) is nothing else but

−∂xi
Fpi

(x, ∇w) = Φ̄λ(x, w, ∇w) in G

−nG,i(x)Fpi
(x, ∇w) = κ̄λ(x) on ∂G .

The new functions Φ̄λ, κ̄λ satisfy the requirements of the statements 4.4, 5.3, 6.2 and 6.3: In
particular, (7) is valid, and all derivatives of Φ̄λ are bounded independently of the parameter λ.
Therefore,w is unique, and there is a continuous functionK of the data such that ‖w‖C2,α(G) ≤
K. The claim follows from Proposition 7.1, with X = C2,β and Y = C2,α.

It remains to prove the existence claim of Theorem 2.3 with the weakening of the condition (7).

Proposition 7.3. Assumptions of the Theorem 2.3. Then, there exists a solution to (5), (6) in
C2,α(G). Under (18) is the solution unique.

Proof. Assume that φ satisfies (16). For ǫ > 0, the function φǫ(x, xn+1) := φ(x, xn+1) −
ǫ xn+1 satisfies (7), with γ0 = ǫ. Applying the result of Theorem 7.2, there is a unique ψǫ ∈
C2,α(G) that solves the problem

− divFp(x,∇ψǫ) = Φǫ(x, ψǫ, ∇ψǫ) in G ,

−Fp(x,∇ψǫ) = κ(x) on ∂G .

On the other hand, φǫ(x, xn+1) satisfies (17) independently of ǫ, and therefore ‖∇ψǫ‖L1(G) +
‖ψǫ‖L∞(G) ≤ C according to Lemma 4.1 and Lemma 4.2. Then, the statements 5.6 and 5.7
guaranty that also ‖∇ψǫ‖L∞(G) ≤ C with C independent of ǫ. Finally, one obtains uniform
bounds for {∇ψǫ} in Hoelder spaces applying the propositions 6.2 and 6.3. The existence
claim follows letting ǫ→ 0.
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8 Uniqueness

We recall the definition (3) and that σ0(q) := |q|. We abbreviate R = R(x, p) and for q =
(−p, 1), σ = σ(x, q) = σ(x,−p, 1), σ0 = σ0(x, q) = σ0(x,−p, 1). Then, for k = 1, . . . , n,
the assumption (12d) implies that

∂R

∂pk
= −

n+1∑

i,j=1

(
2 σqi,xj

σ0
qj
σ0
qi,qk

+ σxj ,qk,qi σ
0
qi
σ0
qj

)
= −2

n+1∑

i,j=1

σqi,xj
σ0
qj
σ0
qi,qk

.

For i = 1, . . . , n+1, denote ηi := 2 σqi,xj
σ0
qj

. Due to (12e), |η| ≤ 2µ3. Let ξ ∈ Rn arbitrary.

Using the latest, and the projection operator (28) it follows that ∂R
∂p

· ξ =
∑n+1

i,k=1 σ
0
qi,qk

ηi ξ̂k .

Denote ξ̃ = ξ̂ − (ξ̂ · q/|q|2) q. Since σ0 satisfies (12c) with µ2 = 1, the Cauchy-Schwarz
inequality yields

∣∣∣∣
∂R

∂p
· ξ
∣∣∣∣ ≤

|ξ̃| |η̃|
|q| ≤ 2µ3

|ξ̃|
|q| . (121)

Let p1, p2 ∈ Rn, and x ∈ G arbitrary. Due to the fundamental theorem of integration

R(x, p1) − R(x, p2) =

∫ 1

0

∂R

∂p
(x, tp1 + (1 − t)p2) · (p1 − p2) dt .

Using (121), with q = qt = (tp1 + (1 − t)p2, −1) and ξ = (p1 − p2) it follows that

|R(x, p1) − R(x, p2)| ≤ 2µ3

∫ 1

0

|ξ̃t|
(1 + |tp1 + (1 − t)p2|2)1/2

dt , (122)

where ξ̃t = ξ̂ − (ξ̂ · qt/|qt|2) qt. On the other hand, we can write

(Fp(x, p1) − Fp(x, p2)) · (p1 − p2)

=

∫ 1

0

Fpi,pj
(x, tp1 + (1 − t)p2) (p1 − p2)i (p1 − p2)j dt ,

and, employing the same notations as in (122), the assumptions (12c), (12d) yield

(Fp(x, p1) − Fp(x, p2)) · (p1 − p2) ≥ ν2

∫ 1

0

|ξ̃t|2
(1 + |tp1 + (1 − t)p2|2)1/2

dt . (123)

It ψ1 and ψ2 are two weak solutions to (5), (6), then
∫

G

(Fp(x, ∇ψ1) − Fp(x, ∇ψ2)) · ∇(ψ1 − ψ2) −
∫

G

(φ(x, ψ1) − φ(x, ψ2)) (ψ1 − ψ2)

=

∫

G

(R(x, ∇ψ1) −R(x, ∇ψ2)) (ψ1 − ψ2) . (124)

For ρ > 0, and γ0 > 0 Youngs inequality yields

|R(x, ∇ψ1) −R(x, ∇ψ2)| |ψ1 − ψ2| ≤ ρ γ0 |ψ1 − ψ2|2
+ (4 ρ γ0)

−1 |R(x, ∇ψ1) − R(x, ∇ψ2)|2 .
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Due to the assumption µ3 < 2 γ0 ν2, the estimates (122) and (123), there is ρ < 1 such that

(Fp(x, ∇ψ1) − Fp(x, ∇ψ2)) · ∇(ψ1 − ψ2) − (4 ρ γ0)
−1 |R(x, ∇ψ1) −R(x, ∇ψ2)|2

≥ (ν2 − (2 ρ γ0)
−1 µ3)

∫ 1

0

|ξ̃t|2
(1 + |t∇ψ1 + (1 − t)∇ψ2|2)1/2

dt ≥ 0 .

Therefore, the assumption (7) implies that (1 − ρ) γ0

∫
G
|ψ1 − ψ2|2 ≤ 0, proving the unique-

ness.

A Useful properties

Let G ⊂ Rn be bounded, and define d(x) := dist(x, ∂G) for x ∈ G. For µ > 0, denote
Γµ := {x ∈ G : d(x) < µ}.

Lemma A.1. If G ∈ C2,α, there is µ0 = µ0(G), such that d ∈ C2,α(Γµ0). Moreover, if κ ∈
C1,α(∂G), there is κ̃ ∈ C1,α(Γµ0)) such that κ̃ = κ on ∂G, and ‖κ‖L∞(G) ≤ ‖κ‖L∞(∂G).

Proof. A proof is given in [GT01], Lemma 14.16 for d ∈ C2(Γµ0), but it obviously extends to
theC2,α case. It is moreover shown that for all x ∈ Γµ0 , there is a unique y = y(x) ∈ ∂G such
that d(x) = |y − x|, and the mapping x 7→ y is of class C1(Γµ0) (resp. of class C1,α(Γµ0)).
Given κ ∈ C1,α(∂G), define κ̃(x) := κ(y(x)) for x ∈ Γµ0 .

In the following Lemma, we show that the right-hand side Φ of (5) is allowed to have less
regularity than C1(G× R). If ψ′ ∈ C0,1(G), we introduce

Ω− := {(x, xn+1) : xn+1 ≤ ψ′(x)}, Ω+ := {(x, xn+1) : xn+1 ≥ ψ′(x)} . (125)

Lemma A.2. Let φ ∈ Vψ′ (cp. (14)). Assume that ψ ∈ C0,1(G). Then, the function φ(·, ψ)
belongs to W 1,1(G), and moreover

d

dxi
φ(·, ψ) =

∂φ−

∂xi
(·, ψ) +

∂φ−

∂xn+1
(·, ψ)

∂ψ

∂xi
, (126)

where ∇φ+,− ∈ L1(S) are the traces of ∇φ on the surface S taken from the side of Ω+,−.

Proof. By assumption, φ ∈ W 2,1(Ω−). Therefore, the function φ and its first weak derivatives
φxi

(i = 1, . . . , n + 1) have well defined traces (same denotation) in L1(S ∩ Ω−). Moreover,
there is a sequence {φm} ⊂ C∞(Ω−) such that φm → φ in W 2,1(Ω−). For the traces is in
particular valid that φm → φ in L1(S ∩ Ω−), and that φxi,m → φxi

in L1(S ∩ Ω−).

The chain rule implies in G− := {x ∈ G : ψ(x) ≤ ψ′(x)} that

d

dxi
φm(·, ψ) =

∂φm
∂xi

(·, ψ) +
∂φm
∂xn+1

(·, ψ)
∂ψ

∂xi
. (127)
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The right-hand of (127) is strongly convergent in L1(G−), and therefore, φm(·, ψ) → w ∈
W 1,1(G), and it follows that w = φ(·, ψ). This proves (126) in G−. The claim follows from a
similar consideration for the set Ω+.

In the interior of the set G0 := {x ∈ G : ψ(x) = ψ′(x)}, the traces φ+
xi

from the side of Ω+

and φ−
xi

from the side Ω− are in general different.

B Integration by parts and Sobolev embedding on manifolds

In this section, we assume that G ∈ C1, and we consider ψ ∈ C1(G). Denote by S the graph
of ψ (cp. (29)) and by dHn the surface measure

√
1 + |∇ψ|2 dλn on S. For vector fields

η ∈ [C1(Rn+1)]n+1, the surface divergence divS η is defined using the operator δ of (32) by

divS η :=
n∑

i=1

δi ηi on S . (128)

Lemma B.1. Assume that σ satisfies the assumptions (11) and (12d), that F and R are re-
spectively defined by (2) and (3), and that Φ is given by (4). Then, (1) is valid for ψ ∈ C2(G) if
and only if (5) is satisfied.

Proof. Throughout the proof, σq = σq(x, −∇ψ, 1). According to (128), the relation (1) is
equivalent to

n∑

i=1

(
d

dxi
σqi − (nS · ∇σqi)nS,i

)
= φ .

For i = 1, . . . , n+ 1, we compute

nS · ∇σqi = nS,j σqi,xj
− nS,j σqi,qk ∂

2
k,jψ ,

and therefore, using that the assumption (12d) implies σqi,qk nS,i = 0 for k = 1, . . . , n + 1, it
follows that

(nS · ∇σqi)nS,i = nS,j σqi,xj
nS,i − nS,j ∂

2
k,jψ σqi,qk nS,i = R .

Thus, (1) is equivalent to
∑n

i=1
d
dxi
σqi = φ+R, and the claim follows.

For vector fields η ∈ [C1(G × R)]n+1, and for x ∈ G, denote η̃(x) := η(x, ψ(x)), so that
η̃ ∈ [C1(G)]n+1. If η · nS = 0 on S, the surface divergence of η on S has the equivalent
expression

(divS η)(x, ψ(x)) := (
√

1 + |∇ψ(x)|2)−1 div(
√

1 + |∇ψ|2 η̃)(x) for x ∈ G . (129)

We recall the definition (32) of the operator δ, the notations (38) and (39). The following Lemma
is well-known. It is proved here only for the convenience of the reader.
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Lemma B.2. Assume thatG ∈ C1. LetHn−1 denote the surface measure on ∂G. Let Hn−1 be
the measure

√
1 + |ψt|2 dHn−1 on ∂S. Then, for all η ∈ [C1(G×R)]n+1 such that η ·nS = 0

on S, and all ξ ∈ C1(G× R),
∫

S

divS η ξ dHn = −
∫

S

η · δ ξ dHn +

∫

∂S

η · n∂S ξ dHn−1 , (130)

with n∂S = sinα−1 (n̂G − (nS · n̂G)nS).

Proof. By definition
∫

S

divS η ξ dHn =

∫

G

div(
√

1 + |∇ψ|2 η̃) ξ̃ dx

= −
∫

G

√
1 + |∇ψ|2 η̃ · ∇ξ̃ dx+

∫

∂G

√
1 + |∇ψ|2 η̃ · nG ξ̃ dHn−1 .

We easily verify that
∫
G

√
1 + |∇ψ|2 η̃ · ∇ξ̃ dx =

∫
S
η · δ ξ dHn . Moreover, since η ·nS = 0

on S,

η̃ · nG = η̃ · (nG − (nS · nG)nS) = sinα η̃ · n∂S (131)

Using (39) of sinα, the claim follows.

The following Theorem was first proved in [LU70] to obtain local gradients estimates. It bases on
the Federer/Fleming deformation theorem for (convex) currents and repeats arguments applied
in [Mir67] for minimal surfaces. It was extended in [Ura71], Lemma 5 to nonconvex surfaces to
prove a global estimate.

Theorem B.3. Let ψ ∈ C2(G) solve (5), (6). Let G1 ⊂ G and denote Γ1 = ∂G1 ∩ ∂G. If
Γ1 is of class C2, there exists a constant β depending on the constants ν0, µ1, µ3 in (12), on
‖κ‖C1(∂G) and on ‖φ‖L∞(S), such that for all g ∈ C1(G) such that supp(g) ⊆ G1 ∪ Γ1

(∫

S

|g| n
n−1 dHn

)(n−1)/n

≤ β

∫

S

| δ g| dHn . (132)

A natural consequence of Theorem B.3 is the general embedding theorem on the manifold S.

Corollary B.4. Let 2∗ denote the usual Sobolev embedding exponent to p = 2 in Rn. Let
S1 := {(x, ψ(x)) : x ∈ G1} with G1 satisfying the assumptions of Theorem B.3. For all
g ∈ C1(G) such that supp(g) ⊆ G1 ∪ Γ1

(∫

S

|g|2∗ dHn

)1/2∗

≤ c

(∫

S

| δ g|2 dHn

)1/2

. (133)

Proof. For q ∈ [1, ∞[, Theorem B.3 implies that

‖g‖q
Lqn/(n−1)(S1)

≤ β q

∫

S

|g|q−1 | δ g| dHn .

Choose q = 2(n− 1)/(n− 2) if n > 2, q <∞ arbitrary if n = 2.
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C Auxiliary regularity theorems

For the higher-order estimates on ∇ψ, we need auxiliary regularity. Throughout this section, we
consider a function u ∈ W 1,2

Γ (G), where Γ ⊆ ∂G is a (relatively) closed subset of ∂G that
might also be empty. We assume that u is a weak solution to the mixed boundary value problem

u ∈W 1,2
Γ (G) ,∫

G

ai,j ∂ju ∂iv +

∫

G

c u v =

∫

G

(f v + fi ∂iv) for all v ∈W 1,2
Γ (G) ,

(134)

where {ai,j}i,j=1,...,n is uniformely elliptic.

Theorem C.1. Let u satisfy (134). Assume that c ∈ L∞(G), and that f ∈ L∞(G). Then, the
following statements are valid:

(1) If G ∈ C1, ai,j ∈ L∞(G) for i, j = 1, . . . , n, and fi ∈ L∞(G) for i = 1, . . . , n, then
u ∈ C0,β(G) for all β < 1, and there is C > 0 depending on β and on the data ai,j , c and
G in their respective norm such that

‖u‖C0,β(G) ≤ C (‖f‖L∞(G) + ‖fi‖L∞(G) + ‖u‖W 1,2(G)) .

(2) If G ∈ C1,α (α > 0), ai,j ∈ C0,α(G) for i, j = 1, . . . , n, and fi ∈ C0,α(G) for i =
1, . . . , n, then u ∈ C1,α(G), and there is C > 0 depending on the data ai,j , c and G in
their respective norm such that

‖u‖C1,α(G) ≤ C (‖f‖L∞(G) + ‖fi‖C0,α(G) + ‖u‖W 1,2(G)) .

(3) Same assumptions as in (2), but with fi ∈ Lp(G) for i = 1, . . . , n for some p ∈]2,∞[.
Then, u ∈ W 1,p(G), and there is C > 0 depending on the data ai,j , c and G in their
respective norm such that

‖u‖W 1,p(G) ≤ C (‖f‖L∞(G) + ‖fi‖Lp(G) + ‖u‖W 1,2(G)) .

(4) IfG ∈ C2,α (α > 0), ai,j ∈ C1,α(G) for i, j = 1, . . . , n, c ∈ C0,α(G), and f ∈ C0,α(G),
fi ∈ C1,α(G) for i = 1, . . . , n, then u ∈ C2,α(G), and there is C > 0 depending on the
data ai,j , c and G in their respective norm such that

‖u‖C2,α(G) ≤ C (‖f‖C0,α(G) + ‖fi‖C1,α(G) + ‖u‖W 1,2(G)) .

Proof. The result (4) is already to find by Schauder. See the Ch. 3 of monograph [LU68]. A proof
basing on Campanato space methods is to find in the more recent survey [Tro87], Theorem 3.16
and Theorem 3.17.

The following Lemma, to find for instance in [Tro87], Theorem 2.7 (see also Lemma 2.9), is
well-known.

Lemma C.2. Let u ∈ W 1,2(G). For k ∈ N, let A(k) := {x ∈ G : |u(x)| ≥ k}. Assume
that there are k0 ∈ N, p > 1 and C > 0 such that for all k ≥ k0, the function u satisfies
the inequality ‖u− Tk(u)‖Lp(G) ≤ C meas(A(k)). Then, for p′ := p/(p− 1), ‖u‖L∞(G) ≤
k0 + C 2p

′

meas(G)p−1.
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D Proof of some technical results

The following Lemma was proved in [Ura73], Lemma 3 for σ = σ(q) and κ = const. The
proof is elegant and relatively short. Because we consider a more general form of σ and κ, we
present a sketch of the proof, but we emphasize that we introduce no new ideas.

Lemma D.1. Same assumptions as in Lemma 5.1. Define b(2) as in (68). Then, there are
nonnegative ĉi (i = 1, 2) depending continuously on the constants µi, νi in (12), and on
‖∇(κnG)‖L∞(G) such that

b(2) ≥ −ĉ1
| δ v|√

1 + |∇ψ|2
− ĉ2 for all x ∈ G .

Proof. Throughout the proof, we denote ai,j = σqi,qj(x, −∇ψ, 1) for i, j = 1, . . . , n + 1,

and A := {ai,j}. It is convenient to use the notation u := ψ̂ ∈ C2(G × R) (cf. (28)) to avoid
confusion with the superscripts.

First step. Obviously

n∑

i,j,k,l=1

Fpi,pj
Fpk,pl

∂2
j,kψ ∂

2
l,iψ =

n+1∑

i,j,k,l=1

ai,j ak,l ∂
2
j,ku ∂

2
l,iu .

Denote λ1(x), . . . , λn(x) the nonvanishing eigenvalues of the matrix A(x), and λn+1 = 0.
Due to (12c), the eigenvalues satisfy the inequalities

ν2√
1 + |∇ψ|2

≤ λi ≤
µ2√

1 + |∇ψ|2
for i = 1, . . . , n . (135)

Due to the condition (12d), there is for each x ∈ G × R an orthonormal system of vectors
{τm(x)}m=1,...,n such that τm(x) · nS(x) = 0, and such that

ai,j τ
r
i τ

s
j = δr,s λr for r, s = 1, . . . , n+ 1 ,

with the Kronecker δ. Using othonormal decomposition, and the fact thatAnS = 0, we see that

Λ := ai,j ak,l ∂
2
j,ku ∂

2
l,iu = λp λq [τpi τ

q
j

∂2u

∂xi∂xj
]2 . (136)

Second step. For l = 1, . . . , n, introduce ξl := 2Fpl
+ κnG,l, and g := ξ̂ (cp. (28)). Due to

the conditions (12b) and (12e), note that

‖g‖L∞(G×R) ≤ 2µ1 + ‖κ‖L∞(∂G) , ‖∂xg‖L∞(G×R) ≤ 2µ3 + ‖∇(κnG)‖L∞(G) . (137)

Rearranging the indices in the definition (68) of b(2), it follows that

b(2) = Λ + Fpi,pj
∂2
j,kψ (Fpk,xi

+ ∂i(nG,k κ)) + Fpk,pl
∂2
l,iψ Fpk,xi

= Λ + Fpi,pj
∂2
j,kψ (2Fpk,xi

+ ∂i(nG,k κ))

= Λ + ai,j ∂
2
j,ku ∂igk .
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Orthonormal decomposition implies the equivalent representation

ai,j ∂
2
j,ku ∂igk = λp (τp · ∇∂ku) (τ p · ∇gk)

= λp
(
(τp · ∇)∇u · τ q

) (
(τ p · ∇)g · τ q

)
+ λp

(
(τp · ∇)∇u · nS

) (
(τp · ∇)g · nS

)
.

(138)

The Cauchy-Schwarz inequality, Young’s inequality and (135) imply that

λp
(
(τp · ∇)∇u · τ q

) (
(τ p · ∇)g · τ q

)
= (λp λq)

1/2 [(τ pi τ
q
j

∂2u

∂xi∂xj
]
λp
λq

[(τ pi τ
q
j

∂gi
∂xj

]

≤ 1

8
λp λq [(τ pi τ

q
j

∂2u

∂xi∂xj
]2 + 2

µ2

ν2
[(τ pi τ

q
j

∂gi
∂xj

]2 ≤ Λ

8
+ 2

µ2

ν2
‖∇g‖2

L∞ . (139)

Third step. The second term on the right-hand of (138) contains mixed tangential-normal
derivatives that are not contained in the expression Λ. To obtain a suitable estimate for the
right-hand of (138), we have to state an auxiliary inequality, originating in the paper [Ura73]
again. Consider for y0 ∈ G × R and p ∈ {1, . . . , n + 1} the vector τ p,0 := τ p(y0) and the
function w := τ p,0 · ∇u. The inequality (36) yields

|∇w| ≤ | δ w|
√

1 + |∇ψ|2 =
√

1 + |∇ψ|2
n∑

k=1

|τk · ∇w| .

Using the latest, the definition of w implies that

|τp,0i nS,j
∂2u

∂xi∂xj
| ≤ |∇w| ≤

√
1 + |∇ψ|2 |τki τp,0j

∂2u

∂xi∂xj
| .

Writing the last expression in (x, xn+1) = y0 arbitrary, it follows for all (x, xn+1) ∈ G × R

and p ∈ {1, . . . , n+ 1} that

|τpi nS,j
∂2u

∂xi∂xj
| ≤

√
1 + |∇ψ|2 |τki τpj

∂2u

∂xi∂xj
| . (140)

On the other hand, the orthonormality of {τm}, and the definition of the extension operator (28),
yield for k = 1, . . . , n the decomposition

Fpk
+ κnG,k = nS,k nS · (Fp + κnG) +

n∑

q=1

τ qk τ
q · (Fp + κnG) . (141)

Consider now the formula (66) for the derivatives of the function v. Due to the latest formula
(141) used in (66), we obtain for p ∈ {1, . . . , n+ 1} that

τpj ∂jv = τ pj ∂
2
j,kψ (Fpk

+ κnG,k) + τ pj Fxj
+ τpj ∂j(κnG,k) ∂kψ

= τpj ∂
2
j,kψ nS,k nS · (Fp + κnG) + τ pj ∂

2
j,kψ τ

q
k τ

q · (Fp + κnG) + τ pj Fxj

+ τ pj ∂j(κnG,k) ∂kψ . (142)
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In view of (22), −nS · (Fp + κnG) ≥ ν0 − µ1/
√

1 + |∇ψ|2. The latest yields, thanks also to
the conditions (12e),

|τ pj ∂2
j,kψ nS,k| (ν0 −

µ1√
1 + |∇ψ|2

) ≤| δ v| + |τ pj ∂2
j,kψ τ

q
k | (µ1 + ‖κ‖L∞(∂G)) + |Fx|

+ ‖∇(κnG)‖L∞(G) |∇ψ| .

It follows from (140) that

µ1√
1 + |∇ψ|2

|τpj ∂2
j,kψ nS,k| ≤ µ1 |τki τpj

∂2u

∂xi∂xj
| ,

and therefore, the last two relation yield

ν0 |τpj ∂2
j,kψ nS,k|

≤ | δ v| + |τ pj ∂2
j,kψ τ

q
k | (2µ1 + ‖κ‖L∞(∂G)) + |Fx| + ‖∇(κnG)‖L∞(G) |∇ψ| ,

(143)

which, in turn, thanks also to (23), implies that

λp
(
(τp · ∇)∇u · nS

) (
(τp · ∇)g · nS

)
≤ ν−1

0 ‖∇g‖L∞

[
µ2 (

| δ v|√
1 + |∇ψ|2

+ µ3 + ‖∇(κnG)‖L∞(G)) + (2µ1 + ‖κ‖L∞(∂G))λp |τpj ∂2
j,ku τ

q
k |
]
.

With arguments analogous to (139)

ν−1
0 ‖∇g‖L∞ (2µ1 + ‖κ‖L∞(∂G))λp |τpj ∂2

j,ku τ
q
k |

≤ Λ

8
+

4µ2

ν2 ν2
0

(2µ1 + ‖κ‖L∞(∂G))
2 ‖∇g‖2

L∞ .

Using the estimates (136), (139) and (137), the claim follows.

Lemma D.2. Same assumptions as in Lemma 5.1. Let v be the function (62). Then, there are
nonnegative numbers ĉ3, ĉ4 depending continuously on the constants µi, νi in (12), and on
‖∇(κnG)‖L∞(G) such that

n∑

k=1

[Fpk
+ κnG,k]

d

dxk
Φ(x, ψ, ∇ψ) ≤ĉ3 + ĉ4

| δ v|√
1 + |∇ψ|2

+ (ν0 − ‖κ‖L∞(∂G))φxn+1

√
1 + |∇ψ|2 .

The number ĉ3 depends moreover continuously on ‖∇φ+,−‖L∞(S).

Proof. Due to the definition (4), we have Φ = φ+R. We begin estimating the φ term. Lemma
A.2, and the property (53) yield

dφ

dxk
[Fpk

+ κnG,k] = (φxk
+ φxn+1 ∂kψ) [Fpk

+ κnG,k] ,

∂kψ [Fpk
+ κnG,k] ≥ (ν0 − ‖κ‖L∞(∂G))

√
1 + |∇ψ|2 − µ1 .

(144)
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In the case that ∇φ is discontinuous across S, Lemma A.2 moreover shows that the traces φxi

in (144) can be taken from arbitrary side of S. The latest implies the estimate

dφ

dxk
[Fpk

+ κnG,k] ≤|φxk
| + µ1 |φxn+1|

+ (ν0 − ‖κ‖L∞(∂G))φxn+1

√
1 + |∇ψ|2 .

(145)

Now considering the R term (cf. (3)) with σ0(q) = |q|, note for k = 1, . . . , n that

dR

dxk
= −

n∑

l=1

[σqi,xj
(σ0

qi,ql
σ0
qj

+ σ0
qj ,ql

σ0
qi
) + σ0

qi
σ0
qj
σqi,xj ,ql] ∂

2
l,kψ

+ σ0
qi
σ0
qj
σqi,xj ,xk

,

where the summation over i, j occurs from 1, . . . , n + 1. For all (x, q) ∈ G × Rn+1 and l =
1, . . . n+1, the assumption (12d) yields σql,qi(x, q) qi = 0, and therefore also σxj ,ql,qi(x, q) qi =
0. It follows that σ0

qi
σqi,xj ,ql = 0, and that

dR

dxk
= − 2 σqi,xj

σ0
qj

n∑

l=1

σ0
qi,ql

∂2
l,kψ + σ0

qi
σ0
qj
σqi,xj ,xk

.

It follows that

(Fpk
+ κnG,k)

dR

dxk
= −2 σqi,xj

σ0
qj

n∑

l=1

σ0
qi,ql

[(Fpk
+ κnG,k) ∂

2
l,kψ]

+σ0
qi
σ0
qj
σqi,xj ,xk

(Fpk
+ κnG,k) .

(146)

Due to (12a) and (12e), we obviously have

|σ0
qi
σ0
qj
σqi,xj ,xk

(Fpk
+ κnG,k) ≤ µ4 (µ1 + ‖κ‖L∞(∂G)), .

On the other hand, using (66), we see that

[(Fpk
+ κnG,k) ∂

2
l,kψ] = ∂xl

v − Fxl
− ∂kψ ∂l(nG,kκ)

n∑

l=1

σ0
qi,ql

[(Fpk
+ κnG,k) ∂

2
l,kψ] =

n∑

l=1

σ0
qi,ql

(∂xl
v − Fxl

− ∂kψ ∂l(nG,kκ)) .

For i = 1, . . . , n + 1, set ηi := σqi,xj
σ0
qj

. The |η| ≤ µ3 in view of (12e). Since σ0(q) = |q|
satisfies the assumptions (12c), and (12d) with µ2 = 1, it follows that (cp. (70))

|σ0
qi,ql

∂xl
v ηi| ≤

√
1 + |∇ψ|2−1 | δ v| |η| ,

and analogously (cf. (23))

|σ0
qi,ql

(Fxl
+ ∂kψ ∂l(nG,kκ)) ηi| ≤ (µ3 + ‖∇(κnG)‖L∞(G))µ3 .

The claim follows from (146).
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We now give the proof of Lemma 6.1.

Proof of Lemma 6.1. Let Z1 be the cylinder B1(0; Rn−1)×] − 1, 0] (here B1(0; Rn−1) is the
unit ball centered at zero in the space Rn−1). Due to the definition of a C2,α manifold, there are
m ∈ N, a family of smooth open sets {Ui}i=0,...,m ⊂ Rn such that ∂G ⊂ ⋃m

i=1 Ui, and a
family of C2,α diffeormorphisms {Fi}i=1,...,m

Fi : Z1 → Ui ∩G
x̂ 7→ Fi(x̂) ,

such that Fi(B1(0; Rn−1) × {0}) = Ui ∩ ∂G. Let {ζ0, . . . , ζm} denote a partition of unity
associated with the family {Ui}i=0,...,m.

We fix i ∈ {1, . . . , m} and let {ej}j=1,...,n−1 denote the n − 1 first standard basis vectors in
Rn. We define a vector field T (i,j) ∈ [C1,α(Ui ∩G)]n by

T (i,j)(Fi(x̂)) :=
1

detF ′
i (x̂)

F ′
i (x̂) ej for x̂ ∈ Z1 and j = 1, . . . , n− 1 . (147)

Using formula to find for instance in [Mon03], Lemma 3.59 and formula (3.80), one shows for
j = 1, . . . , n− 1 that

div T (i,j) = [detF ′]−1 div(ej) = 0 in Ui ∩G, T (i,j) · nG = 0 on Ui ∩ ∂G ,

proving (104). It remains to prove the representation (105). Let τ ∈ [C1,α(∂G)]n. Fixing
i ∈ {1, . . . , m}, we define τ (i) := ζi τ , and we associate with τ (i) the vector field ξ(i) ∈
[C1,α(B1(0; Rn−1) × {0})]n defined by

ξ(i)(x̂) := det(F ′
i (x̂)) [F ′

i (x̂)]
−1 τ (i)(Fi(x̂)) .

We define an extension ξ(i) ∈ [C1,α(Z1)]
n by setting ξ(x̂) := ξ(i)(x̂1, . . . , x̂n−1, 0). It follows

from (147) that

τ (i)(Fi(x̂)) =

n−1∑

j=1

ξ
(i)
j (x̂)T (i,j)(Fi(x̂)) ,

τ(x) =
m∑

i=1

n−1∑

j=1

ξ
(i)
j (F−1

i (x))T (i,j)(F−1
i (x)) for x ∈ G .

In the following Lemma, we prove the Fréchet-differentiability claim needed for the Theorem 7.2.
The proof uses the following straightforward property.

Lemma D.3. Let g, h ∈ C0,β(G) with 0 ≤ β ≤ 1. Let f ∈ C0,1(R). Then, g, h ∈ C0,β(G),
and f ◦ g ∈ C0,β(G).

Lemma D.4. Under the conditions of Theorem 7.2, the solution mapping S to the problem (119)
is well-defined, continuous and Fréchet-differentiable fromC2,β(G) into itself for all 0 < β ≤ α.
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Proof. We at first prove the unique solvability of (119) in C2,β(G). For v ∈ L∞(G), define

a(x, v) :=

∫ 1

0

φxn+1(x, t v) dt . (148)

Due to the condition (7), a(x, v) ≤ −γ0 uniformely in G. On the other hand, the fundamental
Lemma of integration yields

φ(x, u) = a(x, u) u+ φ(x, 0) .

Let w ∈ C2,β(G) be fixed. Let p > n such that 1 − n/p > β. We denote by T : L∞(G) →
W 1,p(G) the solution operator v 7→ u to the linear problem

−∂xi
(ai,j(x, ∇w) ∂xj

u) − a(x, v) u = φ(x, 0) +R(x, ∇w) + ∂xi
bi(x) in G

−nG,i(x) ai,j(x, ∇w) ∂xj
u = κ(x) + nG,i(x) bi(x) on ∂G .

(149)

Due to the estimate (20), the case (3) of Theorem C.1 induces the existence of the solution
u ∈ W 1,p(G), and a continuity estimate. The uniqueness of the solution follows from the
uniform negativity of the coefficient a. Clearly, T is compact from L∞(G) into itself due to the
choice of p and the Sobolev embedding theorem. We now prove that T maps a closed, convex
and bounded set of L∞(G) into itself.

For k ∈ N, multiply (149) with the testfunction ξk := (u− Tk(u)). Integration by parts yields
∫

G

ai,j(x, ∇w) ∂xj
(u− Tk(u)) ∂xi

(u− Tk(u)) −
∫

G

a(x, v) u (u− Tk(u))

= −
∫

∂G

κ ξk −
∫

G

bi(x) ∂xi
ξk +

∫

G

(φ(x, 0) +R) ξk .

It follows that

inf{γ0, α0(w)} ‖u− Tk(u)‖2
W 1,2(G)

≤
∫

∂G

|κ| |u− Tk(u)| +
∫

G

|bi| |∂xi
(u− Tk(u))| +

∫

G

|φ(·, 0) +R| |u− Tk(u)| .

For r0 > n− 1 and q0 > n arbitrary, it follows from Lemma C.2 that

‖u‖L∞(G) ≤ c (‖κ‖Lr0(∂G) + ‖bi‖Lq0 (G) + ‖φ(·, 0) +R‖Lq0/2(G)) , (150)

with a constant c independent of v, that is, due also to (20), ‖Tv‖L∞(G) ≤ K, withK indepen-
dent of v. Thus, invoking the Schauder fixed-point theorem, there is u ∈ L∞(G) ∩W 1,p(G)
such that Tu = u, that is u solves the problem (119). Due to the choice of p, u ∈ C0,β(G).
Since φ is Lipschitz continuous, it follows that φ(x, u) ∈ C0,β(G), and the case (4) of Theorem
C.1 implies even that u ∈ C2,β(G), with a corresponding continuous estimate.

We now prove the Fréchet differentiability of the solution mapping Sw := u. Let h ∈ C2,β(G).
Denote uh = S(w + h) ∈ C2,β(G). Then, defining

gi := (ai,j(x, ∇(w + h)) − ai,j(x, ∇w)) ∂xj
uh for i = 1, . . . , n ,

g0 := R(x, ∇(w + h)) − R(x, ∇w) ,
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one proves that

−∂xi
(ai,j(x, ∇w) ∂xj

(uh − u)) = φ(x, uh) − φ(x, u) + ∂xi
gi + g0 in G (151)

−nG,i(x) ai,j(x, ∇w) ∂xj
(uh − u) = nG,i(x) gi on ∂G ,

With the notation

φ(x, uh) − φ(x, u) =

∫ 1

0

φn+1(x, t uh + (1 − t) u) dt (uh − u)

=: a(x, u, uh) (uh − u) ,

one equivalently obtains for all ξ ∈W 1,2(G) that

∫

G

(ai,j(x, ∇w) ∂xj
(uh − u) ∂xi

ξ − a(x, u, uh) (uh − u) ξ) =

∫

G

(g0 ξ − gi ∂xi
ξ) .

(152)

Since |g0| ≤ ‖g‖C1(G×Rn) |∇h| and |gi| ≤ ‖∇uh‖L∞(G) ‖∇pai,j‖L∞(G) ∇h (cp. (19)), it
follows for 1 ≤ q ≤ ∞ that

‖gi‖Lq(G) + ‖g0‖Lq(G) ≤ (‖∇uh‖L∞(G) ‖∇pai,j‖L∞(G) + ‖g‖C1(G×Rn)) ‖∇h‖Lq(G) .

With arguments similar to the ones used for the problem (149), we can prove that if uh − u
satisfies (152), and if β ≤ 1 − n/q0, there is a continuous function c(·, ·) on [C2,β(G)]2 such
that

‖uh − u‖C0,β(G) ≤ c(w, w + h) ‖∇h‖Lq0(G) , (153)

We now prove that there even is c(w, w + h) such that

‖uh − u‖C2,β(G) ≤ c(w, w + h) ‖h‖C2,β(G) . (154)

For k = 1, . . . , n, observe that

d

dxk
(ai,j(x, ∇(w + h)) − ai,j(x, ∇w)) = ∂xk

ai,j(x, ∇(w + h)) − ∂xk
ai,j(x, ∇w)

+∂pl
ai,j(x, ∇(w + h))

∂2(w + h)

∂xl∂xk
− ∂pl

ai,j(x, ∇w)
∂2w

∂xl∂xk
.

It follows that

∂xk
gi ={∂xk

ai,j(x, ∇(w + h)) − ∂xk
ai,j(x, ∇w) + ∂pl

ai,j(x, ∇(w + h))
∂2h

∂xl∂xk

+ (∂pl
ai,j(x, ∇(w + h)) − ∂pl

ai,j(x, ∇w))
∂2w

∂xl∂xk
} ∂xj

uh

+
∂2uh
∂xj∂xk

(ai,j(x, ∇(w + h)) − ai,j(x, ∇w)) .
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The latest together with the property of Lemma D.3 and (19) yields

‖∇gi‖C0,β(G) ≤ c(w, w + h) ‖h‖C2,β(G) .

Similarily, using the regularity (19)

‖g0‖C0,β(G) ≤ c(w, w + h) ‖h‖C1,β(G) .

Therefore, the case (4) of Theorem C.1 on the regularity of the problem (151) yields

‖S(w + h) − S(w)‖C2,β(G)

≤ c(w,w + h) (‖g0‖C0,β(G + ‖gi‖C1,β(G + ‖φ(x, uh) − φ(x, u)‖C0,β(G))

≤ c(w,w + h) (‖h‖C2,β(G) + ‖φ‖C0,1 ‖uh − u‖C0,β(G)) .

The claim follows using (153).
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