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Abstract

We propose a generalization of the Structured Doubling Algorithm (SDA) to compute
invariant subspaces of structured matrix pencils that arise in the context of solving linear
quadratic optimal control problems. The new algorithm is designed to attain better accuracy
when the classical Riccati equation approach for the solution of the optimal control problem is
not well suited because the stable and unstable invariant subspaces are not well separated
(due to eigenvalues near or on the imaginary axis) or in the case when the Riccati solution
does not exist at all. We analyze the convergence of the method and compare the new method
with the classical SDA algorithm as well as some recent structured QR-methods.
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1 Introduction

The main motivation for the new algorithmic approach that we discuss in this paper is the solution
of continuous and discrete time optimal control problems. In order to set the notation, we briefly
review these problems.

1.1 Continuous-time optimal control

Consider the linear quadratic optimal control problem to minimize the quadratic cost functional

S(x, u) =

∫ ∞
t0

[
x(t)
u(t)

]T [
Q S
ST R

] [
x(t)
u(t)

]
dt, (1)

subject to the linear control system

Eẋ = Ax+Bu, x(t0) = x0. (2)

Here x(t) is the state, x0 is an initial vector, u(t) is the control input and the coefficient matrices
satisfy E,A ∈ Rn,n, B ∈ Rn,m, Q = QT ∈ Rn,n, R = RT ∈ Rm,m. We assume as usual that[
Q S
ST R

]
is positive semidefinite. The basic theory for this problem can be found in any book on

linear control theory, e.g., [2, 35, 38]. If E is nonsingular, then the problem may easily be reduced
to one with E = In by inverting E in (2). Therefore, in the following the cases of interest are
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E = In and E singular or ill-conditioned; in the latter case, (2) is known as a descriptor system or
a linear differential-algebraic equation (DAE).

Application of the Pontryagin maximum principle [36, 33] leads to the necessary optimality
condition given by the two-point boundary value problem

Ec

 µ̇
ẋ
u̇

 = Ac

 µ
x
u

 , x(t0) = x0, lim
t→∞

ETµ(t) = 0, (3)

with the matrix pencil

L(λ) := λEc −Ac := λ

 0 E 0
−ET 0 0

0 0 0

−
 0 A B
AT Q S
BT ST R

 . (4)

Since L(λ) = L(−λ)T , pencils of this form are called even pencils, [30] or para-Hermitian pencils
[43].

If R is well-conditioned with respect to inversion, then (3) may be transformed into the problem

Êc
[
ẋ
µ̇

]
= Âc

[
x
µ

]
, x(t0) = x0, lim

t→∞
ETµ(t) = 0, (5)

with associated pencil

λÊc − Âc =λ

[
E 0
0 ET

]
−
[

A−BR−1ST −BR−1BT
−Q+ SR−1ST −(A−BR−1ST )T

]
=:λ

[
E 0
0 ET

]
−
[

F −G
−H −FT

]
.

(6)

When E = I, this pencil reduces to λI −H with the Hamiltonian matrix

H =

[
F −G
−H −FT

]
. (7)

The solution of (5) can be obtained in many different ways. For instance, the classical approach
that is described in most textbooks and implemented in most design packages (for E = I) is to
determine first (if it exists) X, the unique positive semidefinite solution of the associated algebraic
Riccati equation

0 = H +XF + FTX −XGX, (8)

and then to obtain the optimal control as a linear feedback

u(t) = −R−1(BTX + ST )x(t). (9)

The associated state vector of the closed loop system, i.e., the solution of

ẋ = (A−BR−1(BTX + ST ))x(t), x(t0) = x0 (10)

is then asymptotically stable, i.e., limt→∞ x(t) = 0. For this reason the positive semidefinite solution
of (8) is called c-stabilizing solution.

It should be noted, however, that the solution of the boundary value problems (3), (5), and
thus also the optimal feedback control (9), may exist and be unique even when E is singular or a
positive semidefinite solution to the Riccati equation does not exist. For an analysis of the different
possibilities see [21, 28, 33]. If E is invertible, then under the presented assumptions on the cost
functional, a sufficient condition for the existence and uniqueness of the stabilizing Riccati solution
is that the pair (A,B) is c-stabilizable, i.e., Rank ([λI −A,B]) = n for all λ ∈ C with <λ ≥ 0. If
this is the case, then the pencils (7) and (4) have exactly n eigenvalues with negative real part
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and n with positive real part. Moreover, if E = I, then the n-dimensional invariant subspace U
associated with the eigenvalues with negative real part of (7) spanned by the columns of

U =

[
U1

U2

]
∈ R2n,n (11)

is Lagrangian, i.e., it satisfies UTJU = 0, where

J =

[
0 In
−In 0

]
,

and In is the n×n identity matrix. If U1 is invertible, then the c-stabilizing solution of (8) is given
by X = U2U

−1
1 .

In the more general case that E or R are not invertible, the deflating subspace of (4) associated
with the eigenvalues in the closed left half plane has typically a dimension smaller than n and is
clearly not Lagrangian. To see this we can use a different representation of the system, see [33,
Chapter 9]. Perform a singular value decomposition

UTEV =

[
Σq 0
0 0

]
with Σq ∈ Rq,q invertible and diagonal and partition the vectors and matrices

UTAV =

[
A11 A12

A21 A22

]
, UTx =

[
x1
x2

]
, UTx0 =

[
x01
x02

]
,

UTB =

[
B1

B2

]
, V TS =

[
S1

S2

]
, V Tµ =

[
µ1

µ2

]
, V TQV =

[
Q11 Q12

Q21 Q22

]
accordingly. Performing a congruence transformation with T = diag (UT , V T , Ir) from the left and
with TT from the right to (4) and reordering the blocks, we obtain the system

0 Σq 0 0 0
−ΣTq 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



µ̇1

ẋ1
µ̇2

ẋ2
u̇

 =


0 A11 0 A12 B1

AT11 Q11 AT21 Q12 S1

0 A21 0 A22 B2

AT12 QT12 AT22 Q22 S2

BT1 ST1 BT2 ST2 R



µ1

x1
µ2

x2
u

 ,
with boundary conditions x1(t0) = x01, x2(t0) = x02, A21x

0
1+A22x

0
2+B2u(t0) = 0, limt→∞ µ1(t) = 0.

Introducing

Ẽ = Σq, Ã = A11, Q̃ = Q11, B̃ =
[

0 A12 B1

]
, x̃ = x1, µ̃ = µ1,

S̃ =
[
AT21 Q12 S1

]
, R̃ =

 0 A22 B2

AT22 Q22 S2

BT2 ST2 R

 , ũ =

 µ2

x2
u

 , (12)

we obtain a new boundary value problem

Ẽc

 ˙̃µ
˙̃x
˙̃u

 = Ãc

 µ̃
x̃
ũ

 , x̃(t0) = x01, lim
t→∞

µ̃(t) = 0, (13)

with consistency conditions A21x
0
1 +A22x

0
2 +B2u(t0) = 0, x2(t0) = x02, and a transformed matrix

pencil

λẼc − Ãc := λ

 0 Ẽ 0

−ẼT 0 0
0 0 0

−
 0 Ã B̃

ÃT Q̃ S̃

B̃T S̃T R̃

 . (14)
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So except for the extra consistency conditions (which are not relevant for the eigenvalue problem),
the system has the same form as the one with a nonsingular E.

If E and R are nonsingular then the even pencil (4) has exactly 2n finite eigenvalues and we
can use the methods discussed below. If this not the case, then the problem corresponds to a
singular control problem and a regularization procedure is necessary, which either modifies the cost
functional [27] or removes modes that are not impulse controllable from the system, see also [12].
In the following we therefore assume that in (4) E and R are nonsingular.

Currently, the preferred approach to solve the two-point boundary value problem (5) numerically,
is to compute the deflating subspace associated with the eigenvalues in the left half plane of (4)
via a structured generalized Schur form [6, 10].

In the standard case (5) this would be the real Hamiltonian Schur-form of H, [33], i.e., one
determines an orthogonal and symplectic matrix U ∈ R2n,2n, i.e., UTU = I2n and UTJU = J ,
such that

UTHU =

[
T11 T12
0 −TT11

]
, (15)

where T11 has only eigenvalues with negative real part. Then U has the form

U =

[
U1 −U2

U2 U1

]
, (16)

and the first n columns are given by (11) and span the c-stabilizing invariant subspace of (7)
associated with the n eigenvalues in the left half plane.

The case in which H has eigenvalues on the imaginary axis arises as well in the applications,
e.g., in H∞ control [7, 18, 20, 44]. In the standard case (5), then one computes the unique
c-semi-stable Lagrangian subspace U (if it exists), see [21] for existence, uniqueness, and a complete
parametrization of all solutions. Similarly, in the general case one computes the unique c-semi-stable
subspace (if it exists) and uses it to solve the boundary value problem, [6].

1.2 Discrete-time optimal control

There is an almost completely analogous theory for the corresponding discrete-time linear quadratic
optimal control problem, see e.g. [19, 35]. In this case one minimizes

∞∑
j=0

([
xj
uj

]T [
Q S
ST R

] [
xj
uj

])
(17)

subject to the discrete-time linear control system

Exj+1 = Axj +Bxj , x0 = x0. (18)

Introducing a sequence of Lagrange multipliers µj ∈ Rn, j = 0, 1, 2, . . . and applying again the
Pontryagin maximum principle yields a necessary optimality condition given by the discrete-time
two-point boundary value problem

Ed

 µj+1

xj+1

uj+1

 = Ad

 µj
xj
uj

 , x0 = x0, lim
j→∞

ETµj = 0, (19)

with the matrix pencil

λEd −Ad :=

 0 E 0
AT 0 0
BT 0 0

−
 0 A B
ET Q S
0 ST R

 . (20)

Pencils with this structure are called BVD-pencils in [13].
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Again, if R is well-conditioned with respect to inversion, then one can eliminate the variable uj
in the boundary value problem (19), and transform the problem to the boundary value problem

Êd
[
xj+1

µj+1

]
= Âd

[
xj
µj

]
, x0 = x0, lim

j→∞
ETµj = 0, (21)

with the reduced BVD-pencil

λÊd − Âd := λ

[
ET −G
0 FT

]
−
[
F 0
H E

]
:= λ

[
E −BR−1BT
0 (A−BR−1ST )T

]
−
[
A−BR−1ST 0
Q− SR−1ST ET

]
. (22)

When E = I, i.e.,

λÊd − Âd := λ

[
I −G
0 FT

]
−
[
F 0
H I

]
, (23)

then this pencil is a symplectic pencil [19, 33, 34], i.e., it satisfies

ÊdJ ÊTd = ÂdJ Âd. (24)

If, furthermore, E and F = A−BR−1ST are invertible, then one may transform even further and
instead solve the boundary value problem associated with the eigenvalue problem for the symplectic
matrix S = Ê−1d Âd.

As in the continuous-time case, this boundary value problem is usually solved via the computa-
tion of a deflating subspace of the associated structured pencils (20) or (22), respectively. However,
in this case the desired d-stable deflating subspace is associated with the eigenvalues inside the unit
disk.

The associated (discrete-time) algebraic Riccati equation is given by

0 =Q− SR−1ST − EX − (A−BR−1ST )TX(ET +BR−1BTX)−1(A−BR−1ST )

=H − EX − FTX(ET +GX)−1F,

and if the d-stabilizing deflating subspace of (22) (or the d-stabilizing invariant subspace of
the corresponding symplectic matrix) associated with the eigenvalues inside the unit disc is n-
dimensional and spanned by the columns of a matrix as in (11), then the unique d-stabilizing
positive semidefinite Riccati solution is given by X = −U2U

−1
1 .

For discrete-time problems, analogous results as in the continuous-time case hold when E is
singular. It has been shown in [33, Chapter 9] that the resulting discrete system again has the form
(20) just replacing every matrix by the matrices in (12) plus some extra consistency conditions
which are not relevant for the eigenvalue problem. So also in this case we may assume that E is
invertible. The case that R is singular again requires a regularization or the removal of the parts
of the system that are not impulse-controllable.

In most cases we expect n eigenvalues in the open unit disk but the case that there are
eigenvalues on the unit circle is also of practical relevance in discrete-time robust control, [44].

1.3 Solution methods

In the following we assume that the Hamiltonian matrix has exactly n eigenvalues in the open
complex left half plane (therefore due to symmetry of the spectrum of Hamiltonian matrices also n
eigenvalues in the open right half plane) and that the c-stabilizing solution to (8) exists and is
unique. However, if eigenvalues are close to the imaginary axis, then even if the solution exists and
is unique, the computation of the Riccati solution may be highly ill-conditioned.

Similarly, in the discrete-time case we assume that there are exactly n eigenvalues inside the
unit circle, and again by symmetry it follows that there are also n eigenvalues outside the unit
circle.
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The currently best methods to compute the desired stabilizing deflating subspaces for full dense
matrices of small and medium size are the structure preserving methods of [6, 15, 32]. They are
numerically backward stable and work well, whenever the Hamiltonian Schur form and hence the
unique Lagrangian subspace associated with the stable eigenvalues exists and is unique. When
there are eigenvalues close to or on the imaginary axis, then these methods perform much better
than all other currently available methods. There are analogous methods for the discrete problem
that use a palindromic formulation of the symplectic pencil, [37].

An alternative method that also shows good performance for well-conditioned small- to medium-
size problems is the structured doubling algorithm (SDA) [1, 26, 17, 16, 29, 25]. This algorithm
was originally designed as an iterative algorithm to compute the solution of algebraic Riccati
equations. It is quadratically convergent and it is based purely on matrix products and inversions,
and therefore well-suited to parallel and multi-threaded implementations. Like the Newton method
and the sign function method for the Riccati equation [4, 5, 11, 33], and it has the potential to be
used in the context of low rank approximate solutions. Furthermore, it has been shown recently in
[25] that SDA converges also in the case where a unique stabilizing solution exists but when there
are eigenvalues of H on the imaginary axis. In this case, however, the convergence rate becomes
linear instead of quadratic.

In the case in which the matrix U1 in (16) or (11) is ill-conditioned with respect to inversion,
then the corresponding Riccati solution X becomes very large; the quantities appearing in the
SDA grow as well, and ill-conditioning in the intermediate steps often leads to poor performance
of the algorithm. Unlike the Newton method, which exhibits a ’self-correcting’ behavior in many
contexts, the SDA cannot recover from an ill-conditioned intermediate step.

In this paper, we address this issue, and propose a generalization of the structured doubling
algorithm that aims to achieve more accuracy in these problematic cases, at the expense of a larger
cost per step. Numerical examples are provided that show that the new variant of the structured
doubling algorithm achieves better results on several border-line cases.

The paper is structured as follows. In Section 2 we propose a new block-swapping procedure
that is based on the pencil arithmetic of [5]. In Section 3 we present the structured doubling
algorithm as a block-swapping technique and in Section 4 we show how this approach can be
generalized to avoid certain instabilities of the standard structured doubling algorithm. Moreover,
we analyze the convergence and structure preservation properties of the new algorithm. The proof
of a technical result on the generalized SDA convergence is deferred to Appendix A. In Section 5,
we report the results of several numerical experiments that demonstrate the improvements that we
have made.

2 Block-swapping in pencil arithmetic

Pencil arithmetic [5] is a technique to extend several common matrix operations, such as matrix
sum and matrix product to matrix pencils. One of its many uses is to perform linear algebra
operations on matrices of the form E−1A, while storing and operating on the pair (E ,A). This
allows to extend such operations in a numerically stable way even to the case that E is singular or
ill-conditioned.

The basic procedure from pencil arithmetic that we exploit is the following block-swapping
procedure, see also [39].

Given two matrices E ,A ∈ R`,`, with the property that[
A
−E

]
has full column rank, determine Ẽ , Ã ∈ R`,` such that

ÃE = ẼA or
[
Ẽ Ã

] [ A
−E

]
= 0, (25)
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and Rank
[
Ẽ Ã

]
= `.

Clearly there is no unique solution to this problem. If the pair (Ẽ , Ã) is a solution, then so is

(SẼ , SÃ) for any nonsingular matrix S ∈ Rk,k.
A simple approach to make the block-swapping unique, which however fails if E is singular

or ill-conditioned, is to use (Ẽ , Ã) = (SAE−1, S) for a given fixed nonsingular matrix S. A more
robust, but also computationally more expensive choice is to compute a QR-decomposition[

A
−E

]
=

[
Q1 Q2

Q3 Q4

] [
R
0

]
and to take (Ẽ , Ã) = (QT2 , Q

T
4 ), see [5].

We have the following sufficient condition for the solvability of the block swapping problem.

Proposition 1. Let A, E ∈ R`,` be given, let M ∈ R2`,2` be a nonsingular matrix, and let

M

[
A
−E

]
=

[
X
Y

]
.

If X is nonsingular, then for any nonsingular S ∈ R`,` the pair (Ẽ , Ã) defined by[
Ẽ Ã

]
=
[
−SY X−1 S

]
M−1

is a solution to the block-swapping problem, i.e., it satisfies (25).

Proof. The result follows by direct computation.

Note that the simple approach corresponds to S = I and

M =

[
0 I`
I` 0

]
,

while the more robust approach corresponds to S = I and M = QT , with Q being the orthogonal
factor of the QR-decomposition.

We propose another approach, which allows to preserve special block structures. Partition the
matrices appearing in a block-swapping problem as

A =

[
A11 A12

A21 A22

]
, E =

[
E11 E12

E21 E22

]
, Ã =

[
Ã11 Ã12

Ã21 Ã22

]
, Ẽ =

[
Ẽ11 Ẽ12

Ẽ21 Ẽ22

]
, (26)

where A11, E11, Ã11, Ẽ11 ∈ Rn,n and the other blocks are of according sizes.

Proposition 2. Let A, E and the blocks Ẽ11, Ã12, Ẽ21, Ã22 be given. If the matrix[
−E11 −E12

A21 A22

]
(27)

is nonsingular, then Ã, Ẽ can be completed to satisfy (25) by setting[
Ã11 Ẽ12

Ã21 Ẽ22

]
=

[
Ẽ11 Ã12

Ẽ21 Ã22

] [
−A11 −A12

E21 E22

] [
−E11 −E12

A21 A22

]−1
.

Proof. To obtain the desired solution, we can either set

M =


0 0 In 0
0 I`−n 0 0
In 0 0 0
0 0 0 I`−n


7



in Proposition 1, or rewrite the block-swapping problem as

[
Ã11 Ẽ12 Ẽ11 Ã12

Ã21 Ẽ22 Ẽ21 Ã22

]
−E11 −E12

A21 A22

A11 A12

−E21 −E22

 = 0,

i.e., [
Ã11 Ẽ12

Ã21 Ẽ22

] [
−E11 −E12

A21 A22

]
=

[
Ẽ11 Ã12

Ẽ21 Ã22

] [
−A11 −A12

E21 E22

]
.

The block-swapping solution described in Proposition 2 has the same computational cost as
the simple solution (Ẽ , Ã) = (SAE−1, S), but it requires the inversion of a different matrix. Thus,
when E is singular or ill-conditioned, while (27) is not, then it is preferable to use this solution
instead.

3 Structured Doubling Algorithms

In this section we review some previous work on doubling algorithms.

3.1 The inverse-free disc function method

The inverse-free disc function method is a matrix iteration that computes two special deflating
subspaces of a matrix pencil, the d-stable deflating subspace relative to all the eigenvalues λ with
|λ| < 1 and the d-unstable deflating subspace relative to all the eigenvalues λ with |λ| > 1. It is an
algorithm of the family of doubling algorithms, first introduced and analyzed in [1] for discrete-time
algebraic Riccati equations.

To generalize the method, we make use of the following ’squaring’ result for matrix pencils.

Theorem 3 ([3, 4]). Let λE − A be a regular matrix pencil with A, E ∈ R`,`, and let (Ẽ , Ã) be a
solution of (25). Then the pencil

λẼE − ÃA (28)

is regular and has the same right deflating subspaces as λA+ E. Furthermore, the eigenvalues of
(28) are the squares of the eigenvalues of the pencil.

This result is not surprising if E is invertible, since in this case the eigenvalues and right
deflating subspaces of λE −A correspond to the eigenvalues and right invariant subspaces of E−1A.
Moreover, it is simple to check that (25) implies that

(ẼE)−1(ÃA) = (E−1A)2.

Thus, the map
S : (A, E) 7→ (ÃA, ẼE) (29)

is a way to extend the concept of squaring to matrix pencils.
If this squaring operation is repeated k times, then one obtains a pencil Sk(E ,A) with the same

deflating subspaces as λE −A, but every eigenvalue λ0 of the original pencil λE − sA is mapped to

λ2
k

0 .
In particular, eigenvalues with |λ| < 1 rapidly converge to 0, and eigenvalues with |λ| > 1

rapidly converge to ∞. Making use of this rapid convergence and some scaling to avoid overflow,
one can determine deflating subspaces of the original pencil associated with the stable (unstable)
eigenvalues by computing the deflating subspaces associated with 0 and ∞ of the pencil associated
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Algorithm 1: Inverse-free disc function method

input : A matrix pencil A0 − sE0 without unimodular eigenvalues
output: Matrices U , V whose columns form bases of the d-stable and d-unstable deflating

subspace of λE0 −A0, respectively.
k ←− 0;
while a suitable stopping criterion is not satisfied do

(Ẽk, Ãk)←− any solution of (25) for given (Ak, Ek);

Ak+1 ←− ÃkAk;

Ek+1 ←− ẼkEk;
k ←− k + 1;

end
U ←− approximate nullspace of Ak;
V ←− approximate nullspace of Ek.

with S`(A, E). This idea is the basis of the inverse-free disc function method of [4] presented in
Algorithm 1.

The numerical stability of Algorithm 1 and the speed of convergence for the sequences Ak and
Ek depend strongly on the choice of the solution of (25), the distance of the eigenvalues to the unit
circle and the angle between the d-stable and the d-unstable subspace.

3.2 The Cayley transform

To apply a the disk function method or any other doubling algorithm in the case of continuous time
optimal control problems, typically the matrix pencil is first transformed so that the eigenvalues in
the left half problem are moved into the unit disk. This can e.g. be done by the Cayley transform

Cγ : H 7→ (H− γI)−1(H+ γI),

with a given parameter γ > 0.
The following properties are well known, see e.g. [30, 31].

1. The invariant subspaces of Cγ(H) coincide with those of H.

2. The eigenvalue of Cγ(H) corresponding to an eigenvalue λ 6= γ of H is Cγ(λ) = λ+γ
λ−γ , while γ

is mapped to ∞.

3. Eigenvalues of H in the left half-plane (c-stable eigenvalues) correspond to eigenvalues of
Cγ(H) inside the unit circle (d-stable eigenvalues). In particular, the c-stabilizing invariant
subspace of H is the d-stabilizing invariant subspace of Cγ(H).

4. The Cayley transform of a Hamiltonian matrix is a symplectic matrix.

The Cayley transform can easily be extended to matrix pencils [31] as

Cγ(λE − A) = λ(A− γE)− (A+ γE);

and the properties extend to the eigenvalues and deflating subspaces of the involved pencils.

3.3 Standard structured form and structured doubling algorithm

In this section we introduce he structured doubling algorithm (SDA) [1, 16, 17, 26], a variant of the
inverse-free disc function method in which the pencils are kept in a special form which makes the
iteration cheaper and better-conditioned.
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A pencil λE − A with A, E ∈ R`,` is said to be in standard structured form (SSF) if it can be
expressed as

A =

[
K 0
−L I`−n

]
, E =

[
In −M
0 N

]
, (30)

for suitable matrices K ∈ Rn,n, L ∈ R`−n,n, M ∈ Rn,`−n, N ∈ R`−n,`−n. Note that the notation
for the blocks here is different from the customary one in the SDA literature. This is necessary to
avoid a conflict with the common notation in control theory as introduced in Section (1).

It is simple to check that if ` = n, then a pencil in SSF is symplectic if and only if K = NT ,
L = LT and M = MT . The pencil (22) is in SSF whenever E = I. Therefore, this form applies
naturally to discrete-time optimal control problems with nonsingular E. On the other hand, by
using the Cayley transform we can turn an invariant subspace problem from a continuous-time
control problem into one in the form of a discrete-time control problem. It is shown in [16] how to
turn the pencil obtained from the Cayley transform of a Hamiltonian matrix λ(H− γI)− (H+ γI)
and transform it into SSF.

With the help of Proposition 2, we can perform the squaring transformation (Ẽ , Ã) = S(E ,A)
in such a way that (Ẽ , Ã) is still in SSF. To this end, we need to determine a solution to the
swapping problem (25) that is in SSF, i.e., it has the form

Ã =

[
K̃ 0

−L̃ I`−n

]
, Ẽ =

[
In −M̃
0 Ñ

]
. (31)

This condition is equivalent to the condition[
Ẽ11 Ã12

Ẽ21 Ã22

]
= I`.

By Proposition 2 we obtain [
K̃ M̃

L̃ Ñ

]
=

[
K 0
0 N

] [
In −M
−L I`−n

]−1
,

and thus

Ã =

[
K(In −ML)−1 0

−N(I`−n − LM)−1L In

]
, Ẽ =

[
In −K(In −ML)−1M
0 N(I`−n − LM)−1

]
. (32)

The matrices of the resulting pencil λÊ − Â = S(E ,A) = ÃA − sẼE are still in SSF, and are given
by

Â =

[
K(In −ML)−1K 0

−(L+N(I`−n − LM)−1LK) I`−n

]
,

Ê =

[
In −(M +K(In −ML)−1MN)
0 N(I`−n − LM)−1N

]
.

(33)

Theoretically, the only hypothesis required to carry out these operations is that the matrices
I −ML and I − LM are nonsingular, and actually they are nonsingular simultaneously.

Proposition 4. Let L ∈ Rn,m, M ∈ Rn,m. Then In −ML is nonsingular if and only if Im −LM
is nonsingular.

Proof. It is a basic fact in linear algebra, see e.g. [24, Chapter 4] that the two products LM and
ML have the same spectrum, except for the zero eigenvalues. In particular, ML has the eigenvalue
1 if and only if LM does.

If we apply this doubling transformation repeatedly, then we expect the blocks K, N to converge
to 0 and the right nullspaces of the limiting matrices to converge to the graph subspaces[

In
L∞

]
,

[
M∞
I`−n

]
, (34)

10



respectively, which in the case of problems arising from optimal control are associated with solutions
to algebraic Riccati equations given by L∞,M∞.

Algorithm 2 implements this variant of the inverse-free disc method (Algorithm 1) by updating
directly the blocks of the involved matrices. If no further properties of the blocks in Algorithm 2

Algorithm 2: Structured Doubling Algorithm

input : K0, N0, M0, L0 defining a pencil in standard structured form
output: L∞,M∞ so that the subspaces in (34) are respectively the canonical semi-d-stable

and semi-d-unstable deflating subspaces of the given pencil
k ←− 0;
while a suitable stopping criterion is not satisfied do

K̃k ←− Kk(In −MkLk)−1;

Ñk ←− Nk(I`−n − LkMk)−1;

Mk+1 ←−Mk + K̃kMkNk;

Lk+1 ←− Lk + ÑkLkKk;

Kk+1 ←− K̃kKk;

Nk+1 ←− ÑkNk;
k ←− k + 1.

end
L∞ =Lk;
M∞ =Mk.

are assumed, then each step of the algorithm costs 14
3 `

3 − 8`n(` − n) floating point operations.
This amounts to 64

3 n
3 operations in the case ` = 2n.

3.4 Convergence Analysis

To analyze whether Algorithm 2 is well defined, we apply the following result, where for symmetric
matrices M,L ∈ Rn,n, we write M ≥ L (M > L) if M − L is positive semidefinite (positive
definite).

Theorem 5 ([29]). Consider a pencil in standard structured form with `− n = n, M0 = MT
0 ≥ 0,

L0 = LT0 ≤ 0, and K = NT . If we apply Algorithm 2 to this pencil, then I − LkMk and I −MkLk
are nonsingular at every step and the factors satisfy

0 ≤M0 ≤M1 ≤ · · · ≤Mk ≤ · · · ≤M∞,
0 ≥ L0 ≥ L1 ≥ · · · ≥ Lk ≥ · · · ≥ L∞.

(35)

In the case of symplectic matrices arising in control theory, the assumptions of this theorem are
typically satisfied, [33], so that every step of Algorithm 2 is well-defined. However, the doubling
algorithm is also applied in cases when −L0 and M0 are not symmetric positive semidefinite [25].
In this case, the algorithm may break down when I − LkMk becomes singular or ill-conditioned at
some step of the algorithm.

It was recently proved in [25] that Algorithm 2 converges even in the presence of unimodular
eigenvalues, when a special condition on the unimodular Jordan chains holds. For this result, we
need a little more notation.

An `× ` pencil is called weakly d-split if there is an integer 0 ≤ r ≤ ` such that

• the sum of all partial multiplicities associated with the d-stable eigenvalues is `− r;

• the sum of all partial multiplicities associated with d-unstable eigenvalues is `− r;

• the partial multiplicities 2rj of all d-critical (unimodular) eigenvalues are all even (and they
sum up to 2r if the two previous properties hold).

11



The canonical d-semi-stable subspace of a matrix pencil is then the deflating subspace spanned
by all eigenvectors and generalized eigenvectors (Jordan chains) associated with the d-stable
eigenvalues and by the first rj vectors of any Jordan chain of size 2rj associated with a critical
eigenvalue. The canonical d-semi-unstable subspace is defined analogously. In the context of
standard control problems (E = I), the canonical d-semi-unstable and d-semi-stable subspaces are
the (unique) Lagrangian ones, see e.g. [28].

Theorem 6 ([25]). Consider Algorithm 2 applied to a weakly d-split pencil in the form (30).
Suppose that there is no breakdown, and that there exist matrices M∞ ∈ Rn,m, L∞ ∈ Rm,n such that
the columns of the matrices in (34) span a canonical d-semi-stable and d-semi-unstable deflating
subspace, respectively. Then, the following asymptotic bounds hold for k →∞.

1. ‖Kk‖ = O(2−k),

2. ‖Nk‖ = O(2−k),

3. ‖Lk − L∞‖ = O(2−k),

4. ‖Mk −M∞‖ = O(2−k).

Moreover, if the pencil has no unimodular eigenvalues, then the convergence is quadratic, and in

particular in parts 3. and 4., the term O(2−k) can be replaced with O(ν2
k

), with

ν =
|λs|
|λu|

,

where λs is a d-stable eigenvalue of maximal modulus, and λu a d-unstable eigenvalue of minimal
modulus.

Algorithm 2 has very nice convergence properties but it is clear that the convergence is slow
whenever there are eigenvalues on or close to the unit circle. Furthermore, the algorithm makes
the strong assumption that the d-semi-stable and d-semi-unstable deflating subspaces have a
representation as graph subspaces (34), which as we have already noted in the applications from
control theory may not be the case, or even if so then this representation may be very ill-conditioned
to compute. Then the SDA algorithm is expected to perform badly, as we demonstrate in the
numerical section below.

4 Generalized SDA

In this section we construct a variant of Algorithm 2 in which we drop the requirement that the
desired invariant subspaces are graph subspaces; i.e., that there are always two identity blocks in
(30). This not only allows the treatment of problems where in the limiting deflating subspace one
or both of the blocks L∞,M∞ become singular, but it also allows to treat the case of singular E
as well.

To this aim, we relax the assumptions on the standard structured form, and we work with
pencils in the form

A =

[
K 0
L(1) L(2)

]
, E =

[
M (1) M (2)

0 N

]
, (36)

which we call weak standard structured form (WSSF). Unlike the standard structured form, there
is no unique WSSF pencil that is equivalent to a given regular pencil under left-multiplication by
an invertible matrix. In fact, we can left-multiply both A and E by any matrix in the form[

S(1) 0
0 S(2)

]
without altering the WSSF or the right deflating subspaces. Thus, a normalization is needed to
make the representation unique. The choice of such a normalization and its consequences are
discussed in the following sections.
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4.1 Transforming continuous- to discrete-time problems

As the SDA, our algorithm operates on a pencil arising from the discrete-time setting and the
Cayley transform can be used to obtain a discrete-time problem from a continuous-time one. It is
shown in [16] how to transform the Cayley transform of a Hamiltonian matrix (7) to a SSF pencil,
to which SDA can be applied. However, this approach relies heavily on the symplectic structure
and does not generalize immediately to the case in which E is singular. Furthermore, even when
we can obtain a factorization to SSF, in the resulting pencil the blocks L(1) and M (2) are in general
not symmetric. Thus we do not obtain a complete analogy with (23) and the obtained algorithm
is not completely structure-preserving. Instead, we may apply techniques introduced in [41, 42]
directly on the unreduced pencil (4). Let us briefly review these results.

Theorem 7 ([41, 42]). Let Ec, Ac, Bc, Qc, Sc, Rc define a continuous-time optimal control problem
(4), and let a corresponding discrete-time problem Ed, Ad, Bd, Qd, Sd, Rd be defined by[

Ed 0
Ad Bd

]
=

√
2

2

[
Ec −Ac −Bc
Ec +Ac Bc

]
W,[

Qd Sd
S∗d Rd

]
=W∗

[
Qc Sc
S∗c Rc

]
W,

where W ∈ Cn+r,n+r is any nonsingular matrix such that
[
Ec −Ac −Bc

]
W =

[
Ed 0

]
holds

(for instance, we may perform a block LQ or LU factorization). If

Ud =

[
U1

U2

]
is a deflating subspace for the discrete-time problem (20) (with all the terms subscripted with d)
whose associated eigenvalues are not −1 nor ∞, then we have EdUdTd = AdUd for some matrix
Td, and

Uc

[
U1(I + Td)
W−1U2

]
is a deflating subspace for the continuous-time problem (4) (with all the terms subscripted by c)
such that EcUcTc = AcUc, and Tc = (Td − I)(Td + I)−1 is the inverse Cayley transform of Td. In
particular, the (canonical) d-semi-stable deflating subspace of the discrete-time problem corresponds
to the (canonical) d-semi-stable subspace of the continuous one.

By preprocessing the problem in a suitable way, it is possible to ensure that the condition on
the eigenvalues of the deflating subspace (λ 6= −1,∞) is satisfied [42, Section 6], although this may
require using complex arithmetics even for a real problem.

4.2 Derivation of a generalized structured doubling algorithm

By modifying the derivation of the structured doubling algorithm, we can derive a similar algorithm
which maintains only the more general WSSF along the iterates. If we impose that[

Ẽ11 Ã12

Ẽ21 Ã22

]
= I`, (37)

then Theorem 2 yields [
K̃ M̃

L̃ Ñ

]
=

[
K 0
0 N

] [
M (1) −M (2)

−L(1) L(2)

]−1
.

Thus, setting [
M (1) −M (2)

−L(1) L(2)

]−1
=:

[
Z11 Z12

Z21 Z22

]
, (38)
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we obtain an analogue of (33)

Â =

[
KZ11K 0

L(1) +NZ21K L(2)

]
, Ê =

[
M (1) M (2) +KZ12N

0 NZ22N

]
. (39)

Remark 8. Note that the update relation (39) fits well to the freedom in the normalization in the
WSSF. In fact, if we start with a WSSF with a different normalization[

S(1) 0
0 S(2)

]
A =

[
S(1) 0

0 S2

] [
K 0
L(1) L(2)

]
,[

S(1) 0
0 S(2)

]
E =

[
S(1) 0

0 S(2)

] [
M (1) M (2)

0 N

]
,

then following the same steps we get to[
S(1) 0

0 S(2)

]
Â,
[
S(1) 0

0 S(2)

]
Ê . (40)

Similarly, if we replace (37) with the more general form[
Ẽ11 Ã12

Ẽ21 Ã22

]
=

[
S(1) 0

0 S(2)

]
,

then the introduced multiplicative factors can be factored out as in (40).

Therefore, changing the normalization factors before the procedure or introducing a new degree
of freedom in (37) is equivalent to carrying out the pencil squaring procedure and normalizing only
after the iteration step.

By iterating the pencil transformation as described, we get the following generalized structured
doubling (gSDA) Algorithm 3. For the sake of brevity, in the algorithm and the following analysis,
we set

Lk :=
[
L
(1)
k L

(2)
k

]
, Mk :=

[
M

(1)
k M

(2)
k

]
.

The iterated application of Remark 8 leads to an observation that is useful in the theoretical
analysis.

Remark 9. Let Ak − zEk and A′k − zE ′k, for k = 0, 1, 2, . . . be two sequences obtained with

Algorithm 3, the former with normalization factors S
(1)
k , S

(2)
k and the latter with S′

(1)
k , S′

(2)
k . Then

for each k = 0, 1, 2, . . .

A′k − zE ′k =

[
Σ

(1)
k 0

0 Σ
(2)
k

]
(Ak − zEk),

with

Σ
(i)
k = S′

(i)
k

(
S
(i)
k

)−1
S′

(i)
k−1

(
S
(i)
k−1

)−1
· · ·S′(i)0

(
S
(i)
0

)−1
, i = 1, 2.

A natural choice for the normalization factors is choosing them so that LTk+1 and MT
k+1 are

orthogonal. With this choice we then obtain Algorithm 4.

4.3 Applicability of the generalized structured doubling algorithm

As in the standard SDA, we need to ensure that the matrix to invert in (38) is nonsingular.
When E = I, then SDA and gSDA differ only by a (nonsingular) normalization factor. In view
of Remark 9, the nonsingularity of this matrix is therefore equivalent to the nonsingularity of
I −MkLk in SDA, which can often be ensured (see e.g. Theorem 5).

In the case that E is singular, then without a proper regularization (see Section 1) it cannot be
ensured that the algorithm can be carried out without breakdown.
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Algorithm 3: gSDA

input : K0, L0, M0, N0 defining a pencil in SSF
output: U ,V spanning respectively the canonical d-semi-stable and d-semi-unstable subspace
k ←− 0;
while a suitable stopping criterion is not satisfied do[

Z11 Z12

Z21 Z22

]
←−

[
M

(1)
k −M (2)

k

−L(1)
k L

(2)
k

]−1
;

M
(1)

k+ 1
2

←−M (1)
k ;

M
(2)

k+ 1
2

←−M (2)
k +KkZ12Nk;

L
(1)

k+ 1
2

←− L(1)
k +NkZ21Kk;

L
(2)

k+ 1
2

←− L(2)
k ;

Kk+ 1
2
←− KkZ11Kk;

Nk+ 1
2
←− NkZ22Nk.

Choose suitable nonsingular normalization factors S
(1)
k ∈ Rn,n, S

(2)
k ∈ R`−n,`−n;

Mk+1 ←− S(1)
k Mk+ 1

2
;

Lk+1 ←− S(2)
k Lk+ 1

2
;

Kk+1 ←− S(1)
k Kk+ 1

2
;

Nk+1 ←− S(2)
k Nk+ 1

2
;

k ←− k + 1;
end
U ←− nullLk;
V ←− nullMk.

4.4 Convergence of the generalized structured doubling algorithm

The following theorem generalizes the convergence results of the structured doubling algorithm
given in [14, 25].

Theorem 10. Suppose that Algorithm 3 can be applied with no breakdown to a weakly d-split

starting pencil, and that the normalization factors S
(i)
k are chosen in any way such that ‖Lk‖ and

‖Mk‖ are bounded. Moreover, let

U =

[
U (1)

U (2)

]
∈ R`,n, V =

[
V (1)

V (2)

]
∈ R`,`−n

be any two matrices spanning the canonical d-semi-stable and d-semi-unstable subspaces of the
initial pencil (30), respectively. Then, the following implications hold.

1. if U (1) is nonsingular, then ‖Kk‖ = O(2−k);

2. if ‖Kk‖ = O(2−k), then ‖MkV ‖ = O(2−k);

3. if V (2) is nonsingular, then ‖Nk‖ = O(2−k);

4. if ‖Nk‖ = O(2−k), then ‖LkU‖ = O(2−k);

If the pencil has no eigenvalues of modulus 1, then the convergence is quadratic, and in particular

‖MkV ‖ = O

((
|λs|
|λu|

)2k
)
, ‖LkU‖ = O

((
|λs|
|λu|

)2k
)
,

where λs is a stable eigenvalue of maximal modulus, and λu is an unstable eigenvalue of minimal
modulus.
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Algorithm 4: gSDA with orthonormalization

input : K0, L0, M0, N0 defining a pencil in SSF
output: U ,V spanning respectively the canonical d-semi-stable and d-semi-unstable subspace
k ←− 0;
while a suitable stopping criterion is not satisfied do[

Z11 Z12

Z21 Z22

]
←−

[
M

(1)
k −M (2)

k

−L(1)
k L

(2)
k

]−1
;

M
(1)

k+ 1
2

←−M (1)
k ;

M
(2)

k+ 1
2

←−M (2)
k +KkZ12Nk;

L
(1)

k+ 1
2

←− L(1)
k +NkZ21Kk;

L
(2)

k+ 1
2

←− L(2)
k ;

Kk+ 1
2
←− KkZ11Kk;

Nk+ 1
2
←− NkZ22Nk;

[QL, RL]←− qr(Lk+ 1
2

T );

Lk+1 ←− QTL;
Nk+1 ←− R−TL Nk+ 1

2
;

[QM, RM]←− qr(Mk+ 1
2

T );

Mk+1 ←− QTM;
Kk+1 ←− R−TM Kk+ 1

2
;

Nk+1 ←− S(2)
k Nk+ 1

2
;

k ←− k + 1;
end
U ←− nullLk;
V ←− nullMk.

Proof. Since the proof is rather technical, we present it in Appendix A.

Theorem 10 is somewhat unsatisfactory from our point of view. While the boundedness of the
blocks Lk and Mk can be achieved with a suitable normalization, the hypothesis that U (1) and
V (2) are invertible may not be easily available, with a consequence that we have convergence to a
wrong subspace as the following example shows.

Example 11. Consider the pencil

λE − A = λ

[
1 0
0 λ0

]
−
[
λ0 0
0 1

]
. (41)

for λ0 > 1, for which Kk = Nk = λ2
k

,Mk =
[
1 0

]
and Lk =

[
0 1

]
. Here nullL is the d-unstable

deflating subspace and nullM is the d-stable one, exactly the opposite of what we want to achieve.
It is clear that in this example a simple permutation similarity solves the problem.

In fact, it is easy to understand the problem with the choice of the initial pencil and to
provide a fix. For this, consider the (orthogonal) subspace iteration [23, section 7.3], which for
a matrix T ∈ Rn,n is as follows. Starting from an initial subspace W0 = SpanW0 one iterates
the transformation Wk+1 = TWk, and orthogonalizes the columns of Wk in order to maintain a
numerically stable basis for Wk = SpanWk. If w = dimW0, and if the w dominant eigenvalues
of T can be identified (i.e., if we order the eigenvalues of T so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, then
we must have |λw| > |λw+1|), and Wk converges linearly to the invariant subspace relative to
λ1, λ2, . . . , λw. However, if the columns of the starting matrix already span an invariant subspace
associated with some undesired eigenvalues then clearly the subspace iteration method cannot
converge. The same analysis applied to the generalized structured doubling algorithm shows that in
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an ’unlucky’ situation the columns of our starting matrix may be contained in a deflating subspace.
In general, however, this is unlikely if random starting matrices are used. If however, the starting
matrices are close to such a bad situation, then we can expect slow convergence in the beginning
until the algorithm has overcome this problem.

In order to see what we need to start the algorithm in an appropriate way, consider the following
result.

Theorem 12. Suppose that both E0 and A0 are nonsingular and form the nonsingular matrix
T = E−10 A0. Then, in the generalized structured doubling algorithm we have that

• nullLk coincides with the subspace obtained by applying 2k steps of orthogonal subspace
iteration to T −1, starting with W0 = [In 0]T ∈ R`,n;

• nullMk coincides with the subspace obtained by applying 2k steps of orthogonal subspace
iteration to T , starting with W0 = [0 I`−n]T ∈ R`,`−n.

Proof. Let Uk ∈ R`,n, Vk ∈ R`,`−n be such that SpanUk = nullLk, SpanVk = nullMk, and let

Uk =

[
U

(1)
k

U
(2)
k

]
.

Then,

M2kUk =(E−10 A0)2
k

Uk = (E−1k Ak)Uk =

[
M

(1)
k M

(2)
k

0 Nk

]−1 [
Kk 0

L
(1)
k L

(2)
k

]
Uk

=

[
M

(1)
k M

(2)
k

0 Nk

]−1 [
KkU

(1)
k

0

]
=

[(
M

(1)
k

)−1
KkU

(1)
k

0

]
⊆ Span

[
In
0

]
.

A similar argument starting from T −2kV0 yields the second part.

Theorem 12 can be used to give a more direct proof of Theorem 10 in the special case that
the nonsingularity assumptions hold, by considering the behavior of the subspace iteration for
λw = λw+1 in the presence of nontrivial Jordan blocks. The nonsingularity assumption, however,
are what we wanted to avoid.

It is a well established fact [40] that the presence of rounding errors (by destroying certain
Jordan blocks) is usually beneficial for the subspace iteration, as it often makes the method
converge to the correct subspace even if the starting subspace is deficient in the directions of some
of the leading (generalized) eigenvectors. Something similar happens with the SDA. When U (1) is
singular, then the starting subspace U0 and U are not in generic position (as can easily be checked
by computing UTU0), but generically this exact orthogonality is lost in finite precision arithmetic.
The computational results in Section 5 illustrate this. In view of Theorem 10, convergence to the
correct subspace happens if Kk and Nk converge to zero, so this provides a practical criterion to
check whether this effect has happened.

4.5 Structure preservation

We have introduced the generalized SDA in its most general form, in which no further structure
is imposed on the blocks, as it may turn out useful in other contexts, e.g. [14]. However, in
the pencils arising from optimal control, there is further structure to exploit. As we have shown
in Section 1, in the context of discrete-time optimal control we obtain BVD-pencils or reduced
BVD-pencils. Let us consider now a reduced BVD-pencils in WSSF with a matrix E ∈ Rn,n that

may be singular or nonsingular. We call this an E-BVD pencil if `− n = n, M (1) =
(
L(2)

)T
= E,

N = KT , M (2) =
(
M (2)

)T
, L(1) =

(
L(1)

)T
. Note that when E = I then the pencil is symplectic.

We then have the following result.
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Proposition 13. Consider the generalized structured doubling algorithm applied to an E-BVD
starting pencil.

• If the normalization factors S
(1)
k = S

(2)
k = I are used, then at every step of the iteration the

resulting pencil is E-BVD.

• At every step of the iteration, there exists a nonsingular normalization matrix[
Σ

(1)
k 0

0 Σ
(2)
k

]
(42)

(with blocks of conformal size) such that a left multiplication by this matrix yields an E-BVD
pencil.

Proof. The first part is easily shown by induction, by noticing that([
M

(2)
k −M (1)

k

−L(2)
k L

(1)
k

])−1
=

[
Z21 Z22

Z11 Z12

]
(43)

is symmetric. The second part follows directly from Remark 9.

We also have a monotonicity result that generalizes Theorem 5.

Theorem 14. Suppose that the gSDA is applied to an E-BVD starting pencil, with M
(2)
0 ≤ 0 and

L
(1)
0 ≥ 0. If the normalization factors are identities, then 0 ≤ L(1)

0 ≤ L(1)
1 ≤ · · · ≤ L(1)

k ≤ · · · and

0 ≥M (2)
0 ≥M (2)

1 ≥ · · · ≥M (2)
k ≥ · · · , i.e., the entries in the two blocks converge monotonically.

Proof. We prove by induction that L
(1)
k ≤ L

(1)
k+1. For every λ > 0, the (1, 1) block of the inverse of[

M
(2)
k −M (1)

k

−L(2)
k L

(1)
k

]
+ λ

[
−In 0

0 In

]

satisfies (L
(1)
k + λI − ET (M

(2)
k − λI)−1E)−1 > 0. Thus, its limit Z21 is positive semidefinite, and

hence L
(1)
k+1 − L

(1)
k = NkZ21N

T
k ≥ 0. The second part is proved analogously.

4.6 The symplectic case

In the case that E = I, the starting pencil is symplectic, i.e., K0 = NT
0 , M

(2)
0 =

(
M

(2)
0

)T
,

L
(1)
0 =

(
L
(1)
0

)T
, M (1) = L(2) = I. In this case, if we choose the normalization S(1) = S(2) = I,

then the traditional SDA coincides with the gSDA and it preserves the symplectic structure of the
pencil at every step. In this case, Algorithm 2 can be slightly simplified, since there is no need to
compute Kk+1 and Nk+1 separately, nor to invert both I −MkLk and I − LkMk, as the second
matrix of both pairs is the transpose of the first.

The following result shows what happens to the symplectic structure under the gSDA.

Theorem 15. When Algorithm 3 is applied to a symplectic pencil, then for every k we have that

LTk and MT
k are Lagrangian subspaces, i.e., L

(2)
k L

(1)
k

T
= L

(1)
k L

(2)
k

T
and M

(2)
k M

(1)
k

T
= M

(1)
k M

(2)
k

T
.

Moreover, L
(2)
k KT

k = NkM
(1)
k

T
.

Proof. By Remark 9, Algorithm 3 differs from traditional SDA (Algorithm 2) only by a normalization

factor in the form (42). Direct inspection of the blocks shows that these factors must be Σ
(1)
k =

M
(1)
k

−1
and Σ

(2)
k = L

(2)
k

−1
. Since in the traditional SDA Kk = NT

k , we get
(
M

(1)
k

−1
Kk

)T
=
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L
(2)
k

−1
Nk, i.e., L

(2)
k KT

k = NkM
(1)
k

T
. Moreover, this normalization corresponds to choosing new

bases for the subspaces LTk andMT
k , without changing the subspaces themselves. Using the iterates

of traditional SDA, it is easy to check that the subspaces spanned by
[
Lk Im

]T
and

[
In Mk

]T
are Lagrangian, as this corresponds to Lk and Mk being Hermitian. Since being Lagrangian is a
property of the subspace, independent of the choice of basis, this also holds for Algorithm 3.

The preservation of structure can be exploited in Algorithm 3 to perform a faster (and structured)
matrix inversion in (38). Indeed, one sees that[

M (1) −M (2)

−L(1) L(2)

]−1
=

[
(L(2))T (M (2))T

(L(1))T (M (1))T

]T [
R−1 0

0 −RT
]
,

with R = M (1)L(2)T −M (2)L(1)T . The final step can be simplified as well, since nullL = JLT .
On the other hand, the normalization choice suggested in Algorithm 3 of using a QR-factorization

of LTk and MT
k ) does not guarantee that Nk = KT

k , which would be useful to reduce the computa-
tional costs and ensure structure preservation. Ideally, we would like the following properties to
hold at the same time.

P1. Nk = KT
k for each k,

P2. Lk and Mk have orthonormal rows.

In fact, the following results show that in general this is not possible.

Proposition 16. There are no normalization factors S
(1)
k and S

(2)
k in Algorithm 3 ensuring that

for all possible starting pencils (30) P1 and P2 hold.

Proof. The condition Nk = KT
k means that we must choose S

(2)
k = S

(1)
k

T
= Sk at each k. If this

and property P2 would hold at the same time, then SkLk+ 1
2
LT
k+ 1

2

STk = STkMk+ 1
2
MT

k+ 1
2

Sk = I,

i.e., Lk+ 1
2
LT
k+ 1

2

= S−1k S−Tk and Mk+ 1
2
MT

k+ 1
2

= S−Tk S−1k . This would imply that Lk+ 1
2
LT
k+ 1

2

and

Mk+ 1
2
MT

k+ 1
2

have the same eigenvalues, but this does not hold in general.

So we cannot expect to have properties P1 and P2 at the same time. Asking for P1 yields
the traditional SDA, or in general algorithms that tend to have convergence problems in the case
where U (1) and V (2) are close to singular. Requiring property P2 yields Algorithm 3, which (as
our experiments illustrate) performs better for this class of problems.

5 Numerical experiments

The examples in the benchmark suites carex [8] and darex [9] are designed for the solution of Riccati
equations, i.e., in our language, they assume nonsingular U (1) and V (2) blocks from the beginning.
In order to generate examples with numerically singular U (1) and V (2), we chose problems in carex
and considered the optimal control problem with Hamiltonian matrix −H instead of H. This has
the effect of switching the c-stable and the c-unstable subspace, i.e., swapping U (1), V (2) with
V (1), U (2), respectively. In this way the original carex problems with a singular solution X are
transformed into problems for which V (2) is numerically singular. As we see, several of these
problems, which are nonetheless well-posed optimal control problems, lead to convergence failure
or large errors in the SDA.

For each problem in carex (after the sign switch of the Hamiltonian), we computed the canonical
c-semi-stable and c-semi-unstable invariant subspace U and V , respectively, with both the SDA
and the gSDA. To analyze and compare the quality of the results we can use different measures.

The angle between subspaces is defined by θ(U ,V) = ‖PU − PV‖ , with PU and PV being the
orthogonal projectors on U and V respectively, and ‖·‖ denoting the matrix norm induced by the
Euclidean norm, see e.g. [22]. Then, for the error in the gap metric θ(U ,HU), Figure 1 displays
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Figure 1: Invariant subspace residual (in the gap metric) for the examples in carex
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7

max(θ(U ,HU), θ(V,HV)) for all the problems in the carex benchmark set. In the case of parametric
problems, the default values are chosen. A Cayley transform with parameter γ = 1 was chosen to
transform the pencils to symplectic SSF, the only exception being Problem 15. for which γ = 2
is used, since the SSF for the pencil with γ = 1 does not exist. For Problem 2. and 7., the SDA
failed to converge, while the gSDA converged, though with bad accuracy for Problem 2. For several
problems in the set the gSDA was significantly more accurate than the SDA; on the other hand,
for some problems the SDA achieved marginally better result (no more than 1 significant digit,
two only for Problem 10.).

According to [8, table 1], carex Problems 2., 6., 15., 17. and 18. have a solution X̂ that is
exactly singular, implying that V (2) is singular. For these problems we expect ill-conditioning in
our modified problems. Problems 7. and 20. are severely ill-conditioned as well.

To compare the results with the structure preserving Hamiltonian Schur algorithms, [15, 32],
we also display in Figure 2 the relative invariant subspace residual

‖(I − UUT )HU‖F
‖H‖F

,

where ‖·‖F denotes the Frobenius norm. We point out that, unlike SDA and gSDA, the Hamiltonian
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Figure 2: Invariant subspace residual for the examples in carex
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Schur algorithms are not affected by the sign change in the Hamiltonian, and produce exactly
the same invariant subspaces, apart from the small errors caused by the eigenvalue-swapping
subroutines after the reduction to Schur form. Therefore, we may use the figures in [15] in our
comparison: for the default values, the Hamiltonian Schur algorithm achieves a relative residual of
10−15 or better in all cases. This accuracy is not reached in all cases with the generalized structured
doubling algorithm gSDA. There may be several reasons for this, but the major difficulty is that
the Cayley transform introduces errors in the data to which the method is applied, while the Schur
methods work directly on the Hamiltonian data. This is particularly bad when the problem has
eigenvalues near the shift-point of the Cayley transform.

5.1 Convergence history

To provide some insight on the reason for the potential instability remaining in both methods,
it is interesting to study the convergence history of the two methods on some of the problems
where the block V (2) is singular. In Tables 1 and 2 we display the norms of Kk for both
methods at each iteration. For gSDA, the norm of Nk is displayed as well (for the SDA we
have Kk = NT

k , thus the two norms coincide). For the SDA, the column labeled cond. displays
max(cond(I −MkLk), cond(I − LkMk)); for gSDA, it displays max(cond(RLT

k
), cond(RMT

k
)); i.e.,
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in both cases the maximum condition number among any of the matrices to invert during the
iteration.

For Problem 2., numerical errors in the SDA do not alter the singularity of the V (2) block,
thus the algorithm diverges with a behavior similar to that of (41): nullLk contains a basis for
the unstable subspace at each step, thus the repeated doubling takes Kk to ∞ instead of to 0. In
the gSDA, a similar behavior appears until in step 5 the inversion of an ill-conditioned matrix
completely destroys the initial data. The method eventually converges, but to a solution bearing
little resemblance to the correct one. Similar behavior arises in Problem 6., where in both methods
the growth of Kk and Nk leads to ill-conditioning in an intermediate matrix and complete loss of
accuracy. For Problems 15. and 17., the growth in the gSDA is much milder than the one in the
SDA, thus the gSDA is able to obtain a meaningful result.

6 Conclusions

The proposed generalization of the structured doubling algorithm represents a compromise between
row orthogonality of the blocks in the iterates, as in the inverse-free disc method, and symplectic
structure preservation and numerical efficiency, as in the customary structured doubling algorithm.

The generalized framework allows to construct different variants, based on different choices of

the normalization factors S
(1)
k and S

(2)
k .

Many of the problems included in the benchmark set carex are problematic for most algorithms
to solve Riccati equations. Although our generalization of the structured doubling algorithm cannot
handle all of them in a fully satisfactory way, it obtains much better accuracy on a large subset of
them. In some cases, a temporary growth of the matrices Kk and Nk during the intermediate steps
is detrimental for the accuracy. Though this algorithm cannot be considered a definitive choice
for all small- to medium-size control problems, it represents an improvement over the customary
structured doubling algorithm and suggests new generalizations and research directions.
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A Proof of Theorem 10

Proof. Suppose that there are s Jordan blocks relative to unimodular eigenvalues, each with
eigenvalue ωj of multiplicity 2rj , j = 1, . . . , s. We partition them as

Jωj ,2rj =

[
Jωj ,rj Γ(j)

0 Jωj ,rj

]
,

where Jω,rj is a Jordan block with the same eigenvalue and half the algebraic multiplicity, and Γ(j)

is the rj × rj matrix having 1 in the lower-left corner and 0 elsewhere. Constructing the matrices

Jc =

s⊕
j=1

Jωj ,rj , Γ =

s⊕
j=1

Γ(j);

it is clear that

J1 :=

[
Jc Γ
0 Jc

]
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is similar to
⊕s

j=1 Jωj ,2rj , since they differ only by the same row and column exchanges. Let Γk

be defined so that J2k

1 is partitioned as

J2k

1 =

[
J2k

c Γk
0 J2k

c

]
.

It is proved in [25, Lemma 4.4] that Γk is nonsingular for sufficiently large k, and

Γ−1k J2k

c = O(2−k), J2k

c Γ−1k J2k

c = O(2−k). (44)

If we start from the Kronecker canonical from of λE −A, then after some row exchanges we get to

W(λE − A)Z = λ

[
I 0
0 Eu ⊕ I

]
−
[
Js ⊕ Jc 0⊕ Γ

0 Ju ⊕ Jc

]
=: λK1 −K2,

where the matrices are chosen such that λI − Js is the Kronecker structure relative to the n− r
d-stable eigenvalues, λEu − Ju is the Kronecker structure relative to the ` − n − r d-unstable
eigenvalues (including eigenvalues at infinity if needed). Note that the canonical semi-stable
subspace of λE − A is spanned by[

Z11

Z21

]
, where Z =

[
Z11 Z12

Z21 Z22

]
,

and therefore Z11 is nonsingular if and only if U (1) is.
Since the two matrices K1 and K2 commute, it follows by induction as in [14, Section 2.3] that

AkZK2k

1 = EkZK2k

2 . (45)

Note that

K2k

1 =

[
I 0

0 E2k

u ⊕ I

]
, K2k

2 =

[
J2k

s ⊕ J2k

c 0⊕ Γk
0 J2k

u ⊕ J2k

c

]
.

Multiplying both terms of (45) by
[
In 0n×m

]
on the left and[
In

0⊕−Γ−1k J2k

c

]
(46)

on the right, we get

Kk

(
Z11 − Z12(0⊕ Γ−1k J2k

c )
)

=MkZ

[
J2k

s ⊕ 0

0⊕−J2k

c Γ−1k J2k

c

]
.

SinceMk is bounded and J2k

s decreases exponentially with k, using (44) we see that the right-hand
side is O(2−k). Hence, if Z11 (or, equivalently, U (1)) is nonsingular, then we obtain Kk = O(2−k).

The eigenvalues of the pencil λA− E are the inverses of those of λE −A, with the same partial
multiplicities; thus its Kronecker canonical form can be written in the form

Ŵ(λA− E)Ẑ = λ

[
I 0

0 Êu ⊕ I

]
−

[
Ĵs ⊕ Ĵc 0⊕ Γ̂

0 Ĵu ⊕ Ĵc

]
=: λK̂1 − K̂2,

where λI − Ĵs is stable and its eigenvalues are the inverses of the d-unstable eigenvalues of λE −A
(including ∞−1 = 0 if needed), with the same partial multiplicity.

Note that the canonical d-semi-unstable subspace of λE − A is spanned by[
Ẑ11

Ẑ21

]
,where Ẑ =

[
Ẑ11 Ẑ12

Ẑ21 Ẑ22

]
,

23



and hence Ẑ21 is nonsingular if and only if V (2) is. Proceeding in the same way, we obtain

EkẐK̂2k

1 = AkẐK̂2k

2 , (47)

and multiplying by
[
0`−n×n I`−n

]
on the left and the matrix in (46) on the right, we get

Nk

(
Ẑ21 − Ẑ22(0⊕ Γ̂−1k Ĵ2k

c )
)

= LkẐ

[
Ĵ2k

s ⊕ 0

0⊕−Ĵ2k

c Γ̂−1k Ĵ2k

c

]
,

and thus the nonsingularity of V (2) implies Nk = O(2−k).
Multiplying (45) by

[
0`−n×n I`−n

]
on the left and the matrix in (46) on the right, we get

Lk
[
Z11

Z21

]
−Hk

[
Z12

Z22

]
(0⊕ Γ−1k J2k

c ) = NkZ

[
J2k

s ⊕ 0

0⊕−J2k

c Γ−1k J2k

c

]
, (48)

and thus if Nk = O(2k), then all terms apart from the first are O(2k) and it follows that

Lk
[
Z11

Z21

]
= O(2k).

Similarly, multiplying (47) by
[
In 0n×`−n

]
and (46) yields

Mk

[
Ẑ11

Ẑ21

]
= O(2k).

If there are no d-critical eigenvalues, then the second terms in all the expressions containing a ⊕
sign vanish, and one sees that the convergence speed is determined only by ρ(J2k

s ) = |λs|2
k

and

ρ(Ĵ2k

s ) = |λu|−2
k

.
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Table 1: Convergence history for the SDA (left) and the gSDA (right)

(a) carex Problem 2.

k ‖Kk‖ cond.
1 4.57e+01 2.20e+00
2 4.13e+02 2.20e+00
3 3.35e+04 2.20e+00
4 2.19e+08 1.30e+00
5 8.49e+15 1.60e+16
6 4.54e+01 Inf

k ‖Kk‖ ‖Nk‖ cond.
1 3.57e+01 1.22e+01 5.47e+00
2 3.22e+02 1.10e+02 1.00e+00
3 2.61e+04 8.88e+03 1.00e+00
4 8.93e+07 4.28e+07 1.94e+00
5 4.33e+00 3.38e+00 9.68e+14
6 1.63e+00 1.86e-15 1.62e+01
7 3.99e-01 3.09e-46 1.00e+00
8 2.38e-02 3.78e-107 1.00e+00
9 8.51e-05 2.23e-228 1.00e+00
10 1.09e-09 0.00e+00 1.00e+00
11 1.77e-19 0.00e+00 1.00e+00
12 4.70e-39 0.00e+00 1.00e+00
13 3.31e-78 0.00e+00 1.00e+00
14 1.64e-156 0.00e+00 1.00e+00
15 4.05e-313 0.00e+00 1.00e+00
16 0.00e+00 0.00e+00 1.00e+00

(b) carex Problem 6.

k ‖Kk‖ cond.
1 4.25e+02 2.29e+05
2 1.82e+03 3.12e+06
3 8.83e+04 3.02e+10
4 2.54e+10 3.49e+20
5 3.00e+20 3.61e+43
6 5.16e+16 1.24e+49
7 5.59e+13 1.25e+47
8 4.29e+13 1.90e+44
9 1.50e+09 2.65e+41
10 2.70e-01 1.21e+40
11 9.48e-22 1.21e+40
12 1.17e-62 1.21e+40
13 1.77e-144 1.21e+40
14 4.07e-308 1.21e+40
15 0.00e+00 1.21e+40

k ‖Kk‖ ‖Nk‖ cond.
1 5.15e+01 5.25e+01 9.00e+03
2 7.51e+01 3.32e+02 1.39e+04
3 1.13e+03 7.93e+04 4.70e+06
4 5.34e+02 4.71e+09 1.38e+15
5 1.42e+03 8.84e+16 2.24e+31
6 1.25e+03 2.48e+17 3.08e+31
7 8.39e+04 4.08e+17 1.34e+34
8 2.56e+05 1.24e+15 6.36e+32
9 3.38e+04 2.03e+16 6.91e+30
10 1.09e+03 2.33e+17 5.68e+31
11 9.08e-01 5.68e+18 1.42e+31
12 6.80e-07 6.81e+21 4.28e+22
13 3.87e-19 9.96e+27 2.55e+14
14 1.25e-43 2.14e+40 1.79e+02
15 1.30e-92 9.81e+64 1.00e+00
16 1.42e-190 2.07e+114 1.00e+00
17 0.00e+00 9.23e+212 1.00e+00
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Table 2: Convergence history for the SDA (left) and the gSDA (right)

(a) carex Problem 15.

k ‖Kk‖ cond.
1 1.04e+01 1.03e+02
2 8.10e+01 8.65e+01
3 6.56e+03 1.42e+02
4 4.33e+07 1.15e+13
5 2.03e+02 3.02e+19
6 6.96e-11 1.61e+18
7 1.53e-27 1.61e+18
8 2.81e-60 1.61e+18
9 7.72e-126 1.61e+18
10 5.33e-257 1.61e+18
11 0.00e+00 1.61e+18

k ‖Kk‖ ‖Nk‖ cond.
1 1.51e+00 9.00e+00 4.00e+01
2 8.32e-01 8.10e+01 8.40e+01
3 1.05e-01 6.56e+03 6.68e+03
4 6.62e-04 4.33e+07 4.33e+07
5 1.35e-08 7.37e+01 1.65e+02
6 3.84e-18 1.86e-16 1.00e+00
7 2.86e-37 1.39e-35 1.00e+00
8 1.58e-75 7.68e-74 1.00e+00
9 4.80e-152 2.34e-150 1.00e+00
10 4.45e-305 2.18e-303 1.00e+00
11 0.00e+00 0.00e+00 1.00e+00

(b) carex Problem 17.

k ‖Kk‖ cond.
1 1.78e+02 4.42e+02
2 6.17e+03 1.54e+06
3 7.09e+05 8.14e+10
4 7.97e+07 8.11e+15
5 5.28e+08 1.19e+19
6 4.70e+07 9.40e+18
7 8.28e+04 1.25e+19
8 2.51e-01 3.72e+19
9 3.32e-12 3.72e+19
10 5.37e-34 3.72e+19
11 1.41e-77 3.72e+19
12 9.79e-165 3.72e+19
13 0.00e+00 3.72e+19

k ‖Kk‖ ‖Nk‖ cond.
1 7.86e+01 7.86e+01 2.10e+01
2 8.42e+02 8.42e+02 1.19e+03
3 8.93e+03 8.93e+03 8.60e+05
4 2.31e+04 2.31e+04 4.15e+08
5 8.77e+03 8.77e+03 2.38e+09
6 8.01e+02 8.01e+02 8.37e+07
7 6.65e+00 6.65e+00 9.10e+03
8 4.58e-04 4.58e-04 1.01e+00
9 2.17e-12 2.17e-12 1.00e+00
10 4.88e-29 4.88e-29 1.00e+00
11 2.47e-62 2.47e-62 1.00e+00
12 6.33e-129 6.33e-129 1.00e+00
13 4.15e-262 4.15e-262 1.00e+00
14 0.00e+00 0.00e+00 1.00e+00
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