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1. Introduction. The paper is concerned with the discretization of the 2-d elliptic optimal
control problem

J(u) = F (y, u) =
1

2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) (1.1)

subject to the state equations

Ay + a0y = u in Ω

y = 0 on Γ (1.2)

and subject to the control constraints

a ≤ u(t, x) ≤ b for a.a. x ∈ Ω, (1.3)

where Ω is a bounded domain and Γ is the boundary of Ω; A denotes a second order elliptic
operator of the form

Ay(x) = −
2
∑

i,j=1

Di(aij(x)Djy(x))

where Di denotes the partial derivative with respect to xi, and a and b are real numbers. Moreover,
ν > 0 is a fixed positive number. We denote the set of admissible controls by Uad:

Uad = {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω}.

We discuss here the full discretization of the control and the state equations by a finite element
method. The asymptotic behaviour of the discretized problem is studied, and superconvergence
results are established.

The approximation of the discretization for semilinear elliptic optimal control problems is discussed
in Arada, Casas, and Tröltzsch [1]. The optimal control problem (1.1)–(1.3) is a linear-quadratic
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counterpart of such a semilinear problem. Our aim is to construct controls ũ which have an
approximation order of h2. This higher convergence order is the difference to [1].

The discretization of optimal control problems by piecewise constant functions is well investigated,
we refer to Falk [7], Geveci [8]. Piecewise constant and piecewise linear discretization in space are
discussed for a parabolic problem in Malanowski [12]. Theory and numerical results for elliptic
boundary control problems are contained in Casas and Tröltzsch [5] and Casas, Mateos, and
Tröltsch [4].

Piecewise linear control discretizations for elliptic optimal control problems are studied by Casas
and Tröltzsch, see [5]. In an abstract optimization problem, piecewise linear approximations are
investigated in Rösch [14]. In all papers, the convergence order is h or h3/2.

A quadratic convergence result is proved by Hinze [10]. In that approach only the state equation
is discretized. The control is obtained by a projection of the adjoint state to the set of admissible
controls.

In this paper, we combine the advantages of the different approaches. After solving a fully dis-
cretized optimal control problem, a control ũ is calculated by the projection of the adjoint state ph

in a post-processing step. Although the approximation of the discretized solution is only of order
h, we will show that this post-processing step improves the convergence order to h2.

The paper is organized as follows: In section 2 the discretizations are introduced and the main
results are stated. Section 3 contains auxiliary results. The proofs of the superconvergence results
are placed in section 4. The paper ends with numerical experiments shown in section 5.

2. Discretization and superconvergence results. Throughout this paper, Ω denotes a
convex bounded open subset in IR2 of class C1,1. The coefficients aij of the operator A belong to
C0,1(Ω̄) and satisfy the ellipticity condition

m0|ξ|2 ≤
2
∑

i,j=1

aij(x)ξiξj ∀(ξ, x) ∈ IR2 × Ω̄, m0 > 0.

Moreover, we require aij(x) = aji(x) and yd ∈ Lp(Ω) for some p > 2. For the function a0 ∈ L∞(Ω),
we assume a0 ≥ 0. Next, we recall some results from Bonnans and Casas [2].

Lemma 2.1. [2] For every function g ∈ Lp(Ω), the solution y of

Ay + a0y = g in Ω, y|Γ = 0,

belongs to H1
0 (Ω) ∩ W 2,p(Ω) for every p > n. Moreover, there exists a positive constant c, inde-

pendent of a0 such that

‖y‖W 2,p(Ω) ≤ c‖g‖Lp(Ω).

Next, we introduce the adjoint equation

Ap + a0p = y − yd in Ω

p = 0 on Γ (2.1)

Due to Lemma 2.1, the state equation and the adjoint equation admit unique solutions in H1
0 (Ω)∩

W 2,p(Ω), if yd ∈ Lp(Ω) for p > 2. This space is embedded in C0,1(Ω̄).
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We call the solution y of (1.2) for a control u associated state to u and write y(u). In the same
way, we call the solution p of (2.1) corresponding to y(u) associated adjoint state to u and write
p(u).

Introducing the projection

Π[a,b](f(x)) = max(a, min(b, f(x))),

we can formulate the necessary and sufficient first-order optimality condition for (1.1)–(1.3).

Lemma 2.2. A necessary and sufficient condition for the optimality of a control ū with correspond-
ing state ȳ = y(ū) and adjoint state p̄ = p(ū), respectively, is that the equation

ū(x) = Π[a,b](−
1

ν
p̄) (2.2)

holds.

Since the optimal control problem is strictly convex, we obtain the existence of a unique optimal
solution. The optimality condition can be formulated as variational inequality (3.11). A standard
pointwise a.e. discussion of this variational inequality leads to the above formulated projection
formula.

We are now able to introduce the discretized problem. We define a finite-element based approxima-
tion of the optimal control (1.1)–(1.3). To this aim, we consider a family of triangulations (Th)h>0

of Ω̄. With each element T ∈ Th, we associate two parameters ρ(T ) and σ(T ), where ρ(T ) denotes
the diameter of the set T and σ(T ) is the diameter of the largest ball contained in T . The mesh
size of the grid is defined by h = max

T∈Th

ρ(T ). We suppose that the following regularity assumptions

are satisfied.

(A1) There exist two positive constants ρ and σ such that

ρ(T )

σ(T )
≤ σ,

h

ρ(T )
≤ ρ

hold for all T ∈ Th and all h > 0.

(A2) Let us define Ω̄h =
⋃

T∈Th

T , and let Ωh and Γh denote its interior and its boundary, respectively.

We assume that Ω̄h is convex and that the vertices of Th placed on the boundary of Γh are points
of Γ. From [13], estimate (5.2.19), it is known that

|Ω \ Ωh| ≤ Ch2,

where |.| denotes the measure of the set. Next, to every boundary triangle T of Th we associate
another triangle T̂ with curved boundary as follows: The edge between the two boundary nodes
of T is substituted by the corresponding curved part of Γ. We denote by T̂h the union of these
curved boundary triangles with the interior triangles to Ω of Th, such that Ω̄ =

⋃

T̂∈T̂h

T̂ . Moreover,

we set

Uh = {u ∈ L∞(Ω) : u|T̂ is constant on all T̂ ∈ T̂h}, Uad
h = Uh ∩ Uad,

Vh = {yh ∈ C(Ω̄) : yh ∈ P1 for all T ∈ Th, and yh = 0 on Ω̄ \ Ωh},

where P1 is the space of polynomials of degree less or equal than 1. For each uh ∈ Uh, we denote
by yh(uh) the unique element of Vh that satisfies

a(yh(uh), vh) =

∫

Ω

uhvh dx ∀vh ∈ Vh, (2.3)
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where a : Vh × Vh → IR is the bilinear form defined by

a(yh, vh) =

∫

Ω



a0(x)yh(x)vh(x) +
2
∑

i,j=1

aij(x)Diyh(x)Djvh(x)



 dx.

In other words, yh(uh) is the approximated state associated with uh. Because of yh = vh = 0
on Ω̄ \ Ωh the integrals over Ω can be replaced by integrals over Ωh. The finite dimensional
approximation of the optimal control problem is defined by

inf J(uh) =
1

2
‖yh(uh) − yd‖2

L2(Ω) +
ν

2
‖uh‖2

L2(Ω) uh ∈ Uad
h . (2.4)

The adjoint equation is discretized in the same way

a(ph(uh), vh) =

∫

Ω

(yh(uh) − yd)vh dx ∀vh ∈ Vh. (2.5)

The approximation order of the solutions of (2.4) in L2-sense is investigated in [1].

We will go a different way. For our superconvergence result we need an additional assumption for
ū. We know already that the associated adjoint state p̄ belongs to a space W 2,p(Ω) for a certain
p > 2. The optimal control ū is obtained by the projection formula (2.2). Therefore, we can
classify the triangles Ti in two sets K1 and K2:

K1 = {Ti : ū is only Lipschitz continuous on Ti}, K2 = {Ti : ū ∈ W 2,p(Ti)}

This classification is correct: W 2,p(Ω) is embedded in C0,1(Ω̄). Moreover, the projection operator
is continuous from C0,1(Ω̄) to C0,1(Ω̄). Clearly, the number of triangles in K1 grows for decreasing
h. Nevertheless, the following additional assumption is fulfilled in many practical cases:

(A3) |K1| ≤ c · h.

Let ū be the optimal solution of (1.1)–(1.3). Next, we denote by Si the centroid of the triangle Ti.
We define a piecewise constant function by the values of ū(Si)

wh(x) = ū(Si) if x ∈ Ti. (2.6)

It is easy to verify that wh ∈ Uad
h .

Now we are able to formulate our first superconvergence result.

Theorem 2.3. Assume that the assumptions (A1)–(A3) hold. Let uh be the solutions of (2.4).
Then the estimate

‖uh − wh‖L2(Ω) ≤ ch2 (2.7)

holds true. The proof of Theorem 2.3 is contained in section 4.

Moreover, we can construct controls in a post-processing step. We start by the solution uh of (2.4).
The control ũ is calculated by a projection of the discrete adjoint state ph(uh) to the admissible
set

ũ(x) = Π[a,b](−
1

ν
(ph(uh))(x)).

Theorem 2.4. Assume that the assumptions (A1)–(A3) hold. Let ũ be the control constructed
above. Then the estimate

‖ū − ũ‖L2(Ω) ≤ ch2 (2.8)

holds true. The proof of Theorem 2.4 is also derived in section 4.
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3. Auxiliary results. First, we recall some well known results for FEM-approximations [6].
We start with the so-called Aubin-Nitsche Lemma.

Lemma 3.1. Let (A1) and (A2) be fulfilled and u ∈ L2(Ω). Then we have

‖y(u)− yh(u)‖L2(Ω) ≤ ch2‖u‖L2(Ω) (3.1)

‖p(u) − ph(u)‖L2(Ω) ≤ ch2(‖u‖L2(Ω) + ‖yd‖L2(Ω)). (3.2)

Next, we prove an estimate for the numerical integration.

Lemma 3.2. Let f be a function belonging to H2(Ti) for all i in a certain index set I. Then the
estimates

∣

∣

∣

∣

∫

Ti

(f(x) − f(Si)) dx

∣

∣

∣

∣

≤ ch2
√

|Ti||f |H2(Ti)

and

∑

i∈I

∣

∣

∣

∣

∫

Ti

(f(x) − f(Si)) dx

∣

∣

∣

∣

≤ ch2

(

∑

i∈I

|f |2H2(Ti)

)1/2

are valid.

Proof. The proof is almost standard. First, we remark that |.|H2(Ti) denotes the H2-seminorm.
Next, we transform the integral to an integral over the reference element by Ex̂ = x and apply the
Bramble-Hilbert-Lemma:

∣

∣

∣

∣

∫

Ti

(f(x) − f(Si)) dx

∣

∣

∣

∣

=
|Ti|
|T̂ |

∣

∣

∣

∣

∫

T̂

(f(Ex̂) − f(Si)) dx̂

∣

∣

∣

∣

≤ c|Ti|





∫

T̂

∑

|α|=2

|Dα
x̂f(Ex̂)|2 dx̂





1/2

≤ ch2|Ti|





|T̂ |
|Ti|

∫

Ti

∑

|α|=2

|Dα
x f(x)|2 dx





1/2

≤ ch2
√

|Ti||f |H2(Ti)

This implies

∑

i∈I

∣

∣

∣

∣

∫

Ti

(f(x) − f(Si)) dx

∣

∣

∣

∣

≤ ch2

(

∑

i∈I

|f |2H2(Ti)

)1/2

by the Cauchy-Schwarz inequality.

Lemma 3.3. Let wh be the functions defined by (2.6). In addition, we assume that the assumptions
(A1)–(A3) are fulfilled. Then the estimate

‖yh(ū) − yh(wh)‖L2(Ω) ≤ ch2‖p̄‖W 2,p(Ω) (3.3)

holds true.
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Proof. We start with the transformation

‖yh(ū) − yh(wh)‖2
L2(Ω) = (yh(ū) − yh(wh), yh(ū) − yh(wh))L2(Ω)

= (ph(ū) − ph(wh), ū − wh)L2(Ω)

=

∫

K1

(ph(ū) − ph(wh))(ū − wh) dx

+

∫

K2

(ph(ū) − ph(wh))(ū − wh) dx (3.4)

It remains to estimate these two integrals. The K1-part can be estimated by the following argu-
ments: The function p̄ belongs to W 2,p(Ω) with p > 2. Hence, we have

‖ū‖C0,1(Ω̄) ≤
1

ν
‖p̄‖C0,1(Ω̄) ≤ c‖p̄‖W 2,p(Ω).

Because of ū(Si) = wh(Si) and the fact that wh is constant on Ti, this implies |ū(x) − wh(x)| ≤
c‖p̄‖W 2,p(Ω) · |x − Si| ≤ ch‖p̄‖W 2,p(Ω). Consequently, we obtain

|
∫

K1

(ph(ū) − ph(wh))(ū − wh) dx| ≤
∑

Ti∈K1

∫

Ti

|(ph(ū) − ph(wh))(ū − wh)| dx

≤
∑

Ti∈K1

ch‖p̄‖W 2,p(Ω)‖ph(ū) − ph(wh)‖C(Ω̄)

∫

Ti

dx

≤ ch‖p̄‖W 2,p(Ω)‖ph(ū) − ph(wh)‖C(Ω̄)

∫

K1

dx

≤ ch2‖p̄‖W 2,p(Ω)‖ph(ū) − ph(wh)‖C(Ω̄) (3.5)

by means of assumption (A3). For a triangle Ti of the K2-part we have for an arbitrary function
vh ∈ Vh

∫

Ti

whvh dx =

∫

Ti

ū(Si)vh dx =

∫

Ti

ū(Si)vh(Si) dx.

This is a formula for the numerical integration of ūvh. Consequently, we obtain by Lemma 3.2

|
∫

K2

(ū − wh)vh dx| ≤
∑

Ti∈K2

|
∫

Ti

(ū − ū(Si))vh dx|

≤ ch2

(

∑

Ti∈K2

|ūvh|2H2(Ti)

)1/2

. (3.6)

Next, we divide each triangle Ti of K2 in an ”active” (Ai) and an ”inactive” part (Ii) with
Ai ∪ Ii = Ti. The optimal control ū is constant on the active component Ai (ū = a or ū = b).
Therefore, the seminorm is 0 on these parts. On the inactive parts Ii, we have

ū = −1

ν
p̄.

Therefore, we can estimate

|ūvh|H2(Ti) = |ūvh|H2(Ii) =
1

ν
|p̄vh|H2(Ii) ≤ c|p̄vh|H2(Ti).
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Hence, we can continue by

|
∫

K2

(ū − wh)vh dx| ≤ ch2

(

∑

Ti∈K2

|ūvh|2H2(Ti)

)1/2

≤ ch2

(

∑

Ti∈K2

|p̄vh|2H2(Ti)

)1/2

≤ ch2





∑

Ti∈K2

∑

|α|,|β|=1

‖Dα+βp̄vh‖2
L2(Ti)

+ ‖Dαp̄Dβvh‖2
L2(Ti)





1/2

≤ ch2‖p̄‖W 2,p(Ω)‖vh‖H1

0
(Ω), (3.7)

by means of Hölder’s inequality in the last step. Next, we set vh = ph(ū) − ph(wh) and obtain

|
∫

K2

(ū − wh)(ph(ū) − ph(wh)) dx| ≤ ch2‖p̄‖W 2,p(Ω)‖ph(ū) − ph(wh)‖H1

0
(Ω). (3.8)

Inserting (3.5) and (3.8) in (3.4), we get

‖yh(ū) − yh(wh)‖2
L2(Ω) ≤ ch2‖p̄‖W 2,p(Ω)(‖ph(ū) − ph(wh)‖C(Ω̄) + ‖ph(ū) − ph(wh)‖H1

0
(Ω)).

We benefit now from the fact that ph(ū) and ph(wh) are the solutions of the discretized adjoint
equation (2.5) . Hence, we have

‖ph(ū) − ph(wh)‖C(Ω̄) + ‖ph(ū) − ph(wh)‖H1

0
(Ω) ≤ c‖yh(ū) − yh(wh)‖L2(Ω)

with a positive constant c independent of h. The C-estimate can be obtained as follows: Take
the adjoint equation (2.1) and the discretized adjoint equation (2.5), but with a right hand side
fh ∈ Vh instead of y− yd. Then we find for the corresponding solutions z and zh of the continuous
and discretized adjoint equation

‖zh‖C(Ω̄) ≤ ‖zh − z‖C(Ω̄) + ‖z‖C(Ω̄)

≤ ch‖fh‖L2(Ω) + c‖z‖H2(Ω)

≤ ch‖fh‖L2(Ω) + c‖fh‖L2(Ω).

Substituting fh = yh(ū) − yh(wh) and zh = ph(ū) − ph(wh) delivers the desired estimate. For the
estimate of the first expression, we refer to Braess [3].

Finally, we get

‖yh(ū) − yh(wh)‖L2(Ω) ≤ ch2‖p̄‖W 2,p(Ω)

which is exactly inequality (3.3).

Corollary 3.4. Assume that the assumptions of Lemma 3.3 are fulfilled. Then, we have

‖ph(ū) − ph(wh)‖L2(Ω) ≤ ch2‖p̄‖W 2,p(Ω). (3.9)

By means of Lemma 3.1, we obtain

‖p̄− ph(wh)‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)). (3.10)
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Lemma 3.5. The following variational inequalities are necessary and sufficient for the optimality
of the unique solutions of (1.1)–(1.3) and (2.4), respectively.

(p̄ + νū, u − ū)L2(Ω) ≥ 0 for all u ∈ Uad, (3.11)

(ph(uh) + νuh, ζh − uh)L2(Ω) ≥ 0 for all ζh ∈ Uad
h . (3.12)

The variational inequality (3.11) is an equivalent formulation for the projection formula (2.2).

Next, we derive a variational inequality for the function wh. First, formula (3.11) is true for all
u ∈ Uad. Therefore, we have pointwise a.e.

(p̄(x) + νū(x)) · (u − ū(x)) ≥ 0 ∀u ∈ [a, b].

We apply this formula for x = Si and u = uh(Si). This is correct because of the continuity of ū,
p̄, and uh in these points. We arrive at

(p̄(Si) + νū(Si)) · (uh(Si) − ū(Si)) ≥ 0 for all Si.

Due to (2.6), this is equivalent to

(p̄(Si) + νwh(Si)) · (uh(Si) − wh(Si)) ≥ 0 for all Si.

We integrate this formula over Ti and add up over all i

(p̂ + νwh, uh − wh)L2(Ω) ≥ 0 (3.13)

with

p̂(x) = p̄(Si) if x ∈ Ti.

Moreover, we can test inequality (3.12) with the function wh and get

(ph(uh) + νuh, wh − uh)L2(Ω) ≥ 0. (3.14)

We add these two inequalities and obtain

(p̂ − ph(uh) + ν(wh − uh), uh − wh)L2(Ω) ≥ 0.

This is equivalent to

ν‖wh − uh‖2
L2(Ω) ≤ (p̂ − ph(uh), uh − wh)L2(Ω). (3.15)

4. Superconvergence properties. Inequality (3.15) is the starting point for the proofs of
the superconvergence results. Now, we are ready to prove Theorem 2.3.

Proof. For the right-hand side of (3.15), we find

(p̂ − ph(uh), uh − wh)L2(Ω) = (ph(wh) − ph(uh), uh − wh)L2(Ω)

+ (p̄ − ph(wh), uh − wh)L2(Ω)

+ (p̂ − p̄, uh − wh)L2(Ω). (4.1)

Next we estimate these three terms. We start with

(ph(wh) − ph(uh), uh − wh)L2(Ω) = (yh(wh) − yh(uh), yh(uh) − yh(wh))L2(Ω) ≤ 0. (4.2)
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The second term can be estimated by formula (3.10)

(p̄ − ph(wh), uh − wh)L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)) · ‖wh − uh‖L2(Ω). (4.3)

The third term represents again a formula for the numerical integration. Using that uh and wh

are constant on each triangle Ti, we obtain by Lemma 3.2

(p̂ − p̄, uh − wh)L2(Ω) =
∑

i

∫

Ti

(p̂(x) − p̄(x))(uh(x) − wh(x)) dx

=
∑

i

(uh(Si) − wh(Si))

∫

Ti

(p̄(Si) − p̄(x)) dx

≤
∑

i

ch2|uh(Si) − wh(Si)|
√

|Ti| · |p̄|H2(Ti)

≤ ch2 · ‖wh − uh‖L2(Ω) · ‖p̄‖W 2,p(Ω). (4.4)

Inserting (4.2)–(4.4) in (4.1), we get

(p̂ − ph(uh), uh − wh)L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)) · ‖wh − uh‖L2(Ω).

Next, we combine this inequality with (3.15)

ν‖wh − uh‖2
L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)) · ‖wh − uh‖L2(Ω).

This formula is equivalent to

‖wh − uh‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)),

which was the assertion of Theorem 2.3.

Theorem 2.3 means that the values of the numerical solution uh in the centroids have already
quadratic convergence rate. By the projection of the associated adjoint state ph(uh), we obtain
an admissible control ũ that has a quadratic convergence order with respect to the L2-norm. This
was the assertion of Theorem 2.4.

Proof. We start with the result of Theorem 2.3

‖wh − uh‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

This inequality implies

‖ph(wh) − ph(uh)‖L2(Ω) ≤ c‖wh − uh‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

From Corollary 3.4, we know formula (3.10)

‖p̄− ph(wh)‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

Therefore, we obtain by the triangle inequality

‖p̄− ph(uh)‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

The projection operator Π[a,b] is Lipschitz continuous with constant 1 from L2(Ω) to L2(Ω). Finally,
we get

‖ū− ũ‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

The superconvergence result is proved.
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Corollary 4.1. By the arguments of the proof of Theorem 2.4, we get another result. We find
for the L∞-error

‖ū− ũ‖L∞(Ω) ≤ ch(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

Proof. From formula (3.3)

‖yh(wh) − yh(ū)‖L2(Ω) ≤ ch2‖p̄‖W 2,p(Ω)

and the inequality

‖yh(wh) − yh(uh)‖L2(Ω) ≤ c‖wh − uh‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)),

we get by the triangle inequality

‖yh(ū) − yh(uh)‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

This inequality implies

‖ph(ū) − ph(uh)‖L∞(Ω) ≤ c‖yh(ū) − yh(uh)‖L2(Ω) ≤ ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

Denoting the solution of (2.5) with ȳ instead of yh(uh) by p̄h, we continue with

‖p̄ − ph(uh)‖L∞(Ω) ≤ ‖p̄ − p̄h‖L∞(Ω) + ‖p̄h − ph(ū)‖L∞(Ω) + ‖ph(ū) − ph(uh)‖L∞(Ω). (4.5)

The first term can be estimated by ch‖p̄‖H2(Ω) see [3]. For the second term, we use the argumen-
tation of Lemma 3.1 with zh = ph(ū) − ph(uh) and fh = yh(ū) − ȳ

‖p̄ − ph(uh)‖L∞(Ω) ≤ ch‖p̄‖H2(Ω) + c‖yh(ū) − ȳ‖L2(Ω) + ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω))

≤ ch‖p̄‖H2(Ω) + ch2(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω))

≤ ch(‖p̄‖W 2,p(Ω) + ‖yd‖L2(Ω)).

The properties of the projection operator implies the assertion.

Corollary 4.2. The first estimate can be improved, if all data are sufficiently smooth

‖p̄− p̄h‖L∞(Ω) ≤ ch2| ln h|3/2‖p̄‖W 2,∞(Ω),

see Braess [3]. In this case, formula (4.5) implies

‖ū − ũ‖L∞(Ω) ≤ ch2| ln h|3/2(‖p̄‖W 2,∞(Ω) + ‖yd‖L2(Ω)).

5. Numerical tests. We have tested the convergence theory by two examples. In both cases,
the Laplace operator −∆ was chosen for the elliptic operator A. The first example fits exactly to
the presented theory.

Both optimization problems were solved numerically by a primal-dual active set strategy, see for
instance [11]. The discretization was already described in section 2: The control function u is
discretized by piecewise constant functions, whereas the state y and the adjoint state p were
approximated by piecewise linear functions. We used uniform meshes. The additional numerical
effort for the calculation of ũ is very small. We have only to evaluate the pointwise projection of
the funtion − 1

ν ph to the interval [a, b].

10



In contrast to this, the numerical evaluation of the L2-norm ‖ū− ũ‖L2(Ω) and the graphical repre-
sentation are not so simple. Therefore, we shortly sketch these aspects. We want to point out that
this additional effort is only needed to confirm the theoretical results. This effort is not necessary
for the computation of the approximated optimal control.

For the computation of the L2-norms ‖ū − uh‖L2(Ω) and ‖ū − ũ‖L2(Ω), respectively, we introduce

sets K̃1, K̃2 analogue to the sets K1 and K2:

K̃1 = {Ti : ũ is only Lipschitz continuous on Ti}, K̃2 = {Ti : ũ ∈ C∞(Ti)}.

Moreover, we set M1 = K1 ∪ K̃1, M2 = K2 ∩ K̃2. The numerical evaluation of ‖ū− ũ‖L2(Ω) differs
on the sets M1 and M2. Therefore, we split the L2-norm up into

‖ū − ũ‖2
L2(Ω) = ‖ū− ũ‖2

L2(M1) + ‖ū− ũ‖2
L2(M2).

In our examples, the part ū|K2
∈ C∞(K2) is smooth. Thus, ‖ū − ũ‖L2(M2) can be evaluated with

sufficient accuracy applying an appropriate quadrature formula. In contrast to this, the difference
ū − ũ only belongs to C0,1(Ti) for all triangles Ti ∈ M1. Hence, an arbitrary accurate quadrature
formula would only admit an error of order h. Therefore, we introduce a subgrid of significant
smaller mesh size in each triangle Ti ∈ M1 and evalute the norm ‖ū− ũ‖L2(M1) on this subgrid to
ensure sufficient accuracy. We want to point out that this subgrid is only used for the evaluation
of the norm ‖ū− ũ‖L2(M1) with a sufficient high accuracy.

Example 1. In this example, we investigate the Laplace equation with homogenious Dirichlet
boundary conditions. Therfore, we choose a0 ≡ 0 in (1.2). Thus, the state equation is given by

−∆y = u in Ω

y = 0 on Γ.
(5.1)

Now, we define the optimal state by

ȳ = ya − yg

with an analytical part ya = sin(π x1) sin(π x2) and a less smooth function yg . The function yg is
defined as the solution of

−∆yg = g in Ω

yg = 0 on Γ.

The function g is given by

g(x1, x2) =







uf (x1, x2) − a , if uf (x1, x2) < a
0 , if uf (x1, x2) ∈ [a, b]
uf (x1, x2) − b , if uf (x1, x2) > b

with uf (x1, x2) = 2 π2 sin(π x1) sin(π x2). Due to the state equation (5.1), we obtain for the exact
optimal control ū

ū(x1, x2) =







a , if uf (x1, x2) < a
uf (x1, x2) , if uf (x1, x2) ∈ [a, b]
b , if uf (x1, x2) > b.

For the optimal adjoint state p̄, we find

p̄(x1, x2) = −2 π2 ν sin(π x1) sin(π x2).

11



The desired state is given by

yd(x1, x2) = ȳ + ∆p̄ = ya − yg + 4 π4 ν sin(π x1) sin(π x2).

It is easy to see that these functions fulfill the necessary and sufficient first-order optimality con-
ditions. Moreover, the sets with

−1

ν
p̄ = a or − 1

ν
p̄ = b

are a finite number (here two) of curves γi. Hence, the measure of the set K1 is bounded by the
total length of these curves

|K1| ≤ 2h
∑

|γi|

and Assumption (A3) is fulfilled. We chose ν = 1 for the numerical calculations.

Figures 5.1 and 5.2 show the numerical solutions ũ for h = 0.04 and h = 0.02. As described
above, the function ũ is obtained by the pointwise projection Π[a,b](− 1

ν ph) in a post-processing

step. Therefore, ũ contains sharp breaks on the subset K̃1. To visualize these breaks, we introduce
new mesh points in all triangles Ti ∈ K̃1. Notice that these new grid points are only used for the
graphical presentation of the projection.
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Fig. 5.1. ũ at h = 0.04
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Fig. 5.2. ũ at h = 0.02

The following figures show the convergence behaviour of ‖ū − uh‖L2(Ω) and ‖ū − ũ‖L2(Ω), respec-
tively, for h = 0.04, 0.02, 0.01 and 0.005. In the figures, ū is denoted by uopt.
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Fig. 5.3. ‖ū − uh‖L2(Ω)
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As one can see, the theoretical predictions are fulfilled and one obtains quadratic convergence for
‖ū−ũ‖L2(Ω). Furthermore, the absolute value of the error is significantly reduced by the projection,
as the following table shows.

h/
√

2 ‖ū − uh‖L2(Ω) ‖ū− ũ‖L2(Ω) ‖uh − wh‖L2(Ω) ‖ū− uh‖L∞(Ω) ‖ū − ũ‖L∞(Ω)

0.04 0.34312 0.04856 0.05335 1.61552 0.13760
0.02 0.17155 0.01221 0.01342 0.81633 0.03513
0.01 0.08556 0.00306 0.00335 0.40975 0.00884
0.005 0.04281 0.00077 0.00084 0.20485 0.00221

Theoretical results with respect to the L∞(Ω)-norm were addressed in the Corollaries 4.1 and 4.2.
Again, we used finer subgrids for the numerical evulation of the norms.
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Fig. 5.5. ‖ū − uh‖L∞(Ω)
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Fig. 5.6. ‖ū − ũ‖L∞(Ω)

Example 2. A Neumann boundary problem is studied in this example. In this case, the the-
oretical results does not exactly fit to the problem. For this special structure (Laplace-operator,
homogeneous Neumann data, Ω = Ωh), we get the W 2,p-regularity of the solution corresponding
to Lemma 2.1 by a result of Grisvard [9] Th. 4.4.1.2. Moreover, the proofs of our main results
can be adapted. A general discussion of Neumann boundary conditions requires more detailed
investigations. We discuss here the problem

−∆y + c y = u in Ω

∂ny = 0 on Γ,
(5.2)

where ∂n denotes the normal derivative with respect to the outward normal vector. Again, we con-
struct the optimal state ȳ by ȳ = ya − yg , with an analytical part ya(x1, x2) = cos(π x1) cos(π x2).
The function yg is now determined by the following equation

−∆yg + c yg = g in Ω

∂nyg = 0 on Γ,

with the inhomogenity

g(x1, x2) =







uf (x1, x2) − a , if uf (x1, x2) < a
0 , if uf (x1, x2) ∈ [a, b]
uf (x1, x2) − b , if uf (x1, x2) > b
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and uf (x1, x2) = (2 π2 + c) cos(π x1) cos(π x2). The optimal control ū is given by (5.2)

ū(x1, x2) =







a , if uf (x1, x2) < a
uf (x1, x2) , if uf (x1, x2) ∈ [a, b]
b , if uf (x1, x2) > b.

The optimal adjoint state is defined by

p̄(x1, x2) = −(2 π2 + c) ν sin(π x1) sin(π x2).

Moreover the desired state yd is chosen as

yd(x1, x2) = ȳ + ∆p̄ − c p̄

= ya − yg + (4 π4 ν + 4 π2 ν c + ν c2) sin(π x1) sin(π x2).

Again, it is easy to see that these functions fulfill the necessary and sufficient first-order optimality
conditions. Assumption (A3) can be verified with the same arguments as in Example 1. In the
numerical test, we chose ν = c = 1. The projected function ũ for h = 0.04 and h = 0.02 is shown
in figures 5.7 and 5.8. For the visualization of this projection we introduced again new grid points.
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Fig. 5.7. ũ at h = 0.04
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Fig. 5.8. ũ at h = 0.02

The following figures illustrate that we obtain the same convergence results for this Neumann
boundary example.
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Fig. 5.9. ‖ū − uh‖L2(Ω)
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Fig. 5.10. ‖ū − ũ‖
L2(Ω)

Comparable with the first example, the absolute error is considerable reduced by the projection,
as the following table shows.
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h/
√

2 ‖ū − uh‖L2(Ω) ‖ū− ũ‖L2(Ω) ‖uh − wh‖L2(Ω) ‖ū− uh‖L∞(Ω) ‖ū − ũ‖L∞(Ω)

0.04 0.36168 0.10517 0.10659 1.84963 0.21285
0.02 0.17610 0.02632 0.02657 0.89765 0.05352
0.01 0.08744 0.00656 0.00663 0.44174 0.01340
0.005 0.04366 0.00164 0.00166 0.21905 0.00336

The convergence behaviour of the L∞(Ω)-errors is illustrated in the next two figures.
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Fig. 5.11. ‖ū − uh‖L∞(Ω)
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Fig. 5.12. ‖ū − ũ‖L∞(Ω)

The last two figures show the convergence behaviour of ‖uh −wh‖L2(Ω) (analyzed in Theorem 2.3)
for the two examples.

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04

0.05

0.06

h

|| 
u h −

 w
h ||

L2 (Ω
)

Fig. 5.13. ‖uh − wh‖L2(Ω) for Ex. 1
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Fig. 5.14. ‖uh − wh‖L2(Ω) for Ex. 2
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