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Abstract

Classical surface parameterization algorithms often place singular-
ities in order to enhance the quality of the resulting parameter map.
Unfortunately, singularities of positive integral index (as the north
pole of a sphere) were not handled since they cannot be described with
piecewise linear parameter functions on a triangle mesh. Preprocess-
ing is needed to adapt the mesh connectivity. We present an extension
to the QuadCover parameterization algorithm [KNP07], which allows
to handle those singularities.

A singularity of positive integral index can be resolved using bilin-
ear parameter functions on quadrilateral elements. This generaliza-
tion of piecewise linear functions for quadrilaterals enriches the space
of parameterizations. The resulting parameter map can be visualized
by textures using a rendering system which supports quadrilateral el-
ements, or it can be used for remeshing into a pure quad mesh.

1 Introduction

Classical algorithms for surface parameterization often use a global map,
which flattens a given surface and transfers it to a 2d parameter domain.
During the last years, approaches came up which allow the placement of
singularities (or cone points). Singularities are necessary in order to minimize
overall distortion of the parameterization.

For a given parameterization method, the amount of distortion is mainly
determined by the location and type of singularities. Typical algorithms first
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place some singularities and hold them fixed during the subsequent optimiza-
tion. An accurate singularity placement belongs to the main problems for
parameterization.

The QuadCover algorithm also works in this manner. The singularities
are taken from a given input frame field (e.g. from principle curvatures).

A special case arises for singularities of index +1. They cannot be resolved
by a piecewise linear parameter function, since this would require its gradient
to increase to infinity. All existing parameterization algorithms using PL
triangle functions, have to face the same problem.

1.1 Previous work

Surface parameterization is an active research area. We will shortly discuss
early and recent work which are closely related. More complete lists can be
found in [HPS08, FH05].

Early global parameterization methods were introduced by Haker, Gu and
Yau [HAT+00, GY03] and others. They studied conformal parameterizations
which preserve angles at the cost of possibly large length distortions. Angles
and lengths can not be preserved at the same time on general surfaces.

Other methods like Tong et al. [TACSD06] or Lai at al. [LJX+08] allow
singular points which enlarge the space of harmonic functions used for pa-
rameterization. A good placement of singular points is an ongoing problem.
[BCGB08] and [SSP08] present two approaches for an automatic placement
of singularities which are suited for conformal parameterizations.

With the QuadCover algorithm [KNP07] we built upon an idea from Ray
et al. [RLL+06], which use two orthogonal input fields as guiding directions
for the parameter lines. The singularities are then taken from the guiding
field. The idea of QuadCover is to find a parameterization whose gradient
matches this field as well as possible.

1.2 Contributions

Typical parameterization algorithms use piecewise linear parameter func-
tions on triangle meshes. Unfortunately, this function space is too rigid for
describing vortex-like singularities. It is impossible to represent a vortex with
piecewise linear texture maps on a triangle grid.

We propose a procedure for handling singularities of positive integer in-
dex. We therefore introduce bilinear texture maps on quadrilateral elements
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and use them for the construction of such a singularity. The resulting pa-
rameterization can be visualized by rendering systems which support bilinear
textures on quads. Independent from rendering, the parameterization can
still be used for quad remeshing.

We do not give an algorithm for placing singularities. As in the classical
QuadCover algorithm [KNP07], they are just taken as the singularities of
the input field. The construction of a good input field is still an unsolved
problem.

The paper is structured as follows: The overview and the main ideas of
QuadCover are outlined in Sect. 2. The algorithm intensively uses branched
covering spaces. A short introduction into coverings is given in Sect. 3.
Sect. 4 describes QuadCover in detail.

We show the relation between the index of a frame field singularity and
a branch point of the covering. We introduce the problem which occurs with
singularities of positive integral index. We then describe an extension of the
QuadCover algorithm which solves the problem (Sect. 5). Finally, Sect. 6
shows some results of the extended algorithm.

2 Overview

Figure 1: Different parameterizations of a sphere. Left: Classical algorithms may
produce 8 singularities which are equally distributed. Middle: Use a radial guidance
frame field in QuadCover. Since index 1 singularities cannot be handled in the classic way,
the resulting u component nearly vanishes everywhere. Only the v component behaves
well. Right: The two singularities of index 1 are correctly resolved with the presented
method.

Given a smooth manifold M with an atlas of charts {Ui}. A global
parameterization fi : Ui → R2 maps all charts into a flat (u, v)-domain. The
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parameter lines are the preimages of the unit grid Z×R (ui lines), R×Z (vi
lines). They induce a quadrilateral structure in each chart.

Whenever charts overlap, the parameter functions are related by tran-
sition functions ξij. In order to ensure, that the quad structure is globally
continuous, we restrict all transition functions to leave the unit grid invariant.
It is constrained to be of the form

ξij(u, v) := fj(f
−1
i (u, v)) = Jrij

(
u
v

)
+ dij, rij ∈ Z, dij ∈ Z2, (1)

where J is the rotation by 90 degrees in counter-clockwise direction. We
call these maps grid automorphisms. The numbers rij decide, whether the u
lines in chart Ui correspond to u, v, −u or −v-lines in Uj. They are called
matchings between the charts. The vectors dij encode a translational offset
and are called gaps (see Fig. 2).

Uj

Ui
fi fj

R2

ξij

u

v

Figure 2: Smooth manifold with two charts and matching rij = 1.

Frame fields. The parameterization is guided by a so-called frame field.
In each chart, it is just a collection of two vector fields. The goal is to find
a parameter map, whose gradients matches up with the given frames as well
as possible.

The gradients of the parameter map in different charts are related by:(
∇uj
∇vj

)
= Jrij

(
∇ui
∇vi

)
(2)

Thus, the ordered list (∇u,∇v,−∇u,−∇v) in Uj is the same as in Ui, but
cyclically shifted −rij times. In general, the gradients therefore do not de-
scribe global continuous vector fields on M . Whenever u- and v-gradients
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are flipped in different charts, the corresponding vectors must be identified.
It turns out, that there is an elegant way to describe this setting using vector
fields on covering spaces (see Sect. 3).

The algorithm. The QuadCover algorithm takes any frame field as in-
put and generates a parameter function whose gradients matches up with the
input field as well as possible. In practice, the principle curvature directions
are often used as starting frame field, but the user can start with any field.
Details about the algorithm are given in Sect. 4.

The resulting coordinates u and v can be used as texture map. Because
of the coupling of u and v, the texture pattern has to be symmetric due to a
rotation by 90 degrees. E.g. if you use an image containing a quadrangular
grid, then the surface gets divided into quadrangles.

Special issues arise, when there are singularities. When tracing a small
cycle around a singularity p, the frame vectors turn by either a whole number
of revolutions (singularity of integral index) or just by a multiple of 90 degrees
(singularity of fractional index k/4, k ∈ Z). The singularities with fractional
index can be naturally described with branch points in a covering space as
described in Sect. 4.

Singularities of index k ∈ N in general cannot be represented with stan-
dard piecewise linear functions. The nature of these singularities is that the
parameter function in its vicinity tends to infinity (e.g. the gradients of
the longitudinal part of the polar parameterization on a sphere). It turns
out, that the space of PL functions is not flexible enough to represent such
singularities. A key idea is to integrate additional quadrilateral elements
and therefore extend the space of PL functions to functions which are linear
on each triangle and bilinear on each quad. As for PL functions, this is a
fully consistent space of continuous functions, even if triangles and quads are
mixed in the same geometry. The idea and the algorithm will be presented
in Sect. 5.

3 Frame Fields

This section gives a formal definition of frame fields and describes their re-
lation to covering spaces.

Definition 1 Given a manifold M with charts Ui and matchings rij. A
frame field on M is a collection of two vector fields Ki,0, Ki,1 in each chart
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Ui. Let Ki,2 := −Ki,0, Ki,3 := −Ki,1. All overlapping charts Ui ∩ Uj 6= ∅
must hold: Kj,m = Ki,(m−rij) mod 4, ∀m ∈ {0, 1, 2, 3}.

The algorithm uses the notion of branched covering surfaces for an equiv-
alent description of frame fields as explained below.

3.1 Branched Covering Spaces

A frame field on the input surface can be seen as two vector fields on a
covering surface. The advantage of this notion is, that standard vector field
calculus can now be applied to frame fields.

Coverings. First, recall some definitions about Riemann surfaces, see
[FK80, Jos02]. We first give an abstract definition of a covering and explain
below how we actually construct one.

Definition 2 Let M be a Riemann surface. A 4-sheeted covering M ′ of
M is a Riemann surface with a local homeomorphism π : M ′ → M and
the property: For each point p ∈ M , there exists a neighborhood Up whose
preimage π−1(Up) is the union of exactly four pairwise disjoint topological
disks. Fig. 3, left shows a 4-sheeted covering.

In our setting, we allow some exceptional points p (branch points), where
the preimage of a neighborhood of p is the union of less than four topological
disks (e.g. as in Fig. 3, right)).

Ui

U ′
i,0

U ′
i,1

U ′
i,2

U ′
i,3

τ 0
τ 1τ 2

τ 3

πi

Figure 3: Left: Trivial 4-sheeted covering. Right: Different branch points.

Construction. We construct a covering of M as follows: From each
chart Ui, make four copies (layers) and name them U ′i,k, k ∈ {0, 1, 2, 3}. Let
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πi :
⋃
k U
′
i,k → Ui be the operator which projects the copies back to Ui and

τi,k : Ui → U ′i,k the inverse maps. The four layers U ′i,k together with πi is
called the 4-sheeted trivial covering of the chart Ui (Fig. 3, left).

In the next step, we glue these layers at the overlaps of the adjacent charts
together. For each pair of charts the layers may be glued in four different
ways, which is defined by the corresponding matching rij.

Definition 3 A covering surface induced by given matchings rij is uniquely
defined by the following construction:

Let (U ′i , πi) be 4-sheeted trivial coverings of all charts Ui. The cover-
ing surface is given as the union of all U ′i where the following points are
identified: For all overlapping charts Ui, Uj, identify the points τ ki (p) with

τ
(k−rij) mod 4
j (p), p ∈ Ui ∩ Uj, k ∈ {0, 1, 2, 3} (see Fig. 4, left).

Ui Uj

πi πj

Figure 4: Left: Patching two coverings together with matching rij = 1. Right: A
frame field lifted to a vector field on the covering.

Since the trivial coverings of charts have no branch points and the charts
cover the surface, we cannot get any branch point by this construction. In-
stead, they can be invented by removing single points from the surface. De-
pending on the matchings of charts in its vicinity, the covering could be
extended to a branched covering there.

3.2 Vector Fields on Covering Spaces

In this section, we show how frame fields can be described as vector fields on
a covering surface. It allows us to apply the classical theory for vector fields
to frame fields.
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A frame field (Ki,0, Ki,1) on M with matchings rij canonically lifts to
two vector fields (K ′0, K

′
1) on the covering which is induced by rij. In each

chart, define the vectors on its trivial covering as follows: For all p ∈ U ′i,k set
K ′0(p) := Ki,k(πi(p)) and K ′1(p) := Ki,(k+1)mod 4(πi(p)), k ∈ {0, 1, 2, 3}.

The result are two globally well defined vector fields K ′0, K
′
1 on M ′, since

the layers of the covering are connected in the same way as the vector fields
permute when another chart is chosen (compare Def. 1 and 3, Fig. 4, right).

Moreover, the vector fields are symmetric on the layers. I.e. if K ′0(p) and
K ′1(p) are the vectors in a given point in layer 0, then the vectors in all other
layers are: (K ′1(p),−K ′0(p)), (−K ′0(p),−K ′1(p)) and (−K ′1(p), K ′0(p)).

Discretization. Each triangle of the mesh is considered as a chart. The
transition function between two adjacent triangles is fully determined by the
matching and the translation vector associated to their common edge (see
Eqn. (1)).There is no need to really compute the covering surface. It is
implicitly given by the matchings.

Branch points are located at vertices. Let p be a vertex and all elements
in its star are enumerated clockwise from 0 to n − 1. The matchings at
incident edges to p are given by ri,(i+1) mod n. Let tp := ((

∑
i ri)mod 4) be the

type of the vertex. Branch points are characterized by tp 6= 0. This means,
starting somewhere in the neighborhood of p and walking around the vertex
ends on a different layer in the covering. Fig. 3 shows branch points of type
1 and 2.

Discrete frame fields are piecewise constant. In each triangle, two vectors
are stored. Together with the matching numbers, a discrete frame field is
thereby uniquely described.

4 QuadCover Parameterization Algorithm

This section explains shortly, how the QuadCover algorithm works. For
further details, refer to [KNP07].

Compute potential function. Given a surfaceM together with a frame
field (Ki,0, Ki,1). Equivalently, given a covering surface M ′ with two vector
fields (K ′0, K

′
1). The parameterization (u′, v′) : M ′ → R2 can be projected

back to (u, v) : M → R2 by taking the values in one of the layers. It does not
matter which one, because the parameter lines in all layers will be congruent.

First pass. QuadCover uses a variational approach in order to find
a parameterization which fits best possible to the given frame field. More
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precisely, the energy E(u′, v′) =
∫
M ′ (‖∇u′ −K ′0‖2 + ‖∇v′ −K ′1‖2) dA gets

minimized. The functions u′, v′ live in a space of PL functions, which may be
discontinuous at the edges (because of Eqn. (1)). The difference of function
values at both sides of an edge must be a constant (called gap at an edge).

In practice, u′ (and equivalently v′) is found using a discrete Hodge-
Helmholtz decomposition of the vector fields K ′0 (resp. K ′1). They can
uniquely be written as K ′k = Pk + Ck + Hk, k ∈ {0, 1} with a potential
Pk, a copotential Ck and a harmonic vector field Hk. Any pair of functions
u′, v′ satisfying ∇u′ = P0 +H0, ∇v′ = P1 +H1 minimizes the energy.

QuadCover integrates the vector fields Pk + Hk in each chart (triangle)
of the covering separately. The exact translation constant is left open at this
stage. The resulting map (u′, v′) is in general not injective, the images of
triangles may overlap. The common edge between adjacent triangles (of the
covering) is by construction parallel and of same length in texture space.

Second pass. For getting a valid global parameterization, it remains to
ensure that all gaps are ∈ Z2 (Eqn. (1)). QuadCover decreases the degrees
of freedom by translation, such that all triangles are connected. Thus, all
gaps become 0, except at few edges which form a cut graph of the mesh. A
cut graph is a set of paths γi which cut the surface to a topological disk.

The second pass is based on the following observation: along each path
γi of this cut graph, the gap is always a constant di. This is because the
derivative of the function is locally integrable. Note, that there is an excep-
tion if two paths γi, γj merge and run on top of each other. In this case, the
gap turns into di + dj. For further details, see [KNP07].

The algorithm first computes the gaps di ∈ R2 for all cut paths. Then, a
special parameter function (h′, k′) is computed, which is harmonic and whose
gaps at cut paths are exactly [di] − di. The maps h′ and k′ are uniquely
described by this property up to global constant summand. The final pa-
rameterization is given as (u′+h′, v′+k′) and satisfies all needed conditions.

5 Singularities

5.1 Singularities in QuadCover

A characteristic of each parameterization is the location and type of its singu-
larities. The placement of singularities is important for low metric distortion.

Fractional index. For vector fields, the type of a singularity can be
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measured by its index. Take a closed path, which runs counterclockwise
around a singularity p. The index indp(X) of a vector field X at p is defined
as the number of whole revolutions of the vectors along the path. The index
is always an integer number.

When dealing with frame fields, the index is not constrained to be integer
since tracking a vector along a closed path may not necessarily end up in the
same frame vector. Therefore, the index can be multiples of 1/4, (Fig. 5).

In QuadCover, we detect singularities from the input frame field (in most
cases the principle curvature field). There is a difference about the handling
of singularities with integer index and those with fractional index. Integer
indices just appear as vector field singularities on the covering. Singularity of
fractional index are resolved using a branch point. Remember from Sect. 3.1
that the type tp of a branch point can be seen as the layer shift when walking
around the branch point once. During the construction of the covering, a
branch point of type tp = 4(i mod 1) is placed at each point, where the
frame field has a non-integer singularity of index i. If you track one vector
around the branch point, you end up on a different layer, i.e. the parameter
lines exchange or flip the sign.

Figure 5 shows the branch points of different singularities. For index 1/4
or −1/4, the 4 layers of the covering are connected at the branch point (of
type 1 or 3) forming a cyclic spiral. For index 1/2 or −1/2, two spirals (with
two layers each) are formed (branch point of type 2).

Branch points increase the topologically complexity of the cover. They
can be described by cutting an infinitesimally small hole into the surface.
This enlarges the fundamental group of the surface and therefore enriches
the wealth of parameter functions.

The location of a branch point on the surface is fix during the whole
optimization. The reason is that only the parameter function on the covering
gets optimized, not the covering surface itself.

Integer index. Singularities of integer index do not have any affect on
the topology of the covering. The north pole of a sphere for example (Fig. 1,
right) does not lead to a branch point since walking around the pole ends up
on the same layer. The same is true for a saddle of index −1.

The nature of singularities with integer index is completely different.
Since they are not represented by the covering itself, they just arise as vector
field singularities of the gradients. This may occur automatically during the
optimization.

Positive integer index. There is a special case for singularities with
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Figure 5: Parameterizations with different singularities and their coverings. Left: Index
= 1/4, Middle: Index = −1/4, Right: Index = −1/2.

positive integer index. Take a u function which has a local maximum at point
p, thus ∇u has index 1 there. In a good parameterization, the gradients of u
and v are approximately perpendicular to each other. In this case, ∇v would
be a vortex around p.

Unfortunately, vortices cannot be described with a standard PL param-
eter map on triangles because of the following reason: If γ is a curve which
runs around p, then the path integral

∫
γ
∇vds is a constant number, which

stays the same as the curve gets contracted. Therefore, in the near vicinity
of p, the gradients must tend to infinity (like an irrotational vortex). It is
not possible to represent such a function as a piecewise linear function on a
triangle mesh.

Hence, if the input frame field has a singularity of index 1, the parame-
terization algorithm ignores it and produces a parameter function which is
far from the guiding field (see Fig. 1, left). We now explain a method, which
handles this case and therefore provides better parameterizations.

5.2 Handle singularities of positive integral index

Use quads. A regular triangle mesh is too rigid for a piecewise linear
vortex-like parameter function. Thus, we locally remesh the surface and
invent some quadrilateral elements. The shape of the surface stays the same,
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but the quads allow a more complex structure of the parameter function.
Let p be a vertex, where the frame field has an index of k ∈ N. Remesh the

vertex star as displayed in Fig. 6. All triangles in the star become degenerated
quads, whereas two vertices are geometrically in the same location as p.

p q0

q1
q2q3

q4

Q0

Q1

Q2

Q3

Q4

Figure 6: Left: Vertex star of a singularity p. Right: Combinatoric of the remeshed
vertex star. It consists of 4 quads Qi. The inner vertices qi are geometrically located in
the same point p, thus the quads are degenerated.

Scalar functions on a mesh with quads are not longer forced to be piece-
wise linear. We extend the space to functions, which are linear on each tri-
angle and bilinear on each quadrangle. Given function values at the vertices
of a quad, the function itself is then given by the unique bilinear function,
which interpolates these values. The resulting function is continuous, even if
triangles and quads are mixed in the same mesh.

Parameter functions on meshes with triangles and quads can be used as
texture map. If the rendering system supports bilinear textures, one can
easily display singularities of integral index, see Fig. 7.

Figure 7: Left: Bilinear texture on a coarse mesh with triangles and quads. Right:
Image of the elements in texture space. The quads in the vertex star of the singularity are
marked in grey.

Using quadrilaterals, one can now map a polygon in texture space to a
single point on the surface. All the blue parameter lines which goes through
one of the quadrangles in Fig. 7 run into the singularity.
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Approximation The original QuadCover algorithm works on triangles.
It would be straight forward to generalize it to quadrangles. The only differ-
ence is that the function space for energy minimization changes. Although,
an adaption of the optimization algorithm to work with bilinear functions
turned out to be complicated, since the computation of the derivatives of
the energy requires to solve a non-linear integral. Instead, we simplified the
problem and approximated the optimal solution. This approximation re-
places the quads by triangles again, but with an altered connectivity. Thus
the standard QuadCover algorithm can be used. The quads are then used af-
terwards for the final description and visualization of the result. The outline
of the extended QuadCover is listed in Algorithm 1.

Algorithm 1 Modified QuadCover algorithm, Input: Guidance frame field

1: for all vertices p do
2: Measure index of frame field at p
3: if (index mod 1 == 0) and (index > 0) then
4: Store vertex p in array specialSingularities
5: Cut all outgoing edges from p open.
6: end if
7: end for
8: Run original QuadCover algorithm
9: for all p in specialSingularities do

10: Replace all adjacent triangles to p by a quadrilateral
11: Compute texture coordinates for the quads
12: end for

Lines 1–7 do a local remeshing at each vertex p with positive integer
index. All adjacent edges to p are cut open generating a hole in the surface,
see Fig. 8. Then, the QuadCover algorithm is applied to the triangle surface.
Fig. 9 shows the texture domain of the example from Fig. 7.

In lines 9–12, the singularities get remeshed again. Each triangle of the
vertex star (which was previously cut open) is now replaced by a quadrangle.
All quads are connected as in the situation of Fig. 6, right.

It remains to compute the texture coordinates for the created vertices qi.
They are obtained by just averaging the texture coordinates of the old vertices
pi (from Fig. 8, right). In quadrangle Qj, compute the texture coordinates
as:
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p p0

p1
p2

p3
p4

Figure 8: Each vertex star of a singularity p with positive integer index will be cut open.
The right mesh shows the new combinatoric, the inner vertices pi are geometrically located
at p.

Figure 9: Texture domain after parameterization with modified mesh connectivity. The
surface from Fig. 7, left is taken as input.

fj(qj) := 1/2 (fj−1(pi−1) + di−1,i + fj(pj)) (3)

fj(qj+1) := 1/2 (fj(pj) + fj+1(pi+1) + di+1,i)

where di−1,i is the translational part of the transition between chart Qi−1 and
Qi, see Eqn. (1).

6 Results

With this extension, QuadCover produces very stable parameterizations,
even when singularities of integral index are present. All what we need is a
frame field, which contains singularities at reasonable locations.

A good placement of singularities is still an open problem. The singular-
ities from principle curvature fields are mostly nice, but their location is not
very stable in nearly umbilic areas. Particularly, singularities of index 1 will
mostly split up into 4 singularities of index 1/4 each.

We tested the algorithm on some user generated frame fields. Fig. 10, left
shows the graph of the function f(u, v) = sin(u) cos(v). A frame field was
produced using the gradient field of the height function and its 90 degrees
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rotated field. The parameterization has two singularities of index 1 and two
saddles of index -1.

Figure 10: Left: The parameterization is guided by the gradient and cogradient of the
height function. Singularities of index 1 naturally appear at all local minima and maxima.
They are correctly detected and resolved by the method. The singularities of negative
index at saddle points occur automatically, even if there is no parameter line running
directly into the saddle. Right: Parameterization on a 3-fold Lawson surface. The hight
function was used for this parameterization, too.

Fig. 10, right shows a Lawson surface. It is a constant mean curvature
in R3 and is made out of 30k triangles. The parameterization took several
seconds.
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