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Abstract

Diffusion weighted imaging is a magnetic resonance based method to investigate tissue micro-
structure especially in the human brain via water diffusion. Since the standard diffusion tensor model
for the acquired data failes in large portion of the brain voxel more sophisticated models have bee
developed.

Here, we report on the package dti and how some of these models can be used with the package.

1 Introduction

The basic principles of diffusion weighted imaging (DWI) have been introduced in the 1980’s (Le Bihan
and Breton, 1985; Merboldt et al., 1985; Taylor and Bushell, 1985). Since then it has evolved into a
beneficial technique for in-vivo investigation of tissue micro-structure in the human brain (Le Bihan et al.,
2001) and spinal cord (Clark et al., 1999) as it probes microscopic structures well beyond typical image
resolutions through water molecule displacement. Diffusion weighted data is measured using the pulsed
gradient spin echo sequence (PGSE, Stejskal and Tanner, 1965) with a number of specified magnetic
field gradients in different directions ~q. Due to diffusion in tissue this signal S(~q) is attenuated compared
to the signal S0 acquired without gradient application. For a recent discussion of the physics of image
acquisition, relations to white matter anatomy, clinical use and problems in neuroscience that can be
addressed by DWI see e.g. Johansen-Berg and Behrens (2009).

In this paper we discuss the modeling and analysis of DWI data using the package dti (Tabelow and
Polzehl, 2010, version 0.9-3) for the R environment for statistical computing (R Development Core Team,
2010). The first reference to this package that is restricted to diffusion tensor imaging (DTI) and adaptive
smoothing within the context of the diffusion tensor model (Tabelow et al., 2008) is Polzehl and Tabelow
(2009) which refers to version 0.6-0.

The focus of this paper is on models for estimating the orientation density function (ODF), see Tuch et al.
(2002); Wedeen et al. (2005); Aganj et al. (2010b) and Barnett (2009), that overcome the limitations of the
tensor model. Such models are of special interest for high angular resolution diffusion weighted imaging
(HARDI) data. Subsection 2.2 briefly reviews the diffusion tensor model and discusses its limitations. We
then introduce both Q-ball imaging (see e.g. Tuch, 2004; Anderson, 2005; Hess et al., 2006; Descoteaux
et al., 2007) and tensor mixture models (see e.g. Tabelow et al., 2010, and references cited therein).
Section 3 introduces the design of the package and illustrates its usage. Two appendices describe the
data sets and code used for the examples. Data sets and scripts are provided in electronic form.

2 Modeling diffusion weighted data

2.1 The diffusion weighted signal

DWI effectively measures diffusion of water molecules, or more precisely protons within such a molecule
in a direction determined by external magnetic field gradients. Let P (~r, ~r ′, τ) denote the probability for a
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Figure 1: Data visualization: E(~q, τ) for a row of 4 voxel in data set 3

particle (spin) to diffuse from position ~r ′ to ~r in time τ . With DWI an aggregate value of P over a volume
(voxel) V can be determined, i.e.

P (~R, τ) =

∫
~r ′∈V, ~R=~r−~r ′

P (~r, ~r ′, τ)p(~r ′)d~r ′, (1)

where p(~r ′) is the initial spin density. V is typically of a size of about 1× 1× 1 mm3. The relation to the
normalized diffusion weighted signal E(~q, τ) = S(~q, τ)/S0, is given by the three-dimensional Fourier
transform F :

P (~R, τ) =

∫
R3

E(~q, τ) e−2πi~q
~Rd~q = F(E(~q, τ)),

E(~q, τ) =

∫
R3

P (~R, τ) e2πi~q
~Rd~R = F−1(P (~q, τ)). (2)

2.2 The diffusion tensor model

Assuming homogeneity within a voxel the diffusion tensor model is derived for the special case of free
anisotropic Gaussian diffusion1, i.e.

P (~R, τ) = P (r~u, τ) =
1√

detD(4πτ)3
exp

(
−r2~u

TD−1~u
4τ

)
.

The relation (2) can then be expressed as

E(~q, τ) = E(q~u, τ) = e−b~u
TD~u

with the b-value depending on q and the effective diffusion time τ (Basser et al., 1994a). Within this model
diffusion is completely characterized by the positive definite symmetric 3 × 3 matrix D, the diffusion
tensor.

The components of the diffusion tensor clearly depend on the orientation of the object in the scanner
frame. Only rotationally invariant quantities derived from the diffusion tensor circumvent this dependence

1Note, that the Gaussian model of diffusion can be considered as the low spatial frequency approximation to the diffusion
propagator (Tuch et al., 2002) in case of restricted diffusion.
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and are usually used for further analysis, mainly based on the eigenvalues µi (i = 1, 2, 3) of D with
µi > 0 for positive definite tensors. The eigenvector ~e1 corresponding to the principal eigenvalue µ1
determines the main diffusion direction used for fiber tracking.

The simplest quantity based on the eigenvalues is the trace of the diffusion tensor Tr(D) =
∑3

i=1 µi
which is related to the mean diffusivity 〈µ〉 = Tr(D)/3. The anisotropy of the diffusion can be described
using higher moments of the eigenvalues µi. The widely used fractional anisotropy (FA) is defined as

FA =

√
3

2

√√√√ 3∑
i=1

(µi − 〈µ〉)2 /
3∑
i=1

µ2i

with 0 ≤ FA ≤ 1, where FA = 0 indicates equal eigenvalues and hence no diffusion anisotropy.

The resulting FA-maps together with a color-coding scheme are helpful for medical diagnostics. The
principal eigenvector ~e1 = (e1x, e1y, e1z) is used for assigning each voxel a specific color, interpreting
e1x, e1y , and e1z weighted with the value FA as red, green, and blue contribution

(R,G,B) = (|e1x|, |e1y|, |e1z|) · FA. (3)

Note, that in contrast to the eigenvalues and the fractional anisotropy the principal eigenvector and hence
the color coding depend on the orientation of the object in the scanner frame.

The main problem of diffusion tensor imaging arises from the assumption of homogeneity within a voxel.
Diffusion weighted imaging aims to detect structures with an extension of up to 15cm and a diameter of
about 30µm. A high percentage of voxel contains structures with different orientation. In such a situation
partial volume effects may lead to non informative tensor estimates.

2.3 The orientation density function

The drawbacks of the diffusion tensor model can be avoided by a more detailed analysis of Eq. (1). The
main interest in diffusion weighted imaging is to access the orientation properties of the tissue, i.e. in
case of brain imaging of neuronal fiber bundles. This means that our main interest is in the orientation
properties of the probability distribution P , i.e. its projection onto the unit sphere

ODF(~u) =

∫ ∞
0

r2P (r~u)dr, (4)

with ~R = r~u and ~u ∈ S2 and neglecting the dependence on τ . Eq. (4) is the orientation distribution
function as proposed in Wedeen et al. (2005) and used in Aganj et al. (2010b). For a detailed discussion
on how this differs from the original definition of Tuch et al. (2002) see Barnett (2009).

This definition is intrinsically normalized ∫
S2

ODF(~u)d~u = 1

and defines a probability distribution on the sphere S2.

In case of elliptically symmetric distributions P (~R, τ) = Cτ (detD)−1/2hτ
(
~R>D−1 ~R

)
with zero

mean, shape parameter D, some function hτ and normalization constant Cτ the ODF is given by

ODF(~u) =
1

4π
√
detD

√
1

(~uTD−1~u)3
,
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(see Tabelow et al., 2010). This is known as the angular central Gaussian distribution (Mardia and Jupp,
2000) on the sphere. One example for an elliptically symmetric distribution P is the anisotropic Gaussian
diffusion assumed for the tensor model.

Using spherical coordinates ~q = (q, θ, φ) the orientation distribution function can be expressed as a
function of the signal E(~q):

ODF(~u) =
1

4π
− 1

8π2

∫ 2π

0

∫ ∞
0

1

q
∇2
bE(~q)dqdφ

∇2
bE =

1

sin θ

δ

δθ
(sin θ

δE

δθ
) +

1

sin2 θ

δE

δφ2

where∇2
b is the Laplace-Beltrami operator, see e.g. Aganj et al. (2010b).

2.4 Q-Ball imaging

Q-ball imaging (QBI) (Tuch, 2004) aims at the reconstruction of the orientation distribution function from
signals E(~q0) measured on one q-shell, i.e. for one fixed b-value. This is in contrast to alternative meth-
ods like diffusion spectrum imaging (DSI) (Wedeen et al., 2005) or hybrid diffusion imaging (HYDI) (Wu
and Alexander, 2007) which measure diffusion weighted images on a Cartesian grid of diffusion gradients
or sample gradients from spheres with different b-values, effectively requiring significantly more diffusion
weighted images.

QBI requires an extrapolation of the signal E(~q0) to other locations in q-space in order to evaluate the
integral over q. Here, we use the formulation of QBI as in Aganj et al. (2010b) which differs from the
original proposal by Tuch (2004) by the r2 weighting factor in the definition of the ODF. The extrapolation
of E(~q0) can be done by assuming a mono-exponential decay of the signal in q

E(q~u) = E(q0~u)
q2

q20

Under this assumption the ODF can be expressed as

ODF(~u) =
1

4π
− 1

16π2
FRT{∇2

b ln(− lnE(~u))}

where

FRT(f(~u)) =

∫∫
~u⊥
f(~w)δ(|~w| − 1)d~w

denotes the Funk-Radon transformation, see again Aganj et al. (2010b) for details.

Efficient implementations of QBI make use of the spherical harmonics basis functions Y m
k , particularly

in form of the real symmetric modified basis. For selected maximum order l, even order k ≤ l, and
−k ≤ m ≤ k we define an index j = k(k + 1)/2 +m+ 1 and a real function

Yj =


√
2<(Y m

k ) −k ≤ m < 0
Y 0
k m = 0√
2=(Y m

k ) 0 < m ≤ k

using the real part <(Y m
k ) and the imaginary part =(Y m

k ) of Y m
k , see Descoteaux et al. (2007).

The spherical harmonics Yj are eigenfunctions of the Laplace-Beltrami operator, i.e. that ∇2
bYj(~u) =
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Figure 2: True ODF and expected reconstruction by spherical harmonics expansion of order 2, 4, 6 and
8 (from left to right)

−kj(kj + 1)Yj(~u), where kj is the order associated with j. The use of the expansion

ln(− ln(E(~u))) ≈
N∑
j=1

cjYj , N = (l + 1)(l + 2)/2 (5)

leads to an approximation of the ODF by

ODF(~u) ≈ 1

4π
+

1

8π

N∑
j=1

cjkj(kj + 1)Pkj (0)Yj (6)

where Pkj () are the Legendre polynomials of order kj , see again Aganj et al. (2010b). Estimation of the
ODF is now a linear problem where estimates of the parameters are obtained by solving a regularized
least squares problem, see Descoteaux et al. (2007); Aganj et al. (2010b). Figure 2 illustrates effects of
Q-ball reconstruction by spherical harmonics expansion for a voxel where the true ODF is a mixture of
three angular central Gaussian distributions. Reconstruction was based on 136 gradient directions in a
noise-free situation. See Appendix B for the R-code used to generate the Figure.

2.5 Tensor mixture models

Although the estimation of the ODF by spherical harmonics expansion of the observed signal is compu-
tationally appealing it also has several drawbacks. The form of the ODF reconstruction depends on the
order l of the approximation and the amount of regularization used. The location of maxima is usually
biased. Finally, in the case of QBI, the result heavily depends on the assumption of a mono-exponential
decay of the signal E with q.

Lets assume a voxel to contain M compartments covering a fraction wm of the voxel (
∑M

m=1wm =
1) and free anisotropic Gaussian diffusion characterized by the tensor Dm in compartment m, m =
1, . . . ,M . This leads to a signal that does not exhibit a mono-exponential decay but is

E(~q) =
M∑
m=1

wm exp(−b~uTDm~u). (7)

The corresponding ODF is a mixture of of the ODF’s for the compartments

ODF(~u) =
M∑
m=1

wi
1

4π
√
detDm

√
1

(~uTD−1m ~u)3
.

This additivity of the ODF is not preserved when using Eqs. (5,6) due to the non-linearity of ln(− ln(·).
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The mixture model of M diffusion tensors Di in its general form (7) (see e.g. Tuch, 2002; Alexander,
2005, 2006; Özarslan et al., 2006), is too flexible, leading to severe identifiability and numerical prob-
lems (Tuch, 2002; Johansen-Berg and Behrens, 2009). Suggestions to resolve the problem include the
restriction of the number of components M to 2 (Alexander, 2005, 2006; Özarslan et al., 2006), the
approximation of the solution by estimating the ODF spherical harmonics expansion and subsequent
deconvolution (Tournier et al., 2004) or the use of restrictions for the tensor eigenvalues (Leow et al.,
2009).

In (Tabelow et al., 2010) we show that a reduction of the complexity of the model accompanied by model
selection using BIC (Schwarz, 1978) is practicable. We assume the diffusion tensors Dm to have a
spectral decomposition Dm = λ1dmd

T
m + λ2(I3 − dmdTm), i.e. to be prolate (λ1 > λ2 = λ3, Basser

et al., 1994b) and to differ only in their main direction dm. After reparametrization the reduced model has
the form

E(~q) =

M∑
m=1

w̃m exp(−bϑ(~q>dm)2), w̃m ≥ 0,

M∑
m=1

w̃m < 1, ϑ ≥ 0

with λ2 = −1
b log

∑M
m=1 w̃m, λ1 = ϑ+ λ2 and wm = w̃m/

∑M
l=1 w̃l.

With dm = (sin(φm) cos(ηm), sin(φm) sin(ηm), cos(φm)) the model has 2M + 1 nonlinear param-
eters and M linear parameters with constraints. For a detailed description of parameter estimation and
a strategy to select the number of mixture components M we refer to (Tabelow et al., 2010). The tensor
mixture model is characterized by the selected order popt, the fractional anisotropy

FA =
(λ1 − λ2)√
λ21 + 2 · λ22

,

and the effective order

EO =

popt∑
m=1

(2m− 1)wm .

2.6 Fiber tracking

The estimated diffusion tensors and ODF’s can be used to infer on the underlying neuronal fiber structure.
Usually this is performed using fiber tracking algorithms on vector fields or tensor orientation functions
extracted from the estimated objects. There exists a large variety of fiber tracking algorithms that can be
roughly classified into deterministic and probabilistic approaches and are based either on local or global
criteria. For an overview on existing approaches see e.g. (Mori and van Zijl, 2002; Behrens et al., 2007;
Descoteaux et al., 2009; Reisert et al., 2010; Wu et al., 2009; Zhang et al., 2009; Aganj et al., 2010a).
For this paper we use the FACT algorithm proposed in Xue et al. (1999); Mori et al. (1999). This is also
implemented within dti.

3 Analyzing DWI data: The R-package dti

The package dti for the R statistical environment (R Development Core Team, 2010) has been designed
to perform an analysis of diffusion weighted imaging data. The implementation uses S4-classes. For
detailed information we refer to the documentation of the package. Information on the package and its
classes and methods can be obtained within an R-session by
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Figure 3: Work flow for analyzing DWI data with package dti

> library(dti)
> help(dti)
> class?class-name
> methods?method-name

Figure 3 illustrates the anticipated work flow for analyzing DWI data. Tables 1, 2 and 3 provide an overview
on currently implemented classes, functions and methods.

Table 1: Overview on package dti: classes
Class Content Ref.
dwi Basic class containing data description (1)
dtiData DWI data objects. Extends (1). (2)
dtiTensor Estimated diffusion tensor. Extends (1). (3)
dtiIndices Estimated diffusion tensor indices and orientations. Extends (1). (4)
dwiMixtensor Estimated tensor mixtures. Extends (1). (5)
dwiQball Estimated Q-ball using spherical harmonics. Extends (1). (6)
dwiFiber Fiber tracking results. Extends (1). (7)

The package includes two data sets, "polyeder", containing a description of regular polyeders that
are refinements of the icosahedron and are used for visualization and a dataset containing sets of optimal
gradient directions "optgradients".

Currently there are two comprehensive demos, demo(dti_art) for modeling within the context of
the diffusion tensor model (DTI) and demo(mixtens_art) illustrating the work flow for analyzing
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Table 2: Overview on package dti: functions
Function Purpose creates
dtiData Create DWI data object from binary image file (1)
readDWIdata Read DWI-Data using capabilities of package fmri (1)
tensor2medinria Write tensor estimates as NIfTI
medinria2tensor Read tensor estimates from NIfTI. (3)

Table 3: Overview on package dti: methods
Method Purpose defined for classes creates
dtiTensor Compute diffusion tensor estimates (2) (3)
dti.smooth Adaptive smoothing for DTI (2) (3)
dtiIndices Compute diffusion tensor characteristics (3) (4)
dwiQball Q-ball imaging using spherical harmonics (2) (6)
dwiMixtensor estimate tensor mixtures (2) (5)
tracking streamline fiber tracking (3,4,5) (7)
selectFibers select subset of fiber tracks (7) (7)
reduceFibers remove redundant fiber tracks (7) (7)
extract extract information or components (2,3,4,5,6)
"[" index operations (2,3,4,5,6) (2,3,4,5,6)
summary summarize information (2,3,4,5,6,7)
plot plot-method (2,3,4,5,7)
show object descriptions (2,3,4,5,6,7)
print object descriptions (2,3,4,5,6,7)
show3d 3D visualization of objects (2,3,4,5,6,7)

HARDI data. In both demos a variety of configurations can be specified both concerning underlying true
fiber structures as well as number of gradients and SNR.

3.1 Examples

We illustrate the capabilities of the package using a series of examples. For the code we refer to Ap-
pendix B.

3.1.1 Example 1: Tensor estimates

This example uses the data set 3 from Appendix A to illustrate the capabilities of the package in diffusion
tensor imaging in an adequate situation. See corresponding code in Appendix B. Voxel wise tensor
estimates are obtained without and with structural adaptive smoothing (maximal bandwidth 4), tensor
characteristics are computed and fiber tracking is performed. Figure 4 provides a 2D projection of a
3D visualization of tensor characteristics and fiber tracking results. Orientations are color coded using
Eq. (3). Note the improvement of results due to adaptive smoothing. For details we refer to (Tabelow
et al., 2008; Polzehl and Tabelow, 2009)
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Figure 4: 3D visualization of main tensor orientations without and with use of spatially adaptive smooth-
ing and corresponding fiber tracking results (from left to right). Shown are results for voxel with estimated
FA > 0.3 and fiber tracks starting from such voxel. You may run the example code to see more projec-
tions.

3.1.2 Example 2: The effect of regularization in Q-ball imaging

The next example illustrates the effect of regularization in Q-ball reconstruction with spherical harmonics.
We use data set 1 from Appendix A. The data are modeled using a tensor mixture model of maximum
order 4 and the ODF-estimate (5, 6) applying the regularization proposed in (Aganj et al., 2010b) when
estimating the coefficients in (5). The regularization parameter is chosen as λ = 2.5 ∗ 10−3, 1 ∗ 10−2
and 4 ∗ 10−2, respectively. Coordinates of two voxel with structure have been determined interactively
using

coord <- plot(mixtensobj, slice = 3, what = "eorder",
view = "axial", identify = TRUE)

These voxel have been used in the two rows of Figure 5. Especially in the first row it is difficult to inter-
pret the results from Q-ball reconstruction using Eqs. (5,6). Note the strong impact of the regularization
parameter on the results.

3.1.3 Example 3: Tensor mixture models

Here we illustrate some capabilities of the tensor mixture model in comparison to the tensor model. We
first analyze the data in data set 2 from Appendix A with both models. Figure 6 provides characteristics of
results obtained in the analysis. The left image shows a color coded FA for the second axial slice obtained
using the tensor model. The other four images provide FA, estimated number of mixture components,
effective order and maximal eigenvalues (from left to right) for the same slice obtained employing a
tensor mixture model with specified maximal number of compartments of 5 (see Tabelow et al., 2010, for
definitions and more explanation). We observe an increase of FA in comparison with the tensor model,
especially in regions adjacent to tissue borders (Tabelow et al., 2010). Note the spatial homogeneity
observed in all characteristics for the tensor mixture model. Figure 7 illustrated some capabilities in 3D
visualization. The image shows estimated ODF’s for all voxel with effective order larger or equal than 1.8
together with fiber tracks starting from these voxel.
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Figure 5: ODF estimated using tensor mixture models (left) and using Q-Ball reconstruction with spherical
harmonics of order 8 and regularization parameter λ = 2.5∗10−3, 1∗10−2, 4∗10−2 (from left to right)
for two interactively selected voxel. You may run the example code to see more projections.

Figure 6: visualization of results for data set 2, axial slice 2: Color coded FA (tensor model), FA, number
of mixture components, effective order and maximal eigenvalue for mixture model with maximum model
order 5 (from left to right).
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Figure 7: 3D visualization of results for data set 2: Voxel with estimated effective order larger than 1.8
and fibertracks starting within these voxel. You may run the example code to see more projections.

3.1.4 Example 4: Fiber tracking

The object tracks100 provided as data set 5 has been obtained analyzing high resolution DWI data
recorded by H.-U. Voss at Weill Medical College, Cornell University NY. 140 gradient directions were used
and images of 256×256×66 voxel with spatial resolution of approximately .9mm× .9mm×1.8mm
where recorded. A history of the object tracks100 and its basic characteristics can be obtained by

> summary(tracks100)

Object of class dwiFiber
Generated by calls :

[[1]]
readDWIdata(gradient, "s0004", "DICOM", 66, level = 0.75)

[[2]]
dwiMixtensor(data, maxcomp = 5, reltol = 1e-07, nguess = 5000)

[[3]]
tracking(nymix5, minfa = 0.266)

[[4]]
selectFibers(nymix5tracks1, minlength = 100)

Source-Filename : s0004
Dimension : 256x256x66
Number of Gradients : 150
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Figure 8: Visualization of fiber tracks with minimal length 100.

Voxel extensions : 0.8984x0.8984x1.8
Minimum FA : 0.266
Maximum angle : 30
Number of fibers : 1904
Quantiles of fiber lengths:

0% 25% 50% 75% 100%
100.00 107.00 117.00 136.25 256.00
Total number of line segments : 237612

Figure 8 provides an illustration of the main long fiber tracks revealed by the analysis.

Acknowledgments

This work is supported by the DFG Research Center MATHEON. We thank H.-U. Voss for agreeing to
make the experimental data used in this paper publicly available under GPL ≥ 2

References

Aganj I, Lenglet C, Jahanshad N, Yacoub E, Harel N, Thompson P, Sapiro G (2010a). “A Hough transform
global probabilistic approach to multiple-subject diffusion MRI tractography.” Technical Report 2305,
University of Minnesota, IMA.

Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N (2010b). “Reconstruction of the Orienta-

12



tion Distribution Function in Single- and Multiple-Shell q-Ball Imaging Within Constant Solid Angle.”
Magnetic Resonance in Medicine, 64, 554–556.

Alexander DC (2005). “Multiple-Fiber Reconstruction Algorithms for Diffusion MRI.” Annals of the New
York Acadamy of Sciences, 1064, 113–133.

Alexander DC (2006). “An Introduction to computational diffusion MRI: the diffusion tensor and beyond.”
In J Weickert, H Hagen (eds.), Visualization and image processing of tensor fields. Springer.

Anderson A (2005). “Measurements of fiber orientation distributions using high angular resolution diffu-
sion imaging.” Magnetic Resonance in Medicine, 54, 1194–1206.

Barnett A (2009). “Theory of Q-ball Imaging Redux: Implications for Fibre Tracking.” Magnetic Resonance
in Medicine, 62, 910–923.

Basser P, Mattiello J, Le Bihan D (1994a). “Estimation of the effective self-diffusion tensor from the NMR
spin echo.” Journal of Magnetic Resonance B, 103, 247–254.

Basser PJ, Mattiello J, Le Bihan D (1994b). “MR Diffusion Tensor Spectroscopy and Imaging.” Biophysical
Journal, 66, 259–267.

Behrens TEJ, Johansen-Berg H, Jbabdi S, Rushworth MFS, Woolrich MW (2007). “Probabilistic diffusion
tractography with multiple fibre orientations: What can we gain?” Neuroimage, 34, 144–155.

Clark CA, Barker GJ, Tofts PS (1999). “Magnetic Resonance Diffusion Imaging of the Human Cervical
Spinal Cord in Vivo.” Magnetic Resonance in Medicine, 41, 1269–1273.

Descoteaux M, Angelino E, Fitzgibbons S, Deriche R (2007). “Regularized, Fast and Robust Analytical
Q-Ball Imaging.” Magnetic Resonance in Medicine, 58, 497–510.

Descoteaux M, Deriche R, Knösche TR, Anwander A (2009). “Deterministic and Probabilistic Tractog-
raphy based on Complex Fiber Orientation Distributions.” IEEE Transactions on Medical Imaging, 28,
269–286.

Hess C, Mukherjee P, Han E, Xu D, Vigneron D (2006). “Q-ball reconstruction of multimodal fiber orien-
tations using the spherical harmonic basis.” Magnetic Resonance in Medicine, 56, 104–117.

Johansen-Berg H, Behrens TEJ (2009). Diffusion MRI: From Quantitative Measurement to In-Vivo Neu-
roanatomy. Academic Press.

Le Bihan D, Breton E (1985). “Imagerie de Diffusion in Vivo par Résonance Magnétique Nucléaire (Invivo
Magnetic Resonance Imaging of Diffusion).” Comptes rendus de l’Académie des Sciences. La vie des
sciences, 301, 1109–1112.

Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001). “Diffusion Tensor
Imaging: Concepts and Applications.” Journal of Magnetic Resonance, 13, 534–546.

Leow A, Zhu S, McMahon K, de Zubicaray G, Meredith M, Wright M, Thompson P (2009). “The tensor
distribution function.” Magnetic Resonance in Medicine, 61, 205–214. University of California, Los
Angeles, CA, USA.

Mardia KV, Jupp PE (2000). Directional Statistics. Wiley.

13



Merboldt KD, Hanicke W, Frahm J (1985). “Self-Diffusion NMR Imaging Using Stimulated Echoes.” Jour-
nal of Magnetic Resonance, 64, 479–486.

Mori S, Crain BJ, Chacko VP, van Zijl PCM (1999). “Three dimensional tracking of axonal projections in
the brain by magnetic resonance imaging.” Annals of Neurology, 45, 265–269.

Mori S, van Zijl PCM (2002). “Fibre tracking: principles and strategies - a technical review.” NMR in
Biomedicine, 15, 468–480.

Özarslan E, Shepherd TM, Vemuri BC, Blackband SJ, Mareci TH (2006). “Resolution of complex tissue
microarchitecture using the diffusion orientation transform (DOT).” Neuroimage, 31, 1086–1103.

Polzehl J, Tabelow K (2009). “Structural Adaptive Smoothing in Diffusion Tensor Imaging: The R Package
dti.” Journal of Statistical Software, 31(9), 1–23.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.
R-project.org.

Reisert M, Mader I, Anastasopoulos C, Weigel M, Schnell S, Kiselev V (2010). “Global fiber reconstruction
becomes practical.” Neuroimage. doi:10.1016/j.neuroimage.2010.09.016.

Schwarz G (1978). “Estimating the dimension of a model.” Annals of Statistics, 6, 461–464.

Stejskal EO, Tanner JE (1965). “Spin diffusion measurements: spin echoes in the presence of a time-
dependent field gradient.” The Journal of Chemical Physics, 42, 288–292.

Tabelow K, Polzehl J (2010). dti: DTI/DWI Analysis. R package version 0.9-3, URL http://CRAN.
R-project.org/package=dti.

Tabelow K, Polzehl J, Spokoiny V, Voss HU (2008). “Diffusion Tensor Imaging: Structural adaptive
smoothing.” Neuroimage, 39, 1763–1773.

Tabelow K, Voss HU, Polzehl J (2010). “Modeling the orientation distribution function by mixtures of
angular central Gaussian distributions.” Technical Report 1559, WIAS, Berlin.

Taylor DG, Bushell MC (1985). “The Spatial Mapping of Translational Diffusion Coefficients by the NMR
Imaging Technique.” Physics in Medicine and Biology, 30, 345–349.

Tournier JD, Calamante F, Gadian DG, Connelly A (2004). “Direct estimation of the fiber orientation
density function from diffusion-weighted MRI data using spherical deconvolution.” Neuroimage, 23,
1176–1185.

Tuch DS (2002). Diffusion MRI of Complex Tissue Structure. Ph.D. thesis, Massachusetts Institute of
Technology.

Tuch DS (2004). “Q-Ball Imaging.” Magnetic Resonance in Medicine, 52, 1358–1372.

Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002). “High angular resolution
diffusion imaging reveals intravoxel white matter fiber heterogeneity.” Magnetic Resonance in Medicine,
48, 577–582.

Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskopf RM (2005). “Mapping complex tissue archi-
tecture with diffusion spectrum imaging.” Magnetic Resonance in Medicine, 54, 1377–1386.

14



Wu X, Xu Q, Xu L, Zhou J, Anderson AW, Ding Z (2009). “Genetic white matter fiber tractography with
global optimization.” Journal of Neuroscience Methods, 184, 375–379.

Wu YC, Alexander A (2007). “Hybrid diffusion imaging.” Neuroimage, 36, 617–629.

Xue R, van Zijl PCM, Crain BJ, Solaiyappan M, Mori S (1999). “In vivo three-dimensional reconstruction
of rat brain axonal projections by diffusion tensor imaging.” Magnetic Resonance in Medicine, 42,
1123–1127.

Zhang F, Hancock ER, Goodlett C, Gerig G (2009). “Probabilistic white matter fiber tracking using particle
filtering and von Mises-Fisher sampling.” Medical Image Analysis, 13, 5–18.

A Data sets

With this document we provide four data sets that have been used within the text and can be used to
explore the capabilities of the R package dti. The data are contained in the electronic appendix of this
paper in form of directories containing NIfTI-Files. The data may be freely used under the terms of the
GPL ≥ 2 license.

MRI images were obtained from a healthy male volunteer in the age group 40 - 45 within an Institutional
Review Board approved research protocol at Weill Cornell Medical College. Images were acquired on a
3.0 Tesla General Electric Excite MRI scanner using an 8-channel receive-only head coil. First, a localizer
scan was obtained to prescribe the position of the subsequent DWI scan. For the DWI scan, a single-shot
spin-echo EPI sequence with 10 images without diffusion weighting and 140 diffusion gradient directions,
which were approximately isotropically distributed over the sphere, was used, with an echo and repetition
time of TE = 73.2 ms and TR = 14000 ms, respectively. 66 axial slices were scanned with no skip and
an acquisition matrix size of 128 × 128. Images were zero-filled to an image matrix size of 256 × 256,
yielding an effective resolution of 0.898 × 0.898 × 1.800 mm3. The b-value in the diffusion weighted
images was 1000 s/mm2, the parallel imaging acceleration factor was 2, and the total scan time for this
scan was 36 min.

Data set 1: This data set contains a sub cube of the DWI data described above. The data covers parts of
the Genu of the Corpus Callosum (GCC), the Anterior Talamic Radiation (ATR) and the Superior Fronto-
Occipital-Fasciculus (SFO).

Data directory: data1

Dimension: 40× 40× 5

Gradient-File: b-directions.txt

Number of gradients: 150 (10 zero, 140 directions)

Data set 2: This data set contains a sub cube of the DWI data described above. The sub cube contains
a contiguous region where three main directions of diffusion are found.

Data directory: data2

Dimension: 9× 22× 5
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Gradient-File: b-directions.txt

Number of gradients: 150 (10 zero, 140 directions)

Figure 9: Color coded FA with location for data cubes of data set 1 (left) and data set 2 (right). Information
shown is within slice three of the sub cubes.

Data set 3: An artificial data set created by demo(dti_art) with default settings. For this data set the
tensor model is adequate.

Data directory: data3

Dimension: 64× 64× 30

Gradient-File: access from package by

data("optgradients")
gradients <- cbind(matrix(0,3,1),optgrad[[16]])

Number of gradients: 22 (1 zero, 21 directions)

Data set 4: An artificial data set created by demo(mixtens_art) with default settings (except n = 7).

Data directory: data4a (without noise) and data4b (with SNR = 50)

Dimension: 7× 7× 7

Gradient-File: access from package by

data("optgradients")
gradients <- cbind(matrix(0,3,7),optgrad[[131]])

Number of gradients: 143 ( 7 zero, 136 directions)

Data set 5: Fibertracks identified from whole brain data recorded within an diffusion weighted experiment
by H.-U. Voss using a tensor mixture model of maximal order 5. The data set contains fibers extending
over at least 100 voxel. Access data using load("tracks100.rsc").
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B Code used for the examples and illustrations

In this appendix we provide code used to generate illustrations and evaluation of examples. This code is
also available in the electronic supplements in file examples.r.

Code for Figure 1:

library(dti)
data("optgradients")
gradients <- cbind(matrix(0,3,1),optgrad[[16]])
dwiobj <- readDWIdata(gradients,"data3","NIFTI")
show3d(dwiobj[26:30,26,15],bg="white",what="data")
rgl.snapshot("dwidata.png")

Code for Figure 2:

library(dti)
data("optgradients")
gradients <- cbind(matrix(0, 3, 7), optgrad[[131]])
dwiobj <- readDWIdata(gradients, "data4a", "NIFTI")
# this is data without noise
# and may be used to construct the true ODF
dwiobj <- sdpar(dwiobj, 200, interactive = FALSE)
mixtens3 <- dwiMixtensor(dwiobj[5, 5, 5], maxcomp = 5)
qballobj2 <- dwiQball(dwiobj[5, 5, 5], order = 2, lambda = 0)
qballobj4 <- dwiQball(dwiobj[5, 5, 5], order = 4, lambda = 0)
qballobj6 <- dwiQball(dwiobj[5, 5, 5], order = 6, lambda = 0)
qballobj8 <- dwiQball(dwiobj[5, 5, 5], order = 8, lambda = 0)
source(system.file("rcode/mousecallbacks.r", package = "dti"))
sizex <- 320
sizey <- 320
w1 <- show3d(mixtens3, subdivide = 4, FOV = 1,

windowRect = c(1, 1, sizex, sizey))
w2 <- show3d(qballobj2, subdivide = 4, FOV = 1,

windowRect = c(sizex+11, 1, 2*sizex+10, sizey))
w3 <- show3d(qballobj4, subdivide = 4, FOV = 1,

windowRect = c(2*sizex+21, 1, 3*sizex+20, sizey))
w4 <- show3d(qballobj6, subdivide = 4, FOV = 1,

windowRect = c(3*sizex+31, 1, 4*sizex+30, sizey))
w5 <- show3d(qballobj8, subdivide = 4, FOV = 1,

windowRect = c(4*sizex+41, 1, 5*sizex+40, sizey))
mouseTrackball(dev = c(w1, w2, w3, w4, w5))
mouseZoom(2, dev = c(w1, w2, w3, w4, w5))
mouseFOV(3, dev = c(w1, w2, w3, w4, w5))
cat("w1 - true ODF

\nw2 - Expected ODF estimate by Spherical harmonics
approximation order 2 without regularization

\nw3 - Expected ODF estimate by Spherical harmonics
approximation order 4 without regularization

\nw4 - Expected ODF estimate by Spherical harmonics
approximation order 6 without regularization

\nw5 - Expected ODF estimate by Spherical harmonics
approximation order 8 without regularization")

rgl.set(w1)
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rgl.snapshot("truemix3.png")
rgl.set(w2)
rgl.snapshot("ExpectedODF2.png")
rgl.set(w3)
rgl.snapshot("ExpectedODF4.png")
rgl.set(w4)
rgl.snapshot("ExpectedODF6.png")
rgl.set(w5)
rgl.snapshot("ExpectedODF8.png")

Code for Example 3.1.1:

library(dti)
data("optgradients")
gradients <- cbind(matrix(0, 3, 1), optgrad[[16]])
dwiobj <- readDWIdata(gradients, "data3", "NIFTI")
dwiobj <- sdpar(dwiobj, 100)
dtiobj <- dtiTensor(dwiobj) # Tensor estimation
dtiind <- dtiIndices(dtiobj) # Tensor characteristics
dtiobj.smooth <- dti.smooth(dwiobj, hmax = 4)
# Tensor estimation with adapt. smoothing
# Tensor characteristics
dtiind.smooth <- dtiIndices(dtiobj.smooth)
# Fiber tracking
tracks <- tracking(dtiobj, minfa = .2)
# remove redundant fibers
tracks <- reduceFibers(tracks, maxdist = .5)
tracks.smooth <- reduceFibers(tracking(dtiobj.smooth, minfa = .2),

maxdist = .5)
source(system.file("rcode/mousecallbacks.r", package="dti"))
sizex <- 400
sizey <- 450
w1 <- show3d(dtiind, FOV = 1,

windowRect = c(1, 1, sizex, sizey))
w2 <- show3d(dtiind.smooth, FOV = 1,

windowRect = c(sizex+11, 1, 2*sizex+10, sizey))
w3 <- show3d(tracks, FOV = 1,

windowRect = c(2*sizex+21, 1, 3*sizex+20, sizey))
w4 <- show3d(tracks.smooth, FOV = 1,

windowRect = c(3*sizex+31, 1, 4*sizex+30, sizey))
mouseTrackball(dev = c(w1, w2, w3, w4))
mouseZoom(2, dev = c(w1, w2, w3, w4))
mouseFOV(3, dev = c(w1, w2, w3, w4))
cat("w1 - Fiber orientations from tensor estimates

\nw2 - Fiber orientations from smoothed tensor estimates
\nw3 - Tracking results from tensor estimates
\nw4 - Tracking results from smoothed tensor estimates
\n - Color codes orientation:

red - along x; green - along y; blue - along z")
rgl.set(w1)
rgl.snapshot("ex1tens.png")
rgl.set(w2)
rgl.snapshot("ex1smtens.png")
rgl.set(w3)
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rgl.snapshot("ex1tracks.png")
rgl.set(w4)
rgl.snapshot("ex1smtracks.png")

Code for Example 3.1.2:

library(dti)
gradients <- read.table("b-directions.txt")
dwiobj <- readDWIdata(gradients, "data1", "NIFTI")
dwiobj <- sdpar(dwiobj, 500, interactive = FALSE)
mixtensobj <- dwiMixtensor(dwiobj, maxcomp = 4) # approx. 6 min.
dwiqball8.25m3 <- dwiQball(dwiobj, order = 8, lambda = 2.5e-3)
dwiqball8.1m2 <- dwiQball(dwiobj, order = 8, lambda = 1e-2)
dwiqball8.4m2 <- dwiQball(dwiobj, order = 8, lambda = 4e-2)
coord <- plot(mixtensobj, slice = 3, what = "eorder",

view = "axial", identify = TRUE)
# get coordinates of two interesting voxel
# (here c(17,10,3) and c(23,12,3))
# Visualize results for order 2 voxel
source(system.file("rcode/mousecallbacks.r", package = "dti"))
sizex <- 400
sizey <- 400
w1 <- show3d(mixtensobj[17, 10, 3],

windowRect = c(1, 1, sizex, sizey))
w2 <- show3d(dwiqball8.25m3[17, 10, 3],

windowRect = c(sizex+11, 1, 2*sizex+10, sizey))
w3 <- show3d(dwiqball8.1m2[17, 10, 3],

windowRect = c(2*sizex+21, 1, 3*sizex+20, sizey))
w4 <- show3d(dwiqball8.4m2[17, 10, 3],

windowRect = c(3*sizex+31, 1, 4*sizex+30, sizey))
mouseTrackball(dev = c(w1, w2, w3, w4))
mouseZoom(2,dev = c(w1, w2, w3, w4))
mouseFOV(3,dev = c(w1, w2, w3, w4))
rgl.set(w1)
rgl.snapshot("ex2mix2.png")
rgl.set(w2)
rgl.snapshot("ex2qball2a.png")
rgl.set(w3)
rgl.snapshot("ex2qball2b.png")
rgl.set(w4)
rgl.snapshot("ex2qball2c.png")
# Visualize results for order 3 voxel
w5 <- show3d(mixtensobj[23, 12, 3],

windowRect = c(1, sizey+11,
sizex, 2*sizey+10))

w6 <- show3d(dwiqball8.25m3[23, 12, 3],
windowRect = c(sizex+11, sizey+11,

2*sizex+10, 2*sizey+10))
w7 <- show3d(dwiqball8.1m2[23, 12, 3],

windowRect = c(2*sizex+21, sizey+11,
3*sizex+20, 2*sizey+10))

w8 <- show3d(dwiqball8.4m2[23, 12, 3],
windowRect = c(3*sizex+31, sizey+11,

4*sizex+30, 2*sizey+10))
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mouseTrackball(dev = c(w5, w6, w7, w8))
mouseZoom(2, dev = c(w5, w6, w7, w8))
mouseFOV(3, dev = c(w5, w6, w7, w8))
rgl.set(w5)
rgl.snapshot("ex2mix3.png")
rgl.set(w6)
rgl.snapshot("ex2qball3a.png")
rgl.set(w7)
rgl.snapshot("ex2qball3b.png")
rgl.set(w8)
rgl.snapshot("ex2qball3c.png")

Code for Example 3.1.3:

library(dti)
gradients <- read.table("b-directions.txt")
dwiobj <- readDWIdata(gradients, "data2", "NIFTI")
dwiobj <- sdpar(dwiobj, 500, interactive = FALSE)
tensobj <- dtiTensor(dwiobj)
summary(tensobj)# summary information
indobj <- dtiIndices(tensobj)
summary(indobj)# summary information
img0 <- plot(indobj, slice = 2, what = "fa", view = "axial")
mixtensobj <- dwiMixtensor(dwiobj, maxcomp = 5) # approx. 90s
summary(mixtensobj) # summary information
img1 <- plot(mixtensobj, slice = 2, what = "fa", view = "axial")
img2 <- plot(mixtensobj, slice = 2, what = "order", view = "axial")
img3 <- plot(mixtensobj, slice = 2, what = "eorder", view = "axial")
img4 <- plot(mixtensobj, slice = 2, what = "ev", view = "axial")
X11(width = 1000, height = 500)
par(mfrow=c(1,5),mar=c(1,1,3,.2),mgp=c(2,1,0))
show.image(img0, main = "Tensor FA")
show.image(img1, main = "Mixture FA")
show.image(img2, main = "Mixture order")
show.image(img3, main = "Effective order")
show.image(img4, main = "Maximum Eigenvalue")
write.image(img0, file = "ex3tensfa.png")
write.image(img1, file = "ex3mixfa.png")
write.image(img2, file = "ex3mixord.png")
write.image(img3, file = "ex3mixeo.png")
write.image(img4, file = "ex3mixev.png")
w1 <- show3d(mixtensobj, maxangle = 45, fibers = TRUE, mineo = 1.8,

FOV = 1, windowRect = c(1, 1, 1000, 600), lwd = 3)
rgl.snapshot("eo1.8regionmix5.png")

Code for Example 3.1.4:

library(dti)
load("tracks100.rsc")
summary(tracks100)
show3d(tracks100)
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